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Abstract
In this paper, we consider testing distributional assumptions. Special cases that we consider

are the Pearson’s family like the normal, Student, gamma, beta and uniform distributions. The
test statistics we consider are based on a set of moment conditions. This set coincides with
the first moment conditions derived by Hansen and Scheinkman (1995) when one considers
a continuous time model. By testing moment conditions, we treat in detail the parameter
uncertainty problem when the considered variable is not observed but depends on estimators of
unknown parameters. In particular, we derive moment tests that are robust against parameter
uncertainty. We also consider the case where the variable of interest is serially correlated
with unknown dependence by adopting a HAC approach for this purpose. This paper extends
Bontemps and Meddahi (2005) who considered this approach for the normal case. Finite
sample properties of our tests when the variable of interest is a Student are derived through
a comprehensive Monte Carlo study. An empirical application to Student-GARCH model is
presented.
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1 Introduction

Let x be a continuous random variable with a density function denoted by q(.). Then, an
integration by part leads to

E[ψ′(x) + ψ(x)(log q)′(x)] = 0, (1.1)

where the function ψ(·) follows some regularity conditions and constraints on the boundary
support of x discussed later on. It turns out that we show than any zero mean smooth moment
condition can be written as Eq. (1.1). Equation (1.1) is clearly important for modeling,
estimation and specification testing purposes. The main goal of the paper is the use of Eq. (1.1)
and the generalized method of moments (GMM) of Hansen (1982) for testing distributional
assumptions. The paper extends Bontemps and Meddahi (2005) who used the same approach
for testing normality. In this case, when one wants to test that x is a standard normal random
variable, one has log(q)′(x) = −x, and therefore Eq. (1.1) becomes E[ψ′(x) − ψ(x)x] = 0,
which is known as the Stein equation (Stein, 1972).

Karl Pearson introduced a century ago in several papers the so-called Pearson class of
distributions, where (log q)′(·) is the ratio of an affine function over a quadratic one. This class
contains as special cases the Gaussian, Student, Gamma, Beta, and the uniform distributions.
By using (1.1) with polynomial test functions ψ(·), K. Pearson derived the moments of these
distributions. In order to estimate the distributions parameters, K. Pearson also introduced the
method of moments by matching some empirical moments with their theoretical counterpart,
the number of moments being the number of unknown parameters. More recently, Cobb,
Koppstein and Chen (1983) extended Pearson’s modeling approach to generate multimodal
distributions by taking a more general form of (log q)′(·) than K. Pearson.

Wong (1964) made a connection between the Pearson distributions and diffusions processes,
i.e., he provided stationary continuous time modes for which the marginal density is a Pearson
distribution. This connection was used by Hansen and Scheinkman (1995), Aı̈t-Sahalia (1996)
and by Conley, Hansen, Luttmer and Scheinkman (1997), in order to model the short term
interest rate whose marginal distribution are among the class of the generalized Pearson’s
distributions of Cobb, Koppstein and Chen (1983). It is worth noting that Hansen and
Scheinkman (1995) derived two classes of moment conditions that characterize a diffusion
process: one class related to its marginal distribution and a second one related to its conditional
distribution. Importantly, the Hansen and Scheinkman (1995) first class of moments conditions
coincide with one generated by Eq. (1.1).

The GMM is convenient for handling two potential problems: the serial correlation in the
data and the parameter uncertainty when one uses estimated parameters. Two important
examples of the recent development of the financial literature emphasize the importance
of developing distributional specification test procedures that are valid in the case of a
serial correlation in the data. The first one is modeling continuous time Markov models,
particularly the short term interest rate. It turns out that the specification of a stationary
scalar diffusion process through the drift and the diffusion terms characterizes its marginal
distribution. Consequently, a leading specification test approach in the literature was developed
by Aı̈t-Sahalia (1996) and by Conley, Hansen, Luttmer and Scheinkman (1997) by testing
whether the marginal distribution of the data coincides with the theoretical one implied by the
specification of the scalar diffusion. Aı̈t-Sahalia (1996) compared the nonparametric estimator
of the density function with its theoretical counterpart while Conley, Hansen, Luttmer and
Scheinkman used the moment conditions (1.1).

The evaluation of density forecasts approach developed by Diebold, Gunter and Tay
(1998) in the univariate case and by Diebold, Hahn and Tay (1999) in the multivariate case
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also highlighted the importance of testing distributional assumption for serially correlated
data. This evaluation is done by testing that some variables are independent and identically
distributed (i.i.d.) and follow a uniform distribution on [0, 1]. However, the non independence
and the non uniformness of these data mean different things about the specification of the
model. Therefore, when one rejects the joint hypothesis, i.i.d. and uniform, one wants to
know which assumptions are wrong (both or a unique). This is why Diebold, Tay and Wallis
(1999) explicitly asked for the development of testing uniform distribution in the case of serial
correlation by arguing that traditional tests (e.g., Kolmogorov-Smirnov) are valid under the
i.i.d. assumption. Of course, one can use the bootstrap to get a correct statistical procedure
as did Corradi and Swanson (2002).

The GMM is well suited for handling the serial correlation in the data by using the
Heteroskedastic-Autocorrelation-Consistent (HAC) method of Newey and West (1987) and
Andrews (1991). Using a HAC procedure in testing marginal distributions was already adopted
by Richardson and Smith (1993), Bai and Ng (2005) and Bontemps and Meddahi (2005) for
testing normality, and by Aı̈t-Sahalia (1996), Conley et al. (1997), and Corradi and Swanson
(2002) for testing marginal distributions of nonlinear scalar diffusions.

In general, the test statistics will involve an unknown parameter that should be estimated
in order to get a feasible test statistic. This is the case if the true distribution of x depends
on an unknown parameter, as well as if the variable x is not observed but is a function of
the observable variables and an unknown parameter, like the residuals in a regression model.
The dependence of the feasible test statistic on an estimated parameter has to be taken into
account, given that in general the asymptotic distribution of the feasible test statistic will not
equal one of the unfeasible test statistic. This problem leads Lilliefors (1967) to tabulate the
Kolmogorov-Smirnov test statistic for testing normality when one estimates the mean and the
variance of the distribution. In the linear homoskedastic model, White and MacDonald (1980)
stated that various normality tests are robust against parameter uncertainty, particularly in
tests based on moments that used standardized residuals. Dufour, Farhat, Gardiol and Khalaf
(1998) developed Monte Carlo tests to take into account parameter uncertainty in the linear
homoskedastic regression model in finite samples with normal errors. More recently, several
solutions have been proposed in the literature for general distribution: Bai (2003) and Duan
(2003) proposed transformations (as in Wooldridge, 1990) of their test statistics that are robust
against parameter uncertainty; Thompson (2002) proposed upper bound critical values for his
tests; Hong and Li (2002) used separate inference procedure by splitting the sample; while
Corradi and Swanson (2002) used the bootstrap.

It turns out that the GMM setting is well suited for incorporating parameter uncertainty
in testing procedures by using Newey (1985), Tauchen (1985), Gallant (1987), Gallant
and White (1988), and Wooldridge (1990). Bontemps and Meddahi (2005) followed this
approach for testing normality. In particular, in the context of a regression model (linear,
nonlinear, dynamic), they characterized the test functions ψ(·) that are robust to the parameter
uncertainty problem, i.e., the asymptotic distribution of the feasible test statistic based on an
estimated parameter is identical to that of the test statistic based on the true (unknown)
parameter. The Hermite polynomials are special examples of these robust functions, a result
proved by Kiefer and Salmon (1983) for a nonlinear homoskedastic regression estimated by the
maximum likelihood method; as pointed out in Bontemps and Meddahi (2005), Jarque and
Bera (1980) is a special case of Kiefer and Salmon (1993).

It is well known that one gets a standard normal variable, N (0, 1), if one considers the
variable y defined as y ≡ Φ−1(Q(x)), where Q(·) and Φ(·) are the cumulative distributions
functions of x and standard normal variable. Therefore, given that tests for normality are
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already studied in details, it is natural to do tests based on y. For instance, Diebold, Gunter
and Tay (1998) and Lejeune (2002) followed this approach. A natural question is the usefulness
of testing (1.1) on the variable x instead of the Stein equation or any normality test on the
variable y. We can give actually several reasons. First, when one rejects the normality of
y, one does not know how to modify the distribution of x to get a correct specification. For
instance, under misspecification, one may have a correct specification of the mean of x but
gets a nonzero mean for y. In other words, observing that the mean of y is nonzero does not
imply that this is case for the mean of x. Note however that some characteristics of x remains
in y; for instance if the true distribution of x is symmetric, it is also the case for one of y
even if the function Q(·) is not the correct distribution function of x. Second, handling the
parameter uncertainty problem may be easiest with x than y. Given that the function Q(·)
will depend in general on the unknown parameter, tests based on y will be more difficult than
those based on x. For instance, while one has the function Q(·), at least numerically, the
distribution of the feasible test statistic will involve the derivative of Q(·) with respect to the
parameter, which one does not get easily, even numerically. In addition, the characterization of
the robust test functions ψ(·) based the on the tests on y will involve more conditions than ones
based on x. It is worth noting that Bontemps and Meddahi (2005) characterized the robust
functions in the case of regression models which does not include the nonlinear transform
function Φ−1(Q(·)). Finally, an important limitation of the transform method is that one can
not do it for non continuous random variables, like discrete ones (Binomial, Poisson), or mixed
ones (for instance x = u if u > 0 and x = 0 if u ≤ 0, where u is a continuous variable on the real
line). It turns out that similar moment conditions like Eq. (1.1) hold in these cases. Similarly,
if x is a multivariate random variable, it is difficult to transform it on a multivariate normal
distribution. Interestingly, one can characterize an equation like Eq. (1.1) in the multivariate
case by using Hansen and Scheinkman (1995) and Chen, Hansen and Scheinkman (2000). Note
that Stein (1972) and Amemiya (1977) give this equation in the normal multivariate case. The
treatment of the non continuous and multivariate cases is beyond the scope of the paper and
is left for future research.

The rest of the paper is organized as follows. Section 2 introduces and studies the moment
condition of interest. The connection to Pearson’s family of distributions and to Hansen and
Scheinkman (1995) is provided. The third section deals with the asymptotic distribution of
the tests statistics when the parameter uncertainty problem does not hold. This problem is
studied in Section 4. Section 5 provides Monte Carlo simulations to assess the performance
of the tests, an empirical application is given in Section 6, while Section 7 concludes. All the
proofs are provided in the Appendix.

2 Test functions

2.1 Moment conditions

Let x be a stationary random variable with density function denoted by q(.). We assume
that the support of x is (l, r), where l and r may be finite or not, and the function q(·) is
differentiable on (l, r). Consider a differentiable function ψ(.) such that its derivative function,
denoted by ψ′(.), is integrable with respect to the density function q(.). Then, an integration
by part leads to:

E[ψ′(x)] = [ψ(x)q(x)]rl − E[ψ(x)
q′(x)

q(x)
].
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Hence, we get that
E[ψ′(x) + ψ(x)(log q)′(x)] = 0, (2.1)

under the following assumption (that we comment in few subsections):
Assumption A1: limx→l ψ(x)q(x) = 0 and limx→r ψ(x)q(x) = 0.

