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1 Introduction

A wide range of econometric problems are related to the identification and estimation of a
nonparametric function ϕ from a structural model

r = Tϕ, (1.1)

where r and T is a function and a linear transform, respectively, that are known or can be
estimated from observations. The goal of this paper is to provide a general framework to
construct estimates of ϕ that can be applied in various situations, and to derive their rates
of convergence.

One particular situation that necessitates to solve that model is given when ϕ is the
probability density function (pdf) of a random variable that is observed with an additive
measurement error. Measurement error is a frequent problem in data analysis, meaning that
the variable of interest, X, is not observed directly, but instead a noisy version is observed

Y = X + ε, (1.2)

where ε represents some additive measurement error. In terms of densities, if fY , resp. fε,
denotes the pdf of Y , resp. ε, then from (1.2) the density ϕ of X is the solution of the
integral equation

fY (y) = ϕ ? fε(y) :=
∫
ϕ(u)fε(y − u)du. (1.3)

This problem is therefore a particular case of (1.1), where r is the pdf of Y and T is
the transform defined by Tϕ = ϕ ? fε, also called ”convolution”. In practice, fY has
to be estimated from an Y -sample, and most economic studies assume that the pdf of ε
is known, i.e., the transform T is known (see Horowitz (1998), Postel-Vinay and Robin
(2002), Carrasco and Florens (2002) among others). Below in this paper, we reconsider
deconvolution problem in the light of our treatment of the general model (1.1) and provide
new results including the case when the pdf of ε is unknown.

A second example that leads to the model (1.1) is given when ϕ is solution of the moment
equation

E[Y |W ] = E[ϕ(Z)|W ], (1.4)

where Y is a dependent variable, Z is a vector of endogenous explanatory variables and W
is a vector of instruments. In the literature, ϕ is said to be a nonparametric instrumental
regression function. Identification and estimation of ϕ have been the subject of many
recent economic studies (Darolles, Florens, and Renault (2002), Newey and Powell (2003),
Hall and Horowitz (2005), Gagliardini and Scaillet (2007), Blundell and Horowitz (2007),
Blundell, Chen, and Kristensen (2007) to name but a few). In the setting of (1.1), the
function r is the conditional expectation E[Y |W ] and T is the conditional expectation
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operator, i.e., Tϕ = E[ϕ(Z)|W ] =
∫
ϕ(z)fZ|W (z)dz where fZ|W denotes the multivariate

conditional density of Z given W . This example is also expanded below in the paper, and
the resolution in the general setting (1.1) brings new results on the rate of convergence of
the nonparametric instrumental regression estimator.

The common aspect of all these examples is that the function ϕ is not directly observed
in (1.1) but only through a transform T . Therefore, an inversion of the transform T , or of
its estimate, is necessary in order to recover ϕ and that is why the estimation of ϕ given
in (1.1) is called an inverse problem. Moreover, because the inversion of T is not stable
in general (T−1 is not a bounded operator in the most relevant studies), the problem is
called ”ill-posed” and a stabilization, or regularization step, is mandatory in the estimation
procedure.

The goal of this paper is to offer a synthesis of the econometric literature on the estima-
tion of ϕ through model (1.1). We provide a unified framework for the general treatment
of this problem, that includes new results, in particular on the two above examples of
deconvolution and nonparametric instrumental regression.

One challenging issue in economic inverse problems is the structural assumption we
impose on the model in order to derive rates of convergence. Several proposals have been
provided in the literature. Below we define our assumptions in term of Hilbert scales, that
are defined and illustrated in Section 2. If the transform T is known, several approaches
of regularized estimation in Hilbert scales have been considered in the numerical analysis
and statistical literature (e.g. Hegland (1995), Tautenhahn (1996), Mair and Ruymgaart
(1996), Engl, Hanke, and Neubauer (2000), Mathé and Pereverzev (2001), Goldenshluger
and Pereverzev (2003)). However the transform T is typically unknown in econometrics,
and thus has to be estimated. In that context, formulating our structural assumptions in
terms of Hilbert scales is new and extremely useful. Indeed, different sufficient conditions in
the literature can be written in Hilbert scales, so that our work allows to compare between
various estimators and rates of convergence given in the previous economic studies. Our
framework covers in particular the assumptions of Hall and Horowitz (2005), the Normal
model (that is known to be difficult to solve — see Florens, Johannes, and Van Bellegem
(2007)), many particular situations such as deconvolution of a Laplace density with Normal
measurement error, etc. Our results extend the seminal work of Johannes and Vanhems
(2005) on Hilbert scales in econometrics, and parallels the recent study of Chen and Reiss
(2007).

In Section 3, we derive rates of convergence of the estimator of ϕ as a function of rates
of convergence of the estimates of r and T . One advantage of formulating assumptions in
terms of Hilbert scale is that it also allows to derive the rate of convergence of ϕ in the
norm induced by the Hilbert scale, without any additional assumption. To illustrate that
point, we consider a particular Hilbert scale that directly gives the rate of convergence of
the derivatives of ϕ.
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Section 4 applies the results of Section 3 to the two above mentioned application, that
is the deconvolution with unknown error distribution and the nonparametric instrumental
regression. In these examples, we use explicit estimators of r and T and derive the rates
of convergence as a function of the sample size. Proof of all results are given in a technical
appendix.

2 Hilbert scales

One goal of this paper is to analyse the convergence of ϕ̂ to ϕ in various norms, that
is we are not only interested to study the mean square convergence of ϕ̂, but also, for
instance, the mean square convergence of its derivatives. A crucial element when analyzing
rates of convergence from an inverse problem is the structural assumptions we impose on
ϕ and T . In nonparametric econometrics, smoothness assumptions are often imposed on
the solution ϕ in order to derive these rates. These assumptions impose that ϕ belongs
e.g. to some known Sobolev or Besov space. However, as argued in Florens, Johannes, and
Van Bellegem (2007) in the specific context of nonparametric instrumental regression, the
correct structural assumptions are formulated in terms of a relative measure of regularity
of ϕ with respect to the operator T , a condition called “source condition” (see also Florens,
Johannes, and Van Bellegem (2005), Johannes, Van Bellegem, and Vanhems (2007)).

Below we propose to write structural assumptions in term of Hilbert scales, a useful
tool that unifies and extends these approaches, and allows to derive rates of convergence of
estimates of ϕ in various norms. First we define that notion which is new in econometrics,
before showing its connection to the usual smoothness structural assumptions considered
in the econometric literature.

2.1 Definition

A Hilbert scale is a specific sequence of Hilbert spaces constructed from a separable Hilbert
space H in the following way. Let L2

µ(Ω) be the Hilbert space of square integrable functions
defined on a σ-finite measurable space (Ω,B, µ) endowed with inner product 〈f, g〉L2

µ(Ω) =∫
fgdµ. Let b(·) be an unbounded measurable function defined on (Ω,B, µ) that is finite

µ-a.e. and with values in [cb,∞) with cb > 0. For any ν ∈ R we also define the linear
manifold Lν := {f ∈ L2

µ(Ω) : bν/2f ∈ L2
µ(Ω)}.

Suppose U is an unitary mapping from H to L2
µ(Ω). Via the unitary equivalence

the manifold Lν defines a subspace Hν of H, that is Hν = {h ∈ H : Uh ∈ Lν}. It
can be proven from the closed graph theorem that Hν equipped with the inner product
〈φ, ψ〉Hν := 〈bν/2Uφ, bν/2Uψ〉L2

µ(Ω) is a Hilbert space. Specific examples are given in the
next subsections.

The two following properties are straightforward:

(i) For any ν, σ ∈ R such that ν < σ, the space Hσ is dense in Hν
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(ii) If −∞ < q < r < s < +∞ and x ∈ Hs, then we have:

‖x‖s−q
Hr

≤ ‖x‖s−r
Hq

≤ ‖x‖r−q
Hs

.

By definition, the family (Hν)ν∈R is called a Hilbert Scale on H. For a complete theory
on Hilbert scales we refer e.g. to Krein and Petunin (1966).

We also recall the fundamental result in functional analysis given by the spectral the-
orem. Define the operator B such that UBU−1f = b · f for all f ∈ L1. Then the do-
main D(B) of B is H1 and the spectral theorem shows that B is a densely defined, un-
bounded, strictly positive, self-adjoint operator (Halmos (1963)). Analogously, any power
Bν , ν ∈ R, of the operator B is defined by: UBνU−1f = bν · f for all f ∈ Lν and satisfies
Hν = D(Bν) = D((Bν)∗). Moreover, B fulfills 〈Bνφ, φ̃〉 = 〈φ,Bν φ̃〉 and 〈Bνφ, φ〉 ≥ cνb‖φ‖2

for all φ, φ̃ ∈ Hν . The inner product in Hν also satisfies 〈φ, φ̃〉Hν = 〈Bν/2φ,Bν/2φ̃〉 and for
the norm holds ‖φ‖Hν = ‖Bν/2φ‖. In the next section, we give examples of Hilbert scales
and their link to usual structural assumptions in econometrics.

2.2 Connection to standard smoothness classes

Very often in nonparametric econometrics, rates of convergence are derived under the as-
sumption that the solution belongs to some smoothness class of function, such as Sobolev
classes. The following examples show the connection between Sobolev spaces and Hilbert
scales.

(i) Start with the Sobolev spaces (Wν(R))ν in L2(R), in which case we set L2
µ(Ω) = L2(R)

and b(t) := (1 + t2). So we consider the linear manifold Lν := {f ∈ L2(R) :
∫

(1 +
t2)ν |f(t)|2dt < ∞}. Let F denote the Fourier-Plancherel unitary mapping defined
from L2(R) into itself, in which case we suppose H = L2(R). Then Hν corresponds to
the space Wν(R) := {f ∈ L2(R) :

∫
(1 + t2)ν |Ff(t)|2dt < ∞}. It is well-known, that

for integer m we have Wm(R) = {f ∈ L2(R) : f (m) ∈ L2(R)}, where f (m) denotes
the m-th weak-derivative of f . Moreover, the norm ‖f‖m is equivalent to the norm
‖f‖+ ‖f (m)‖. The operator B is such that: B2 : W2(R) → L2(R) and B2f = f − f ′′ .

