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to Antoine Bommier, GREMAQ, Université des Sciences Sociales, Bat. F, 21, Allée de
Brienne, 31000, Toulouse, FRANCE. E-mail: Antoine.Bommier@univ-tlse1.fr.
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1 Introduction

For many economic issues, such as for the design of social security or the

management of pension funds, it is fundamental to know how the readiness

of an individual to take financial risks may change as he/she gets older.

Such a question has been intensively addressed in the economic literature.

In the standard additive model with CRRA preferences, Merton (1969) and

Samuelson (1969) find that it is optimal to invest in risky assets a fraction

of wealth that is independent of age. Samuelson (1989) contains a clear

explanation of this result, which contradicts conventional wisdom. Later

contributions try to find ways to get out of this surprising result. Bodie,

Merton and Samuelson (1992) incorporate endogenous labor supply into the

initial Merton-Samuelson model. They find that if labor supply is less flex-

ible at older ages than at younger ages then relative risk aversion increases

with age. Another important contribution is that of Gollier and Zeckhauser

(2002), who show that because of the dynamic aspect of portfolio choice prob-

lems, the conclusion of Samuelson does not extend to all separably additive

preferences.

The present paper contributes to this literature by examining the role of

non separability of preferences. The assumption that preferences are separa-

bly additive has been consistently rejected by empirical evidence (see Muell-

bauer, 1988 and Carrasco, Labeaga and López-Salido, 2004, for example).

It remains nonetheless extensively used, essentially because it is very con-

venient. This assumption is however crucial for discussing the impact of

horizon length on attitudes towards financial risks. In fact, we show that,

out of the additively separable case, individuals’ relative risk aversion will

generally change along the life cycle, independently of any age, wealth or

time inconsistency effects. Moreover we relate the life cycle variations of

relative risk aversion to standard measures of complementarity and substi-

tutability of consumptions occurring at different dates. Roughly speaking,

we find that if consumptions at different dates are specific substitutes, then

relative risk aversion indices decrease along the life cycle, while they increase

if consumptions at different dates are specific complements.

Our results provide therefore a simple explanation of why risk aversion

may change along the life cycle: individual preferences may simply be non
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additively separable. Moreover, our results also indicate that relaxing this

assumption of additive separability is not the source of an insuperable com-

plexity. Even when it proves difficult or impossible to explicitly solve for

intertemporal consumption-portfolio choices, it is nevertheless possible to

infer how relative risk aversion varies along the life cycle by looking at in-

tertemporal budget shares, Frisch’s cross price elasticities and single period

indexes of risk aversion.

The remainder of the paper is organized as follows. In Section 2 we briefly

review the empirical literature on the relation between risk aversion on the

one hand and age or horizon length on the other hand. In Section 3, we

study, as an illustrative example, a simple model of portfolio choice with

non-separable preferences. Section 4 defines a natural measure of intertem-

poral risk aversion and shows how this measure is related to portfolio choice.

In Section 5, we consider the case of preferences that are separable but not

necessarily additive in order to stress the impact of additivity on risk aver-

sion. In Section 6, we examine the general case where both separability and

additivity are relaxed. The empirical implications of our results are discussed

in Section 7. Section 8 concludes.

2 Empirical findings

Before getting into theoretical considerations, we may wonder whether

empirical studies suggest any relation between horizon length (or age) and

risk aversion. The most direct way to assess intertemporal risk aversion of

individuals is to elicit these individuals’ preferences over lotteries on their

lifetime income. However, it is rather difficult to observe actual situations

where individuals have indeed to choose between several lotteries on their

lifetime income. This is why most empirical papers base their estimates on

virtual experiments. For example, Barsky et al (1997) find that the relation

between relative risk aversion and age has an inverse U shape. Their sample

is however restricted to people that are older than 50. By contrast, Guiso

and Paiella (2001) find a positive relation between risk aversion and age.

These results should nonetheless be interpreted with caution. They are based
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on hypothetical choices, and not on actual behavior. Also, they are cross-

sectional studies and, therefore, do not allow to control for cohort effects.

Another approach is to look at the share of wealth held in risky assets, and

to see how it changes along the life cycle. There are many studies that follow

this track, including two recent books providing international comparisons

(Guiso, Haliassos, and Jappelli, 2002a and 2002b), and a longitudinal study

by Ameriks and Zeldes (2001). The cross sectional studies that are reported

in Guiso, Haliassos, and Jappelli (2002a and 2002b) provide mixed evidence

on how the share of wealth held in risky assets varies with age. In most

cases, no significant relation between age and the share of risky assets is

found. A U shape relation is found in the Netherlands and a weak positive

relation is found in the USA. Longitudinal studies are more seldom. The

well documented study of Ameriks and Zeldes (2001) concludes that, when

controlling for cohort effects, there is, in the USA, a strong positive relation

between the share of financial portfolios held in risky assets and age.

It should be stressed that the empirical studies reported in Guiso, Halias-

sos, and Jappelli (2002a and 2002b) and that of Ameriks and Zeldes (2001)

analyze the share of financial or non-human wealth held in risky assets. None

of them reports the share of total wealth (including human wealth) held in

risky assets, which would be the relevant information to assess individual

relative risk aversion, as it is made clear in Bodie, Merton and Samuelson

(1992). The share of total wealth held in risky assets is related to the share

of financial wealth held in risky assets by the following simple relation:

Risky assets

Human Wealth+Financial Wealth
=

(
Risky assets

Financial Wealth

)(
1

1 + Human Wealth
Financial Wealth

)

Since the ratio Human Wealth
Financial Wealth

tends to decline along the life cycle, studies that

focus on the ratio Risky assets
Financial Wealth

tend to underestimate the (positive) slope of

the relation between age and the degree of aggregate risk taking.

Thus, the absence of relation between portfolio composition and age found

in cross-sectional studies as well as the positive relation between portfolio’s

risk and age, found in the longitudinal study of Ameriks and Zeldes, would
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be consistent with a positive relation between relative risk tolerance and

age, once human wealth is taken into account. Such a relation cannot be

attributed to life cycle variations in wealth, for at least two reasons. First,

most studies do control for individual wealth. Second, it is generally found

that relative risk aversion decreases with wealth, while wealth tends to decline

at the end of the life cycle. Therefore relative risk aversion should increase

with age, while the opposite is found in the data. The present paper shows

that non separability of preferences may provide an explanation for these

findings.