The general moment condition (2.1) gives a class of test functions that a random variable
with a density function q(·) should follow. It will be the basis of our testing approach. It
will be then natural to chose some specific (i.e. optimal) functions ψ(·) for some particular
purposes (e.g., parameter uncertainty, power, etc.). Of course, assumption A1 should hold for
the function ψ(·). This is not however a restrictive assumption when one knows the function
q(·) (up to unknown parameters). For instance, in the case of a normal distribution, assumption
A1 holds for any polynomial function and for any function dominated by exp(−x2/2), (i.e.,
q(x) = o(exp(−x2/2)) when |x| is large). We will study this assumption in the context of the
Pearson’s distributions in the next section.

As pointed out in the introduction, Karl Pearson used (2.1) to introduce his famous class
of distributions as well as for deriving moment based estimator of the parameters. However,
we did not find in the literature a systematic use of (2.1) for any distribution. However,
it is implicitly suggested in Hansen (2001) in the case of scalar diffusion processes. In
addition, Chen, Hansen and Scheinkman (2000) explicitly used this equality in the multivariate
continuous time processes (see the equation that follows their Eq. (3), page 14).1

The moment condition (2.1) is written marginally; however it holds also conditionally on
some variable z, i.e., if one assumes that the conditional distribution of x given z is q(x, z),
then one has

E

[
∂ψ(x, z)

∂x
+

ψ(x, z)

q(x, z)

∂q(x, z)

∂x
| z

]
= 0,

while feasible test statistics will be based on

E

[
g(z)

(
∂ψ(x, z)

∂x
+

ψ(x, z)

q(x, z)

∂q(x, z)

∂x

)]
= 0,

where g(z) is a square-integrable function of z.
In many cases, one has moment restrictions like

Em(x) = 0. (2.2)

This is the case either because one has an economic model that implies (2.2) or because one
computes explicit moments implied by the density function q(·). It is therefore of interest
to characterize the relationship between the moment conditions (2.1) and (2.2). This is the
purpose of the following proposition:

Proposition 2.1 Let m(·) be a continuous and integrable function with respect to the density
function q(·). Then a solution ψ(·) of the ordinary differential equation

m(x) = ψ′(x) + ψ(x)(log q)′(x). (2.3)

1Strictly speaking, these authors did not use the fact that the variable of interest is a continuous time process.
In a private discussion, Lars Hansen confirmed to us that he knew that (2.1) holds for any distribution. In
addition, a reader of Eq. (3) in Chen, Hansen and Scheinkman (2000) may not see the direct connection with
(2.1) because additional variables appear (namely a matrix Σ(x) and a second function φ(x)); however it is
exactly (2.1) and therefore corresponds to the multivariate extension of (2.1); we are currently studying this
extension to test multivariate distributions.
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is given by

ψ(x) =
1

q(x)

∫ x

l

m(u)q(u)du. (2.4)

In addition, (2.2) holds if and only if assumption A1 holds for ψ(·).

Some remarks are in order. First, the connection in (2.3) holds without the expectation
operator. Consequently, the statistical properties (size, power) of (2.1) coincide with those
of (2.2). Second, the function m(·) should be continuous, otherwise the function ψ(·) defined
in (2.4) is not differentiable. The continuity assumption of m(·) precludes quantile moment
restrictions. Third, given that any moment condition (2.2) (where m(·) is continuous) can be
written as (2.1), the informational content of the class of moment conditions (2.1) is huge.
In particular, it encompasses the score function and therefore by considering the all class
for estimation purpose, one gets an efficient estimator. It also encompasses the so-called
information-matrix test moment conditions (White, 1982) as well as their generalization, i.e.,
the Bartlett identities tests (Chesher, Dhaene, Gouriéroux and Scaillet, 1999).

2.2 Transformed distributions

In many cases, it is convenient to transform the variable of interest in order to get a variable
whose distribution is simple, e.g. for testing purpose. For instance, in their density forecast
analysis, Diebold, Gunter and Tay (1998) transform the variable of interest onto a uniform
one. Consequently, it is interesting to characterize the relationship between the classes of test
functions associated with each random variable.

Proposition 2.2 Let X and Y be two random variables such that Y = G(X) where G(·) is
a monotonic and one-to-one differentiable function. We denote by qX(·) and qY (·) the density
functions of X and Y and by (lX , rX) and (lY , rY ) their supports. For any function ψX(·),
define the function ψY (·) by

ψY (y) =
(
G′ ◦G−1(y)

) (
ψX ◦G−1(y)

)
.

Then ∀x, y, with y = G(x), we have

ψ′X(x) + ψX(x)(log qX)′(x) = ψ′Y (y) + ψY (y)(log qY )′(y). (2.5)

In addition, we have

lim
x→lX

ψX(x)qX(x) = lim
x→rX

ψX(x)qX(x) = 0 ⇐⇒ lim
y→lY

ψY (y)qY (y) = lim
y→rY

ψY (y)qY (y) = 0. (2.6)

Again, (2.5) holds without the expectation operator and therefore the statistical properties of
tests based on the variable X coincide with those based on Y . Meanwhile, (2.6) means that
assumption A1 holds for ψX if and only if it holds for ψY . We will use this connection later
when we study the parameter uncertainty problem.

2.3 Pearson’s distributions and their generalizations

2.3.1 The Pearson family of distributions

At the end of the nineteenth century, Karl Pearson introduced his famous family distribution
that extends the classical normal distribution. If a distribution with a density function q(·)
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on (l, r) belongs to the Pearson family, then q′(·)/q(·) equals the ratio of two polynomials A(·)
and B(·), where A(·) is affine and B(·) is quadratic and positive on (l, r), i.e.,

q′(x)

q(x)
=

A(x)

B(x)
=

−(x + a)

c0 + c1x + c2x2
. (2.7)

The Pearson’s class of distributions include as special examples the Normal, Student, Gamma,
Beta, and Uniform distributions; for more details, see Johnson, Kotz and Balakrishnan (1994).
A major motivation for introducing this family is the simple way they can be estimated. By
using (2.1) for ψj(x) = xjB(x), i = 1, 2, ...,, one gets this recursive equations

(c2(j + 2)− 1)E[Xj+1] = (a− c1(j + 1))E[Xj]− c0jE[Xj−1].

Pearson solved this system for j = 1, ..., 4, i.e., he derived θ = (a, c0, c1, c2)
> in terms of E[Xj]

and then provided an estimator for θ by using the empirical counterpart of E[Xj] (under the
assumption that these moments exist). This was the introduction of the method of moments;
see Bera and Bilias (2002) for a historical review.

2.3.2 Orthonormal polynomials

For a given distribution, one can derive orthonormal polynomials whenever the corresponding
squared moments are finite. A simple approach is based on the use of the Gram-Schmidt
method. For the Pearson’s family, these polynomials are actually genuine, i.e., they can be
derived more directly from the density function q(·). More precisely, define the sequence of
functions P̃n by the so-called Rodrigue’s formula

P̃n =
1

q(x)
[Bn(x)q(x)](n) . (2.8)

where f (n)(·) denotes the n-th derivative function of any function f(·). Then, one can show
(see Chihara (1978)) that P̃n is a polynomial of degree n. In addition, its expectation equals
zero for n ≥ 1 whenever it exists. Finally, two different polynomials P̃n and P̃m are orthogonal
whenever their variance is finite. In other words, the sequence of polynomials is orthogonal
when their variances exist. The problem of infinite variance holds for distributions like the
Student.

When this problem does not hold (as in the normal, gamma, beta or uniform case), then
sequence of polynomials is infinite and indeed dense in L2(]l, r[), i.e., any square-integrable
function may be expanded onto the polynomials P̃n, n = 0, 1, ...; in this case, the density
function of a random variable x equals q(·) if and only if

∀n ≥ 1, E[P̃n(x)] = 0.

For a formal proof, see Gallant (1980, Theorem 3, page 192). This result means that for
statistical inference purposes, in particular testing, one could use only orthogonal polynomials.

The polynomials P̃n(·) are orthogonal but not orthonormal. The orthonormal ones are

Pn = αnP̃n(x) (2.9)

where

αn =
(−1)n

√
(−1)nn!dn

∫ r

l
Bn(x)q(x)dx

, dn =
n−1∏

k=0

(−1 + (n + k + 1)c2) ,
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and they satisfy the recurrence relation

n ≥ 1, Pn+1(x) = − 1

an

((bn − x)Pn(x) + an−1Pn−1(x)) , P0(x) = P−1(x) = 1, (2.10)

where

an =
αndn

αn+1dn+1

, bn = nµn − (n + 1)µn+1, µn =
−a + nc1

−1 + 2nc2

.

2.3.3 Examples

We now consider some of the most popular examples among the Pearson’s family, i.e., the
normal, student, gamma, beta, and uniform distributions.

1) The Normal distribution. When X ∼ N (µ, σ2), one has

q(x, µ, σ2) =
1√

2πσ2
exp

(−(x− µ)2

2σ2

)
,

∂(log q)

∂x
= −x− µ

σ2
.

In this case, Eq. (3.2) is known as the as the Stein equation and has been used by Bontemps
and Meddahi (2005) to test normality. The corresponding orthonormal polynomials are
Pn(x, µ, σ) = Hn ((x− µ)/σ) , where Hn(·) is the normalized Hermite polynomial of degree
n, i.e.,

n ≥ 2, Hn(x) =
1√
i
(xHn−1(x)−√n− 1Hn−2(x)), H0(x) = 1, H1(x) = x.

2) The Student distribution. When the variable X follows a Student T (ν), with ν > 0,
one has

q(x, ν) = ν−1/2

(
B

(
ν

2
,
1

2

))−1 [
1 +

x2

ν

]−(ν+1)/2

,
∂(log q)

∂x
(x, ν) = −(ν + 1)

x

ν + x2
,

where B(·, ·) denotes the Beta function, connected to the Gamma function Γ(·) by

B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
, Γ(α) =

∫ ∞

0

exp(−u)uα−1du, α > 0.

Equation (2.10) defines the Romanovski polynomials. However, as mentioned above, higher
order moments do not exist for a Student distribution. Consequently, only those with finite
variance, i.e., n < ν/2, can be called orthonormal polynomials. The remaining orthonormal
functions are among the set of hypergeometric functions and actually they are a continuum of
functions.
The Romanovski polynomials are given by

Rn+1(x, ν) =

√
(ν − 2n)(ν − 2n− 2)

(n + 1)ν(ν − n)
xRn(x, ν)−

√
n(ν − n + 1)(ν − 2n− 2)

(n + 1)(ν − n)(ν − 2n + 2)
Rn−1(x, ν)

The first three polynomials are given by

R1(x, ν) =

√
ν − 2

ν
x, R2(x, ν) =

√
ν − 4

2(ν − 1)

(
ν − 2

ν
x2 − 1

)
,

R3(x, ν) =

√
(ν − 2)(ν − 6)

6ν(ν − 1)

(
ν − 4

ν
x3 − 3x

)
.
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3) The Gamma distribution. When X follows a gamma (α, β, γ), for α > 0, β > 0; x > γ,
one has

q(x, α, β, γ) =
(x− γ)α−1 exp

(
− (x−γ)

β

)

βαΓ(α)
,

∂(log q)

∂x
(x, α, β, γ) =

α− 1− (x−γ)
β

x− γ
.