(ii) As a second example, consider the Sobolev spaces of periodic functions with bound-
ary conditions (Wν [0, 1])ν in L2[0, 1], in which case we suppose, that L2

µ(Ω) = L2(N)
where µ is now the counting measure on N, i.e. the Hilbert space of square summable
sequences endowed with the inner product 〈x, y〉L2(N) =

∑
n xnyn. Thereby, con-

sidering an unbounded sequence (bj)j we define the linear manifold Lν := {x ∈
L2(N) :

∑
j b

ν
jx

2
j < ∞}. Let U denote an unitary mapping defined from L2[0, 1]

into L2(N), then set φj = U−1ej where ej is one at the j-th position and is zero
otherwise. Note that {φj}j forms an orthonormal basis in L2[0, 1]. Thereby, we
obtain Hν = {f ∈ L2[0, 1] :

∑
j b

ν
j 〈f, φj〉2 < ∞} which is the domain of the opera-

tor Bν/2f :=
∑

j b
ν/2
j 〈f, φj〉φj . In general, elements of Hν cannot be characterized
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through differentiability conditions as it was the case in (i). A simple example is given
if {φj}j is the Haar-wavelet basis in L2[0, 1]. However, if b2j = b2j+1 = (2j)2, j ∈ N
and {φ1 ≡ 1, φ2k(x) =

√
2 cos(2πkx), φ2k+1(x) =

√
2 sin(2πkx), k ∈ N} is the trigono-

metric basis, then Hν is the Sobolev space Wν [0, 1] of periodic functions. That is, for
integer m we have Wm[0, 1] = {f ∈ L2[0, 1] : f (m) ∈ L2[0, 1], f (j)(0) = f (j)(1), j =
0, . . . , (m− 1)} and moreover it holds ‖f‖m = (π)−m‖f (m)‖. For more details about
Sobolev spaces Wν [0, 1] we refer to Adams (1975).

(iii) As a last example consider the setting setting in (i) and (ii) but now with b(t) =
exp(|t|γ) or bj = exp(|j|γ) for some γ > 0. Then Hν corresponds to the space Wγ

ν

that contains for all ν > 0 only functions that are infinitely differentiable. Moreover,
if γ ≥ 1, then all elements of Hν are analytical functions (cf. Kawata (1972)).

2.3 Connection to the source conditions

Consider the following relation: Tϕ = r where T : H → G is a linear bounded operator.
We formulate our regularity conditions on the function ϕ in terms of the Hilbert scale
(Hν , ‖ · ‖ν)ν , that is we assume:

ϕ ∈ Hp for some p > 0. (2.1)

That assumption is however not sufficient in order to derive the rate of convergence of the
risk associated to an estimator of ϕ in the norm ‖ · ‖s of the Hilbert space Hs (0 ≤ s ≤ p).
In order to derive this rate, we need an additional assumption that makes a link between the
operator T and the Hilbert scale. Suppose the Hilbert scale is generated by an operator B
and define an index function κ : R+ → R+, which is assumed to be continuous and strictly
increasing with κ(0+) = 0. Then we say that the operator T is adapted to the Hilbert scale
generated by the operator B if there exists two constants c and C such that the inequalities

c‖φ‖s−p ≤ ‖κ1/2(B−s/2T ∗TB−s/2)φ‖ ≤ C‖φ‖s−p, for all φ ∈ H (2.2)

hold true. The necessity of that type of structural assumption has been discussed in the
context of nonparametric regression with instrumental variables in Florens, Johannes, and
Van Bellegem (2007). However, both assumptions (2.1) and (2.2) imply together that the
general source condition Bs/2ϕ = κ1/2(B−s/2T ∗TB−s/2)ψ holds for some ψ ∈ H.

Finitely smoothing case

This is the usual case studied in numerical analysis and also econometrics. It is assumed
that the operator T satisfies

c‖φ‖−a ≤ ‖Tφ‖ ≤ C‖φ‖−a, (2.3)

roughly speaking the operator T is a-times smoothing. The index function in this situation is
κ(t) = t(p−s)/(a+s). However, if the Hilbert scale is generated by the operator B = (T ∗T )−1
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then the condition (2.3) holds with a = 1. Moreover, in the case s = 0, we recover the
polynomial source condition considered in Darolles, Florens, and Renault (2002) or Florens,
Johannes, and Van Bellegem (2005). To be more precise, in this situation, the condition
(2.1) is equivalent to the source condition ‖(T ∗T )−p/2ϕ‖ < ∞ and the condition (2.2) is
satisfied with κ(t) = tp. On the other hand, if we consider the Hilbert Scale of Sobolev
spaces defined in Section 2.2 (ii), then we cover with s = 0 the setting of Hall and Horowitz
(2005).

Infinitely smoothing case

This case has only been recently studied in econometrics. There it is assumed that the
operator T satisfies

c‖φ‖−a ≤ ‖| log(T ∗T )|−1/2φ‖ ≤ C‖φ‖−a, (2.4)

roughly speaking the operator T is infinitely smoothing. The index function in this situa-
tion is κ(t) = | log(t)|−(p−s)/a. However, if the Hilbert scale is generated by the operator
B = (T ∗T )−1 then the condition (2.4) holds with a = 1. Moreover, in the case s = 0, we re-
cover the logarithmic source condition considered in Johannes, Van Bellegem, and Vanhems
(2007). To be more precise, in this situation, the condition (2.1) is equivalent to the source
condition ‖ | log(T ∗T )|p/2ϕ‖ <∞ and the condition (2.2) is satisfied with κ(t) = | log(t)|−p.

Reduced form given a common unitary operator

Observe that another application of the spectral theorem allows to “diagonalize” the oper-
ator T ∗T . Indeed, since T ∗T is a bounded, linear, self adjoint, strictly positive operator,
there exists a unitary operator U : H → L2

µ(Ω) and a strictly positive function λ ∈ L∞µ (Ω)
such that UT ∗TU−1f = λ2f for all f ∈ L2

µ(Ω). Moreover, since T is injective, there exists
a unitary operator V : G→ L2

µ(Ω), such that V TU−1f = λf for all f ∈ L2
µ(Ω).

That last decomposition is in functional analysis also called the singular value decom-
position of the operator T (e.g. Douglas (1966)).

Finally, consider the case where both operators T ∗T and B are reduced by the same
unitary operator, that is UT ∗TU−1f = λ2f and UBU−1f = bf , where U : H → L2

µ(Ω) is
unitary. Then, the condition of adaptation (2.2) can be rewritten as

c‖b(s−p)/2f‖L2
µ(Ω) ≤ ‖κ(λ2/bs)1/2f‖L2

µ(Ω) ≤ C‖b(s−p)/2f‖L2
µ(Ω), for all f ∈ L2

µ(Ω)

Again, this last assumption with (2.1) imply together that the general source condition
bs/2Uϕ = κ1/2(λ2/bs)f holds for some f ∈ L2

µ(Ω).

3 Main results

Consider the solution ϕ of the generic problem Tϕ = r. Our aim is to construct an estimator
ϕ̂ and to measure its performance through the risk function in the norm of the Hilbert space
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Hs, that is: E‖ϕ̂− ϕ‖2
s.

The common method of regularization is the Tikhonov regularization (see Darolles,
Florens, and Renault (2002), Hall and Horowitz (2005),) and its generalization to Hilbert
scale (see Florens, Johannes, and Van Bellegem (2007)), which defines an estimator of ϕ
as solution of the minimization problem minφ∈Hs ‖T̂ φ− r̂‖2 + α‖φ‖2

s, where α > 0 is again
a regularization parameter. Even if Tikhonov regularization is often studied, it has some
disadvantages (see Florens, Johannes, and Van Bellegem (2007) for a discussion). Therefore,
several other regularization methods are proposed, such as Landweber iteration scheme or
ν-methods to name but a few (e.g. Engl, Hanke, and Neubauer (2000)).

All these methods can be unified by considering the general regularization scheme in
Hilbert scales

ϕ̂s = B−s/2gα(B−s/2T̂ ?T̂B−s/2)B−s/2T̂ ?r̂. (3.1)

Here, the regularization scheme gα : (0, c] → R is a piecewise continuous function with the
property that limα→0+ gα(t) = 1/t. Different regularization methods are characterized by
different functions gα (cf Tautenhahn (1996)).

Example 3.1. (i) The classical Tikhonov regularization corresponds to gα(t) = 1/(t+ α).

(ii) The Tikhonov regularization of order m is a generalization of the previous method with
gα(t) = (1 − (α/(t + α))m)/t and m ≥ 1. The regularized estimator ϕ̂s := ϕ̂s,m can
be obtained by solving the m linear operator equations

(T̂ ?T̂ + αBs)ϕ̂s,j = T̂ ?r̂ + αBsϕ̂s,j−1, j = 1, . . . ,m, ϕ̂s,0 = 0.

(iii) The spectral cut-off considers gα(t) = 1/t for t ≥ α, and gα(t) = 1/α for t < α and is
used for instance in Cavalier and Hengartner (2005).

(iv) The Landweber iteration procedure takes gα(t) = (1− (1− t)1/α)/t and is studied in
the context of nonparametric instrumental regression in Johannes, Van Bellegem, and
Vanhems (2007).

In what follows, we consider two cases. In the first restrictive one, we assume that both
operators T ∗T and B are reduced by the same unitary operator. In the second case, we do
not suppose this restriction.

