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1 Introduction

This chapter is devoted to the empirical estimation of the preferences for risk
of gamblers on real market data. While there have been several experimental
studies trying to elicit preferences of gamblers in the laboratory1, the observation
of real markets remains a necessary step in assessing the properties of gamblers’
preferences.2 This is particularly true for gambling; it is indeed often asserted
that gambling on race tracks (or in a casino) involves some type of utility that
is hardly replicable in experiments3.

We concentrate in this survey on the empirical work that has been con-
ducted for horse races4, in the pari-mutuel system or in a bookmaker system5.
Horse race markets (or other types of betting markets, such as sport events for
instance) are very good natural experiment candidates to test theories of pref-
erences under risk: they allow to collect large datasets, and the average amount
of money at stake is significant6. Financial markets would be a natural area
where the empirical relevance of the implications of the various non expected
utility models could be tested.7 However, portfolio choices have a very marked

∗University of Toulouse (IDEI and GREMAQ (CNRS)). Email: bjullien@cict.fr
†Columbia University and CREST. Email: bs2237@columbia.edu
1See the survey by Camerer (1995).
2An alternative is to use household surveys (see for instance Donkers et al (2001)).
3See for instance Thaler and Ziemba (1988).
4There has been some work on Lotto games, sport events and TV shows (see the con-

clusion).
5For interested readers, Haush, Lo and Ziemba (1994) present contributions covering most

aspects of the economics of racetrack betting.
6Weitzman (1965) estimates an average 1960’s $5 win bet on individual horses, while

Metzger (1985) evaluates at $150 the average amount bet by an individual during the day in
1980.

7For a recent overlook at the theory and empirics of portfolio choices, see the contributions
in Guiso, Haliassos and Jappelli (2002).
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dynamic character, and non expected utility theories are difficult to handle in
dynamic settings.

Racetrack studies may provide key insights for the analysis of risk taking
behavior in financial investment, as well as in other contexts where risk is a main
issue (environmental risk for instance). Betting markets have the advantage of
being short-run, lasting for one period only. This allows an exact evaluation
of the ex-post return on each bet. As such they provide an “archetype” of a
simple contingent security market as defined by Arrow (1964). For horse races,
a winning bet of 1 dollar on a particular horse is simply a contingent security
that yields a revenue (R + 1) dollars in the event the horse wins the race and
0 otherwise. Note that such a security cannot be retraded. The odds R of
the horse in this context is defined as the net return in the winning case8. In
a bookmaker system, odds are commitments of payment by bookmakers who
quote the prices. In a pari-mutual system, they are endogenous, resulting from
the distribution of the wagers over the horses: the odds of horse i is the ratio
between the total money B wagered on the race net of the track revenue9 and
the total money wagered on the horse Bi, minus 1:

Ri =
(1− t)B

Bi
− 1,where t is the take.

At any point in time, odds reflect the market information on winning probabil-
ities and evolve over time, until the race starts. In particular data may include
odds quoted before the racetrack opens, and odds quoted on the track. The
most common practice is to use starting prices, that is odds measured at the
last minute of betting10. The empirical studies discussed below then start with
odds data and winners data, and use them to derive econometric estimates of
bettors preferences.

Note that there is clearly a selection bias in focusing on bettors and starting
prices. Not all individuals bet, and the population of individuals betting on
track (and thus going to the race field) is hardly representative of the whole
population. It may even not be representative of the whole population of bettors,
as bettors off-track are not the same as bettors on-track. So the only information
that can be derived is information on the preferences exhibited by individuals
betting on the fields. Still, this is informative on the type of risk that individuals
may endorse, and, given the simple nature of the market, this provides a very
good test for various theories of preference under risk. Moreover as the selection
bias is in the direction of selecting individuals within the most risk loving part

8A 3 to 1 odd thus correspond to a R = 3 and thus a gain of $4 for a bet of $1 in the
event that the horse wins the race. Following the empirical literature we focus on win bets,
and ignore combinatorial bets.

9It includes the take and the breakage. The take corresponds to the percentage of bets
collected by the racetrack organizers, and the taxes. The breakage corresponds to the part of
the return lost due to the fact that it is rounded to the nearest monetary unit.

10The studies discussed below could be done with any odds, under a rational expectation
assumption. The informational content of prices is the highest at starting prices, so that they
should provide a more accurate predictor of winning probabilities than earlier odds. See for
instance Asch et al (1982).
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of the population, this provides an over-estimate of (and thus a bound on) the
level of risk that an average individual may be willing to accept, which is clearly
very useful.