For this case, all the moments are finite and the set of orthonormal polynomials characterize
the distribution. Equation (2.10) which defines the Laguerre polynomials becomes

Pn(x, α, β, γ) =
1√

n(α + n− 1)

((
x− γ

β
− α− 2n + 2

)
Pn−1(x, α, β, γ)

−
√

(n− 1)(α + n− 2)Pn−2(x, α, β, γ)
)

,

while the first and second polynomials are given by

P1(x, α, β, γ) =
1√
α

(
x− γ

β
− α

)
,

P2(x, α, β, γ) =
1√

2α(α + 1)

((
x− γ

β

)2

− 2(α + 1)

(
x− γ

β

)
+ α(1 + α)

)
.

4) The Beta distribution. When X follows a standard beta distribution beta (α, β) with
0 ≤ x ≤ 1, α > 0, β > 0, one has

q(x, α, β) =
1

B(α, β)
xα−1(1− x)β−1,

∂(log q)

∂x
(x, α, β) =

(−α− β + 2)x + α− 1

x(1− x)
.

Like the normal and gamma cases, all the moments of a beta distribution are finite and the set
of orthonormal polynomials characterize the distribution. Equation (2.10) defines the Jacobi
polynomials. The corresponding coefficient an and bn are

an =

√
(n + 1)(α + β + n− 1)(α + n)(β + n)

(α + β + 2n)2(α + β + 2n− 1)(α + β + 2n + 1)
,

bn =
α2 + αβ + 2(α + β)n + 2n2 − 2α− 2n

(α + β + 2n)(α + β + 2n− 2)
,

while the first and second polynomials are given by

P1(x, α, β) =

√
α + β + 1

αβ
((α + β)x− α)

P2(x, α, β) =
Γ(α + β + 3)

Γ(α + β)

√
(α + β)(α + β + 3)

2(αβ)(α + 1)(β + 1)

(
x2 − 2

α + 1

α + β + 2
x +

α(α + 1)

(α + β + 1)(α + β + 2)

)

5) The Uniform distribution. When X follows a uniform distribution on [0, 1], the density
function equals one for x ∈ [0, 1] and log(q)′(x) equals zero. Therefore, Eq. (2.7) does not hold
for a uniform distribution. Actually, the uniform distribution is within the Pearson’s family
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as the limit of a beta(α, β) when both α and β goes to one. The orthonormal polynomials are
the Legendre polynomials and they characterize the distribution. Equation (2.10) becomes

Pn(x) =

√
2n + 1

n

(√
2n− 1(2x− 1)Pn−1(x)− n− 1√

2n− 3
Pn−2(x)

)
,

while the first three Legendre polynomials are given by

P1(x) =
√

3(2x− 1), P2(x) =
√

5(6x2 − 6x + 1), P3(x) =
√

7(20x3 − 30x2 + 12x− 1).

2.3.4 Generalized Person’s distributions

One limitation of the Pearson’s distributions is the shape of their density functions: they
can not have more than one mode. For this reason, Cobb, Koppstein and Chen (1983)
extended Pearson’s class of distributions by allowing A(·) in (2.7) to be a polynomial of
degree higher than one and, hence, generated multimodal distributions. This extension has
been exploited by Hansen and Scheinkman (1995), Aı̈t-Sahalia (1996) and by Conley, Hansen,
Luttmer and Scheinkman (1997), in order to model the short term interest rate whose marginal
distribution looks like a bimodal distribution. These authors strongly rejected Pearson’s
unimodal distributions.

2.4 Stationary distribution of scalar diffusions

As we pointed out in the introduction, Wong (1964) made a connection between the Pearson
distributions and diffusions processes, i.e., he provided stationary continuous time modes for
which the marginal density is a Pearson distribution. This connection was used by Hansen
and Scheinkman (1995), Aı̈t-Sahalia (1996) and by Conley, Hansen, Luttmer and Scheinkman
(1997), in order to model the short term interest rate whose marginal distribution are among
the class of the generalized Pearson’s distributions of Cobb, Koppstein and Chen (1983). In this
subsection, we recap some results in Hansen and Scheinkman (1995) to show the interpretation
of (2.1) in the diffusion case.

Assume that the random variable xt is a stationary scalar diffusion process and characterized
by the stochastic differential equation

dxt = µ(xt)dt + σ(xt)dWt, (2.11)

where Wt is a scalar Brownian motion. The marginal distribution q(.) is related to the functions
µ(.) and σ(.) by the following relationship

q(x) = Kσ−2(x) exp

(∫ x

z

2µ(u)

σ2(u)
du

)
, (2.12)

where z is a real number in (l, r) and K is a scale parameter such as the density integral
equals one; see Aı̈t-Sahalia, Hansen and Scheinkman (2003) for a review of all the properties
of diffusion processes we consider in this paper.

Hansen and Scheinkman (1995) provided two sets of moment conditions related to the
marginal and conditional distributions of xt respectively. For the marginal distribution, Hansen
and Scheinkman (1995) show

E[Ag(xt)] = 0, (2.13)
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where g is assumed to be twice differentiable and square-integrable with respect to the marginal
distribution of xt and A is the infinitesimal generator associated to the diffusion (2.11), i.e.,

Ag(x) = µ(x)g′(x) +
σ2(x)

2
g′′(x). (2.14)

From (2.12), one gets easily
q′(x)

q(x)
=

2µ(x)− (σ2)′(x)

σ2(x)
. (2.15)

As a consequence, by using (2.15) in (2.13), one gets after some manipulations

E[(gσ2)′(x) + (log q)′(x)(gσ2)(x)] = 0, (2.16)

which is exactly the general test function (2.1) applied to the function ψ = (gσ2)′. Again,
Hansen and Scheinkman (1995) assumed that the variable xt is Markovian to derive (2.13)
(and (2.16)) while we did not for deriving (2.1).

3 Asymptotic distribution of the test statistics

In this section, we discuss the asymptotic distribution of the test statistics based on (2.1).
However, the study of the parameter uncertainty problem is postponed to the next section.

Consider a sample x1, ..., xT , of the variable of interest denoted by X. The observations
may be independent or not. Let ψ1(·), ..., ψp(·), be p differentiable functions such that
assumption A1 holds for ψi(·). Let us denote m(x) as the vector whose components are
ψi(x)′ + ψi(x)(log q)′(x), i = 1, 2, ..., p. Thus, by (2.1), we have

E[m(x)] = 0.

Throughout the paper, we assume the matrix Σ defined by

Σ ≡ lim
T→+∞

V ar

[
1√
T

T∑
t=1

m(xt)

]
=

+∞∑

h=−∞
E[m(xt)m(xt−h)

>], (3.1)

is finite and positive definite. In the context of time series, this assumption ruled out some
long memory processes; see Bontemps and Meddahi (2005). Under some regularity conditions,
we know that

1√
T

T∑
t=1

m(xt) −→ N (0, Σ)

while (
1√
T

T∑
t=1

m(xt)

)>

Σ−1

(
1√
T

T∑
t=1

m(xt)

)
∼ χ2(p). (3.2)

Feasibility test procedure needs the matrix Σ or a consistent estimator of it.
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3.1 The cross-sectional case

In the context of cross-sectional observations where the observations are assumed to be
independent and identically distributed (i.i.d.), we have

Σ = V ar[m(x)] = E[m(x)m(x)>]. (3.3)

Two cases may arise. One can explicitly compute the matrix Σ and, hence, one can use the test
statistic (3.2). This is the case for Pearson’s distributions discussed above when the component
of m(·) are indeed the orthonormal polynomials associated to the distribution. In this case, we
have E[Pi(x)] = 0 and E[Pi(x)Pj(x)] = δi,j where δ·,· is the Kronecker symbol. Consequently,
the matrix Σ will be the identity matrix, implying that the univariate test statistics based on
E[Pi(x)] = 0 are asymptotically independent.

In the second case, computing Σ explicitly is not possible (or difficult). One can therefore

use any consistent estimator Σ̂T of Σ like

Σ̂T =
1

T

T∑
t=1

m(xt)m(xt)
>.

In this case, one can use the following test statistic

(
1√
T

T∑
t=1

m(xt)

)>

Σ̂−1
T

(
1√
T

T∑
t=1

m(xt)

)
∼ χ2(p).

3.2 The serial correlation case

Assume now that the observations are correlated. Then without additional assumptions on the
dependence structure, one can not explicitly compute the matrix Σ. For instance, knowing that
the marginal distribution of a process is normal does not imply that its conditional distribution
is normal and therefore one has not information about E[m(xt)m(xt−h)] in (3.1) for h 6= 0.
When one does not have information about the dependence in the process xt, one has to
estimate Σ. A traditional solution is to estimate this matrix by using a Heteroskedastic-
Autocorrelation-Consistent (HAC) method like Newey and West (1987) or Andrews (1991).
This is one of the motivations of using a GMM approach for testing normality. We will follow
this approach as did Richardson and Smith (1993), Bai and Ng (2005) and Bontemps and
Meddahi (2005) for testing normality, and by Aı̈t-Sahalia (1996), Conley, Hansen, Luttmer
and Scheinkman (1997), and Corradi and Swanson (2002) for testing marginal distributions of
nonlinear scalar diffusion processes.

However, making additional assumption on the dependence structure may lead to simple
estimates of the Σ. This is the case when one considers some Pearson’s distribution and
assumes that the components of m(·) are orthonormal polynomials. In the serial correlation
case, we still have E[Pn(xt)Pm(xt)] = 0. However, without additional assumptions, one does
not have

E[Pn(xt)Pm(xt−h)] = 0, n 6= m, h 6= 0. (3.4)

Several scalar diffusion processes have as the stationary distribution the normal N (0, 1)
distribution but (3.4) does not hold because it is related to the conditional distribution of
the process {xt}. In contrast, by assuming that the conditional distribution of xt given its past
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values is Gaussian, one gets (3.4). For instance, when one assumes that the process xt is a
normal autoregressive process of order one, AR(1), that is

xt = γxt−1 +
√

1− γ2 εt, εt is i.i.d. and ∼ N (0, 1), and |γ| < 1. (3.5)

In this case, each Hermite polynomial Hi(xt) is an AR(1) process whose autoregressive
coefficient equals γi, that is

E[Hi(xt+1)|xτ , τ ≤ t] = γiHi(xt). (3.6)

In this case, one has

Σij =
+∞∑

h=−∞
E[Hi(xt)Hj(xt−h)] =

1 + γi

1− γi
δij. (3.7)

As a consequence, the matrix Σ is diagonal and, hence, the test statistics based on different
Hermite polynomials are asymptotically independent. Besides, when one tests normality and
ignores the dependence of the Hermite polynomials, one gets a wrong distribution for the
test statistic. For instance, assume that one considers a test based on a particular Hermite
polynomial Hi. Then, the test statistic becomes

1− γi

1 + γi

(
1√
T

T∑
t=1

Hi(xt)

)2

∼ χ2(1). (3.8)

Thus, by ignoring the dependence of the Hermite polynomial Hi(xt), one overrejects the
normality when γ ≥ 0 or i is even and underrejects otherwise. Monte Carlo simulations
in Bontemps and Meddahi (2005) assessed this issue.

It is worth noting that Σ is also diagonal for other time series processes, in particular for
scalar diffusions whose marginal distribution is among the Pearson’s class and the drift is affine.
This is the case of the square-root process of Cox, Ingersoll and Ross (1984) whose marginal
distribution is gamma and quite popular in modeling the short term interest rate. This is
also the case for the Jacobi diffusion (Karlin and Taylor (1975), page 335) whose marginal
distribution is beta; see Gouriéroux and Jasiak (2006) for financial applications.