3.1 Risk bound when the reduced form is known

In this section, we consider the case where T ∗T and B have the same unitary operator, so
that UT ∗TU−1f = λ2f and UBU−1f = bf , where U : H → L2

µ(Ω) is unitary. Moreover,
we suppose that V : G → L2

µ(Ω) with V TU−1f = λf is known. In that situation the
estimation of T ∗T is reduced to the estimation of the function λ.
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This condition is natural in the deconvolution problem (see section 4.1 below). However,
despite this assumption is rather restrictive, it is sometimes used in the literature, cfr Mair
and Ruymgaart (1996), Hall and Horowitz (2005), or Cavalier and Hengartner (2005).

Let us now consider the main problem of recovering ϕ ∈ Hp and define for 0 ≤ s ≤ p

the estimator ϕ̂s by

Uϕ̂s :=
V r̂

λ̂
1{λ̂2 ≥ αbs}. (3.2)

This definition of Uϕ̂s corresponds to the particular case of regularization called spectral
cut-off (cf. Example 3.1(iii)). In (3.2), the parameter α plays the role of a smoothing
parameter and is supposed to tend to zero as the sample size growths.

Under this setting, upper bound on the risk function depends among others on the
convergence of r̂ to r and on the convergence of λ̂ to λ.

Theorem 3.1. Suppose that ϕ ∈ Hp for some p > 0 and that for some 0 ≤ s ≤ p, there
exists an index function κ such that the operator T satisfies (2.2). Assume that on an
interval (0, c2], the inverse function Φ of κ is convex. Suppose that E‖r̂ − r‖2 ≤ δ and that
supω∈Ω E|λ̂(ω) − λ(ω)|4 ≤ γ2. Consider the estimator ϕ̂ defined in (3.2) using a threshold
α = d·(δ+γ)/ζ[d·(δ+γ)] for some d > 0, where ζ is the inverse function of ζ−1(t) := tΦ(t).
Then we get the risk bound

E‖ϕ̂− ϕ‖2
s ≤ Cζ(δ + γ),

where C is a stricly positive constant.

Remark 3.1. (i) It is shown in Nair, Pereverzev, and Tautenhahn (2005), Theorem 2.2,
that if in (2.2) we have equalities, then the function ζ providing the bound in the last
theorem and the modulus of continuity of the inverse of T are of the same order. It is
well known that the modulus of continuity essentially describes the worst case error
in estimating the solution ϕ varying in Hp under the condition that (2.2) is satisfied.
Thereby we may argue that given some estimators r̂ and λ̂ satisfying the assumptions
of Theorem 3.1, the derived bound cannot be improved. This suggests that our bound
is optimal provided the estimators r̂ and T̂ are optimal over the set of possible r and
T .

(ii) Note that the conditions (2.2) in general do not imply an optimal rate of convergence
of T . To be more precise, we can in general not derive an optimal rate for T̂ on the set
of all operators satisfying (2.2). Moreover, the same holds true for r = Tϕ. That is,
in general we are not able to provide an optimal rate of convergence of an estimator
of r on the set {r = Tϕ : ϕ and T satisfies (2.1) and (2.2), respectively }.

However, if we have optimal rates for r and T , we may reach the optimal rate for ϕ
but as we will see later, even if we do not estimate optimal r and T , we may obtain
an optimal rate for ϕ.

8



(iii) (The finitely smoothing case). Assume that c‖φ‖−a ≤ ‖Tφ‖ ≤ C‖φ‖−a. The index
function in this situation is κ(t) = t(p−s)/(a+s). Then, its inverse function Φ(t) =
t(a+s)/(p−s) is convex only if p− s ≤ a+ s. This condition is also given in the seminal
paper on Hilbert scale by Natterer (1984). Then we have ζ(t) = t(p−s)/(a+p). Thus we
get E‖ϕ̂−ϕ‖2

s ≤ C(δ+ γ)(p−s)/(a+p). However, under slightly stronger conditions, we
can relax the restriction p− s ≤ a+ s (see Theorem 3.2 below).

(iv) (The infinitely smoothing case). Assume that c‖φ‖−a ≤ ‖| log(T ∗T )|−1/2φ‖ ≤ C‖φ‖−a.
The index function in this situation is κ(t) = | log(t)|−(p−s)/a. Then, its inverse
function Φ(t) = e−s−1/β

with β = (p−s)/a > 0 is convex on the interval (0, c] where c =
(1+β)−β. Moreover, it was shown by Mair (1994) that ζ(t) = | log(t)|−(p−s)/a(1+o(1))
if t tends to 0. Thus we get E‖ϕ̂− ϕ‖2

s ≤ C| log(δ + γ)|−(p−s)/a.

(v) In most econometric problems, δ has a nonparmetric rate whereas γ has a parametric
rate of convergence. Therefore, the estimator of T is negligible compared to the
estimation of r in the rate of covergence given by Theorem 3.1.

(vi) If we impose that the operator T is adapted to a scale of Sobolev spaces (cf. Section
2.2), as it is assumed in a lot of econometric studies, then the above theorem shows
that this assumption does not only allow to derive the rate of convergence in the
L2 norm, but also the rate of convergence in the Sobolev norm. In other words,
that assumption is also sufficient to derive the rate of convergence of derivatives of ϕ
without any additional assumption.

We can improve the previous result in the finitely smoothing case.

Theorem 3.2. Suppose that ϕ ∈ Hp for some p > 0 and that the operator T is finitely
smoothing, that is (2.3) is satisfied for some a > 0. Suppose that E‖r̂ − r‖2 ≤ δ and that
supω∈Ω E|λ̂2(ω) − λ2(ω)|2(p+a)/(a+s) ≤ γ(p+a)/(a+s). Consider the estimator ϕ̂ defined in
(3.2) using a threshold α = d · (δ(s+a)/(p+a) + γ) for some d > 0. Then we get E‖ϕ̂−ϕ‖2

s ≤
C(δ(p−s)/(p+a) + γ1∧(p−s)/(a+s)) with C > 0.

In contrast to Remark 3.1(iii) above, that theorem shows that it is possible to derive
an upper bound for the risk without the restriction p − s ≤ a + s. Observe that in the
common case where δ has a nonparametric rate of convergence and γ has a parametric rate
of convergence, then the upper bounds are the same in the two theorems.

3.2 Risk bound when the reduced form is unknown

In this section, we do not suppose that both operators T ∗T and B are reduced by the same
unitary operator. This case occurs for example in nonparametric instrumental regression.
For the study of the general regularization method the following additional assumption
is required, which is analogous to a corresponding assumption in Nair, Pereverzev, and
Tautenhahn (2005).
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Assumption 3.1. There exist positive constants c and d such that

(i) supt>0 t
1/2|gα(t)| ≤ c/

√
α, supt>0 |tgα(t)| ≤ 1,

(ii) supt>0 t|1− tgα(t)| ≤ dα, supt>0 |1− tgα(t)| ≤ 1

All methods given in examples (3.1) satisfy these assumptions. Detailed discussion can
be found in Tautenhahn (1996).

Under this setting, the performance of the risk function will depend on the convergence
of r̂ to r and on the convergence of T̂ to T .

Theorem 3.3. Suppose that ϕ ∈ Hp for some p > 0 and that for some 0 ≤ s ≤ p, there
exists an index function κ such that the operator T satisfies (2.2). Assume that on an
interval (0, c2], the inverse function Φ of κ is convex. Suppose that E‖r̂ − r‖2 ≤ δ and that
E‖T̂−T‖4 ≤ γ2. Consider the estimator ϕ̂ defined in (3.1) using a regularization parameter
α = d·(δ+γ)/ζ[d·(δ+γ)] for some d > 0, where ζ is the inverse function of ζ−1(t) := tΦ(t).
Then we get the risk bound

E‖ϕ̂− ϕ‖2
s ≤ Cζ(δ + γ),

where C is a strictly positive constant.

Note that we obtain the same bound as in the previous section. The main difference is
the typical rate of convergence of γ, which is here nonparametric.

We can also improve the previous result in the finitely smoothing case. To do so, we
need an additional assumption on the regularization scheme.

Assumption 3.2. There exist constants cβ > 0 and β0 ≥ 1 such that for 0 ≤ β ≤ β0,
sup0≤t≤c t

β|1− tgα(t)| ≤ cβα
β.

The parameter β0 is called qualification of the regularization method. The examples
3.1 (iii) and (iv) satisfy the previous assumption with β0 = ∞ while in examples (i) and
(ii), we have β0 = 1 and β0 = m, respectively. A finite qualification as in the case of
Tikhonov regularization, example (i), leads to saturation effect, studied in the context of
nonparametric instrumental regression in Florens, Johannes, and Van Bellegem (2007).
Saturation does not appear with other regularization methods, such as the Landweber
iterative regularization.

Theorem 3.4. Suppose that ϕ ∈ Hp for some p > 0 and that the operator T is finitely
smoothing, that is (2.3) is satisfied for some a > 0. Suppose that E‖r̂ − r‖2 ≤ δ and that
E‖T̂ − T‖2 ≤ γ and if (p − s)/(a + s) > 1 then E‖T̂ − T‖2(p−s)/(a+s) ≤ γ . Consider
the estimator ϕ̂ defined in (3.1) using a regularization parameter α = d · (δ(s+a)/(p+a) +
γ(s+a)/(p+a)) for some d > 0. Then, if (p− s)/(a+ s) ≤ β0 we get the risk bound

E‖ϕ̂− ϕ‖2
s ≤ C(δ(p−s)/(p+a) + γ(p−s)/(a+p)),

where C is a stricly positive constant.
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Note, that the bound is worst than in the case of known eigenfunctions, i.e., the term
in γ. However, if we suppose that T̂ ?T and T̂ ?T̂ commute, we can give a tigther bound of
the variance term, and hence we have the same bound as if the eigenfunctions were known.