3 Portfolio choice with non separable pref-
erences: an illustrative example

In order to illustrate the impact of non separability of preferences on

intertemporal variations of individuals’ risk aversion, we consider in this sec-

tion a very simple consumption-portfolio model. Individuals live 2 periods

and have a lifetime von Neumann-Morgenstern utility function given by:

U(C1, C2) = f(u(C1) + u(C2)),

where u(C) = ln C is the instantaneous utility function4 and f(A) = 1−e−kA

k
.

The coefficient k measures interactions between consumptions are differ-

ent dates:
∂2U

∂C1∂C2
(C1, C2) = − k

C1C2
e−k(u(C1)+u(C2)).

Thus consumptions at dates 1 and 2 are want independent5 (separable

preferences) if k = 0, specific substitutes6 if k < 0, and specific complements

if k > 0.

4To neutralize age-effects, we assume that the instantaneous utility is independent of
age.

5When k = 0, we adopt the usual convention that f(A) = A.
6See a precise definition in Section 6.
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At date 0, the individual invests a fraction θ0 of her initial wealth W0 in

a risky asset, the rest being invested in a riskless asset. At date 1, she gets

wealth W1 out of which she chooses to consume C1. Her remaining wealth is

W1 −C1. Then she invests a fraction θ1 of her remaining wealth in the same

risky asset. At date 2, she consumes her final wealth W2 . We denote by R̃0

and R̃1 the (random) returns of the risky asset in periods 0 and 1, supposed

to be i.i.d. The riskless return is normalized to zero. We assume that the

risky asset has a positive expected return R. The budget constraints are

given by:

W1 = W0(1 + θ0R̃0), (1)

C2 = (W1 − C1)(1 + θ1R̃1). (2)

We focus on the evolution of the share of risky assets along the life cycle,

i.e. whether θ0 > θ1 or not.

Notice first that in the separable case (k = 0), this share is constant: θ0 =

θ1. Indeed at date 1, the individual chooses θ1 to maximize E
[
ln(1 + θ1R̃1)

]
.

θ1 does not depend on (W1−C1) because u(C) = ln C is CRRA. C1 is chosen

to maximize ln C1 + ln(W1 − C1) thus leading to

C1 = W1 − C1 =
1

2
W0(1 + θ0R̃0)

By backward induction, θ0 is chosen at date 0 in order to maximize

E(ln C1 + ln(W1 − C1)) = constant + E ln(1 + θ0R̃0).

Thus if R̃0 and R̃1 are identically distributed, θ0 and θ1 coincide: The

share of risky assets in the portfolio of the individual is constant across the

life cycle. Of course this is due, in part, to the fact that we have neutralized

age effects and wealth effects. We claim that this is also due to intertemporal
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separability. To see this, consider now the non separable case (k �= 0):

U(C1, C2) =
1 − exp−k(lnC1+ln C2)

k
=

1 − C−k
1 C−k

2

k
.

At date 1, the individual chooses θ1 to maximize EU(C1, (W1 − C1)(1 +

θ1R̃1)). Again, the optimal θ1 is independent of C1 and W1 because instan-

taneous utility u is CRRA (no wealth effect):

θ1 = arg max
[
−E(1 + θ1R̃1)

−k
]
. (3)

Like in the separable case, C1 is chosen to maximize ln C1 + ln(W1 −C1),

leading to C1 = 1
2
W1, but the choice of θ0 is changed. The objective function

becomes

−E
[
C−k

1 C−k
2

]
,

which is proportional to

−E
[
(1 + θ0R̃0)

−2k
]
. (4)

We obtain an expression similar to (3), but with a different exponent.

This is because the risk on the portfolio chosen at t = 0 impacts two con-

sumptions levels C1 and C2, whereas θ1 only impacts C2. When preferences

are not separable, this changes the portfolio decision.

Specifically, in our example, it is easy to see that when k > 0, θ0 < θ1,

which means that the individual takes more risk at date 1. Indeed this is

an easy consequence of the following comparative statics property (proved in

Appendix 1):

Lemma 1 : Let

θ∗(k) = arg max
1 − E[(1 + θR̃)−k]

k
.
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Then θ∗ decreases in k.

When R, the expected return on the risky asset, tends to zero (while

its variance σ2 stays constant) a simple approximation of θ0 and θ1 can be

derived. Indeed, a second order Taylor expansion of (3) shows that, when

R → 0 we have:

θ0 � 1

(1 + 2k)

R

σ2
and θ1 � 1

(1 + k)

R

σ2
. (5)

As we will see in the following, this approximation could have been ob-

tained from risk aversion considerations without solving the portfolio choice

problem: the coefficients that appear before R
σ2 in the above expressions are

the intertemporal risk tolerance indices of the individual, a measure that we

define in the next section.

4 Intertemporal risk aversion

The above example shows that relaxing the assumption of separability

may significantly affect the relation between age and financial strategies.

But so far, it is difficult to tell what drives the result. Is it a particularity of

our simple model of portfolio choice, or does it reflect a fundamental aspect

of non-additive preferences? The latter hypothesis is actually the right one.

As we explain below, interactions between consumptions at different dates

in individual’s preferences are a key determinant of the relation between

intertemporal risk aversion and horizon length. Moreover, since financial

strategies are closely related to intertemporal risk aversion, we also find that

portfolio choice depends on horizon length when preferences are not separa-

ble. However optimal portfolio selection with non separable preferences is a

formidable computational problem, with no hope for a closed form solution,

except in very peculiar cases So our strategy will be to define an intertempo-

ral measure of risk aversion in a neighborhood of a deterministic consumption

profile (the risk tolerance index at age n), and to study how this index varies

along the life cycle. Then we will show that this index allows us to obtain a

8



good approximation of the share of risky assets in the portfolios chosen by

individuals of different ages, at least when the excess return of the risky asset

is small.