4 Parameter uncertainty

In general, the density function involved in (2.1) depends on unknown parameters. Moreover,
the variable x may be not observable but can depend on unknown parameters like, e.g.,
residuals in a regression model. Therefore, one has to first estimate these parameters before
implementing any distributional test procedure. However, it is well known that the asymptotic
distribution of the feasible test statistic based on (3.2) is, in general, different from the
unfeasible one that uses the true (unknown) parameter. The main purpose of this section
is to derive sufficient conditions in order to avoid the parameter uncertainty problem, i.e.,
making the asymptotic distribution of the feasible and unfeasible test statistics coincide.

In this section, we assume that the probability density function depends on a parameter β
and we denote by β0 the true unknown value. In addition, we assume that the variable xt is
not necessarily observable. However, xt is related to the observable variables, denoted by zt,
by the relationship

xt = h(zt, β
0, θ0), (4.1)
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where the function h(·) is a one-to-one known function (for a given vector (β>, θ>)> ) and θ0 is
an unknown parameter different from β0. h−1(·, β, θ) denotes the inverse function of h(·, β, θ).
Observe that the function h(·) may depend on other variables like explanatory variables. For
instance, a leading example is a non-linear regression model

xt =
zt −m(z̃t, β

0, θ0)

σ(z̃t, β0, θ0)
,

where z̃t is a vector of explanatory variables.
Our goal is to test:

H0 : The probability density function of xt is q(x, β0). (4.2)

The test will be based on the moment condition (2.1). We allow ψ(·) to depend on both β0

and θ0, which leads to

E

[
∂ψ

∂x
(x, β0, θ0) + ψ(x, β0, θ0)

∂ log q

∂x
(x, β0)

]
= 0, (4.3)

while we will use the notation

m(x, β, θ) ≡ ∂ψ

∂x
(x, β, θ) + ψ(x, β, θ)

∂ log q

∂x
(x, β), m̃(zt, β, θ) = m(xt, β, θ), (4.4)

with ψ(·) = (ψ1(·), ..., ψp(·))>, where ψi(·), i = 1, 2, ..., p, are real functions for which
assumption A1 holds. For notation convenience, for any function g(x, β, θ), g0(x) will denote

g(x, β0, θ0); for instance, ψ0(x) = ψ(x, β0, θ0) and
∂ψ0

∂β
(x) =

∂ψ

∂β
(x, β0, θ0).

We assume that we have square-root T consistent estimators of β0 and θ0 denoted
respectively by β̂T and θ̂T , which leads to the notation x̂t = h(zt, β̂T , θ̂T ). The main goal
of the section is to derive sufficient conditions such that the asymptotic distributions of

1√
T

T∑
t=1

m̃(zt, β̂T , θ̂T ) and
1√
T

T∑
t=1

m̃0(zt)

coincide. In this case, we will say in the sequel that the test statistic based on (4.3) is robust
against parameter uncertainty.

A Taylor expansion of m̃(zt, β̂T , θ̂T ) around (β0, θ0) yields to

1√
T

T∑
t=1

m̃(zt, β̂T , θ̂T ) =
1√
T

T∑
t=1

m̃0(zt) +

[
1

T

T∑
t=1

∂m̃0

∂β>
(zt)

]√
T (β̂T − β0)

+

[
1

T

T∑
t=1

∂m̃0

∂θ>
(zt)

]√
T (θ̂T − θ0) + op(1),

i.e.,

1√
T

T∑
t=1

m̃(zt, β̂T , θ̂T ) = [Ip Pm]




1√
T

T∑
t=1

m0(zt)

√
T (β̂T − β0)√
T (θ̂T − θ0)


 + op(1), (4.5)
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where Ip is the p×p identity matrix and Pm = [Pψβ Pψθ] with

Pψβ = E

[
∂m̃0

∂β>
(zt)

]
, Pψθ = E

[
∂m̃0

∂θ>
(zt)

]
,

while the functions m(·) and ψ(·) are connected through (4.4).
Equation (4.5) implies that, in general, the asymptotic distribution of

T−1/2
∑T

t=1 m̃(zt, β̂T , θ̂T ) depends on the asymptotic distribution of the estimators (β̂T , θ̂T )

and their covariance with T−1/2
∑T

t=1 m̃0(zt) ; see Newey (1985) and Tauchen (1985), as well
as Gallant (1987), Gallant and White (1988), and Wooldridge (1990).

However, it is clear from (4.5) that a sufficient condition for the robustness of (4.3) against
parameter uncertainty is

Pm = [Pψβ Pψθ] = 0. (4.6)

In the sequel, we will propose two approaches that ensure (4.6). The first one will use
the so-called generalized information matrix equality to characterize the functions m(·) such
that (4.6) holds. The second one is due to Wooldridge (1990). We also make the connection
between these two approaches.

4.1 First approach: orthogonality to the score function

When the expectation of a function m̃(zt, γ
0) equals zero, with γ = (β, θ)>, one has the

generalized information matrix equality, i.e.,

E

[
∂m̃

∂γ>
(zt, γ

0)

]
+ E[m̃(zt, γ

0)s(zt, γ
0)>] = 0, (4.7)

where s(zt, γ) is the score function of the variable zt. Equation (4.7) have been used for
instance in Newey and McFadden (1994). Consequently, the condition (4.6) which guarantees
the robustness against parameter uncertainty of m̃(·) holds if and only if m̃(zt, γ

0) is orthogonal
to the score, i.e.,

0 = E[m̃(zt, γ
0) s(zt, γ

0)>] = E[m(xt, γ
0) s(h−1(xt, γ

0), γ0)>]. (4.8)

This result explains the finding of Bontemps and Meddahi (2005) who showed that Hermite
polynomials, Hi(·), i ≥ 3, are robust against parameter uncertainty when one tests that
an observable variable (i.e., z = x) follows a N (µ0, (σ0)2) distribution. In this case,
γ0 = (µ0, (σ0)2)> and the score function is given by

s(x, γ) =




x− µ

σ2

(x− µ)2

2σ4
− 1

2σ2


 =




1

σ
H1

(
x− µ

σ

)

1√
2σ2

H2

(
x− µ

σ

)




,

where H1(·) and H2(·) are the first and second Hermite polynomials. However, the distribution
of (x− µ0)/σ0 is N (0, 1). Consequently, the orthogonality of the Hermite polynomials implies
that ∀i ≥ 3, the test statistics based on E[Hi((x− µ0)/σ0)] = 0 are robust against parameter
uncertainty. Actually, Bontemps and Meddahi (2005) also showed this robustness result when x
is not observable and is, for instance, the residual of a heteroskedastic and nonlinear regression
model. In this case, one has to take into account the uncertainty in h(zt, β̂T , θ̂T ).

14



We now characterize the test-functions ψ(·) associated to m(·) such that (4.8) holds.
Consider a function g(·), and assume that Assumption A1 holds for all the components of
ψ(·)g(·)>, then applying (2.1) to ψ(·)g(·) yields to

E[m(xt, γ
0)g(xt, γ

0)>] = −E[ψ(xt, γ
0)

∂g

∂x
(xt, γ

0)>].

Consequently, Eq. (4.8) is tantamount to

E[ψ(xt, γ
0)

∂s

∂x
(h−1(xt, γ

0), γ0)>] = 0, (4.9)

when Assumption A1 holds for ψ(x, γ)s(h−1(x, γ), γ)>. In the Appendix, we show that
∂s

∂x
(h−1(xt, γ), γ) = (bβ(x, γ)>, bθ(x, γ)>)> where

bβ(x, γ) =
∂2 log q

∂2x
(x, β)

∂h

∂β
(h−1(x, γ), γ) +

∂ log q

∂x
(x, β)

∂2h

∂z∂β
(h−1(x, γ), γ)

∂h−1

∂x
(x, γ)

+
∂2 log q

∂x∂β
(x, β) +

∂2h−1

∂2x
(x, γ)

∂2h

∂z∂β
(h−1(x, γ), γ)

+

(
∂h−1

∂x
(x, γ)

)2
∂3h

∂2z∂β
(h−1(x, γ), γ),

(4.10)

bθ(x, γ) =
∂2 log q

∂2x
(x, β)

∂h

∂β
(h−1(x, γ), γ) +

∂ log q

∂x
(x, β)

∂2h

∂z∂β
(h−1(x, γ), γ)

∂h−1

∂x
(x, γ)

+
∂2h−1

∂2x
(x, γ)

∂2h

∂z∂β
(h−1(x, γ), γ) +

(
∂h−1

∂x
(x, γ)

)2
∂3h

∂2z∂β
(h−1(x, γ), γ).

(4.11)

We are now able to state the following corollary that we write as a proposition:

Proposition 4.1 Let ψ(x, β, θ) be a test-function such that Assumption A1 holds for
ψ(x, β0, θ0) and ψ(x, γ0)s(h−1(x, γ0), γ0)> where s(·, γ) is the score function of zt, and

E[ψ(xt, γ
0)bβ(x, γ0)>] = 0 and E[ψ(xt, γ

0)bθ(x, γ0)>] = 0. (4.12)

Then, (4.3) is robust against parameter uncertainty.

In order to illustrate this proposition, consider the example where the variable xt is
observable, i.e., x = z (there is no parameter θ and h(z) = z). Then, bβ(x, β) becomes

bβ(x, β) =
∂2 log q

∂x∂β
(x, β). (4.13)

In the case of testing normality, Bontemps and Meddahi (2005) showed that (4.12) holds for
Hermite polynomials Hi(·), i ≥ 3, when one considers a regression-type model. However, while
this orthogonality still holds for non-linear and heteroskedastic models (Bontemps and Meddahi
(2005)), one can show that it does not necessarily hold when the variable xt is transform of
another distribution like in density forecasts.

Note also the robustness of orthonormal polynomials does not hold for other distributions;
for instance, when xt is observed and follows a T(ν), bβ(x, β) becomes

bν(x, ν) =
x− x3

(ν + x2)2
, (4.14)
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which is not a linear combination of Romanovski polynomials.
The remaining question in this subsection is the derivation of functions ψ(·) such that (4.12)

holds. We adopt a regression approach: For a given ψ(·, β, θ) function, define ψ⊥(·, β, θ) as

ψ⊥(x, β, θ) = ψ(x, β, θ)− E[ψ(x, β, θ)ζ>(x, β, θ)]
(
E[ζ(x, β, θ)ζ>(x, β, θ)]

)−1
ζ(x, β, θ), (4.15)

where
ζ(x, β, θ) =

(
bβ(x, β, θ)>, bθ(x, β, θ)>

)>
. (4.16)

Then, the moment condition (4.3) associated to ψ⊥(·) is robust against parameter uncertainty
(when Assumption A1 holds for ζ(x, β, θ)).

In some cases like the GARCH example we consider in the simulation and empirical sections,
one can compute analytically ψ⊥(x, β, θ). However, if this is not the case, then one can do
an empirical regression to get estimates of E[ψ(x, β, θ)ζ>(x, β, θ)] and E[ζ(x, β, θ)ζ>(x, β, θ)].
The corresponding test function ψ⊥(x, β, θ) is indeed robust against parameter uncertainty.

We could have done the same treatment on m()̇. Having a moment and projecting it on the
orthogonal of the score will give to us a moment whose expectation is, under the null, equal
to zero and robust by construction to the parameter uncertainty. One should first notice that,
if the parameters of interest are estimated by maximum likelihood, the statistic in (3.2) gives
exactly the same value than the one computed with the correction used in Newey (1985). it
means that we will not loose any power by restricting our selves to moment which are robust.