Note, that we have the qualification β0 in the result, for (p − s)/(a + s) > β0, we only
get the bound E‖ϕ̂− ϕ‖2

s ≤ C(δβ0/(β0+1) + γβ0/(β0+1)), i.e. we have a saturation effect.

4 Examples

In this section, we illustrate the previous results on two important examples in economic
studies. The first example is the estimation of a probability density function when obser-
vations are contaminated by noise (deconvolution problem). The second example is the
estimation of a nonparametric regression function using instrumental variables.

4.1 Deconvolution with estimated error density

Suppose X and ε are independent random variables with unknown density functions fX

and fε, respectively. The objective is to estimate nonparametrically the density function fX

based on a sample of Y = X+ε. In this setting the density fY of Y is the convolution of the
density of interest, fX , and the density fε of the additive noise, i.e., fY = fX ?fε (see (1.3)).

Suppose we observe an iid sample Y1, . . . , Yn from fY . If the error density fε is known,
a large literature in econometrics and statistics considers the estimation of the density fX .
The most popular approaches consist in estimating first the density function fY by kernel
and to solve equation (1.2) in the Fourier domain (see, for example, Carroll and Hall (1988),
Fan (1991, 1992)). Popular alternative methods are based on spline (Mendelsohn and Rice
(1982), Koo and Park (1996)) or wavelet decomposition (Pensky and Vidakovic (1999), Fan
and Koo (2002), Bigot and Van Bellegem (2006)). Generalization to panel data has also
been considered (Horowitz and Markatou (1996), Hall and Yao (2003), Neumann (2006),
Bonhomme and Robin (2006) or Cazals, Florens, and Simar (2007)).

However, in several applications the noise density fε may be unknown. In this case
without any additional information the density fX can not be recovered from the density
of fY through (1.2), i.e., the density fX is not identified assuming only a sample Y1, . . . , Yn

from fY . This section deals with the estimation of a deconvolution density fX when fε is
unknown, but draws of the error distribution are observed. To be precise, we observe the
sample Y1, . . . , Yn from fY and, additionally, a sample ε1, . . . , εm from fε. The estimation
of fX in such a situation is considered Neumann (1997) and Johannes (2007).

The density fX is solution of the inverse problem fY = CfεfX , where Cfε : L2(R) →
L2(R) is the convolution operator given by g 7→ Cfεg := g ? fε. Note, that fY and Cfε have
to be estimated. However, it is well-known that if fε ∈ L2(R) then the convolution operator
Cfε has a spectral decomposition given by the unitary Fourier transform F and the spectral
density λ =

√
2π ·Ffε, that is FCfεF−1g =

√
2π ·Ffε ·g for all g ∈ L2(R). Thereby, even if
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the error density fε is unknown, the unitary operator in the spectral decomposition of the
convolution operator Cfε is known and only the spectral density λ =

√
2π · Ffε has to be

estimated.
Using the iid sample Y1, . . . , Yn from fY we construct an estimator f̂Y of fY . We stick

to a nonparametric kernel estimation approach, but any other density estimation procedure
can of course be used at this stage. The kernel estimator of fY is defined by

f̂Y (y) :=
1
nh

n∑
j=1

K

(
Yj − y

h

)
, y ∈ R, (4.1)

where h > 0 is a bandwidth and K a kernel function. As usual in the context of nonpara-
metric kernel estimation the bandwidth h has to tend to zero as the sample size n increases.
In order to derive a rate of convergence we follow Parzen (1962) and consider for each τ > 0
the class of kernel functions defined by

Kτ := {K ∈ L1(R) ∩ L2(R) : lim
t→0

|1−
√

2π[FK](t)|
|t|τ

= cτ <∞}. (4.2)

In addition based on the i.i.d. sample ε1, . . . , εm from fε we estimate the Fourier transform
Ffε using its empirical counterpart, that is

[F̂fε](t) :=
1

m ·
√

2π

m∑
j=1

e−itεj , t ∈ R. (4.3)

Following the general approach presented in Section 3.1 we suppose that the level of
regularity of the deconvolution density fX is described using a Hilbert scale (Hs)s given by
the unitary operator F and an unbounded function b(·). Then we consider for s ≥ 0 the
estimator f̂Xs of fX defined by

F f̂Xs(t) :=
F f̂Y (t) · F̂fε(t)√

2π · |F̂fε(t)|2
· 1{|F̂fε(t)|2 ≥ α · bs(t)}, t ∈ R, (4.4)

where α > 0 is a threshold decreasing to zero as the samples sizes n and m increase.

Proposition 4.1. Suppose that fX ∈ Hp for some p > 0 and that for some 0 ≤ s ≤ p,
there exists an index function κ such that the operator Cfε satisfies (2.2). Assume that on
an interval (0, c2], the inverse function Φ of κ is convex. Suppose that the kernel estimator
of fY defined in (4.1) satisfies E‖f̂Y − fY ‖2 ≤ δ. Consider the estimator f̂Xs defined in
(4.4) using a threshold α = d · (δ + 1/m)/ζ[d · (δ + 1/m)] for some d > 0, where ζ is the
inverse function of ζ−1(t) := tΦ(t). Then we get E‖f̂Xs−fX‖2

s ≤ C ·ζ(δ+1/m) with C > 0.

In order to illustrate the last result let us consider a more specific situation. Suppose
we describe the level of smoothness of the deconvolution density fX using the Hilbert scale
(Ws(R))s of Sobolev spaces in L2(R) (see Section 2.2 (i)), i.e., b(t) := (1 + t2). Then
we measure the performance of the estimator f̂Xs given in (4.4) by the Ws-risk, that is
E‖f̂Xs−fX‖2

s, provided fX ∈ Wp(R) for some p ≥ s. Note that for an integer k the Sobolev
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norm ‖g‖k is equivalent to ‖g‖ + ‖g(k)‖, where g(k) denotes the k-th weak derivative of g.
Thereby, the Wk-risk reflects the performance of f̂Xk and f̂X

(k)

k as estimator of fX and f (k)

X ,
respectively. Moreover, let us suppose the convolution operator Cfε is finitely smoothing,
that is Cfε satisfies the condition (2.3) for some a > 0. Then, after some algebra we see
that this condition is equivalent to the assumption of an ordinary smooth error density fε,
i.e., Ffε(t) ∼ (1 + t2)−a/2.

Corollary 4.2. Suppose that fX ∈ Wp(R) with p > 0 and that fε is ordinary smooth,
i.e., (2.3) is satisfied for some a > 0. Let the kernel estimator of fY defined in (4.1) be
constructed using a kernel K ∈ Kp+a (see (4.2)) and a bandwidth h = cn−1/(2(p+a)+1) for
some c > 0. Consider for 0 ≤ s ≤ p the regularized estimator f̂Xs defined in (4.4) using a
threshold α = c(n−2(s+a)/(2(p+a)+1) ∨m−1) for some c > 0. Then we have
E‖f̂Xs − fX‖2

s = O
(
n−2(p−s)/(2(p+a)+1) +m−(1∧(p−s)/(a+s))

)
.

Remark 4.1. (i) The last result provides the minimax optimal rate of convergence over
the class of all deconvolution densities fX belonging to Wp(R) and error densities fε

satisfying (2.3) (see Neumann (1997)). Note that, if the sample size m increases as
the sample size n increases, such that m = c ·n2[(p−s)∨(a+s)]/(2(p+a)+1)) for some c > 0,
then the last result simplifies and we obtain the order O(n−2(p−s)/(2(p+a)+1)). Thereby
we have the optimal order of the Ws-risk as in the case of a known error density and
hence the estimation of the error density is negligible.

(ii) The condition (2.3) implies, that fX belongs to Wp(R) if and only if fY lies in
Wp+a(R). Thereby, considering the assumptions of the corollary we see, that we
construct an order optimal kernel estimator of fY . Moreover, if we use an estimator
of fY which does not lead to an order optimal rate of convergence, then the estima-
tor of fX would not reach the minimax optimal rate of convergence. Hence, in this
situation the optimal estimation of fY is necessary to obtain an optimal estimator of
fX . �

The last corollary can only be applied if the error density is ordinary smooth. In the case
of a supersmooth error density, that is Ffε(t) ∼ exp(−|t|2a/2), the condition (2.3) cannot
be satisfied. Nevertheless, the operator Cfε is then infinitely smoothing, that is condition
(2.4) holds true.

Corollary 4.3. Suppose that fX ∈ Wp(R) with p > 0 and that fε is supersmooth, i.e.,
(2.4) is satisfied for some a > 0. Let the kernel estimator of fY defined in (4.1) be con-
structed using a kernel K ∈ Kτ for some τ > 0 (see (4.2)) and a bandwidth h = cn−1/(2τ+1)

for some c > 0. Consider for 0 ≤ s ≤ p the regularized estimator f̂Xs defined in (4.4) using
a threshold α = c(n−τ/(2τ+1) ∨ m−1/2) for some c > 0. Then we have E‖f̂Xs − fX‖2

s =
O

(
log(n2τ/(2τ+1) ∧m)−(p−s)/a

)
.

Remark 4.2. (i) If the sample size m increases as the sample size n increases, such
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that m = cnτ for some c > 0 and τ > 0, then the last result simplifies and we
obtain the minimax optimal order O((log n)−(p−s)/a) over the class Wp(R) given an
a-priori known error density satisfying (2.4) (Mair and Ruymgaart (1996)). Thereby,
we obtain the surprising result, that the estimation of the error density is negligible
as long as the sample size m increases as some polynomial of n.