Before introducing theoretical considerations on intertemporal risk aver-

sion, a natural question arises: how can we compare risk aversions of individ-

uals having different horizons? Individuals with different horizons have in-

deed preferences over different consumption sets. Comparative risk aversion

was originally developed by Arrow (1971) and Pratt (1964) for preferences

over a single commodity. It was extended by Kihlstrom and Mirman (1974)

to the case where people consume several goods but have the same ordi-

nal preferences. Clearly, this cannot be applied to individuals who consume

over different numbers of periods. Karni (1979, 1983) suggested different

approaches to multivariate comparative risk aversion but, again, no clear

comparison can be obtained when applying these approaches to individuals

who care for different goods. Thus, strictly speaking there is no theoretical

foundation for comparing risk aversions of individuals with different horizon

lengths.

A possibility, however, consists in comparing the degree of risk aversion

of their indirect utility functions. Again, there are various options. The

comparison can bear on relative or on absolute risk aversion. Also, since

individuals of different ages may have different wealths, it is not clear whether

we should we control for wealth variations or not. We define below an index

of risk tolerance and explains that it is a natural measure for analyzing how

the individuals’ attitude towards risk varies along the life cycle.

Consider indeed individuals with a lifetime utility function U(C1, C2, ..., CN),

and assume that they are time consistent. Formally speaking that means that

an agent of age n with past consumptions (C∗
1 , C

∗
2 , ..., C

∗
n−1) has preferences

over (Cn, ..., CN) represented by the utility function

Un(Cn, ..., CN) = U(C∗
1 , C

∗
2 , ..., C

∗
n−1, Cn, ..., CN)

The price of the composite good consumed in period i is denoted pi. In

absence of uncertainty, individuals with initial wealth W initially choose the

consumption path (C∗
1 , C

∗
2 , .., C

∗
N) that maximizes U(C1, ..., CN) under the
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budget constraint
∑N

i=1 piCi = W . At any age n, the remaining wealth is

Wn = W −∑n−1
i=1 piC

∗
i and individuals choose (Cn, ...CN) in order to maxi-

mize Un(Cn, ...CN) under the budget constraint
∑N

i=n piCi = Wn. The time

consistency assumption implies that the solution to the maximization pro-

gram at age n is given by (C∗
n, .., C∗

N) and therefore that individuals stick to

their initial choices.

Definition 1 The (global) risk tolerance index at age n, along consumption

path C∗ = (C∗
1 , . . . , C

∗
N), is defined as:

Tn (C∗
1 , ...., C

∗
N) = − V ′

n(Wn)

WnV ′′
n (Wn)

where Wn = W −∑n−1
i=1 piC

∗
i is the wealth held at age n and Vn(.) is the value

function of an individual of age n with utility function U :

(Pn)


Vn(Wn) = maxCn,...CN

U(C∗
1 , ..., C

∗
n−1, Cn, ...CN)∑N

i=n piCi = Wn

, (6)

To illustrate why the above index of risk tolerance is informative about

how attitudes towards risk change along the life cycle, we consider two cases

where some marginal uncertainty is added to the deterministic setting de-

scribed above.

For the first illustration, imagine that at age n the individual is offered a

choice between giving up a share αn of his wealth (leaving him with wealth

(1 − αn)Wn) or going through a fair lottery that provides him with wealth

(1 + ε)Wn or (1 − ε)Wn with equal probabilities. Now ask what is the share

αn(ε) that leaves the individual indifferent between the two alternatives. This

is similar to computing a risk premium in one dimensional analysis. It is easy

to show that:

αn(ε) =
ε2

2Tn(C∗)
+ o(ε2).

This formula means that in a first approximation, the relative risk premium
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for a lottery on the individual’s wealth at age n is inversely proportional

to the (relative) tolerance index at age n, in conformity with the classical

analysis à la Arrow-Pratt.

The second illustration consists in introducing a risky asset in the econ-

omy and looking at the limit behavior of portfolio choices at different ages

when the return on the risky asset tends to zero, so that the fraction of wealth

held in risky assets is small. We thus extend our model of Section 3 to the

N period case. The return of the riskless asset is still assumed to be zero,

but there is no loss of generality here since we assume that consumptions at

different dates may have different prices. Individuals have an initial wealth

W0. At date 0 individuals choose θ0, the fraction of W0 that is invested in

the risky asset. The return on the risky asset is R0 which provides them, at

date 1, with wealth W1 = W0(1+θ0R0). Then individuals choose C1, and the

fraction θ1 of their remaining wealth W1 − p1C1 invested in the risky asset.

The return on the risky asset is R1, which provides them at date 2 with a

wealth W2 = (W1 − p1C1)(1 + θ1R1). The consumption C2 is chosen, and so

on, till period N, where individuals end up consuming all their wealth.

Assume that the risky returns Ri are i.i.d. with E(Ri) = R and var(Ri) =

σ2. Denote by C∗ the consumption path that is chosen when there is no risky

asset (or when R = 0).

Lemma 2 When R is close to zero, the share of wealth invested in the risky

asset at date n is given by:

θn(R) =
R

σ2
Tn+1(C

∗) + o(R)

Proof. Let us denote by Vn(C∗
1 , ..., C

∗
n−1, Wn) the indirect utility function

at age n. By definition:

Vn(C
∗
1 , ..., C

∗
n−1, Wn) = max

θn,Cn

E[Vn+1(C
∗
1 , ..., Cn, (Wn − pnCn)(1 + θnRn))].
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The first order condition of this problem with respect to θn gives:

E[(Wn − pnCn)Rn.V ′
n+1(C

∗
1 , ..., Cn, (Wn − Cn)(1 + θnRn))] = 0

where the derivative is taken with respect to the last argument. When

E[Rn] and thus θn is small, a Taylor expansion gives, after simplifying by

(Wn − pnCn):

E[Rn]V ′
n+1(Wn − pnCn) + θnE

[
R2

n

]
(Wn − pnCn)V

′′
n+1(Wn − pnCn) ∼ 0.

Since E(Rn) = R is small, we can replace E(R2
n) by σ2 and we obtain the

desired result.

The share of wealth invested in the risky asset at date n is therefore pro-

portional, in a first order approximation, to the risk tolerance index Tn+1(C
∗).