Moreover it is sometimes easier to work with ψ than with m. in the Monte Carlo simulations,
working on ψ allows us to have analytical expressions.

4.2 Wooldridge’s approach

An alternative approach is obtained by transforming the moment (4.3). More precisely, let S
be a matrix. Then one has E[Sm̃(z, γ0)] = 0 and these moments are robust against parameter
uncertainty when SPm = 0. This approach is not always possible. In particular, one needs
that the dimension of m(·), i.e., p, exceeds the dimension of (β0, θ0), denoted k (p > k). In
this case, when one assume that Pm has a full rank, a simple choice of S is

S = Ip − Pm[P>
mPm]−1P>

m . (4.17)

This general approach is due to Wooldridge (1990). He provided this approach as well a
conditional version of it, i.e., when the moments of interest are conditional ones. Interestingly,
by using a Khmaladze (1981)’s transform to get a robust test against parameter uncertainty,
Bai (2003) did the conditional approach of Wooldridge (in an infinite dimensional space).

Observe that the solution (4.17) is not unique, i.e., when one has more structure on the
model, one can derive other matrices S such that SPm = 0. Duan (2003) proposed robust
moment tests by considering other choices than (4.17) to get SPm = 0.

We conclude this section by mentioning that Eq. (4.8) implies that the robust moments of
Wooldridge (1990), Bai (2003) and Duan (2003) are orthogonal to the score function.

5 A Monte Carlo Study

This section provides Monte Carlo simulations to assess the finite sample properties of our
test procedures. All the simulations are based on 10,000 replications. Three sample sizes are
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considered: 100, 500 and 1,000. We focus on testing the Student distributional assumption
which is important empirically; Bontemps and Meddahi (2005) studied the normal case.

We study various cases: the variable is observable, not observable, in a cross-section case
or a time series case. Without having prior on the degrees of freedom ν of the Student
distribution, it seems difficult to use polynomial for testing purposes. In addition, we focus
on even moment conditions (which correspond to odd test functions ψ) given that one often
uses Student specification for modeling symmetric distribution. Finally, our goal is to provide
simple and systematic test procedures, i.e., valid tests whatever the value of ν. We therefore
focus on the test-functions ψα(·, ν) for various values of α with

ψα(x, ν) =
x

(x2 + ν)α
, mα(x, ν) =

ν − (2α + ν)x2

(ν + x2)α+1
. (5.1)

where mα(·) are the corresponding moment conditions given in Eq. (2.1). We consider
univariate tests mα(·) based on a particular set of positive values {0,1/2,1,2,3,4}. Given that
the moments mα(xt) are somewhat highly correlated in practice, we only perform one joint
test (denoted mj) based on m0(·) and m1(·).

5.1 Observable variables

In this case, we know from Proposition 4.1 that a sufficient condition for having robustness
against parameter uncertainty is to consider a test function ψ(·) orthogonal to bν(·, ν) defined
in (4.14). Following (4.15), we transform ψα(·) to get ψ⊥α (·), where the corresponding moment
condition denoted m⊥

α (·) equals

m⊥
α (x, ν) =

ν − (2α + ν)x2

(ν + x2)α+1
− kα(ν)

(
x4(ν + 2)− 4x2(ν + 1) + ν

(ν + x2)3

)
(5.2)

where kα(ν), a proof of (5.2), and the variance of m⊥
α (x, ν) are given in the Appendix.

5.1.1 The cross-section case

We first study the size properties of our tests. We consider the cases when ν equals 5 (Panel A)
and 20 (Panel B). In Table 1, we assume that ν is known in the left-hand side set of columns
while it is estimated from the empirical second moment of the variable in the two other sets.
When ν is known, we used test based on mα(·) defined in (5.1) and their robust form given in
(5.2) where the variances used to derive the test statistics (3.2) are the theoretical ones (the
results are given in the Appendix). We also compute the Kolmogorov-Smirnov test (denoted
KS). The simulation results clearly show that the finite sample performance of the new tests
are quite good and close to the nominal level, whatever the sample size and the value of α.
There are also very small differences between mα(x, ν) and their robust forms m⊥

α (x, ν). The
finite sample properties of the KS test are also quite good.

When ν is estimated,2 two sub-cases are considered. In the first one (the second set of
columns denoted “in population”), the variances used in the test-statistics are the theoretical
ones whereas in the second one (the third set of columns denoted “in sample”) they are

2The theoretical variance of a T(ν) distribution equals ν/(ν − 2), which is therefore higher than one. In
practice, it happens few times that the empirical variance is smaller than one. This happens when the sample
size is small or ν high. In these case, we set ν̂ equal to 500. The performance properties seem insensitive to
the choice of this high value. The results are available upon request.
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estimated. The results of Table 1 clearly show that the non-robust moments are quite sensitive
to the parameter uncertainty and that they are not reliable. In contrast, robust tests are
quite reliable. In addition, estimating the variance of the moments leads to a very small size
distortion. Surprisingly, KS test is reliable, which is not the case for other distributions like
the normal one (see Bontemps and Meddahi (2005)). It is worth noticing than estimating ν
by the maximum likelihood method leads to similar results (they are available upon request).

We also perform the test developed in Bai (2003). As we mentioned in Section 4, this test,
denoted in the tables SBai, presents size distortions when one tests normality which leads Bai
(2003) to consider another statistic, denoted ST

Bai in the tables, computed as the maximum
over the 90% smallest values of the individual statistics. Surprisingly, the reverse holds for the
Student case, i.e., the results reported in Table 1 show that ST

Bai presents size distortions while
SBai does not. The finite sample properties of SBai are similar to those of our new tests.

In Table 2, we study the power properties of our tests against an asymmetric distribution
and against the mixture of two standard normals. The parameter ν is estimated by the second
moment assuming that the data are i.i.d.; all the expectations are computed in the samples.
We compare the power properties with those of the tests developed by Bai (2003).

The asymmetric distribution we consider is derived from a χ2(7). More precisely, we
consider an affine transform of the χ2(7) such that it matches the mean and variance of a
Student T(5) or T(20). However, we did not assume that we know the variance in our testing
procedures. The results in Table 2 clearly show that our tests have very good power, similar
to the power of Bai’s test.

We consider three examples of mixture of two centered normals, i.e., we set the probability
p to have one of the normal equal to 0.7, 0.8, and 0.9. For a given p, the variances of the
two normal distributions are chosen such that the second and fourth moments of the mixture
distribution equal those of a T(5) or T(20). When p increases, the sixth moment of the mixture
distribution increases; we report in the Appendix the corresponding moments as well as the
theoretical variances of each component of the mixture. The simulation results are reported
in Table 2. The main finding is that the joint test denoted m⊥

j has the best power among
all tests. In addition, most of our tests, have more power than the test of Bai (2003). The
results show that our tests have a very good power whatever the sample size when the null is
a T(5) distribution. The power is somewhat lower when p equals 0.9; the main reason is that
the sixth moment of the mixture of normals equals 1,001, which is quite high. In contrast,
the power decreases significantly when the null is a T(20) distribution. Again, the mixture
of two normals is very close to a T(20) distribution; for instance, the first fifth moments are
the same while the sixth ones are quite close (see the Appendix). Actually, we perform the
likelihood ratio test where the critical values are computed by simulations for each sample size.
We do know by Neyman-Pearson theorem that this test is the optimal one. The simulation
rejection frequencies are 6.3%, 9.6%, and 12.7% when the sample size equals 100, 500, and
1,000 respectively.

5.1.2 The serial correlation case

We now study the finite sample properties of our tests when the variable of interest is serially
correlated with unknown dependence structure. We use the same tests as previously. We use a
HAC method to estimate the variances/covariances. The HAC method is developed by using
the quadratic kernel with an automatic lag selection procedure á la Andrews (1991). However,
we do not perform the test of Bai (2003) given that it is not valid under serial correlation.

The process xt is defined as xt = ut/
√

st where the variables ut and st are independent, the
distribution of ut is N (0, 1) while st follows a gamma (ν/2,2/ν,0) distribution, where ν equals
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5 or 20 as in our previous simulations. Consequently, the unconditional distribution of xt is
T(ν). However, there is a dependence in ut while st is i.i.d.; we assumed that the conditional
distribution of ut given its past is N (ρut−1, 1− ρ2) where ρ equals 0.4 or 0.9. When we study
the power of the tests, we assumed that xt is an AR(1), xt = ρxt−1 + εt, whose innovation
process εt is, as in the previous simulations, a mixture of two normals where p equals 0.7 or
0.9.

Again, ν is estimated with the second moment of xt. The results reported in Table 3 show
that the size of the tests is very good. The analysis of the power is mixed. When ρ equals 0.9,
the process xt is close to a normal distribution given the central limit theorem (see Bai and
Ng (2005)). Consequently, our tests detect more easily the departure from a T(ν) distribution,
especially when ν equals 5. When ρ equals 0.4, the distribution of xt is close to the one of εt.
Therefore, we get similar results than for the cross-sectional case.

5.2 The residual case: Student GARCH models

We now study a more general model where xt is an innovation process of a GARCH. More
precisely, we consider Student GARCH(1,1) model of Bollerslev (1987), i.e.,

yt = µ + εt, εt =
√

vt ut, vt = ω + αε2
t−1 + βvt−1, ut =

√
ν − 2

ν
xt, xt ∼ T(ν), (5.3)

where µ = 0, ω = 0.2, α = 0.1 and β = 0.8. We use exactly the same distribution for xt as in
the cross-section examples when we study the size and power of the tests.

The parameter γ ≡ (µ, ω, α, β)> is estimated with a Gaussian-QMLE procedure which is
known to be consistent provided that the conditional mean and variance process of yt are
correctly specified (Bollerslev and Wooldridge (1992)). We then construct an estimator of ut

by using ût = (yt − µ̂)/
√

v̂t. Under H0, ut is a linear transformation of a Student distribution.
Given that the empirical variance of ut is by construction almost one, we estimated ν by using
the fourth moment of ut, i.e. Eu4

t = 3(ν − 2)/(ν − 4).
Following (4.15), one can show that when a function ψ(·) is orthogonal to the functions

x/(x2 + ν)2, (x2 − ν)/(x2 + ν)2, and x3/(x2 + ν)2, the corresponding moment condition is
robust against parameter uncertainty. In our simulations, we consider the functions ψα(·).
Observe that ψ2(·) equals the first function while ψ1(·) is a linear combination of the first and
third functions. Therefore, these functions are not included in our tests. The projections are
done analytically; the calculations are provided in the Appendix.

Table 5 reports the size results. One can notice that the size properties are quite good
though we have small over-rejection in some cases. The performances are quite similar to the
Bai test. In the analysis of the power, we used the same distributions as in the cross-section
case. Table 4 reports the power results against the mixture of normals while Table 5 reports
those against an asymmetric distribution. We observe qualitatively the same results than in
the observable case with less power due to the fact that we estimate five parameters instead
of one.