Using econometric methods on race track data has the advantage of exploit-
ing the large size of the samples available. Datasets usually include thousands
of races, and thus allow precise estimates. Moreover, it enables to rely on fairly
standard econometric models and procedures, ranging from the simple regres-
sion methods used in early work, to more sophisticated estimations of structural
models. The main drawback is that individual data on bets and on bettors char-
acteristics are not available. This implies several restrictions. First, the size of
the wager can usually not be identified. Second, going to the race track and
betting involves some type of entertainment value, and it is not possible to
disentangle what is due to the specific utility derived from the attendance to
the race, and more fundamental properties of preferences. It is also clear that
racetrack bettors have heterogeneous preferences and information. Such a het-
erogeneity could be captured with a parametric estimation of the underlying
distribution of bettors’ characteristics (preferences and beliefs), although this
would raise serious identification problems. The lack of individual data has led
researchers to focus on some form of average behavior, or more to the point on
the behavior of a “representative” bettor that captures the average risk attitude
imbedded in the dataset.

In what follows we first present (Section 2) the main stylized facts of horse
races that have shaped the research agenda. We then present in Section 3 the
work based on the expected utility model, which put in place the foundations
for subsequent work. Section 4 and 5 then review the work departing from
the expected utility paradigm. Section 4 focuses on the perception on winning
probabilities by bettors, while Section 5 discusses the role of the reference point
and the asymmetric treatment of wins and losses. Section 6 concludes.

2 Some Stylized Facts

Any empirical study of the preferences of racetrack bettors must account for
the most salient stylized fact of racetrack betting data: the favorite-longshot
bias. The favorite-longshot bias refers to the observation that bettors tend to
underbet on favorites and to overbet on outsiders (called longshots). As it is
presented in more detail by Hodges and Ziemba in this Handbook, we only
recall here the points that matter for our discussion11. Thus we focus on the
implications of the favorite-longshot bias on how we view bettors’ preferences.

The favorite-longshot bias seems to have been documented first by Grif-
fith (1949) and McGlothlin (1959). Griffith studied 1,386 races run under the
pari-mutuel system in the United States in 1947. For each odds class R, he
computed both the number of entries ER (the total number of horses with odds
in odd class R entered in all races) and the product of the number of winners

11See also Haush, Lo and Ziemba (1994) for a survey of the evidence.
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in this class and the odds NR. A plot of ER and NR against R showed that
while the two curves are very similar, NR lies above (resp. below) ER when R
is small (resp. large). Since small R corresponds to short odds (favorites) and
large R to long odds (longshots), this is evidence that in Griffith’s words, there
is “a systematic undervaluation of the chances of short-odded horses and over-
valuation of those of long-odded horses”. A risk-neutral bettor with rational
expectations should bet all his money on favorites and none on longshots.

A number of papers have corroborated Griffith’s evidence on the favorite-
longshot bias12. To give just one example, let us look at the dataset used
by Jullien-Salanié (2000). This dataset comprises each flat horse race run in
Britain between 1986 and 1995, or 34,443 in total. British race track betting
runs on the bookmaker system, so odds R are contractual. This dataset makes
it easy to compute the expected return of betting on a horse with given odds,
as plotted in Figure 1. For any given R, we compute p̂(R), the proportion of
horses with rate of return R that won their race. The expected return then is

ÊR(R) = p̂(R)R− (1− p̂(R))

for a bet of £1, since such a bet brings a net return of R with probability p̂(R)
and a net return of -1 with probability (1− p̂(R)).

Figure 1 plots ÊR(R), along with a 95% confidence interval. The expected
return is always negative (the occasional spikes on the left of the figure are for
odds that correspond to relatively few horses): it does not pay for a risk-neutral
bettor to gamble at the racetrack. More interestingly, the expected return
decreases monotonically with the odds R, so that it is much less profitable for
such a bettor to bet on longshots than to bet on favorites: even for very common
odds of 10 to 1, the expected loss is 25 pence on the pound, as compared to less
than 10 pence for horses with even odds (of 1 to 1).