We now study how Tn(C∗) changes with n . This will give us a first approx-

imation of how the optimal financial strategy of individuals varies along the

life cycle.

5 Risk aversion with separable but non nec-
essarily additive preferences

To stress the role played by the additivity assumption found in most

studies, we consider in this section the simplest extension of the separa-

bly additive model. The (ordinal) assumption of separability of preferences

is maintained7, but we do not assume that the von Neumann-Morgenstern

utility function is additive. From Gorman (1968) we know that separability

implies that the lifetime von Neumann-Morgenstern utility function is of the

7That means that the indifference curves between consumption at two different periods
do not depend on the consumption at other periods.
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form:

U(C1, . . . , CN) = f

(
N∑

i=1

ui(Ci)

)
.

The function f(·) and the instantaneous utility functions ui(·) are assumed

to be twice continuously differentiable and to have positive first order deriva-

tives. The shape of f captures the interactions between consumptions at

different dates: nil if f is linear, complementarities if f is convex, substi-

tutabilities if f is concave.

Proposition 1 In the separably additive case (i.e. when f is linear), the

risk tolerance index at date n along the consumption path C∗ = (C∗
1 , . . . , C

∗
N)

is a weighted sum of instantaneous risk tolerance indices:

Tn(C∗) =
N∑

i=n

αn
i ti(C

∗
i ), (7)

where αn
i =

piC
∗
i∑N

j=n pjC∗
j

is the share of (remaining) intertemporal budget spent

at date i and ti(C
∗
i ) = − u′

i(C
∗
i )

C∗
i u′′

i (C∗
i )

is the instantaneous index of relative risk

tolerance at date i.

This is a standard result. We do not provide a proof here, since this result

is a particular case of Proposition 3, stated in Section 5, and proven in the

Appendix.

Formula (7) shows well the different reasons why the risk tolerance index

may vary along the life cycle. This may be because the functions ti(.), that

measure instantaneous risk tolerance, change with age. We would have then

“age effects”. This would be the case, for example, if for some psychological

reasons, older people prove to me more or less risk averse than younger

individuals with respect to instantaneous consumption. Another possibility

is that the functions ti(.) are all identical (no age effects) but that they are

not constant in C∗ and that consumption changes along the life cycle. Then

we would have “wealth effects”. However, since the weights αn
i in formula

(7) sum to one, it is clear that besides these age and wealth effects, there is

no other element that may lead risk aversion to change along the life cycle:

13



if ti(C
∗
i ) is independent of i, then Tn(C∗) is independent of n and there are

no horizon effects.

In the particular case where instantaneous utility functions are all identi-

cal (no age effect) and CRRA (so that there is no wealth effect), relative risk

tolerance is constant over the life cycle. This explains why there is no rela-

tion between horizon length and relative risk aversion in Merton-Samuelson’s

model (Merton, 1969, Samuelson, 1969).

From now on, we focus on the impact of relaxing additive separability

on risk tolerance. To do this, we neutralize age effects by assuming that

the instantaneous utility functions are identical across dates, up to a time

preference factor, (ui ≡ δiu with δi > 0). We also neutralize wealth effects by

considering stationary consumption paths. Proposition 2 shows that when f

is non linear, risk tolerance indices vary along the life cycle:

Proposition 2 Along any stationary consumption path (C∗, C∗, . . . , C∗), the

sequence of risk tolerance indices T1, . . . , TN is increasing if f ′′ < 0, decreas-

ing if f ′′ > 0, and constant if f ′′ ≡ 0.

Proof. In order to sustain a stationary consumption path, prices must

be proportional to δi. We normalize them so that
∑

i≥n pi = 1. Then W = C

and Vn is explicit

Vn(W ) = f

[∑
i<n

δiu(C∗) +

(∑
i≥n

δi

)
u(W )

]
. (8)

Thus, we can immediately find V ′
n:

V ′
n(W ) = f ′(A)

(∑
i≥n

δi

)
u′(W ),

where A denotes the term between brackets in (8), computed at the sta-

tionary consumption path (W, W, . . . , W ) (notice that A is independent of

n).
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Similarly:

V ′′
n (W ) = f ′(A)

(∑
i≥n

δi

)
u′′(W ) + f ′′(A)

(∑
i≥n

δi

)2

u
′2(W ).

Thus:

Rn =
1

Tn
= −C∗u′′(C∗)

u′(C∗)
− C∗ f ′′(A)

f ′(A)

(∑
i≥n

δi

)
u′(C∗). (9)

When f is linear (f ′′ = 0), risk aversion is constant along any stationary

consumption path (C∗, C∗, . . . , C∗) and equal to the static risk aversion index

−C∗ u′′
u′ (C

∗). However when f ′′ �= 0, there is a correcting term, which is

positive and decreasing in n when f ′′ < 0 (but negative and increasing in n

when f ′′ > 0).

It remains to extend the analysis to the case where preferences are neither

additive nor separable. This is the object of the next section.

6 The impact of consumption interactions on
risk aversion

The previous section made it clear that relaxing the assumption of addi-

tive separability may lead to revise significantly the relation between horizon

length and risk aversion. It would however be excessively optimistic to say

that empirical studies have so far clearly established how consumptions at dif-

ferent moments in time interact in consumers preferences. Most papers that

challenged the additivity assumption have proposed particular extensions of

the additively separable model and tested whether such extensions fit the

data better. This is for example the case of papers on “habit formation”,

who extend the standard additive model by allowing the marginal utility of

current consumption to depend on past consumption (see Muellbauer 1988

and Dynan, 2000, for example). However the choice of these extensions is

guided by intuitive arguments, or by technical reasons, rather than imposed
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by empirical evidence. The additive model is probably unrealistic but there

is no less doubt about the validity of these simple extensions, as well as about

the validity of the separable but non additive model that we studied in the

previous section.

For that reason, it appeared important to us to derive results that do not

rely on any particular specification. In the following we thus consider the

general case where preferences are represented by a general, concave, twice

continuously differentiable von Neumann-Morgenstern utility function:

U(C) = U(C1, C2, ..., CN),

without making any further assumption. With this general formulation, we

have to resort to the fundamental concepts of utility theory to describe in-

dividuals preferences. As we are interested in the cardinal properties of the

utility function, we will naturally refer to the seminal contributions of Frisch

(1959) and Houthakker (1960) and use their vocabulary:

Definition 2 Consumptions at dates i and j are specific substitutes if and

only if [D2U ]−1
ij > 0. They are specific complements if and only if [D2U ]−1

ij <

0, and “want independent” if and only if [D2U ]−1
ij = 0.