(ii) The condition (2.4) implies, that fY lies in Wτ (R) for all τ > 0. Thereby, the assump-
tions of the corollary provide an order O(n−2τ/(2τ+1)) of the rate of convergence of
the kernel estimator of fY for some arbitrary τ > 0. However, the choice of τ , i.e., the
order of the kernel estimator of fY , does not influence the order of rate of convergence
of the estimator of fX . Hence, in this situation an order optimal estimation of fY is
not necessary to obtain an order optimal estimator of fX . �

The last two results consider situations in which the density fX is ordinary smooth
and the error density fε is ordinary smooth or supersmooth, respectively. However, if fε

is a Cauchy density, i.e., has heavy tails, and fε is Gaussian, then both Fourier transforms
are exponential. In such a situation the last two corollaries are not appropriate, but we
may consider the Hilbert scale (Wν

s (R))s of infinitely differentiable functions generated by
b(t) := exp(|t|ν) for some ν > 0 (see Section 2.2 (iii)). Then a Cauchy density belongs to
W1

p (R) for some p > 0 and a Gaussian density is adapted to the Hilbert scale (W1
s (R))s, i.e.,

satisfies (2.2) considering an index function κ(t) = exp(−η
√
| log t|) for some η > 0. Now

we may apply Theorem 3.1 to derive the rate of convergence of the estimator f̂Xs in the
stronger norm ‖f‖s := ‖bs/2f‖L2(R) defined with respect to b(t) := exp(|t|ν). Thereby, we
measure the performance of f̂Xs as estimator of fX , and in addition of any weak-derivative
f̂X

(k)

s as estimator of f (k)

X .

4.2 Nonparametric instrumental regression

Consider a random vector (Z,W, Y ) with unknown probability distribution (pd) P and ϕ

the interest parameter defined by:{
Y = ϕ (Z) + U,

E [U |W ] = 0,
(4.5)

where U denotes an error term. W is an instrumental variable introduced to solve the
identification problem since the usual condition E [U |Z ] = 0 is not satisfied. The system
(4.5) can be rewritten:

E [Y |W ] = E [ϕ (Z) |W ] . (4.6)

As recalled in the Introduction to this paper, this model is the foundation of many
economic studies. Even when the pd P is known, the calculation of a solution ϕ from
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equation (4.6) is an ill-posed inverse problem. However the pd P is unknown in general and
has to be estimated from an iid n-sample (Y1, Z1,W1), . . . , (Yn, Zn,Wn) of (Y, Z,W ).

Therefore, two main steps are necessary in order to obtain an estimator of ϕ. The first
step is to stabilize the equation (4.6), the second step is the solving of the stabilized version
of equation (4.6), where P is replaced by its estimator. To achieve the first step rewrite
the model (4.6) as r = Tφ, where T : H → H̃ with φ 7→ Tφ := E[φ(Z)|W ] is assumed to
be a compact linear operator defined between Hilbert spaces H, H̃ and r := E[Y |W ] is an
element of H̃. Note, that r and T depend on the pd P and have to be estimated. A more
detailed discussion of possible definitions of the underlying Hilbert spaces, the operator T
and the element r can be found in Florens, Johannes, and Van Bellegem (2005). To simplify
the presentation we assume H and H̃ to be the Hilbert space L2[0, 1] and we suppose that
the operator T is compact and, hence admits a discrete singular value decomposition given
by Tf =

∑
j λj〈f, φj〉ψj , where the eigenfunctions {φj}j and {ψj}j form an orthonormal

basis in L2[0, 1] and the sequence of singular values (λj)j tends to zero.
Let us first consider the simpler but artificial situation where the set of eigenfunctions

{φj}j and {ψj}j are a-priori known. Thereby, the estimation of the conditional expectation
operator T reduces solely to an estimation of the sequence of singular values (λj)j . Assuming
an i.i.d. sample (Yi, Zi,Wi), i = 1, . . . , n we estimate any singular value λj using its empirical
counterpart, that is

λ̂j :=
1
n

n∑
i=1

ψj(Wi)φj(Zi). (4.7)

In addition we use an orthogonal series estimator of r given by

r̂(·) :=
k∑

j=1

r̂jψj(·), where r̂j :=
1
n

n∑
i=1

Yiψj(Wi), j = 1, . . . , kn. (4.8)

The number k of estimated coefficients r̂j increases as the sample size n increases and the
ratio 1/k plays the same role than a bandwidth in the theory of nonparametric smoothing
by kernel.

Following the general approach presented in Section 3.1 we suppose now that the level of
regularity of the function ϕ is described using a Hilbert scale (Hs)s given by the orthonormal
basis {φj} and some unbounded sequence (bj)j (compare Section 2.2 (ii)). Then for s ≥ 0
we estimate ϕ using

ϕ̂s(·) :=
k∑

j=1

r̂j

λ̂j

· 1{λ̂2
j ≥ α · bsj} · φj(·), (4.9)

where α > 0 is a threshold decreasing to zero as the samples sizes n increases.

Proposition 4.4. Suppose that ϕ ∈ Hp for some p > 0 and that for some 0 ≤ s ≤ p,
there exists an index function κ such that the operator T satisfies (2.2). Assume that on
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an interval (0, c2], the inverse function Φ of κ is convex. Suppose that the orthogonal series
estimator of r defined in (4.8) satisfies E‖r̂ − r‖2 ≤ δ and that supj∈N E|λ̂j − λj |4 ≤ γ2.
Consider the estimator ϕ̂s defined in (4.9) using a threshold α = d · (δ+ γ)/ζ[d · (δ+ γ)] for
some d > 0, where ζ is the inverse function of ζ−1(t) := tΦ(t). Then we get E‖ϕ̂s − ϕ‖2

s ≤
C · ζ(δ + γ) with C > 0.

In order to illustrate the last result let us consider a more specific situation. Suppose
the eigenfunctions of the operator T are given by the trigonometric basis and the level of
smoothness of the function ϕ is characterized using the Hilbert scale (Ws[0, 1])s of Sobolev
spaces in L2[0, 1] (see Section 2.2 (ii)). Then we measure the performance of the estimator
ϕ̂s given in (4.9) by the Ws-risk defined in the Sobolev space Ws[0, 1]. That is, for an
integer m the Wm-risk reflects the performance of the m-th weak derivative ϕ̂(m)

m of ϕ̂m

as estimator of ϕ(m) . Moreover, let us suppose the conditional expectation operator T is
finitely smoothing, that is T satisfies the condition (2.3) for some a > 0. Then, after some
algebra we see that this condition is equivalent to the assumption λj ∼ j−a used for example
in Hall and Horowitz (2005).

Corollary 4.5. Suppose that ϕ ∈ Wp[0, 1] with p > 0 and that T is finitely smoothing,
i.e., (2.3) is satisfied for some a > 0. Let the orthogonal series estimator of r defined in
(4.8) be constructed using k = cn−1/(2(p+a)+1) for some c > 0. Consider for 0 ≤ s ≤ p

the regularized estimator ϕ̂s defined in (4.9) using a threshold α = cn−2(s+a)/(2(p+a)+1) for
some c > 0. Then we have

E‖ϕ̂s − ϕ‖2
s = O

(
n−2(p−s)/(2(p+a)+1)

)
.

Remark 4.3. (i) For s = 0 the last result provides the minimax optimal rate of con-
vergence over the class of all function ϕ belonging to Wp[0, 1] and conditional expec-
tation operator T satisfying (2.3) (see Hall and Horowitz (2005)). Moreover, for all
0 ≤ s ≤ p it is the minimax optimal rate of convergence over the class of all function ϕ
belonging to Wp[0, 1] given a known operator T satisfying (2.3) (see Mair and Ruym-
gaart (1996)), i.e., the estimation of conditional expectation operator T is negligible.
Thereby, we may argue that under the assumptions of the corollary the derived rate
of convergence cannot be improved.

(ii) The condition (2.3) implies, that ϕ belongs toWp[0, 1] if and only if r lies inWp+a[0, 1].
Thereby, considering the assumptions of the corollary we see, that we construct an
order optimal estimator of r. Moreover, if we use an estimator of r which does not
lead to an order optimal rate of convergence, then the estimator of ϕ will not reach the
minimax optimal rate of convergence. Hence, in this situation the optimal estimation
of r is necessary to obtain an optimal estimator of ϕ. �

The last corollary can only be applied if the conditional expectation operator T is finitely
smoothing, which excludes the important case where (Z,W ) is normally distributed. In
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that case the conditional expectation is infinitely smoothing, i.e., λj ∼ exp(−j2a/2) for
some a > 0 and the condition (2.3) cannot be satisfied. Nevertheless, the condition (2.4)
holds true.

Corollary 4.6. Suppose that ϕ ∈ Wp[0, 1] with p > 0 and that T is infinitely smoothing,
i.e., (2.4) is satisfied for some a > 0. Let the estimator of r defined in (4.8) be constructed
using k = cn−1/(2τ+1) for some c > 0 and τ > 0. Consider for 0 ≤ s ≤ p the regularized
estimator ϕ̂s defined in (4.9) using a threshold α = cn−τ/(2τ+1) for some c > 0. Then we
have E‖ϕ̂s − ϕ‖2

s = O
(
(log n)−(p−s)/a

)
.

Remark 4.4. (i) The last result provides the minimax optimal rate of convergence over
the class of all function ϕ belonging to Wp[0, 1] given the conditional expectation
operator T satisfying (2.4) is known a-priori (see (Mair and Ruymgaart (1996)), i.e.,
the estimation of the conditional expectation operator T is negligible. Thereby, we
may again argue that under the assumptions of the corollary the derived rate of
convergence cannot be improved.