6 Empirical example

A very popular model in the volatility literature is GARCH(1,1) in Bollerslev (1986). More
precisely, Bollerslev (1986) generalized the ARCH models of Engle (1982) by assuming that

yt =
√

vtut with vt = ω + αy2
t−1 + βht−1, where ω ≥ 0, α ≥ 0, β ≥ 0, α + β < 1, (6.1)
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and the process ut is assumed to be i.i.d. and N (0, 1). Two important characteristics of
GARCH models are that the kurtosis of yt is higher than for a normal variable and the process
exhibits a clustering effect. It turns out that financial returns share these two properties and
therefore GARCH models describe financial data; for a survey on GARCH models, see, e.g.,
Bollerslev, Engle and Nelson (1994).

However, some empirical studies found that the implied kurtosis of a GARCH(1,1) is lower
than empirical ones. These studies lead Bollerslev (1987) to assume that the standardized
process ut may follow a Student distribution given in (5.3) where µ = 0. Under this assumption,
GARCH(1,1) fits financial returns very well. Indeed, by using a Bayesian likelihood criterion,
Kim, Shephard and Chib (1998) proved that a Student GARCH(1,1) outperforms another very
popular volatility model, namely the log-normal stochastic volatility model of Taylor (1986)
popularized by Harvey, Ruiz and Shephard (1994) and Jacquier, Polson and Rossi (1994). We
already tested in Bontemps and Meddahi (2005) the normality of ut and we strongly rejected
it, corroborating the results of Kim, Shephard and Chib (1998). These authors estimated the
T-GARCH model by the maximum likelihood method and find that the degree of freedom
of the returns of FF-US$, UK-US$, SF-US$, and Yen-US$, equals 12.82, 9.71, 7.57, and 6.86
respectively. Our goal is to test the Student specification of the innovations xt.

We consider the same data as Harvey, Ruiz and Shephard (1994), Kim, Shephard and
Chib (1998), and Bontemps and Meddahi (2005),3 i.e., observations of weekday close exchange
rates from 1/10/81 to 28/6/85. The exchange rates are the U.K. Pound, French Franc, Swiss
Franc and Japanese Yen, all versus the U.S. Dollar. After the QML estimation, we get the
fitted residuals ût and test their distribution. We use the same moments as in the monte carlo
section. None of our tests reject the Student assumption. Likewise, Bai test does not reject
the assumption. These results corroborate the finding of Kim, Shephard and Chib (1998).

7 Conclusion

When one specifies a distribution, one gets a general set of moment conditions. We used these
moment conditions for testing purposes in a GMM setting. This setting allows us to study two
important statistical issues. We deal in detail with the problem of parameter uncertainty by
providing robust moments against this uncertainty. We also use the HAC method to handle
the problem of potential serial correlation in the variable of interest. An extensive simulation
study in the Student case shows that the finite sample properties of our tests are very good.

An important feature of our test method is its simplicity given that researchers are quite
familiar with the method of moments. More importantly, the set of moment conditions we
used holds also for discrete variable and for multivariate ones. These extensions are under
investigation in Bontemps (2006) and Bontemps, Koumtingue and Meddahi (2006) respectively.

3We are grateful to Neil Shephard for providing us with the data.
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Appendix

Proof of Proposition 2.1. The continuity of m(·) and q(·) imply that ψ(·) defined in (2.4)
is differentiable. By differentiating (2.4), one gets

ψ′(x) = m(x)− q′(x)

q2(x)

∫ x

l

m(u)q(u)du = m(x)− ψ(x)(log q)′(x),

i.e. (2.3). For any function m(·), we have limx→l ψ(x)q(x) = 0 and limx→r ψ(x)q(x) = E[m(x)].
Hence, (2.2) holds if and only if assumption A1 holds.¥
Proof of Proposition 2.2. The functions qX(·) and qY (·) are connected by the relation

qY (y) = (G−1)′(y)qX(x) =
1

G′ ◦G−1(y)
qX(x) =

1

G′ ◦G−1(y)
qX(G−1(y)).

Observe that
qY (y)ψY (y) = qX(G−1(y))ψX(G−1(y)). (A.1)

By deriving the previous equality with respect to y, one gets:

q′Y (y)ψY (y) + qY (y)ψ′Y (y) = (G−1)′(y)
(
q′X(G−1(y))ψX(G−1(y)) + qX(G−1(y))ψ′X(G−1(y))

)

=
qY (y)

qX(x)
(q′X(x)ψX(x) + qX(x)ψ′X(x)) ,

which leads to (2.5) given that qY (y) 6= 0. Finally, (2.6) is implied by (A.1) and the continuity
and monotonicity of G(·).¥
Proof of (4.10) and (4.11): Given that the density function of xt is q(x, β), the density
function of zt is

qz(z, γ) =

∣∣∣∣
∂h

∂z
(z, γ)

∣∣∣∣ q(h(z, γ), β).

Hence,

s(z, γ) =




∂ log q

∂x
(h(z, γ), β)

∂h

∂β
(z, γ) +

∂ log q

∂β
(h(z, γ), β) +

(
∂h

∂z
(z, γ)

)−1
∂2h

∂z∂β
(z, γ)

∂ log q

∂x
(h(z, γ), β)

∂h

∂θ
(z, γ) +

(
∂h

∂z
(z, γ)

)−1
∂2h

∂z∂θ
(z, γ)


 .

By differentiating the equality h(h−1(x, γ), γ) = x, one gets

s(z, γ) =




∂ log q

∂x
(x, β)

∂h

∂β
(z, γ) +

∂ log q

∂β
(x, β) +

∂h−1

∂x
(x, γ)

∂2h

∂z∂β
(z, γ)

∂ log q

∂x
(x, β)

∂h

∂θ
(z, γ) +

∂h−1

∂x
(x, γ)

∂2h

∂z∂θ
(z, γ)


 .

By differentiating the previous equation with respect to x, one gets (4.10) and (4.11).¥
Computations of moments robust to parameter uncertainty in the Student case

Following (2.1) and (4.13), we know that we can obtain a moment whose expectation is zero
with respect to the T (ν) distribution and robust to the parameter uncertainty problem if it is

constructed from a test-function ψα orthogonal to the derivative of the score, i.e.
x− x3

(ν + x2)2
.

Let define ψ⊥α the orthogonalized test-function:
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ψ⊥α (x, ν) = ψα(x, ν)−
E

[
ψα(x, ν) x−x3

(ν+x2)2

]

E
[

x−x3

(ν+x2)2

]2

x− x3

(ν + x2)2

A first expectation is of interest:

Aν
α = E

[
1

(x2 + ν)α

]
=

1

να

Γ(α + ν
2
)

Γ(ν
2
)

Γ(ν+1
2

)

Γ(α + ν+1
2

)
,

where the expectation (and the followings) is taken with respect to the T (ν) distribution.
Standard calculations lead to:

E

[
ψα(x, ν)

x− x3

(ν + x2)2

]
= Aν

α

(
−1 +

2ν + 1

ν

α + ν
2

α + ν+1
2

− ν + 1

ν

α + ν
2

α + ν+1
2

α + 1 + ν
2

α + 1 + ν+1
2

)

E

[
x− x3

(ν + x2)2

]2

=

(
1

ν + 1
− 3ν + 2

ν

ν + 2

(ν + 1)(ν + 3)

+
3ν + 1

ν2

(ν + 4)(ν + 2)

(ν + 5)(ν + 3)
− ν + 1

ν2

(ν + 6)(ν + 4)(ν + 2)

(ν + 7)(ν + 5)(ν + 3)

)

The moment m⊥
α (x, ν) constructed from ψα(x, ν) could be expressed as:

m⊥
α (x, ν) =

ν − (2α + ν)x2

(ν + x2)α+1

︸ ︷︷ ︸
l1(x)

−
E

[
ψα(x, ν) x−x3

(ν+x2)2

]

E
[

x−x3

(ν+x2)2

]2

︸ ︷︷ ︸
kα

(
x4(ν + 2)− 4x2(ν + 1) + ν

(ν + x2)3

)

︸ ︷︷ ︸
l2(x)

Its variance can be computed using the equality:

V ar[m⊥
α (x, ν)] = V ar[l1(x)] + (kα)2 V ar[l2(x)]− 2kαCov(l1(x), l2(x))

Like previously, we obtain:

V ar[l1(x)] =(2α + ν)2Aν
2α − 2ν(2α + ν)(2α + ν + 1)Aν

2α+1 + (2αν + ν + ν2)2Aν
2(α+1)

V ar[l2(x)] =(ν + 2)2Aν
2 − 4(ν + 2)(ν2 + 4ν + 2)Aν

3

+ (
(
4(ν2 + 4ν + 2)2 + 2ν(ν + 1)(ν + 2)(ν + 5)

)
Aν

4

− 4ν(ν + 1)(ν + 5)(ν2 + 4ν + 2)Aν
5 + (ν(ν + 1)(ν + 5))2 Aν

6

Cov(l1(x), l2(x)) =(ν + 2)(2α + ν)Aν
α+1 + (ν(ν + 2)(2α + ν + 1) + 2(ν + 2α)(ν2 + 4ν + 2))Aν

α+2

− ν(2(ν2 + 4ν + 2)(ν + 2α + 1) + (2α + ν)(ν + 1)(ν + 5))Aν
α+3

+ ν2(ν + 1)(ν + 5)(ν + 2α + 1)Aν
α+4.

Computations for the power case with mixture of normals.
The mixture of normals used in the Monte Carlo section are such that the first five moments

are equal to the moments of a T(ν) distribution. Given the weights ((p, 1− p), p=0.7, 0.8 and
0.9), the variances of the normal are function of p and ν. In fact:
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σ2
1 =

ν

ν − 2

(
1−

√
1− p

p

2

ν − 4

)

σ2
2 =

ν

ν − 2

(
1 +

√
p

1− p

2

ν − 4

)

The following Table gives the value of the moments as function of p for the two values of
ν used in the simulations: 5 for Panel A and 20 for Panel B.

Moments of the mixtures and of the Student

Panel A: ν = 5
EX2 EX4 EX6

T (ν) 1.66 25 —

pN(0, σ2
1) +

(1− p)N(0, σ2
2)

p = 0.7 1.66 25 657.6
p = 0.8 1.66 25 780.7
p = 0.9 1.66 25 1009.9

Panel B: ν = 20
EX2 EX4 EX6

T (ν) 1.11 4.16 29.76

pN(0, σ2
1) +

(1− p)N(0, σ2
2)

p = 0.7 1.11 4.16 29.09
p = 0.8 1.11 4.16 29.66
p = 0.9 1.11 4.16 30.72

Computations for the Garch example.
In the Garch example the function which relates the observables yt to the variable of interest

εt is given by: h(yt, µ, ω, α̃, β, ν) =
√

ν
ν−2

yt−µ√
vt

where vt is the volatility (which therefore depends

on the parameters and the past-values of yt).
Following (4.10) and (4.11), we obtain

b0
ν(x) =

3ν0x− (ν0 − 2)x3

(ν0 + x2)2
= 4ν0ψ2(x, ν0)− (ν − 2)ψ1(x, ν0),

b0
µ(x) = − 1√

vt

(ν0 + 1)(x2 − ν0)

(ν0 + x2)2
,

b0
θ(x) =

∂vt

∂θ

1

vt

(ν0 + 1)ν0x

(x2 + ν0)2
=

∂vt

∂θ

1

vt

(ν0 + 1)ν0ψ1(x, ν0),

where θ = (ω, α̃, β). At the end, the space spanned by these functions has indeed a dimension
equal to 3. The ψα test-function is by construction orthogonal to b0

µ(x). for symmetry
reasons. ψα should therefore be projected only on the orthogonal space spanned by ψ1

and ψ2 or equivalently the orthogonal of the space spanned by ψ2 and x3

(ν0+x2)2
. Denoting

< A(x), B(x) >qν the expectation of AB with respect to the T (ν) distribution, we can compute
the coefficient of the projection of ψα on the space spanned by ψ1 and ψ2.
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< ψα(x, ν), ψ2(x, ν) >qν = Aν
α+1 − νAν

α+2,

< ψα(x, ν),
x3

(ν + x2)2
>qν = Aν

α − 2νAν
α+1 + ν2Aν

α+2,

< ψ2(x, ν), ψ2(x, ν) >qν = Aν
3 − νAν

4,

< ψ2(x, ν),
x3

(ν + x2)2
>qν = Aν

2 − 2νAν
3 + ν2Aν

4,

<
x3

(ν + x2)2
,

x3

(ν + x2)2
>qν = Aν

1 − 3νAν
2 + 3ν2Aν

3 − ν3Aν
4.