With intertemporally separable preferences, all consumptions at different

periods are “want independent” since D2U (and thus [D2U ]−1) are diagonal

(or block diagonal if several goods are consumed at each period).

Definition 3 The coefficient of specific substitutability between consump-

tions at dates i and j (for a consumption profile C) is given by:

κij(C) =
uiuj[D

2U ]−1
ij

Ciui + Cjuj
(10)

where ui = ∂U
∂Ci

for i = (1, . . . , N).

This coefficient is positive if consumptions at dates i and j are specific

substitutes and negative if they are specific complements. It is related to the
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notion of want elasticity of consumption at date i with respect to consump-

tion at date j introduced by Frisch (1959):

xij ≡ uj

Ci
[D2U ]−1

ij , for i �= j.

We prefer, however, to use the κijs rather than of the xijs, because they show

better the symmetry of our results (the κijs are symmetric, while the xijs

are not).

The following result gives a general formula linking risk tolerance indices

along the life cycle and coefficients of specific substitutability between con-

sumptions at different dates (the κijs, as defined in (10)). Our formula is valid

when interactions are small but non negligible, i.e. when κ ≡ maxi�=j |κij | is

small but not zero.

Proposition 3 When interactions between consumptions at different dates

are small but not negligible, the relative risk tolerance index at age n (along

any consumption path) can be approximated by a weighted sum of instanta-

neous risk tolerance indices plus a correcting term. This correcting term is

negative when consumptions at different dates are specific substitutes. More

specifically, the relative risk tolerance at age n is given by:

Tn(C∗) =
∑
i≥n

αn
i ti(C

∗) −
∑
i,j≥n
i�=j

(αn
i + αn

j )κij + κo(κ), (11)

where ti(C
∗) = −

∂U
∂Ci

(C∗)

C∗
i

∂2U

∂C2
i

(C∗)
is the instantaneous risk tolerance index at date i,

αn
i =

C∗
i

∂U
∂Ci

(C∗)∑
j≥n C∗

j
∂U
∂Cj

(C∗)
is the budget share spent at date i (relative to the budget

to be spent in the remaining periods of life), κ = maxi�=j |κij | and o(κ)
κ

→ 0

when κ → 0.

Proposition 3, which is proven in Appendix 2, allows to measure the

bias introduced by neglecting intertemporal interactions. When U is ad-

ditively separable, (i.e. U(C) =
∑

i ui(Ci)) all the κijs are zero and the

intertemporal risk tolerance index Tn(C∗) reduces to a weighted sum of in-
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stantaneous indices as stated in Proposition 1. However when consumptions

at different dates are specific substitutes (κij > 0) but such interactions re-

main small (κ small), the relative risk tolerance at age n is decreased by

a factor that roughly equals a weighted sum of coefficients of specific sub-

stitutability between consumptions at different dates. The adjustment on

risk tolerance is therefore negative when consumptions at different dates are

specific substitutes and positive when consumptions at different dates are

specific complements. More generally when some goods are specific comple-

ments to themselves (at other dates) but others are specific substitutes, the

sign of the bias is given by the sum of these coefficients, weighted by the

budget shares.

The size of the correcting term that accounts for the non separability of

preferences varies with horizon length. Indeed this term, given by:

−
∑
i,j≥n
i�=j

(αn
i + αn

j )κij (12)

is a sum restricted to indices i and j that are equal or greater than current

age. There are 1
2
(N − n)(N − n + 1) terms in that sum. However, the

relative budget shares, αn
i , are on average lower when the horizon length

is large, since
∑

i≥n αn
i = 1 by definition. Roughly speaking (that is if we

omit the variations in the κij and in the αn
i ) there are 1

2
(N − n)(N − n + 1)

terms of size 2κ
(N−n+1)

in the sum (12), which gives a term of size κ(N − n).

Hence, the correcting term increases (in absolute value) with the strength

of the interaction between consumptions at different dates and with horizon

length. The bias due to the assumption of separable additivity is therefore

typically larger for younger individuals, who still have many periods to live,

than for older individuals.

The reason why complementarity or substitutability of consumptions at

different dates affects intertemporal risk tolerance is rather intuitive. For

individuals who smooth consumption along the life cycle, a negative shock

on wealth at date n will translate into negative shocks on consumption in all

the remaining periods of life. Inversely a positive shock on wealth will gen-

erate positive shocks on consumption. The point to stress is that, whether
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the shock on wealth is positive or negative, it generates a sequence of shocks

on instantaneous consumptions that are positively correlated. Risk aversion

with respect to wealth is therefore akin to risk aversion with respect to pos-

itively correlated risks on instantaneous consumptions. If consumptions at

different periods are neither complement nor substitute, as in the additive

model, the fact that the risks on instantaneous consumptions are positively

correlated does not matter. However, as soon as there are substitutabilities

or complementarities between consumptions at different periods, the posi-

tive correlation does matter: it increases the degree of risk aversion when

consumptions at different periods are substitutes and decreases it when they

are complements. That explains the sign of the correcting term in (11). The

magnitude of the correction depends on the number of correlations at play,

and is therefore increasing (in absolute value) with the number of remaining

periods of life. This explains the horizon effect that we obtain.

7 Are consumption at different ages specific
substitutes or specific complements ?

Equation (11) shows that the relation between relative risk aversion and

horizon length depends on the sign of the coefficients of specific substitutabil-

ity. Thus it appears important to see whether there are any empirical findings

or theoretical arguments that suggest a particular sign for the κijs.

To our knowledge, the only paper to provide estimates of cross “want

elasticities” is Browning8 (1991). For parsimony reasons, Browning considers

that such elasticities are non zero only for expenditures in adjacent time

periods (expenditures at date t only interact with expenditures at dates t−1, t

and t+1). He finds that such interactions are small but non negligible. Most

types of expenditures seem to be want independent but expenditures on

durables are found (as expected) to be specific substitutes with themselves

in adjacent periods9.