(ii) The condition (2.4) implies, that r lies in Wτ [0, 1] for all τ > 0. Thereby, the assump-
tions of the corollary provide an order O(n−2τ/(2τ+1)) of the rate of convergence of
the orthogonal series estimator of r for some arbitrary τ > 0. However, the choice of
τ , i.e., the order of the estimator of r, does not influence the order of the rate of con-
vergence of the estimator of ϕ. Hence, in this situation an order optimal estimation
of r is not necessary to obtain an order optimal estimator of ϕ. �

Both previous results are derived under the assumption the eigenfunctions of the con-
ditional expectation operator are known a-priori to be the trigonometric basis. Let us now
consider the natural case where this restriction is relaxed. Then given an i.i.d. sample
(Yi, Zi,Wi), i = 1, . . . , n we construct estimators of the function r and the conditional
expectation operator T by projection on some orthonormal basis {φj}j and {ψj}j not nec-
essarily corresponding to the system of eigenfunctions of T (see e.g. Hall and Horowitz
(2005), Blundell, Chen, and Kristensen (2007) or Chen (2008)). Thereby, we estimate r
using the series estimator given in (4.8). In order to derive the series estimator of T let
φ(·) = (φ1(·), . . . , φm(·))′ and ψ(·) = (ψ1(·), . . . , ψk(·))′ be the vector of the first m and k

basis functions, respectively. The numbers m and k increase as the sample size n increases
and, moreover 1/m and 1/k play the same role than bandwidths in a kernel estimation
method. Then, the series estimator of T is

T̂ g := ψ′M̂〈g,φ〉, where M̂ :=
1
n

n∑
i=1

ψ(Wi)φ(Zi)′ (4.10)

and 〈g,φ〉 denotes the column vector (〈g, φ1〉, . . . , 〈g, φm〉)′. The estimator of T ? is the dual
of T̂ , that is T̂ ?h := φ′M̂ ′〈h,ψ〉 where analogously 〈h,ψ〉 := (〈h, ψ1〉, . . . , 〈h, ψk〉)′. We also
define the vector v̂ := 1

n

∑n
i=1 Yiψ(Wi) such that we can rewrite the series estimator of r
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given in (4.8) as r̂ = ψ′v̂. Following the general approach presented in the previous section,
we suppose now that the level of regularity of the function ϕ is described using a Hilbert
scale (Hs)s generated by the operator Bf :=

∑
j bj〈f, φj〉φj for some unbounded sequence

(bj)j (compare with Section 2.2 (ii)). Then for s ≥ 0 a general regularized estimator of ϕ
in Hs is given by ϕ̂s = B−s/2gα(B−s/2T̂ ∗T̂B−s/2)B−s/2T̂ ∗r̂ for some α > 0 tending to zero
as the samples size n increases, where gα denotes some regularization scheme. However,
to be more precise, let us consider the Tikhonov regularization of order ` (see Examples
3.1 (ii)). Therefore, define the diagonal matrix bs := Diag[bs1, . . . , b

s
m]. Then the Tikhonov

regularized estimator of order `,

ϕ̂s := φ′ϕ̂s,` , (4.11)

can be obtained by solving the ` linear matrix equations

(M̂ ′M̂ + αbs)ϕ̂s,j = M̂ ′v̂ + αbsϕ̂s,j−1, j = 1, . . . , `, ϕ̂s,0 = 0. (4.12)

Proposition 4.7. Suppose that ϕ ∈ Hp for some p > 0 and that for some 0 ≤ s ≤ p,
there exists an index function κ such that the operator T satisfies (2.2). Assume that on an
interval (0, c2], the inverse function Φ of κ is convex. Suppose that the series estimators of
r and T defined in (4.8) and (4.10) satisfy E‖r̂− r‖2 ≤ δ and E‖T̂ −T‖4 ≤ γ2, respectively.
Consider the estimator ϕ̂s defined in (4.11) using α = d · {δ + γ}/ζ(d · {δ + γ}) for some
d > 0, where ζ is the inverse function of ζ−1(t) := tΦ(t). Then E‖ϕ̂s − ϕ‖2

s ≤ C · ζ(δ + γ)
with C > 0.

Remark 4.5. Suppose the level of smoothness of the function ϕ is characterized using the
Hilbert scale (Ws[0, 1])s of Sobolev spaces in L2[0, 1] (see Section 2.2 (ii)), i.e., bj := b2j+1 =
(2j)2 and φj are trigonomeric functions. Then the last result provides again a bound of the
Ws-risk defined in the Sobolev space Ws[0, 1].

(i) If we assume in addition that the conditional expectation operator T is infinitely
smoothing, i.e., condition (2.4) holds, we may show that E‖T̂−T‖2 = O(n−2τ ′/(2τ ′+1))
and E‖r̂− r‖2 = O(n−2τ/(2τ+1)) for some τ > 0 and τ ′ > 0. Then the bound given in
Proposition 4.7 simplifies to E‖ϕ̂s − ϕ‖2

s = O((log n)−(p−s)/a). Thereby the remarks
of Corollary 4.6 are still valid.

(ii) Let us suppose T is finitely smoothing and, hence satisfies (2.3). Then by a straightfor-
ward adaptation of the results derived in Hall and Horowitz (2005) we may show that
E‖r̂ − r‖2 = O(n−2(p+a)/(2(p+a)+1)) and E‖T̂ − T‖2[1∨(p−s)/(a+s)] = O(n−2τ/(2τ+1))
for some τ > 0. Thereby, if τ > (p + a) holds then supposing the order of the
Tikhonov regularization satisfies ` ≥ (p − s)/(a + s) is sufficient in order to ensure
E‖ϕ̂s−ϕ‖2

s = O(n−2(p−s)/(2(a+p)+1)), which corresponds for s = 0 to the result derived
in Hall and Horowitz (2005). However, we provide a bound also for the estimation of
the s-th weak derivative of ϕ with s ≤ p. �
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A Proofs of Section 3

Lemma A.1. Let w : Ω → [1,∞) be a weight function and let λ̂ be the estimator of λ such that
supω∈Ω E|λ̂(ω)− λ(ω)|2(1+τ) ≤ γ1+τ for some τ ≥ 0. Then for all ω ∈ Ω we have

E

[
1{|λ̂(ω)/w(ω)|2 ≥ α}. |λ̂(ω)− λ(ω)|2

|λ̂(ω)|2

]
≤ C(τ)
|λ(ω)/w(ω)|2τ

·
{
γ1+τ

α
+

γ

α1−τ∧1

}
(A.1)

where C(τ) is a positive constant depending only on τ .

Proof. Consider for ω ∈ Ω the elementary inequality

1 ≤ 22τ ·
{ |λ̂(ω)/w(ω)− λ(ω)/w(ω)|2τ

|λ(ω)/w(ω)|2τ
+
|λ̂(ω)/w(ω)|2τ

|λ(ω)/w(ω)|2τ

}
, (A.2)

which together with |λ(ω)/w(ω)| ≤ c for all ω ∈ Ω and some c > 0 implies

E

[
1{|λ̂(ω)/w(ω)|2 ≥ α} · |λ̂(ω)− λ(ω)|2

λ̂2(ω)

]

≤ 22τ

|λ(ω)/w(ω)|2τ
·
{E|λ̂(ω)/w(ω)− λ(ω)/w(ω)|2(1+τ)

α
+

E|λ̂(ω)/w(ω)− λ(ω)/w(ω)|2

α1−τ∧1

}
,

and, hence supω∈Ω E|λ̂(ω)− λ(ω)|2(1+τ) ≤ γ1+τ implies the result. �

Lemma A.2. Let w : Ω → [1,∞) be an arbitrary weight function and let λ̂ be an estimator of
λ ∈ L∞µ (Ω) such that supω∈Ω E|λ̂(ω) − λ(ω)|4 ≤ γ2. Suppose there exists an index function κ such
that ρ := ‖w · Uϕ · |κ(|λ/w|2)|−1/2‖L2

µ(Ω) < ∞ and assume that on an interval (0, c2] the inverse
function Φ of κ is convex, then

E‖w · Uϕ · 1{|λ̂/w|2 < α}‖2L2
µ(Ω) ≤ C · κ(C ′{α+ γ}) · ρ2; (A.3)

where C and C ′ are positive constants depending only on κ.

Proof. The proof is partially motivated by techniques used in Nair, Pereverzev, and Tautenhahn
(2005). Denote ψ̂α = Uϕ·1{|λ̂/w|2 < α} and let φ(ω) := κ1/2(|λ(ω)/w(ω)|2), ω ∈ Ω, then for all ω ∈
Ω we have κ1/2(c) ≥ φ(ω) > 0 for some c > 0. Under the assumption ρ = ‖w ·Uϕ·|κ(|λ/w|2)|−1/2‖ <
∞ (where we omitted the subscript L2

µ(Ω)), which may be rewritten as ρ = ‖w · Uϕ/φ‖ < ∞, we
obtain due to the Cauchy-Schwarz inequality

‖w · ψ̂α‖2 =
∫

Ω

w(ω)ψ̂α(ω)φ(ω)
w(ω)[Uϕ](ω)

φ(ω)
µ(dω) ≤ ‖w · ψ̂α · φ‖ · ρ, (A.4)

which implies

E‖w · ψ̂α‖2 ≤ (E‖w · ψ̂α · φ‖2)1/2 · ρ. (A.5)

Using (A.4) together with α ≥ supt∈R+ t · 1{t < α} we have

‖λ̂ · ψ̂α‖2 = ‖λ̂ · 1{|λ̂/w|2 < α} · ψ̂α‖2 ≤ α · ‖w · ψ̂α · φ‖ · ρ. (A.6)

Therefore, applying the triangular inequality together with (A.6), we obtain

E‖λ · ψ̂α‖2 ≤ 2E‖w · |λ/w − λ̂/w| · ψ̂α‖2 + 2α(E‖w · ψ̂α · φ‖2)1/2 · ρ.
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By applying first the Cauchy-Schwarz inequality and using supω∈Ω E|λ̂(ω) − λ(ω)|4 ≤ γ2 then
we bound the first term by