The favorite-longshot bias has been much discussed and four main types of
explanations have emerged in the literature13:

1. The original explanation of the favorite-longshot bias was given by Grif-
fith (1949) and referred to misperceptions of probabilities by bettors. Grif-
fith argued that as in some psychological experiments, subjects tend to
underevaluate large probabilities and to overevaluate small probabilities.
Thus they scale down the probability of a favorite winning a race and
they scale up the probability that a longshot wins a race, which indeed
generates the favorite-longshot bias. Henery (1985) suggests a somewhat
similar explanation. He argues that bettors tend to discount losses: if the
true probability that a horse loses the race is q, they take it to be Q = fq,
where 0 < f < 1 is some constant number. This theory can be tested by

12Exceptions have been found for Hong Kong races by Bushe and Hall (1988).
13Ali (1977) also points that the favourite-longshot bias can be explained by heterogeneous

beliefs, reflecting different subjective probabilities of bettors and a lack of common knowledge.
We skip this explanation here. This would amount to introduce some heterogeneity in non-
expected utility modles with probability distortions, and so far, the data set has not allowed
to account for such heterogeneity.
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Figure 1: Observed Expected Return
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measuring Q(R) to be the value that makes the expected return of betting
on a horse with odds R exactly zero; from the formula above, this Q(R)
equals R/(R + 1). Now the value of q(R) is given as q(R) = 1− p̂(R). By
regressing Q(R) on q(R) without a constant, Henery found an estimated
f of about 0.975 and a rather good fit14.

2. Quandt (1986) showed how risk-loving attitudes generate the favorite-
longshot bias at the equilibrium of betting markets. To see this, take two
horses i and j in the same race, with odds Ri and Rj and true probabilities
of winning pi and pj . The expected return of betting one dollar on horse
h = i, j is

µh = phRh − (1− ph)

and the variance of this bet is

vh = phR2
h + (1− ph)− µ2

h

which is easily seen to be

vh = ph(1− ph)(Rh + 1)2

Now if bettors are risk-loving, the mean-variance frontier must be decreas-
ing in equilibrium: if µi < µj , then it must be that vi > vj . A fortiori
equilibrium requires that

vi

(µi + 1)2
>

vj

(µj + 1)2

But easy computations show that

vh

(µh + 1)2
=

1− ph

ph

so that if µi < µj , then pi < pj . The contrapositive implies that horses
with a larger probability of winning (favorites) yield a higher expected
return, which is exactly the favorite-longshot bias.

3. Following evidence of informed trading (Ash et al (19982), Craft (1985)),
Shin showed in a series of papers (1991, 1992, 1993) that in a bookmakers’
market, the presence of insider traders generates the favorite-longshot bias
as bookmakers set odds so as to protect themselves against such well-
informed bettors.

4. Finally, it may be that the utility of gambling is higher for bets on long-
shots, perhaps because they provide more excitement; this explanation
is advanced by Thaler and Ziemba (1988). Then if risk-neutral bettors
equalize the sum of the expected return and the utility of gambling across
horses in each race, clearly the expected return will be higher for favorites.

14Although our own estimates on our dataset suggest that the constant term in Q = a + bq
is highly significant.
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These four explanations are not mutually incompatible. In modern terms
that were not available to Griffith (1949), explanation 1 hints to a non expected-
utility model of bettors’ preferences with nonlinear weighing of probabilities.15

Explanation 2 therefore can be subsumed in explanation 1, with risk-loving ap-
propriately redefined so that it makes sense for non expected-utility preferences.

Because the rest of this chapter will focus on explanations 1 and 2, we should
explain here why we put aside explanations 3 and 4. The literature on, inside
trading is covered in Sauer (1998) along with the test of efficiency of wagering
markets. For our concern, one first problem with Shin’s models is that they are
rather specific, so that estimating the incidence of insider trading requires strong
assumptions on preferences and the information structure of insider traders.
Still, it might make sense to pursue along this direction. However, this is in
fact not necessary so far as the gambler’s preference is the object of interest.
It is true that the existence of a fringe of insider traders changes the behavior
of bookmakers; but under rational expectations, all the information available
is incorporated into prices so that one may still estimate the preferences of a
gambler with no private information. Finally, explanation 4 also is intuitively
appealing: betting on a huge favorite, say with a 99% chance of making a net
return of 1 cent on the dollar, is clearly less ”fun” than betting on a longshot that
brings 100 dollars with a 1% probability. One difficulty with this explanation
is that in a sense, it explains too much: since there is little evidence on the
determinants and the functional form of the utility of gambling, any feature of
the equilibrium relationship between p and R can be explained by an ad hoc
choice of functional form for the utility of gambling. However, we will see later
that models with non expected-utility preferences, by re-weighting probabilities,
may yield similar predictions to models with a utility of gambling that depends
on the probability of a win.