8There is however an empirical literature on the estimation of Frisch intertemporal
demand functions initiated by the important study of labor supply by MaCurdy (1981).

9Browning also finds that fuel is a specific complement with itself but the coefficient is
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Hayashi (1985) also provides some support for the presumption that con-

sumptions at different moments in time are substitutes. Although Hayashi

does not estimate “want elasticities”, his findings indicate that changes in

consumption are strongly negatively autocorrelated. Hayashi attributes such

a result to the “durability of consumption”. This is in fact another way to

express that consumptions at different moments in time are substitutes.

Theoretical arguments can also be given as to why consumptions at dif-

ferent dates can be specific substitutes. This has to do with the notion of

“temporal risk aversion” or “intertemporal correlation aversion” introduced

by Richard (1975).

Consider for example 2 dates (n = 1, 2) and 2 intertemporal lotteries:

L1 =


(C1, C2)

(c1, c2)

and L2 =


(C1, c2)

(c1, C2)

,

both with equal probabilities 1/2, 1/2. Assume that c1 < C1 and c2 < C2.

An individual with separable preferences (i.e. U(C1, C2) = U1(C1)+U2(C2))

is indifferent between L1 and L2, since both lotteries give the same sum of

expected utilities 1
2
[U1(c1)+U1(C1)]+

1
2
[U2(c2)+U2(C2)]. But this is generally

not the case when preferences are not additively separable. Now, we say

that an individual is “averse to intertemporal correlation” if he prefers L2 to

L1. Intuitively, he prefers to have some of the worst and some of the best,

rather than to take a chance on all of the worst or all of the best. Such a

pattern happens when ∂2U
∂C1∂C2

< 0 and thus when goods 1 and 2 are specific

substitutes.

In the N period model, it is no longer true that aversion to intertemporal

correlation and positive specific substitutability are equivalent properties.

However, the equivalency holds locally when we consider weak interactions.

Indeed, from Lemma 3 in the appendix, we know that when interactions are

weak

[D2U ]−1
ij � −

∂2U
∂Ci∂Cj

∂2U
(∂Ci)2

∂2U
(∂Cj )2

(13)

smaller.
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Thus it is the case that when interactions are weak, preferences that ex-

hibit aversion to intertemporal correlation also exhibit positive specific sub-

stitutability.

Another argument can be made by comparing relative risk aversion and

intertemporal elasticity of substitution. It is well known that the standard

life-cycle model with additive preferences and isoelastic instantaneous utility

functions implies that relative risk aversion equals the inverse of intertempo-

ral elasticity of substitution. The most popular way to break this unpleas-

ant relation between two apparently distinct concepts is to relax the von

Neumann-Morgenstern axioms and follow the theory developed by Kreps

and Porteus (1978) on temporal lotteries (see for example Epstein and Zin,

1989, Weil, 1990, Farmer, 1990, or Campbell, 1993). However the rela-

tion can also be broken while remaining within the standard von Neumann-

Morgenstern framework on atemporal lotteries. Actually, within the von

Neumann-Morgenstern framework, (local) relative risk aversions always equal

the inverse of the (local) intertemporal elasticity of substitution if and only

if the utility function is additively separable (see Bommier, 2003). Moreover

the difference between (local) relative risk aversion and (local) intertemporal

elasticity of substitution is precisely determined by aversion to intertemporal

correlation. Aversion to intertemporal correlation and specific substitutabil-

ity being closely related (at least when interactions are weak) the coefficients

of specific substitutability that we consider in the present paper can be re-

lated to the difference between local measures of intertemporal elasticity of

substitution and local indices of relative risk aversion. By definition, the

elasticity of substitution between consumptions at dates i and j (holding

consumption in other periods constant) is given by10:

σij =

1
Ci

∂U
∂ci

+ 1
Cj

∂U
∂cj

−
∂2U

(∂Ci)
2(

∂U
∂Ci

)2 + 2
∂2U

∂Ci∂Cj
∂U
∂Ci

∂U
∂Cj

−
∂2U

(∂Cj )2(
∂U
∂Cj

)2

10Note that with separable additive preferences and an isoelastic instantaneous utility
function the σijs equal a constant, the so-called “intertemporal elasticity of substitution”.
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It follows simply from (10) and (13) that, in a first order approximation, the

coefficients of specific substitutability are also given by:

κij � 1

2rirj

[
αj

αi + αj
(ri − 1

σij
) +

αi

αi + αj
(rj − 1

σij
)

]

where ri = −Ci
∂2U

(∂Ci)
2

∂U
∂Ci

is the relative risk aversion index with respect to con-

sumption in period i and αi the budget share spent in period i. Thus, if

all local coefficients of relative risk aversion are greater than the inverse of

intertemporal elasticity of substitution between any two periods then pref-

erences exhibit positive specific substitutability. Empirical measures of local

relative risk aversion indexes and intertemporal elasticities of substitution

could then be used to determine whether consumptions at different dates are

specific complements or specific substitutes, and ultimately to elucidate the

relation between horizon length and (global) risk aversion11. Unfortunately,

both risk aversion and intertemporal elasticities of substitution are partic-

ularly difficult to measure and the empirical literature remain inconclusive

about the sign and the magnitude of these differences.

To conclude this section on intertemporal interactions, we discuss the

relation between specific interactions and habit formation. For technical rea-

sons, most papers on habit formation assume that the intertemporal utility

function has some form of additive structure. Namely, the N period utility

11Equation (11) can actually be rewritten:

Tn(C∗) =
∑
i≥n

αn
i ti(C∗) −

∑
i,j≥n
i�=j

αn
j (ri − 1

σij
)

rirj
+ κo(κ).