C · γ ·
∫

(E1{|λ̂(ω)/w(ω)|2 < α})1/2 · w2(ω) · |[Uϕ](ω)|2µ(dω),

and, hence using once again the Cauchy-Schwarz inequality leads to

E‖λ · ψ̂α‖2 ≤ 2
{
Cγ + α

}
· (E‖w · ψ̂α · φ‖2)1/2 · ρ. (A.7)

Let Φ be the inverse function of κ which is convex on the interval (0, c2]. Define d2 = c2/κ(1)∧1.
Hence, using Jensen’s inequality we have

Φ
(d2 · E‖w · ψ̂α · φ‖2

E‖w · ψ̂α‖2
)
≤

E
∫
Ω

Φ(d2 · φ2(ω)) · w2(ω) · ψ̂2
α(ω)µ(dω)

E
∫
Ω
w2(ω) · ψ̂2

α(ω)µ(dω)
,

which together with Φ(d2 · φ2(ω)) ≤ Φ(φ2(ω)) = |λ(ω)|2/w2(ω) gives

Φ
(d2 · E‖w · ψ̂α · φ‖2

E‖w · ψ̂α‖2
)
≤

E
∫
Ω
|λ(ω)|2 · ψ̂2

α(ω)µ(dω)

E‖w · ψ̂α‖2
=

E‖λ · ψ̂α‖2

E‖w · ψ̂α‖2
. (A.8)

In order to combine the three estimates (A.5), (A.7) and (A.8) let us introduce a new function Ψ
by Ψ(ω) := Φ(ω2)/ω2. Since Φ is convex, we conclude that Ψ is monotonically increasing on the
interval (0, c]. Hence, by (A.5), which may be rewritten as (E‖w · ψ̂α · φ‖2)1/4/ρ1/2 ≤ (E‖w · ψ̂α ·
φ‖2)1/2/(E‖w · ψα‖2)1/2, the monotonicity of Ψ and (A.8),

Ψ
(d · (E‖w · ψ̂α · φ‖2)1/4

ρ1/2

)
≤ Ψ

(d · (E‖w · ψ̂α · φ‖2)1/2

(E‖w · ψ̂α‖2)1/2

)
≤ E‖λ · ψ̂α‖2

d2 · E‖w · ψ̂α · φ‖2
.

Multiplying by d2 · (E‖w · ψ̂α · φ‖2)1/2/ρ and exploiting (A.7) yields

Φ
(d2 · (E‖w · ψ̂α · φ‖2)1/2

ρ

)
≤ E‖λ · ψ̂α‖2

ρ · (E‖w · ψ̂α · φ‖2)1/2
≤ α. (A.9)

Thereby we obtain the result by combining (A.5) and (A.9). �

Proof of Theorem 3.1. Since T satisfies (2.2) for some index function κ and ϕ ∈ Hp, p > 0, it
follows that ρ := ‖w · Uϕ · |κ(λ2/w2)|−1/2‖L2

µ(Ω) <∞ with w(ω) := bs/2(ω), for ω ∈ Ω.

Define Uϕ̂α
s := Uϕ · 1{λ̂2 ≥ α · bs}. The proof is based on the decomposition

E‖ϕ̂s − ϕ‖2s ≤ 2E‖ϕ̂s − ϕ̂α
s ‖2s + 2E‖ϕ̂α

s − ϕ‖2s (A.10)

Due to Lemma A.1 with w ≡ bs/2 we show below the following bound

E‖ϕ̂s − ϕ̂α
s ‖2s ≤ 2α−1 · δ + 2C(0) · ρ2 · α−1 · γ, (A.11)

while from Lemma A.2 we obtain

E‖ϕ̂α
s − ϕ‖2s ≤ C · ρ2 · κ(C ′{α+ γ}), (A.12)

The conditions on α which may be rewritten as d · (δ + γ) = d′ · α · κ(d′ · α), for some constants d
and d′, ensure the balance of the two terms in (A.10), which gives the result.
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Proof of (A.11). By definition, we have

E‖ϕ̂s − ϕ̂α
s ‖2s = E‖w · 1{|λ̂/w|2 ≥ α} · (V r̂

λ̂
− Uϕ)‖2L2

µ(Ω)

Using the triangular inequality, we get

E‖ϕ̂s − ϕ̂α
s ‖2s ≤ 2E‖w

λ̂
· 1{|λ̂/w|2 ≥ α} · V (r̂ − r)‖2L2

µ(Ω)

+ 2E‖w
λ̂
· 1{|λ̂/w|2 ≥ α} · (λ− λ̂)Uϕ‖2L2

µ(Ω) (A.13)

By assumption, E‖r̂−r‖2 < δ and supω∈Ω E|λ̂(ω)−λ(ω)|2 ≤ γ, the first term is bounded by 2α−1 ·δ,
while we have for the second the bound 2 · ρ2 · γ

α .
Proof of (A.12). By definition,

E‖ϕ̂α
s − ϕ‖2s = E‖bs/2 · Uϕ · 1{|λ̂/w|2 < α}‖2L2

µ(Ω)

Lemma A.2 gives the following upper bound E‖ϕ̂α
s − ϕ‖2s ≤ C · κ(C ′{α + γ}) · ρ2 as soon as the

condition ρ := ‖w · Uϕ · |κ(λ2/w2)|−1/2‖L2
µ(Ω) <∞ is fulfilled. �

Proof of Theorem 3.2. Since T satisfies (2.3) for some a > 0 and ϕ ∈ Hp, p > 0, it follows that
ρ := ‖w · Uϕ · |λ/w|−β‖L2

µ(Ω) <∞ with β := (p− s)/(a+ s) and w := bs/2.
Considering the decomposition (A.10) based on Lemma A.1 we show below

E‖ϕ̂s − ϕ̂α
s ‖2s ≤ 2α−1 · δ + 2C(β) · ρ2 ·

{γ1+β

α
+

γ

α1−β∧1

}
, (A.14)

while from Lemma A.2 we conclude

E‖ϕ̂α
s − ϕ‖2s ≤ Cβ · ρ2 · {αβ + γβ}. (A.15)

The condition on α ensures then the balance of these two terms, which gives the result.
Proof of (A.14). Consider the decomposition (A.13), then the first term is bounded by 2α−1 · δ,

while we use ρ = ‖w · Uϕ · |λ/w|−β‖ < ∞ together with Lemma A.1 to bound the second term,
which gives (A.14).

Proof of (A.15). Define ψ̂α := U(ϕ− ϕ̂α
s ), then ψ̂α = Uϕ · 1{λ̂2 < α · w2}. Using the inequality

(A.2) together with αγ ≥ supt∈R+ tγ1{t < α} for all γ > 0 we have

‖w · ψ̂α‖2 ≤ 22β
{
‖w · ψ̂α ·

|λ̂/w|β

|λ/w|β
‖2 + ‖w · ψ̂α ·

|λ̂/w − λ/w|β

|λ/w|β
‖2

}
≤ 22β

{
αβ · ρ2 + ‖w · Uϕ · |λ/w|−β · |λ̂/w − λ/w|β‖2

}
,

since ρ = ‖w · Uϕ · |λ/w|−β‖ < ∞. Thereby, the identity E‖ϕ̂α
s − ϕ‖2s = E‖w · ψ̂α‖2L2

µ(Ω) together
with Lemma A.1 imply (A.14). �

Denote Ts := TB−s/2, T̂s := T̂B−s/2, ϕs := Bs/2ϕ and ϕ̂α
s := B−s/2gα(T̂ ?

s T̂s)T̂ ?
s T̂sϕs.

Lemma A.3. Suppose the assumptions of Theorem 3.3 are satisfied. Then

E‖ϕ̂α
s − ϕ‖2s ≤ C · κ(C ′{α+ (E‖(T − T̂ )2‖2)1/2}) · ρ2; (A.16)

where C and C ′ are positive constants depending only on κ.
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Proof. Since T satisfies (2.2) for some index function κ and ϕ ∈ Hp, we conclude that ρ :=
‖κ−1/2(T ?

s Ts)ϕs‖ < ∞. Let ψ̂α := ϕ − ϕ̂α
s and R̂α := [I − gα(T̂ ?

s T̂s)T̂ ?
s T̂s], then we have ψ̂α =

B−s/2R̂αϕs. We use ‖R̂1/2
α ‖ ≤ 1 (Assumption 3.1 (ii)) and obtain due to the Cauchy-Schwarz

inequality

‖ψ̂α‖2s = ‖R̂αϕs‖2 ≤ ‖R̂1/2
α ϕs‖2 = 〈R̂αϕs, ϕs〉 = 〈κ1/2(T ?

s Ts)Bs/2ψ̂α, κ
−1/2(T ?

s Ts)ϕs〉

≤ ‖κ1/2(T ?
s Ts)Bs/2ψ̂α‖ · ρ. (A.17)

Thereby we have

E‖ψ̂α‖2s ≤ (E‖κ1/2(T ?
s Ts)Bs/2ψ̂α‖2)1/2ρ. (A.18)

Using (A.18) together with dα ≥ ‖(T̂ ?
s T̂s)1/2R̂

1/2
α ‖2 (Assumption 3.1 (ii)) we obtain

‖T̂ ψ̂α‖2 = ‖T̂sR̂αϕs‖2 = ‖(T̂ ?
s T̂s)1/2R̂αϕs‖2 ≤ dα‖R̂1/2

α ϕs‖2 ≤ dα‖κ1/2(T ?
s Ts)Bs/2ψ̂α‖ρ

and hence,

E‖T̂ ψ̂α‖2 ≤ dα · (E‖κ1/2(T ?
s Ts)Bs/2ψ̂α‖2)1/2 · ρ. (A.19)

Using (A.18) together with ‖B−s/2‖ ≤ c we have due to the Cauchy Schwarz inequality