3 Expected Utility

The seminal contribution in the domain is the work of Weitzman (1965) who
builds on the above findings and attempts to estimate the utility function of an
average expected utility maximizer. Weitzman had at his disposal a dataset of
12,000 races, collected on four New York race tracks for a period covering 1954 to
1963. Following Griffith (1949), Wietzman starts by aggregating horses over all
races by odds category, obtaining 257 odds classes. From the winners dataset, he
then constructs the ex-post estimate p̂(R) of the winning probability of a horse
conditional on its odds category R. This allows him to estimate a functional
relation between the odds category and the winning probability.16 Then he
attempts do build the utility function of an “average” bettor, referred to as Mr.
Avmart (average man at the race track), as follows. Mr. Avmart is an expected
utility maximizer with a utility function u(.) and he bets a fixed amount on each

15See the conclusion for other types of cognitive biases.
16He estimates an hyperbola p̂(R) = 0.845

R
and a “corrected hyperbola” p̂(R) =

1,01−0.09 log(1+R)
R

.
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race,17 normalized to 1 for the exposition (the actual unit Weitzman uses is $5).
Mr. Avmart is representative in the following sense: the data observed could be
generated by Mr. Avmart (or a population of identical Mr. Avmarts) betting.
As every odds category receives some bet, Mr. Avmart must be indifferent
between all the odds categories, which implies that

p̂(R)u(R) + (1− p̂(R))u(−1) = K for all R,

where K is the constant expected utility. This yields the relation

u (R) = u(−1) +
K − u(−1)

p̂(R)
,

which allows him to estimate a utility function for all money levels R. Using
this procedure Weitzman found a convex utility function on the range of money
value covered ($5 to $500), consistent with the assumption of a risk-loving atti-
tude.

Ali (1977) conducted a similar study with a 20,247 races dataset, group-
ing the horses according to their ranking as opposed as their odds. For each
ranking an average odds and an empirical winning probability are computed.
He then estimates the utility function of an agent indifferent between betting
on any horse category. Ali confirms Weitzman finding, with a risk loving utility
function. He estimates a constant relative risk aversion utility (CRRA) with
a coefficient of relative risk aversion −0.1784. Applying the methodology on
different data, Kanto et al (1992) and Golek and Tamarkin ((1998) estimate
somewhat similar CRRA utility functions.18

By construction, the preferences of the representative agent are based only
on the information contained in the odds category (or the ranking in the case
of Ali). The behavior of the agent is “representative” on average, in the sense
that he is indifferent between betting on the horse in a given category on all
races, and betting on the horse in another category on all races.19 Thus the
construction of Mr Avmart’s preferences involves two types of aggregation: of
the information over odds and winning probabilities, and of the preferences.
One of the drawbacks of the categorization of odds is that the number of points
used to fit the utility function is usually small (except for Weitzman (1965) who
builds 257 categories). Another important aspect is that the only information
used is the category of the horse, so some information on the races included in
the data is not used by Mr Avmart. This is the case for instance of the number
of runners in each race. Given the nature of the pari-mutual system, one may
however think that the number of runners may affect the relationships between
the winning probability and the odds. More generally, this relationship may

17Recall that data on individual bets are not available, so the amount bet must be postu-
lated.

18Golek and Tamarkin’s estimates, based on odds category, are −0.14 for the whole data,
and −0.2 for a data conditioned on having a large favorite. Values differ but they all confirm
a risk-loving attitude.

19Or in a race chosen at random in the sample of races.
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vary with the race characteristics.20 A second remark is that it may also vary
with the take, or more generally with the mark-up over winning probabilities
that corresponds to the revenue of the betting institution. In the case of a pari-
mutual market this is not so problematic as the take is fixed at the track race
level. But, when applied to a betting market organized with bookmakers, the
procedure may create serious biases as the mark-up is chosen by the bookmakers
and may vary from one race to the another.21.

Jullien and Salanié (2000) propose a method to estimate the representative
agent’s preferences that allows to account for heterogeneity among races. To
understand the procedure, let us consider a given race r with Er horses. Let
pir denote the objective winning probability of horse i in race r and Rir be the
odds. Now assume that the representative agent is indifferent between betting
1 on any horse in race r. Then there must be some constant Kr such that:

piru(Rir) + (1− pir)u(−1) = Kr.