Therefore, it is clear that the correcting term that appears in equation (11) and accounts
for interactions between consumption at different dates can also be written, in a first order
approximation, as a weighted sum of differences between local relative risk aversion indices
and the inverse of local intertemporal elasticities of substitution. In particular, when all
local relative risk aversion indices are greater than inverse elasticities of substitution, the
correction is negative. Moreover, for the same arguments as we gave after equation (12),
the magnitude of the correction typically increases with horizon length.
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function is generally specified as the sum of instantaneous utility functions:

UH(C1, ...CN) =

N∑
i=1

Vi(Ci, Xi) (14)

where Xi, the stock of habits in period i, is positively related to consump-

tions in the previous periods. It is also assumed that the cross derivatives
∂2Vi

∂Ci∂Xi
are positive. As a consequence, for any i �= j, ∂2UH

∂CiCj
> 0 and prefer-

ences exhibit negative intertemporal correlation aversion. The coefficients of

specific substitutability are therefore negative. Thus, it appears that most

papers on habit formation do assume that consumptions at different dates

are specific complements, which implies that there is a positive relationship

between risk tolerance and horizon length. However, this is only the case be-

cause these papers rely on the additive structure of (14). For a general (non

additively separable) specification, there is no systematic relation between

habit formation and specific substitutability. Habit formation (as defined in

Becker and Murphy, 1988) is equivalent to the notion of adjacent complemen-

tarity introduced by Ryder and Heal (1973). Preferences are said to exhibit

adjacent complementarity if ∂
∂Ci

(
∂U

∂Ci+1
∂U

∂Ci+2

) > 0 for all i ≤ N − 2 (the marginal

rate of substitution between present and future consumption increases with

past consumption). This is an ordinal notion, that is preserved under any

increasing transformation. In other words, if a utility function U exhibits ad-

jacent complementarity then any monotonic transformation Ũ = f(U) will

also exhibit adjacent complementarity. However for f sufficiently concave,

consumptions at different dates become specific substitutes. Preferences in-

volving habit formation can therefore exhibit specific complementarity as

well as specific substitutability.

8 Concluding remarks

We have shown in this paper that interactions between consumptions

at different dates could generate variations of relative risk aversion along
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the life cycle, even if tastes do not vary with age and wealth effects are

controlled for. More specifically, Proposition 2 has shown that when the von

Neumann-Morgenstern utility of an individual is a concave transformation

of an additively separable function, relative risk aversion decreases with age

along any stationary consumption path. Proposition 3 extends this result

to a more general form of interactions and to non stationary consumption

paths. It provides an evaluation of the bias introduced by the separability

assumption in the estimation of intertemporal risk aversion. This bias is

approximately equal to minus the sum of specific substitutability coefficients,

weighted by budget shares. The bias is typically larger (in absolute values)

for young individuals, who still have many periods to live, than for older

ones.

Our results can be used in different ways. We can apply them to models

that assume simple specifications for the utility function. Take for example

an exponential transformation of a sum of CRRA utilities:

U(C) = −1

k
exp(−k

N∑
i=1

C1−γ
i − 1

1 − γ
) (15)

where k is positive. A simple application of Formula (9) immediately gives

the relative risk aversion coefficient Rn of an individual of age n along any

constant consumption path:

Rn =
1

Tn

= γ + k(N − n + 1)C1−γ. (16)

As expected, Rn decreases with n, since k > 0.

The utility function that we used for our illustrative example in Section

3 is obtained for γ = 1 and N = 2. From (16) we obtain T1 = 1
1+2k

and

T2 = 1
1+k

which, combined with Lemma 2, leads to the result obtained in

Section 3 (see equation 5). We have thus found two ways to obtain the same

results. The first way, that we followed in Section 3, consists in providing

an explicit solution to the portfolio choice problem and deriving some of its

properties. This is indisputably the most popular approach in the Finance

literature. The second way consists in looking at marginal properties of
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the utility function, and in particular at our measure of intertemporal risk

tolerance indices. The first method has an obvious advantage: it works even

when the share of risky assets is relatively large, and portfolio risks are not

small. But it has also a major drawback: it can only work when it is possible

to derive a closed form solution to the portfolio choice problem. Needless

to say, the number of specifications for which such closed form solutions

are available is very limited. The literature has naturally focused on these

particular specifications, but they have no reason to fit observed behavior

particularly well.

The alternate route that we have followed in this paper does not suffer

from such technical constraints. Actually our results make it possible to

derive estimates of how risk aversion varies with age, even if we only have a

limited and local knowledge on individuals preferences. Consider for example

formula (11):

Tn(C∗) �
∑
i≥n

αn
i ti(C

∗) −
∑
i,j≥n
i�=j

(αn
i + αn

j )κij

Budget shares αn
i are usually relatively well observed. The other ingredients

needed to obtain intertemporal risk tolerance indices as a function of age

are local estimates of the instantaneous risk tolerance indices, ti(C
∗), and

the coefficients of specific substitutability, κij . Imagine, for example, that

we observe that all the budget shares are equal. Also assume that, at the

optimal consumption path, there is no variation in the instantaneous indices

of relative risk tolerance along the life cycle (ti(C
∗) = 1

γ
), and the coefficients

of specific substitutability are of the form κij = κρ|i−j|−1. The parameter

κ gives then the strength of the interactions while ρ determines their shape

(specific substitution decreases with time distance if ρ < 1 and increases with
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time distance if ρ > 1). In such a case, formula (11) leads to:

Tn(C∗) � 1
γ
− 2κ

(N−n+1)

∑
i,j≥n
i�=j

ρ|i−j|−1

= 1
γ
− 4κ

(N−n+1)

[
ρ(ρN−n−1)+(N−n)(1−ρ)

(1−ρ)2

] (17)

This relation between relative risk tolerance and horizon length is shown in

Figure 1. The corresponding picture for the relative risk aversion is found

in Figure 2. In particular, we observe that the relation between relative risk

tolerance and horizon length is convex if specific substitutability decreases

with time distance, and concave if specific substitutability increases with

time distance.

An unresolved issue is whether considerations on risk aversion suffice to

provide a relatively good approximation of the life cycle financial strategy

of individuals. We have shown that this is the case when the share of risky

assets are small, but one may wonder whether it remains true when agents

take non infinitesimal risks. In this latter case, individuals’ wealth follows a

random path and the dynamic aspects of the problem that are underlined in

Gollier and Zeckhauser (2002) must be considered. In particular it matters

whether risk tolerance indices are convex or concave with respect to wealth.