E‖(T − T̂ )ψ̂α‖2 ≤ E‖(T − T̂ )‖2‖ψ̂α‖2 ≤ cE‖T − T̂‖2‖R̂αϕs‖2

≤ c · (E‖T − T̂‖4)1/2(E‖κ1/2(T ?
s Ts)Bs/2ψ̂α‖2)1/2 · ρ. (A.20)

Combining (A.19) and (A.20) we obtain

E‖T ψ̂α‖2 . E‖(T − T̂ )ψ̂α‖2 + E‖T̂ ψ̂α‖

≤ c ·
{

(E‖T − T̂‖4)1/2 + α
}
· (E‖κ1/2(T ?

s Ts)Bs/2ψ̂α‖2)1/2 · ρ. (A.21)

Let Φ be the inverse function of κ, which is assumed to be convex on the interval (0, c2]. Define
d2 = c2/‖κ1/2(T ?

s Ts)‖2 ∧ 1. If {λ2
s, Us : H → L2

µS
(Ωs)} denotes the spectral decomposition of T ?

s Ts,
then c2 ≥ d2κ(λ2

s). Hence, using Jensen’s inequality we have

Φ
(d2E‖κ1/2(T ?

s Ts)Bs/2ψ̂α‖2

E‖ψ̂α‖2s

)
≤

E
∫
Ωs

Φ(d2κ(λ2
s(ω)))|UsB

s/2ψ̂α|2(ω)µs(dω)

E
∫
Ωs
|UsBs/2ψ̂α|2(ω)µs(dω)

.

Since Φ(d2κ(λ2
s)) ≤ Φ(κ(λ2

s)) = λ2
s we obtain

Φ
(d2E‖κ1/2(T ?

s Ts)Bs/2ψ̂α‖2

E‖ψ̂α‖2s

)
≤ E‖(T ?

s Ts)1/2Bs/2ψ̂α‖2

E‖ψ̂α‖2s
=

E‖T ψ̂α‖2

E‖ψ̂α‖2s
. (A.22)

Combining as in the proof of Lemma A.2 the three estimates (A.17), (A.21) and (A.22) by using
the function Ψ(t) = Φ(t2)/t2 we obtain

Φ
(d2(E‖κ1/2(T ?

s Ts)Bs/2ψ̂α‖2)1/2

ρ

)
≤ c{α+ (E‖T − T̂‖4)1/2}, (A.23)

and, thereby (A.18) together with (A.23) implies the result. �

Proof of Theorem 3.3. The proof is also based on the decomposition (A.10) with ϕ̂α
s :=

B−s/2gα(T̂ ?
s T̂s)T̂ ?

s T̂sϕs. We show below that under the assumptions of the theorem the two bounds
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(A.11) and (A.12) still hold with ρ := ‖κ−1/2(T ?
s Ts)ϕs‖ < ∞, since T satisfies (2.2) and ϕ ∈ Hp.

Thereby, the condition on α which may be rewritten as d ·(δ+γ) = d′ ·α ·κ(d′ ·α), for some constants
d and d′, ensure the balance of the two terms in (A.10), which gives the result.

By definition, together with ‖gα(T̂ ?
s T̂s)T̂ ?

s ‖2 ≤ c/α (Assumption 3.1 (i)) we have

E‖ϕ̂s − ϕ̂α
s ‖2s = E‖gα(T̂ ?

s T̂s)T̂ ?
s (r̂ − T̂ϕ)‖2 ≤ cα−1E‖r̂ − T̂ϕ‖2.

Thereby, the assumptions E‖r̂ − r‖2 < δ and E‖T̂ − T‖4 ≤ γ2 imply the first bound (A.11), while
the second bound (A.12) follows from Lemma A.3. �

Proof of Theorem 3.4. Since T satisfies (2.3) for some a > 0 and ϕ ∈ Hp, p > 0, it follows
that ρ := ‖(T ?

s Ts)−βϕs‖ <∞ with β := (p− s)/(a+ s). Considering the decomposition (A.10) with
ϕ̂α

s := B−s/2gα(T̂ ?
s T̂s)T̂ ?

s T̂sϕs we bound the first term as in Theorem 3.4, that is E‖ϕ̂s − ϕ̂α
s ‖2s ≤

C{α−1 ·δ+ρ2 ·α−1 ·γ}, while we show below that under the assumptions of the theorem the following
bound of the second term holds.

E‖ϕ̂α
s − ϕ‖2s ≤ C · ρ2 · {αβ + γβ∧1}), (A.24)

Thereby, the condition on α ensures then the balance of these two terms, which gives the result.
Proof of (A.24). Let ψ̂α := ϕ− ϕ̂α

s and R̂α := [I − gα(T̂ ?
s T̂s)T̂ ?

s T̂s], then we have

‖ψ̂α‖2s = ‖R̂αϕs‖2 ≤ C · {‖R̂α(T̂ ?
s T̂s)β/2(T ?

s Ts)−β/2ϕs‖2

+ 2‖R̂α[(T̂ ?
s T̂s)β/2 − (T ?

s Ts)β/2](T ?
s Ts)−β/2ϕs‖2.

Thereby, since ‖R̂α‖ ≤ 1 (Assumption 3.1 (ii)) and ‖R̂α(T̂ ?
s T̂s)β/2‖2 ≤ cβα

β (Assumption 3.2), it
follows, that

‖ψ̂α‖2s ≤ Cρ2{αβ + ‖(T̂ ?
s T̂s)β/2 − (T ?

s Ts)β/2]‖2}.

Thereby, since ‖(T̂ ?
s T̂s)β/2− (T ?

s Ts)β/2]‖2 ≤ c{‖T̂ −T‖2(β∧1) +‖T̂ −T‖2β} (see Egger (2005) Lemma
3.2), the assumption E‖T̂ − T‖2 ≤ γ and if β > 1, E‖T̂ − T‖2β ≤ γ together with Lyapunov’s
inequality implies (A.24). �

B Proofs of Section 4

Proof of Proposition 4.1. The result follows from Theorem 3.1, where we use that γ = 1/m,
i.e., supt∈R E|[F̂fε](t) − [Ffε](t)|2τ ≤ c(τ)n−τ for some c(τ) > 0 and for all τ > 0 (see Johannes
(2007) for a detailed proof). �

Proof of Corollary 4.2. Since, fY belongs to Wp+a(R) under the conditions of the corol-
lary the kernel estimator f̂Y obtain the order O(n−2(p+a)/(2(p+a)+1)) and, hence we have δ =
n−2(p+a)/(2(p+a)+1). Thereby, the result follows from Theorem 3.2 with γ = 1/m (see proof of
Proposition 4.1). �

Proof of Corollary 4.3. Under the conditions of the corollary the kernel estimator f̂Y provides
an order O(n−2τ/(2τ+1)), i.e., δ = n−2τ/(2τ+1) and, hence the result follows from Proposition 4.1
(see also Remark 3.1). �

Proof of Proposition 4.4.The result follows directly from Theorem 3.1. �

Proof of Corollary 4.5. Since, ϕ belongs to Wp+a[0, 1] and, hence under the conditions of
the corollary r lies in Wp+a[0, 1] the series estimator r̂ obtains a rate of convergence of the order
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O(n−2(p+a)/(2(p+a)+1)), i.e., we have δ = n−2(p+a)/(2(p+a)+1). Moreover, straightforward calculus
gives supj∈N E|λ̂j − λj |2τ ≤ c(τ)n−τ for all τ > 0, i.e., γ = 1/n. Thereby, the result follows from
Theorem 3.2 with γ = 1/n. �

Proof of Corollary 4.6. Under the conditions of the corollary the series estimator r̂ provides
an order O(n−2τ/(2τ+1)), i.e., δ = n−2τ/(2τ+1) and we have supj∈N E|λ̂j − λj |2τ ≤ c(τ)n−τ , i.e.,
γ = 1/n. Thereby the result follows from Proposition 4.4 (see also Remark 3.1). �

Proof of Proposition 4.7.The result follows directly from Theorem 3.1. �
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Mathé, P., and S. V. Pereverzev (2001): “Optimal discretization of inverse problems in Hilbert
scales. regularization and self-regularization of projection methods.,” SIAM J. Numer. Anal.,
38(6), 1999–2021.

25



Mendelsohn, J., and J. Rice (1982): “Deconvolution of micro-fluorometric histograms with
B-splines.,” J. Am. Statist. Assoc., 77, 748–753.

Nair, M., S. V. Pereverzev, and U. Tautenhahn (2005): “Regularization in Hilbert scales
under gerneal smoothing conditions.,” Inverse Problems, 21, 1851–1869.

Natterer, F. (1984): “Error bounds for Tikhonov regularization in Hilbert scales.,” Appl. Anal.,
18, 29–37.

Neumann, M. H. (1997): “On the effect of estimating the error density in nonparametric decon-
volution.,” Nonparametric Statistics., 7, 307–330.

(2006): “Deconvolution from panel data with unknown error distribution.,” Preprint.,
University Jena.

Newey, W. K., and J. L. Powell (2003): “Instrumental variable estimation of nonparametric
models,” Econometrica, 71, 1565–1578.

Parzen, E. (1962): “On Estimation of a Probability Density Function and Mode.,” Ann. Math.
Stat., 33(3), 1065–1076.

Pensky, M., and B. Vidakovic (1999): “Adaptive wavelet estimator for nonparametric density
deconvolution.,” Ann. Stat., 27, 2033–2053.

Postel-Vinay, F., and J.-M. Robin (2002): “Equilibrium wage dispersion with worker and
employer heterogeneity.,” Econometrica, 70, 2295–2350.

Tautenhahn, U. (1996): “Error estimates for regularization methods in Hilbert scales.,” SIAM J.
Numer. Anal., 33(6), 2120–2130.

26