Using the fact that probabilities add up to one, one can then recover for
each race and each horse, a unique predicted probability of winning p̂(i, r, u)
and a constant Kr consistent with this relation. The procedure consists then in
using the winners data to find the utility function u(.) that provides the best
fit to the empirical data using a maximum likelihood method. Note that the
method has the advantage of using all the data information, and getting rid of
the categorization of odds. The nature of the representative agent is slightly
different as he is indifferent between betting on any horse on any given race,
as opposed to placing a systematic bet on a given odds category on all races.
Thus the agent too uses all the information in the data, and may even use more
information as he can adjust to the specificities of races.

Applying this procedure to the estimate of a utility function, Jullien and
Salanié confirmed the finding of a risk loving utility function. It appears however
that the CRRA utility representation is outperformed by a utility function with
a constant absolute risk aversion (CARA). Among the class of utility functions
with an hyperbolic risk aversion, the best fit was obtained for a CARA utility
function, with a fairly moderate degree of risk-loving.

Expected utility estimates provide results that are consistent with explana-
tion 2 of the favorite-longshot bias, that is a risk-loving attitude. However, as
documented by Golek and Tamarkin (1998), and Jullien and Salanié (2000),
these estimates tend to perform poorly for large favorites. Indeed the probabil-
ities of winning implied by the estimated utility and the underlying structural
model of representative agent tend to be too small for large favorites. Ar-
guably this can be due to the parametric forms chosen for the utility function
estimated, which restrict its curvature. Arguing that CRRA utility functions

20McGlothin (1956) and Metzger (1985) provide evidence that the position of the race in
the day matters, as well as the amount of publicity for the race.

21If the average mark-up varies with the race, as it is the case with bookmakers, the constant
K above should depend on the race. The same issue arises when using data from racetracks
with different values of the take.
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perform poorly for large favorites, Golek and Tamarkin (1998) estimate a cubic
utility function: u(R) = −0.071 + 0.076R − 0.004R2 + 0.0002R3. The utility
function exhibits risk aversion for low odds (favorites) and a risk loving attitude
for larger levels of odds. As the coefficient for the variance is negative, they con-
clude that the risk loving attitude is related to the skewness of the distribution
(the third moment). While the risk averse attitude for small probabilities is an
interesting result, this is probably as far as one can go with the expected utility
model on this type of dataset. In particular, given the specific economic con-
text, the non representativeness of the population studied and the lack of data
on individual bets and characteristics, very detailed estimates of the curvature
of the utility function at various levels of odds may not be of much relevance
for other applications. We now follow a different route. As argued before, al-
though the precise preference of racetrack bettors may not be of special interest
to the economist in a different domain, they provide a simple and clear real life
experiment. The next step is thus to use the data to test various departures
from the expected utility paradigm on a real life situation. Among these, the
most popular in modern theory are the so-called non-expected utility models
which provide mathematical representations of preferences under risk that are
non-linear in the space of probability distributions.

Before we procees, let us point out that there is no inherent contradiction
between the expected utility representation and a non-expected utility model of
the agent behavior. Indeed, as we already noted, the data contains no informa-
tion on the individual characteristics, and in particular on wealth. This means
that all the utility functions are estimated only for the revenue derived from the
betting activity. One may then consider that the distribution of this revenue
represents a relatively small fraction of the risk supported by individuals on
their total wealth, at least for the average bettor. As shown by Machina (1982),
even when an agent evaluates his total wealth in a non-expected utility manner,
one may still evaluate small risks with an expected utility. The utility func-
tion is then local as it represents the differential of the global functional, and
it depends on the underlying total wealth. Thus one may see expected utility
estimates as a first order linear approximations of preferences. The question is
then whether alternative utility representations provide a better representation
of preferences than this approximation.