Whether these considerations are likely to generate larger effects than those

discussed in this paper is hard to tell. One can reasonably think however that

the fundamental properties of preferences that drives the result of Gollier and

Zeckhauser (which are related to the fourth derivative of the utility function)

will be more difficult to test empirically than the complementarities or sub-

stitutabilities that we have discussed, which depend on second derivatives

only. In particular, the impact of non separability that we analyze in this

paper is already present when instantaneous preferences are CRRA, whereas

the phenomenon studied by Gollier and Zeckhauser (2002) would vanish in

this case.
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APPENDIX 1: Proof of Lemma 1

θ∗(k) = arg maxϕ(θ, k),

where

ϕ(θ, k) =
1 − E[1 + θR̃]−k

k
.

To establish that θ∗(·) is decreasing, it is enough to show that
∂2ϕ
∂θ∂k

(θ∗(k), k) < 0 (single crossing property).

Indeed
∂ϕ

∂θ
= E

[
R̃(1 + θR̃)−i−1

]
and

∂2ϕ

∂k∂θ
= −E

[
R̃ ln(1 + θR̃)(1 + θR̃)−k−1

]
.

Now for all θ > 0 and all R̃, R̃ ln(1 + θR̃) > 0. Thus ∂2ϕ
∂k∂θ

< 0. The fact

that θ∗(k) > 0 comes from our assumption that E[R̃] > 0 (since ∂ϕ
∂θ

(0, k) =

E[R̃]).

APPENDIX 2: Proof of Proposition 3

It relies on two simple ingredients :

• a formula due to Hanoch (1977) that relates T (C), the intertempo-

ral risk tolerance index along a consumption path C to the matrix

(D2U)−1(C) and the utility gradient ∇U(C):

T (C) =
t∇U(D2U)−1∇U

tC.∇U

• a linear algebra lemma about the inverse of non singular matrices that

are almost diagonal:
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Lemma 3 Consider a matrix M = (mij) with mii �= 0 for all i and note

m = supi�=j|mij|. Then, when m is small enough , M is non singular and the

i, j − th elements of M−1 are given by:

[M−1]ii =
1

mii
+ mo(m)

[M−1]ij = − mji

miimjj
+ mo(m) if i �= j

where o(m)
m

→ 0 when m → 0.

Proof. Take M non singular, with m = Supi�=j|mij| close to zero and

define ϕij(M) = [M−1]ij , the generic term of M−1. ϕij(M) is given explicitly

by the classical formula:

ϕij(M) =
(−1)i+j det(Mji)

det(M)
, (A1)

where det(A) denotes the determinant of any square matrix A and Mij is the

submatrix obtained by deleting the i − th row and the j − th column of M .

Define ∆ = Diag(M), the matrix obtained from M by deleting off-diagonal

terms. Since ϕij is differentiable on its domain (we note Dϕij its derivative)

we can write a Taylor expansion around ∆, that is valid for m small:

ϕij(M) = ϕij(∆) + Dϕij(∆)(M − ∆) + mo(m),

where o(m)
m

→ 0 when m → 0.

Since ϕii(∆) = (mii)
−1 and ϕij(∆) = 0 for i �= j, Lemma 3 is proven if we

can establish that Dϕii(∆)(M − ∆) = 0 and Dϕij(∆)(M − ∆) =
(−1)i+jmji

miimjj

for i �= j. To do so, let us first compute the partial derivatives of ϕij by

differentiating (A1) with respect to mkl (for arbitrary k, l). We find:

∂ϕij

∂mkl
(∆) =

(−1)i+j

det(∆)

∂[det(Mji)]

∂mkl
|M=∆ − (−1)i+j det(∆ji)

det 2(∆)

∂[det(M)]

∂mkl
|M=∆.
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Now

∂[det(Mji)]

∂mkl
|M=∆ = (−1)i+j−1det(∆)

miimjj
if k = i, l = j

= 0 otherwise,

and

∂[det(M)]

∂mkl
=

det(∆)

mkk
if k = l,

= 0 otherwise.

Since (M − ∆)kl = mkl if k �= l and zero otherwise,

Dϕij(∆)(M − ∆) =
∑
k �=l

mkl

( −1

miimjj

1Il=j, k=i

)
.

Thus we have established the desired result:

Dϕij(∆)(M − ∆) = 0 if i = j

= − mji

miimjj

if i �= j.

Proof of Proposition 3

For any past consumptions (C∗
1 , ..., C

∗
n−1) we define

Un(Cn, ..., CN) = U(C∗
1 , ..., C

∗
n−1, Cn, ..., CN)

Using Hanoch’s formula (see Hanoch 1977, p. 416) in developed form:
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Tn(C) = −
N∑

i=n

[D2Un]−1
ii u2

i
tc.∇Un

−
∑
i�=j

n≤i,j≤N

[D2Un]−1
ij uiuj

tc.∇Un
. (A2)

where ui = ∂Un

∂Ci
= ∂U

∂Ci
. Recall the expressions of the relative budget shares

αn
i = Ciui

tc.∇Un
, specific substitutability coefficients κij =

[D2U ]−1
ij uiuj

ciui+cjuj
and instan-

taneous risk tolerance coefficients ti = − ui

Ci
∂2U

∂C2
i

. Lemma 3 shows that when

κ = maxi�=j |κij| is small, (D2Un)−1
ii = (∂2Un

∂C2
i

)−1 +κo(κ) = (∂2U
∂C2

i
)−1 +κo(κ)

and thus:

− [D2Un]−1
ii u2

i
tc.∇Un

= αn
i ti + κo(κ).

Moreover, from Lemma 3, for i �= j we have [D2Un]−1
ij = [D2U ]−1

ij + κo(κ)

and therefore:
[D2Un]−1

ij uiuj

tc.∇Un
= (αn

i + αn
j )κij + κo(κ)

Thus (A2) can be written:

Tn(C) =

N∑
i=n

αn
i ti −

∑
i�=j

n≤i,j≤N

(αn
i + αn

j )κij + κo(κ),

and the proof of Proposition 3 is complete
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Figure 1:  Relative risk tolerance according to horizon length

Estimation form equation (10) with sigma=0.001 and gamma=2
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Figure 2:  Relative risk aversion according to horizon length