The robust test function ψ⊥α (x, ν) is thus equal to

ψ⊥α (x, ν) = ψα(x, ν)−
[
ψ2(x, ν),

x3

(ν + x2)2

]
P

[
< ψα(x, ν), ψ2(x, ν) >qν

< ψα(x, ν), x3

(ν+x2)2
>qν ,

]

where

P =

[
< ψ2(x, ν), ψ2(x, ν) >qν < ψ2(x, ν), x3

(ν+x2)2
>qν

< ψ2(x, ν), x3

(ν+x2)2
>qν < x3

(ν+x2)2
, x3

(ν+x2)2
>qν

]−1

.

At the end, the moment used for testing the student-GARCH assumption is, following (2.1)
equal to:

m⊥
α (x, ν) =

∂

∂x

(
ψ⊥α (x, ν)

)− x

ν + x2

(
ψ⊥α (x, ν)

)
.
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Table 1: Size of the tests
ν known. ν estimated by the 2nd moment.

in population in sample
Panel A: ν = 5.
T 100 500 1000

m0 4.6 5.0 5.0
m 1

2
4.9 5.0 5.2

m0 5.1 5.1 5.2
m2 5.2 5.0 5.0
m3 5.2 4.9 5.2
m4 5.0 4.9 5.2
mj 4.6 5.1 4.9
KS 4.9 5.0 4.8
m⊥

0 5.1 5.0 5.1
m⊥

1
2

5.1 4.9 5.2

m⊥
1 5.1 4.9 5.1

m⊥
2 5.1 4.9 5.1

m⊥
3 5.1 4.9 5.3

m⊥
4 5.1 4.9 5.1

m⊥
j 5.0 4.9 5.0

T 100 500 1000
m0 0.6 0.7 0.9
m 1

2
1.4 1.7 1.8

m1 2.3 2.5 2.6
m2 3.4 3.8 4.0
m3 3.8 4.3 4.7
m4 4.2 4.5 5.0
mj 2.3 2.4 2.4
KS 4.8 4.8 4.6
m⊥

0 5.0 5.0 5.1
m⊥

1
2

5.2 4.9 5.2

m⊥
1 5.1 5.0 5.1

m⊥
2 5.1 5.0 5.1

m⊥
3 5.3 4.9 5.3

m⊥
4 5.1 4.8 5.2

m⊥
j 4.8 5.1 5.0

ST
Bai 1.9 2.5 2.4

SBai 5.2 6.6 5.9

T 100 500 1000

m⊥
0 5.1 5.0 5.1

m⊥
1
2

5.1 5.0 5.2

m⊥
1 5.0 5.0 5.0

m⊥
2 5.0 5.0 5.0

m⊥
3 5.1 5.0 5.1

m⊥
4 5.2 4.9 5.2

m⊥
j 6.0 5.5 5.1

Panel B: ν = 20.
T 100 500 1000

m0 4.8 5.1 5.1
m 1

2
4.9 5.2 5.0

m1 5.0 5.1 4.9
m2 5.1 5.1 4.9
m3 5.1 5.1 4.9
m4 5.0 5.2 5.1
mj 5.2 5.0 5.1
KS 4.3 4.9 4.9
m⊥

0 5.3 5.1 5.0
m⊥

1
2

5.3 5.1 5.0

m⊥
1 5.3 5.1 5.0

m⊥
2 5.3 5.1 5.0

m⊥
3 5.3 5.1 5.0

m⊥
4 5.2 5.1 5.1

m⊥
j 5.0 5.2 5.3

T 100 500 1000
m0 0.0 0.0 0.0
m 1

2
0.0 0.0 0.0

m1 0.3 0.1 0.0
m2 0.8 0.3 0.2
m3 1.2 0.7 0.4
m4 1.7 1.1 0.8
mj 1.9 3.4 3.9
KS 4.1 4.4 4.4
m⊥

0 3.5 4.4 4.7
m⊥

1
2

3.5 4.3 4.7

m⊥
1 3.4 4.3 4.8

m⊥
2 3.4 4.3 4.8

m⊥
3 3.5 4.4 4.7

m⊥
4 3.4 4.2 4.7

m⊥
j 2.5 4.7 5.3

ST
Bai 1.4 2.6 2.3

SBai 3.9 6.8 6.3

T 100 500 1000

m⊥
0 4.9 4.3 3.9

m⊥
1
2

5.0 4.3 3.9

m⊥
1 5.0 4.4 3.9

m⊥
2 5.0 4.4 3.9

m⊥
3 5.1 4.3 3.9

m⊥
4 5.0 4.3 3.9

m⊥
j 6.2 8.4 7.8

Note: The data are i.i.d. from a T(ν) distribution where n = 5 (Panel A) or ν = 20
(Panel B); ν is either assumed known or estimated. The results are based on 10,000
replications. For each sample size, we provide the percentage of rejection at a 5% level.
mα corresponds to the moment test based on the test-function ψα(x, ν), m⊥

α is the
moment robust against parameter uncertainty, KS is the Kolmogorov-Smirnov test.
m⊥

α is obtained either analytically (column denoted “in population”) or empirically
(column denoted “in sample”). The variances are computed theoretically or in the
sample. m⊥

j corresponds to the joint test m⊥
0 − m⊥

1 . SBai is the statistic used by
Bai (2003), ST

Bai is the same statistic that one gets when one excludes 10% higher
absolute values of the empirical process involved in the statistic.

25



Table 2: Power of the tests
Asymetric Mixture of normals

Distribution p = 0.7 p = 0.8 p = 0.9

Panel A: V X = 5
3 .

T 100 500 1000
m⊥

0 42.6 98.0 100.0
m⊥

1
2

42.8 97.8 100.0

m⊥
1 42.4 97.5 100.0

m⊥
2 42.4 97.5 100.0

m⊥
3 42.4 97.6 100.0

m⊥
4 41.9 97.5 100.0

m⊥
j 35.0 95.8 99.9

ST
Bai 29.9 91.8 99.8

SBai 42.9 94.2 99.8

T 100 500 1000
m⊥

0 100.0 100.0 100.0
m⊥

1
2

100.0 100.0 100.0

m⊥
1 100.0 100.0 100.0

m⊥
2 100.0 100.0 100.0

m⊥
3 100.0 100.0 100.0

m⊥
4 100.0 100.0 100.0

m⊥
j 100.0 100.0 100.0

ST
Bai 52.8 100.0 100.0

SBai 81.7 100.0 100.0

T 100 500 1000
m⊥

0 63.4 99.8 100.0
m⊥

1
2

73.0 100.0 100.0

m⊥
1 76.8 100.0 100.0

m⊥
2 76.8 100.0 100.0

m⊥
3 72.4 100.0 100.0

m⊥
4 65.6 100.0 100.0

m⊥
j 73.3 100.0 100.0

ST
Bai 6.6 48.0 84.1

SBai 28.0 85.7 98.6

T 100 500 1000
m⊥

0 7.0 8.8 10.0
m⊥

1
2

7.8 17.4 27.4

m⊥
1 8.7 23.4 38.9

m⊥
2 8.7 23.4 38.9

m⊥
3 7.9 18.5 29.5

m⊥
4 7.3 13.8 20.9

m⊥
j 19.0 76.8 97.8

ST
Bai 2.0 3.1 4.4

SBai 9.2 22.7 33.4

Panel B: V X = 20
18 .

T 100 500 1000
m⊥

0 9.8 23.5 38.2
m⊥

1
2

9.5 24.9 42.0

m⊥
1 9.4 25.6 43.9

m⊥
2 9.4 25.6 43.9

m⊥
3 9.5 24.3 40.6

m⊥
4 9.6 22.6 36.0

m⊥
j 14.5 51.6 85.5

ST
Bai 46.5 99.6 100.0

SBai 69.1 100.0 100.0

T 100 500 1000
m⊥

0 4.9 4.2 4.2
m⊥

1
2

5.0 4.3 4.2

m⊥
1 5.0 4.3 4.3

m⊥
2 5.0 4.3 4.3

m⊥
3 5.0 4.2 4.2

m⊥
4 5.0 4.3 4.2

m⊥
j 6.2 8.1 6.8

ST
Bai 1.7 2.3 2.5

SBai 4.3 6.6 6.5

T 100 500 1000
m⊥

0 5.0 4.6 5.1
m⊥

1
2

5.1 4.6 5.1

m⊥
1 5.1 4.6 5.1

m⊥
2 5.1 4.6 5.1

m⊥
3 5.1 4.6 5.1

m⊥
4 5.1 4.6 5.1

m⊥
j 6.0 6.6 6.4

ST
Bai 1.4 2.2 2.2

SBai 3.7 6.4 5.9

T 100 500 1000
m⊥

0 5.3 5.2 6.0
m⊥

1
2

5.4 5.2 6.0

m⊥
1 5.4 5.2 6.0

m⊥
2 5.4 5.2 6.0

m⊥
3 5.3 5.2 6.0

m⊥
4 5.3 5.2 6.1

m⊥
j 6.7 7.5 7.1

ST
Bai 1.6 2.2 2.5

SBai 4.0 6.0 6.5

Note: The data are i.i.d. from a χ2(7) distribution standardized in order to have a zero mean and
a variance equal to the one of a T(ν) with ν = 5 (Panel A) or ν = 20 (Panel B). The data are also
drawn from a mixture of two normal variables with weights p and 1− p where p equals 0.7, or 0.8,
or 0.9. The standard deviations of the normal distributions are computed in order to match the
second and fourth moments of a T(ν) with ν = 5 (Panel A) or ν = 20 (Panel B). ν is estimated
by the second moment of xt. The results are based on 10,000 replications. For each sample size,
we provide the percentage of rejection at a 5% level. mα, m⊥

α , m⊥
j , ST

Bai and SBai are defined in
Table 1. The projections and the variances are computed in sample.
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Table 3: Size and Power under serial correlation
ν = 5 ν = 20

ρ = 0.4 ρ = 0.9 ρ = 0.4 ρ = 0.9

Size properties

T 100 500 1000

m⊥
0 4.8 5.2 5.3

m⊥
1
2

4.8 5.4 5.1

m⊥
1 4.8 5.5 5.2

m⊥
2 4.8 5.5 5.2

m⊥
3 4.9 5.3 5.2

m⊥
4 4.9 5.2 5.3

m⊥
j 5.7 5.4 5.5

T 100 500 1000

m⊥
0 5.9 8.4 8.5

m⊥
1
2

6.6 9.1 9.0

m⊥
1 6.8 9.2 9.1

m⊥
2 6.8 9.2 9.1

m⊥
3 6.7 9.1 9.0

m⊥
4 6.6 8.7 8.8

m⊥
j 5.6 8.0 7.9

T 100 500 1000

m⊥
0 3.2 5.3 5.2

m⊥
1
2

3.3 5.4 5.3

m⊥
1 3.4 5.5 5.3

m⊥
2 3.4 5.5 5.3

m⊥
3 3.4 5.4 5.3

m⊥
4 3.3 5.3 5.2

m⊥
j 4.8 6.7 6.3

T 100 500 1000

m⊥
0 4.5 4.0 4.7

m⊥
1
2

4.9 4.1 4.7

m⊥
1 5.0 4.1 4.7

m⊥
2 5.0 4.1 4.7

m⊥
3 5.0 4.2 4.8

m⊥
4 5.1 4.2 4.9

m⊥
j 2.8 4.5 4.9

Power against mixture of normals p = 0.7.