4 Distortions of Probabilities

The empirical evidence collected in the previous section suggests that the best
expected utility rationalization of the equilibrium relationship between probabil-
ities and odds exhibits a significant but not very large degree of risk loving. Still,
a very copious experimental literature, starting with the work of Allais (1953),
has accumulated to shed doubt on the value of the expected utility model as
a representation of behavior under risk. The recent survey by Camerer (1995)
for instance strongly suggests that the independence axiom is violated in most
experiments.
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On the other hand, there is no consensus about which non expected utility
model to choose, even among authors who hold that we should drop the expected
utility representation. Moreover, most of the evidence is experimental; there
seems to be little evidence based on real-life economic situations. As argued
in the introduction, bets on horses are very simple Arrow-Debreu assets that
cannot be retraded and thus offer an exciting way of testing these theories. This
section and the next are dedicated to this task. As it will appear, most of these
two sections describes the study of Jullien and Salanié (2000). We can only
hope that in ten years, there will be many more papers to present in this field.

Let us stick to the assumption that the utility of wealth u function is CARA;
then the expected utility of betting on horse i with odds Ri and probability of
winning pi is

piu(Ri) + (1− pi)u(−1)

This is a special case of the standard formula∫
u(x)dF (x)

where the risky outcome X has a cumulative distribution function F . There
are many ways of altering this formula in order to obtain a non expected utility
representation of preferences. One of the most natural, suggested by Quig-
gin (1982), consists in re-weighting probabilities, so that the value of X now
takes the form

−
∫

u(x)d(G ◦ (1− F ))(x)

where G is a continuous and increasing function that maps [0, 1] into itself.
While this may seem opaque, the application of this formula to the bet on horse
i yields

G(pi)u(Ri) + (1−G(pi))u(−1)

While Quiggin (1982) called this specification “anticipated utility”, it now goes
under the name of “rank dependent expected utility” (RDEU for short). Be-
cause G is a priori nonlinear, RDEU breaks the independence axiom of expected
utility. It does so in ways that may allow it to account for violations such as
the Allais paradox: when G is convex, RDEU preferences indeed solve what is
called in the literature the “generalized Allais paradox”.

Remember that Griffith (1949) explained the favorite-longshot bias by ap-
pealing to an overestimation of small probabilities and an underestimation of
large probabilities. This points to a G function that is concave and then convex.
On the other hand, the weighting function postulated by Henery (1985) does
not fit within RDEU, strictly speaking. It can indeed be written as

G(p) = 1− f(1− p)

which gives G(0) = 1−f > 0 and thus is inconsistent with the axioms of RDEU
(and indeed of any reasonable theory of choice under risk). This could of course
be fixed by smoothly connecting G(0) = 0 with the segment represented by
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Henery’s specification. Note that neither of these specifications yields a convex
weighting function G(p), as required to solve the generalized Allais paradox.

Jullien and Salanié (2000) fitted various RDEU functionals to their dataset
of British flat races. All of these functionals assumed that the utility of wealth
function u was a CARA function; on the other hand, they allowed for much more
flexibility on the shape of the weighting function G(p), which allowed them to
nest the shapes suggested by Henery and Griffith among others. Figure 2 offers
a summary of their results. The most striking feature of these curves is that they
are very close to the diagonal for each specification. Thus the estimated RDEU
functionals hardly depart from the expected utility model. This is confirmed
by formal tests, since the null hypothesis of expected utility is only rejected for
one specification of the weighting function, that proposed by Prelec (1998) on
the basis of an axiomatic derivation. According to this study at least, rank-
dependent expected utility does not appear to provide a better fit of bettors’
preferences than expected utility. Note that if anything, the estimated weighting
functions are slightly convex on the whole [0, 1] interval and thus do not go in
the direction suggested by Griffith or Henery.

5 Reference Points and Asymmetric Probability
Weights

While the results in the previous section are not very encouraging for non ex-
pected utility, there are many alternative specifications of these models. In
particular, since Markowitz (1952), the notion of reference point has received
some attention. This refers to the idea that individuals evaluate the risk by
comparison to some reference wealth, and treat losses and gains in an asymmet-
ric way. This is particularly attractive in the case of betting as there is a natural
reference point (no bet) and a clear distinction between losses and gains.

In a recent work, Bradley (2003) proposes such a representation where the
agent maximizes an expected utility with a reference point and a differential
treatment of losses and gains.22 His representation assumes a different constant
relative risk aversion utility function for losses and for gains, and allows to endo-
geneize the size of the bet, which is not done in other approaches. Although his
investigation is still preliminary, it suggests that a representation with risk aver-
sion on losses and a risk loving attitude on gains may fit the data, in particular
the favorite-longshot bias.