T 100 500 1000

m⊥
0 79.9 100.0 100.0

m⊥
1
2

75.4 100.0 100.0

m⊥
1 73.0 100.0 100.0

m⊥
2 73.0 100.0 100.0

m⊥
3 73.9 100.0 100.0

m⊥
4 73.2 100.0 100.0

m⊥
j 67.9 100.0 100.0

T 100 500 1000

m⊥
0 7.2 7.4 6.1

m⊥
1
2

22.1 72.3 94.3

m⊥
1 38.2 93.2 99.8

m⊥
2 38.2 93.2 99.8

m⊥
3 33.5 86.8 98.9

m⊥
4 28.8 77.2 96.2

m⊥
j 55.0 100.0 100.0

T 100 500 1000

m⊥
0 9.2 33.5 58.9

m⊥
1
2

10.4 36.6 63.0

m⊥
1 10.9 38.1 64.5

m⊥
2 10.9 38.1 64.5

m⊥
3 10.5 36.6 62.9

m⊥
4 9.9 34.4 59.7

m⊥
j 11.6 41.8 68.8

T 100 500 1000

m⊥
0 12.4 21.9 32.5

m⊥
1
2

51.3 99.0 100.0

m⊥
1 72.7 100.0 100.0

m⊥
2 72.7 100.0 100.0

m⊥
3 62.9 99.7 100.0

m⊥
4 52.1 98.8 100.0

m⊥
j 91.6 100.0 100.0

Power against mixture of normals p = 0.9.

T 100 500 1000

m⊥
0 8.0 24.1 41.9

m⊥
1
2

8.4 22.1 37.9

m⊥
1 8.2 20.8 35.4

m⊥
2 8.2 20.8 35.4

m⊥
3 8.5 21.3 36.4

m⊥
4 8.5 21.1 35.8

m⊥
j 7.7 19.7 35.4

T 100 500 1000

m⊥
0 10.1 9.4 9.4

m⊥
1
2

41.3 96.5 100.0

m⊥
1 67.6 99.9 100.0

m⊥
2 67.6 99.9 100.0

m⊥
3 57.9 99.5 100.0

m⊥
4 47.1 97.8 100.0

m⊥
j 89.0 100.0 100.0

T 100 500 1000

m⊥
0 10.6 40.1 67.6

m⊥
1
2

11.7 43.3 70.9

m⊥
1 12.3 44.5 72.1

m⊥
2 12.3 44.5 72.1

m⊥
3 11.8 43.1 70.6

m⊥
4 11.2 40.6 67.8

m⊥
j 13.1 46.6 73.0

T 100 500 1000

m⊥
0 12.8 21.2 32.1

m⊥
1
2

50.2 99.2 100.0

m⊥
1 71.7 100.0 100.0

m⊥
2 71.7 100.0 100.0

m⊥
3 62.5 99.9 100.0

m⊥
4 51.3 99.0 100.0

m⊥
j 91.8 100.0 100.0

Note: xt is given by xt = ut/
√

st where the variables ut and st are independent, the distribution
of ut is N (0, 1) while st follows a gamma (ν/2,2/ν,0) distribution, where ν equals 5 or 20.
Consequently, the unconditional distribution of xt is T(ν); st is i.i.d. while the conditional
distribution of ut given its past is N (ρut−1, 1 − ρ2) where ρ equals 0.4 or 0.9. For the power
properties, xt = ρxt−1 + εt where εt follows a mixture of two normal variables with weights p and
1 − p for p equals 0.7 or 0.9. The standard deviations of the two normal variables are computed
such that the second and fourth moment of a mixture matches those of a T(ν) where ν equals 5 or
20. We test that the stationary distribution of xt is a T(ν). ν is estimated by the second moment
of xt. We take into account the serial correlation by estimating the variance matrix through a
HAC procedure (Andrews (1991)). The results are based on 10,000 replications. For each sample
size, we provide the percentage of rejection at a 5% level. The notations m⊥

α and m⊥
j are defined

in Table 1.
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Table 4: Size and Power with GARCH(1,1) DGP
Size Power against mixture of normals

p = 0.7 p = 0.9

Panel A: ν = 5.

T 100 500 1000

m⊥
0 6.8 7.3 6.2

m⊥
1
2

6.5 6.9 6.2

m⊥
1 — — —

m⊥
2 — — —

m⊥
3 5.8 6.1 5.8

m⊥
4 5.6 6.1 5.8

m⊥
j 4.9 8.3 7.1

ST
Bai 2.0 4.9 6.2

SBai 2.8 8.3 11.0

T 100 500 1000

m⊥
0 92.4 100.0 100.0

m⊥
1
2

90.9 100.0 100.0

m⊥
1 — — —

m⊥
2 — — —

m⊥
3 86.0 100.0 100.0

m⊥
4 84.4 100.0 100.0

m⊥
j 90.7 100.0 100.0

ST
Bai 45.5 98.9 100.0

SBai 48.3 99.2 100.0

T 100 500 1000

m⊥
0 6.8 28.8 60.9

m⊥
1
2

6.8 30.5 62.5

m⊥
1 — — —

m⊥
2 — — —

m⊥
3 6.4 23.1 45.9

m⊥
4 6.3 19.5 38.3

m⊥
j 6.5 22.8 50.6

ST
Bai 4.7 13.1 18.1

SBai 5.9 17.2 23.8

Panel B: ν = 20.

T 100 500 1000

m⊥
0 2.4 5.2 5.9

m⊥
1
2

2.5 5.2 5.8

m⊥
1 — — —

m⊥
2 — — —

m⊥
3 2.5 5.0 5.5

m⊥
4 2.6 5.0 5.2

m⊥
j 1.6 2.7 3.9

ST
Bai 1.4 2.9 2.7

SBai 2.2 5.3 5.3

T 100 500 1000

m⊥
0 2.3 5.0 5.9

m⊥
1
2

2.3 4.9 5.8

m⊥
1 — — —

m⊥
2 — — —

m⊥
3 2.4 4.8 5.5

m⊥
4 2.4 4.7 5.3

m⊥
j 1.4 2.9 4.4

ST
Bai 1.5 2.6 2.8

SBai 2.3 5.0 5.4

T 100 500 1000

m⊥
0 2.5 4.0 5.0

m⊥
1
2

2.5 4.0 5.1

m⊥
1 — — —

m⊥
2 — — —

m⊥
3 2.7 4.0 5.1

m⊥
4 2.7 3.9 5.2

m⊥
j 1.8 2.2 3.2

ST
Bai 1.6 3.0 3.1

SBai 2.2 5.2 5.4

Note: xt is a GARCH(1,1) process : xt = µ+
√

vtut with vt = ω + α̃(xt−µ)2 +βvt−1

where µ = 0, ω = 0.2, α̃ = 0.1, and β = 0.8. For the size properties, ut follows a T(ν)
up to a scale parameter with ν equals 5 or 20 such that V ar[ut] = 1. For the power
properties, ut follows, up to a scale parameter, a mixture of two normal with weights
p and 1 − p where p equals 0.7 or 0.9. The standard deviations of the two normal
variables are computed in order to match the second and fourth moments of a T(ν)
where ν = 5, 20. The scale parameter guarantees that V ar[ut] = 1. µ, ω, α̃ and β
are estimated by a Gaussian QML method. ν is estimated using the fourth moment
of the fitted residual ût. We test that ut

√
ν

ν−2 follows a T(ν). The results are based
on 10,000 replications. For each sample size, we provide the percentage of rejection
at a 5% level. The notations mα, m⊥

α , m⊥
j , ST

Bai and SBai are defined in Table 1.
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Table 5: Power of the tests with GARCH(1,1) DGP
against asymmetric innovations.

T 100 500 1000

m⊥
0 12.3 78.0 98.5

m⊥
1
2

12.8 79.8 98.8

m⊥
1 — — —

m⊥
2 — — —

m⊥
3 13.8 82.0 98.9

m⊥
4 13.6 80.6 98.5

m⊥
5 13.3 78.5 97.6

m⊥
10 11.3 62.2 85.1

m⊥
20 9.0 35.8 49.8

m⊥
j 11.5 78.8 98.9

ST
Bai 7.2 81.5 99.7

SBai 8.8 87.4 99.9
Note: xt is a GARCH(1,1) process : xt = µ +

√
vtut with vt =

ω+α̃(xt−µ)2+βvt−1, where µ = 0, ω = 0.2, α̃ = 0.1, and β = 0.8.
ut follows a χ2(7) up to a scale parameter, which guarantees that
V [ut] = 1. µ, ω, α̃, and β are estimated by a Gaussian QML
method. ν is estimated using the fourth moment of fitted residuals
ût. We test that the distribution of ut

√
ν

ν−2 is T(ν). The results
are based on 10,000 replications. For each sample size, we provide
the percentage of rejection at a 5% level. The notations mα, m⊥

α ,
m⊥

j , ST
Bai and SBai are defined in Table 1.

Table 6: Testing the Student distributional assumption
of fitted residuals for a GARCH(1,1) model

UK-US$ FF-US$ SF-US$ Yen-US$
ν̂ 9.61 9.56 6.64 5.54
m⊥

0 0.09754 (0.75) 1.25273 (0.26) 0.00157 (0.97) 0.00323 (0.95)
m⊥

1
2

0.12138 (0.73) 1.09922 (0.29) 0.01311 (0.91) 0.01353 (0.91)

m⊥
3 0.22614 (0.63) 0.70084 (0.40) 0.45082 (0.50) 0.21660 (0.64)

m⊥
4 0.23585 (0.63) 0.66540 (0.41) 0.71038 (0.40) 0.24267 (0.62)

m⊥
j 0.40240 (0.82) 1.77873 (0.41) 1.81173 (0.40) 1.11926 (0.57)

ST
Bai 0.69467 (—) 1.19929 (—) 2.19812 (—) 2.27336 (—)

SBai 1.03593 (—) 1.26185 (—) 2.31280 (—) 3.02817 (—)
Note: We tested the Student assumption of the standardized residuals. The volatility
model is a GARCH(1,1) and is estimated by the Gaussian QML method. We reported
the test statistics and their corresponding p-values in parentheses. The data are daily
exchange rate returns used by Harvey, Ruiz and Shephard (1994) and Kim, Shephard
and Chib (1998). The notations mα, m⊥

α , m⊥
j , ST

Bai and SBai are defined in Table
1. The critical values of the Bai-statistics are respectively: 1.94 (1%), 2.22 (5%) and
2.80 (10%).
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