Among various theories involving a reference point, cumulative prospective
theory (CPT) has become very popular in recent years. Prospect theory was
introduced by Kahneman and Tversky (1979) and developed into cumulative
prospect theory in Tversky and Kahneman (1992). Most theories of choice
under risk evaluate lotteries as probability distributions over final wealth. CPT
diverges from this literature in that it evaluates changes in wealth with respect

22As pointed in section 2, if we see the utility function as a local utility function, the notion
of reference point becomes natural.
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Figure 2: Estimated Weighting Functions for RDEU
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to a reference point that may for instance be current wealth. This matters
in that in CPT, losses and gains are evaluated in different ways. Kahneman
and Tversky first appeal to the principle of diminishing sensitivity, which states
that the psychological impact of a marginal change decreases when moving away
from the reference point. Applied to the utility of (changes in) wealth function,
it suggests that this function is concave for gains but convex for losses. When
applied to the probability weighting function, and given that the endpoints of the
[0, 1] interval are natural reference points, it suggests that this function should
have the inverted-S shape implicit in Griffith (1949), as shown in figure ??. This
is often called the certainty effect: small changes from certain

Cumulative prospect theory also adds two elements of asymmetry in the
treatment of gains and losses. First, it allows for different probability weighting
functions for gains and losses. Second, it assumes loss aversion, i.e. that the
utility of changes in wealth is steeper for losses than for gains, so that the
function u(x) has a kink in zero.

For a general prospect X with cumulative distribution function F , the value
according to CPT is∫

x<0

u(x)d(H ◦ F )(x)−
∫

x>0

u(x)d(G ◦ (1− F ))(x)

where G and H are two continuous and increasing functions that map [0, 1] into
itself. Given a bet on horse i with odds Ri and a probability of a win pi, the
CPT value simplifies into

G(pi)u(Ri) + H(1− pi))u(−1)

Note the differences with RDEU. The most obvious one is that in general H(1−
p) 6= 1 − G(p). The other one is hidden in the formula, since the function u
should have a shape similar to that in figure ??: it should be convex for losses
(x < 0), have a “concave kink” in zero (with u(0) = 0), and be concave for gains
(x > 0). Clearly, only some of these properties can be tested from the data,
since the only values of u on which we can recover information are those in −1
and on [R,+∞), where R is the smallest odd observed in the data.

In their paper, Jullien and Salanié (2000) chose to circumvent these difficul-
ties by assuming that u was a CARA function. This is clearly not satisfactory,
as it assumes away by construction any form of loss aversion and it violates the
principle of diminishing sensitivity by forcing the concavity of u to have the
same sign for losses and for gains. Jullien and Salanié normalize u by setting
u(0) = 0 and u′(0) = 1; then the parameter of the CARA function is estimated
from the relationship between probabilities and odds, and it implies a value for
u(−1), say A. Then they run a test of (and do not reject) the null hypothesis
that u(−1) = A. This may be construed as a test of loss aversion by a sympa-
thetic reader, but we admit that it is not very convincing. The best justification
for their assuming a CARA utility function probably is that they want to focus
on the probability weighting functions G and H and there is just not enough
information in the data to probe more deeply into the function u.
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Figure 3: CPT Probability Weighting for Gains
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Figure 4: CPT Probability Weighting for Losses
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Given this restriction, Jullien and Salanié tried three specifications for the
functions G and H. Figure 3 plots their estimation results for the function G.
As in the RDEU case, the function appears to be slightly convex but very close
to the diagonal: there is little evidence of a distortion of the probabilities of
gains. The estimated H function, however, has a markedly concave shape for
all specifications as shown in figure 4. These results are somewhat at variance
with the theory, which led us to expect inverted-S shapes for the probability
weighting functions.

There are several ways to interpret these results, and Jullien and Salanié
illustrate some of them. First, it can be shown that G convex and H con-
cave explain the generalized Allais paradox. Second, local utility functions à la
Machina (1982) can be derived from these estimates; they have a shape similar
to that hypothesized by Friedman and Savage (1948). Let us focus here on how
these preferences explain the favorite longshot-bias. To see this, remember that
the function u exhibits a moderate degree of risk-loving, and the function G
is very close to the diagonal. Thus to simplify things, assume u(x) = x and
G(p) = p. Then horse i is valued at

piRi −H(1− pi)

which can be rewritten as

pi(Ri + 1)− 1− (H(1− pi)− (1− pi))

Now given the estimates of Jullien and Salanié, the function q −→ H(q) − q is
zero in 0 and 1 and has a unique maximum close to q∗ = 0.2. Since most horses
have a probability of winning much lower than 1 − q∗ = 0.8, it follows that
H(1 − p) − (1 − p) is an increasing function of p and therefore in equilibrium,
the expected return pi(Ri + 1) − 1 is an increasing function of the probability
of a win. Thus bigger favorites are more profitable bets for risk-neutral bettors,
which is just the definition of the favorite-longshot bias. The data suggest that
the bias may be due not only to risk-loving, as suggested by Quandt (1986), but
also to the shape of the probability weighting functions. This is an intriguing
alternative, since it can be shown in fact that the concavity of H pulls towards
risk-averse behavior for losses. Thus the favorite-longshot bias is compatible
with risk-averse behavior, contrary to the standard interpretation.

Finally, let us return to explanation 4 of the favorite-longshot bias, based on
the utility of gambling. First note that the method used by Jullien and Salanié
is robust to a utility of gambling that may differ across races but is the same for
all horses in a given race. Now assume that for horse i, there is a horse-specific
utility of gambling f(pi, Ri), so that the value of this bet for a risk-neutral
bettor is

pi(Ri + 1)− 1 + f(pi, Ri)

By identifying this formula and the one above, we can see that our CPT esti-
mates can be interpreted as representing the preferences of a risk-neutral bettor
with a horse-specific utility of gambling given by

f(pi, Ri) = 1− pi −H(1− pi)
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which only depends on the probability of a win. Moreover, we know that it is a
decreasing function of pi for most horses. Thus this reinterpretation of Jullien
and Salanié’s CPT estimates brings us back to explanation 4 of Thaler and
Ziemba (1988). There is in fact nothing in the data that allows the econometri-
cian to distinguish between these two interpretations.

6 Concluding Remarks

This survey has attempted to describe the literature estimating and testing
various utility representations on racetrack betting data. Clearly the literature
is still in its infancy, and much more work is required before some definite
conclusion emerges. We hope to have convinced the reader that this type of
studies provides useful insights and is worth pursuing. In particular, the pattern
that emerges is that the nature of the risk attitude that is imbedded in odds
and winners data is more complex than predicted by a simple risk loving utility
function, and may involve some elements of risk aversion as well. Assessing
precisely which type of preference representation best fits the data would require
more extensive studies. The methodology described here can apply to other
existing theories, such as for instance regret theory (Loomes and Sugden (1982))
or disappointment theory (Gul (1991)).

As exposed in Kahneman, Slovic and Tversky (1982), departures from ex-
pected utility involve more “heuristics and biases” than the static discrepancy
between “psychological” probabilities and objective probabilities that can be
captured by a non-linear preference functional. The richness of the data avail-
able on horse races could help to test some of these other departures. This
would require to collect more data than the odds and the winners, but there is
for instance a potential to exploit information on the races, or the dynamics of
odds. An attempt in this direction is Metzger (1985) who uses the ranking of
the race during the day to provide some empirical supports for the gambler’s
fallacy (among others), here the effect of the outcome of the previous races on
the perception of the respective winning probabilities of favorites and longshots.
Ayton (1997) use data on UK football gambling and horse races to study the
”support theory” developed by Tversky and Koehler (1994), with mitigated
conclusions.

We have focused on horse races studies. Other gambles provide documented
natural experiments. Because each gamble involves a different entertainement
value and motivation of gamblers, it is difficult to compare the results obtained
in different gambling contexts. Studies are still relatively scarce, and we will
have to wait for more work before drawing any conclusion from the comparison
of the patterns of behavior observed for various games. Still, let us mention
that work has been conducted for lottery games, that sheds some light on the
nature of cognitive biases.23 For instance it is well documented that the return
varies with the numbers chosen (see Thaler and Ziemba (1988), Simon (1999)).
Simon (1999) and Papachristou (2001) also examine whether lotto data exhibit

23For discussion of casino gambling see Eadington (1999).
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a gambler’s fallacy pattern, with mixed conclusions. TV gambles have also
been examined. References can be found in Beetsma and Schotman (2001) who
estimate risk aversion for participants to the dutch TV show LINGO, or in
Février and Linnemer (2002) who conclude from a study of the french Weakest
Link that some pieces of information are not used by participants.24 Finally we
should mention the recent work by Levitt (2002) using micro-data on gambling
on National Football League to analyse biases and skills in individual betting.
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