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Equilibrium Asset Pricing And Portfolio Choice

Under Asymmetric Information

Abstract

We analyze theoretically and empirically the implications of information asymmetry for equilib-

rium asset pricing and portfolio choice. In our partially revealing dynamic rational expectations

equilibrium, portfolio separation fails and indexing is not optimal. We show how uninformed in-

vestors should structure their portfolios, using the information contained in prices to cope with

winner’s curse problems. We implement empirically this price–contingent portfolio strategy. Con-

sistent with our theory, the strategy outperforms economically and statistically the index. While

momentum can arise in the model, in the data the momentum strategy does not outperform the

price–contingent strategy, as predicted by the theory.
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1 Introduction

The theory of financial markets under homogeneous information has generated a rich body of

predictions, extensively used in the financial industry, such as the optimality of indexing, the

restrictions imposed by absence of arbitrage and equilibrium–based pricing relations. In contrast,

the theory of capital markets under asymmetric information has not been used much to guide asset

pricing and portfolio allocation decisions.

The goal of the present paper is to derive some of the implications of partially revealing rational

expectations equilibria for asset pricing and asset allocation, and to test their empirical relevance.

We analyze an overlapping generations multi–asset economy, in the line of the seminal paper of

Admati (1985) and its extension to the dynamic case by Watanabe (2005). Agents live for one

period and trade in the market for N risky securities, generating cash flows at each period. Some

investors have private information about the future cash flows, while others are uninformed. Rev-

elation is only partial because the demand of informed investors reflects their random endowment

shocks, along with their signals. Equilibrium prices are identical to those which would obtain in a

representative agent economy where i) the market portfolio would be equal to the supply of secu-

rities augmented by the aggregate risky endowment shock and ii) the beliefs of the representative

agent would be a weighted average of the informed and uninformed agents’ beliefs. This pricing

relation cannot be directly relied upon in the econometrics since the beliefs of the representative

agent are not observable by the econometrician. Hence, to test our model, we instead focus on

portfolio choice.

We show that portfolio separation does not obtain, as investors hold different portfolios, re-

flecting their different information sets. Compared to the portfolio of aggregate risks, uninformed

agents invest more in assets about which they are more optimistic than the informed agents. To

cope with this winner’s curse problem, the uninformed agents optimally extract information from
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prices. Thus they hold the optimal price–contingent portfolio, i.e., the portfolio which is mean–

variance efficient conditional upon the information revealed by prices. This enables uninformed

agents without endowment shocks to outperform the index. The agents with endowment shocks

are willing to pay a premium to hedge their risk. Outperformance reflects the reward to providing

insurance against this risk, while optimally extracting information from prices.

The information set of the econometrician is comparable to that of uninformed agents with no

endowment shocks. To confront our model to the data, we empirically implement the optimal price–

contingent strategy of the uninformed agents. We test the key implication from our theory that

this portfolio outperforms the index. We use monthly U.S. stock data over the period 1927-2000.

We extract the information contained in prices by projecting returns onto (relative) prices. We use

the corresponding expected returns and variance–covariance matrix to construct the conditional

mean–variance optimal portfolio of the uninformed agent. We then compare the performance of this

portfolio, as measured by its Sharpe ratio, to that of the value–weighted CRSP index. We find that

the optimal price–contingent portfolio outperforms the index, both economically and statistically.

The optimal price–contingent portfolio allocation strategy we analyze is entirely based on ex–

ante information. Portfolio decisions made at the beginning of month t rely on price and return

data prior to month t. Thus, we only use information available to market participants when they

chose their portfolios. Hence, our result that the optimal price–contingent allocation strategy

outperforms the index differs from the findings of Fama and French (1996). They show that, based

on return means, variances and covariances estimated as empirical moments over a period including

month t as well as later months, an optimal combination of their “factor portfolios” outperforms

the index. However, Cooper, Gutierrez, and Marcum (2005) show that, if one estimates these

empirical moments using only information prior to month t, the outperformance of the value or

size strategy becomes insignificant.

To construct our price-contingent investment portfolio we use relative prices. The latter are
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correlated with past returns, on which momentum strategies rely.1 We show that momentum can

arise as a feature of the rational expectations equilibrium price process. The performance of mo-

mentum strategies would lead to a rejection of this theory only if it exceeded the performance of our

price–contingent strategy. Empirically, we find that the momentum strategy does not outperform

the price-contingent strategy. In addition, the correlation structure on which our price–contingent

strategy is based is more complex than the positive serial correlation corresponding to momentum.

The correlations we empirically estimate and use in our price–contingent strategies have variable

signs. This is consistent with our theoretical framework. Similarly, in the multi–asset rational ex-

pectations equilibrium analyzed by Admati (1985), the correlation between prices and subsequent

returns can be positive, negative or insignificant.

To illustrate our theoretical findings we perform a numerical analysis and simulation of the

equilibrium price dynamics. This exercise highlights the implementability of our noisy rational

expectations analytic framework and illustrates how momentum effects can arise in equilibrium.

Our noisy rational expectations model is directly in the line of the insightful theoretical anal-

ysis of Watanabe (2005), who extends the overlapping–generations model of Spiegel (1998) to the

asymmetric information case. While the structure of our model is similar to his, our focus dif-

fers. Watanabe (2005) analyzes the effect of asymmetric information and supply shocks on return

volatility and trading volume. In particular, he shows that trading volume has a hump–shaped

relation with information precision and is positively correlated with absolute price changes. He also

shows how private information accuracy can increase volatility. We don’t focus on trading volume

or volatility, and instead tackle other issues, e.g., is there a CAPM return relation and is indexing

optimal under information asymmetry? Moreover, while the analysis of Watanabe (2005) is theo-

retical, an important contribution of our paper is to confront to the data the empirical implications

of the theory.

Our model is also related to the theoretical analysis of Brennan and Cao (1997). In their finite
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horizon model they obtain that the optimal demand of each agent at each point in time is the same

as if there were no further trading opportunities. Thus, given past information, the equilibrium at

each point in time has the same structure as in the one-period case analyzed by Admati (1985).

In contrast, in our infinite horizon model the equilibrium at each point in time differs from the

equilibrium of the one-period model. Expectations about future prices influence the decisions of

the traders and hence the current price.2 Thus there are two rational expectations loops: On the

one hand, agents have rational expectations about the link between the current signals and the

current price, as in Grossman and Stiglitz (1980), Admati (1985) and Brennan and Cao (1997). On

the other hand, there is also a link between the current price and the next period’s price function,

as in the seminal analysis of Lucas (1978).3 These two rational expectations loops are also at play

in Wang (1993). The main differences between our analysis and his are that we analyze the multi–

asset case and we consider an overlapping generations model. Also, our model is designed to set

the stage for our econometric analysis, while his analysis is purely theoretical. Several papers have

analyzed empirical applications of the noisy rational expectations framework. Cho and Krishnan

(2000) estimate the primitive parameters of the Hellwig (1980) single risky asset model. Brennan

and Cao (1997) and Grundy and Kim (2002) study the implications of partially revealing rational

expectations equilibria for international investment flows and volatility, respectively. Our analysis

differs from these because we focus on the empirical implications of the theory for the performance

of various portfolio strategies.

The next section presents our theoretical model. Our econometric approach is discussed in

Section 3. The empirical results are in Section 4. Section 5 concludes. Proofs are in the Appendix.
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2 Multi–Asset Dynamic Rational Expectations Equilibrium

2.1 Assumptions

2.1.1 The sequence of events

Consider the following overlapping generations model. Agents participate in the market during two

consecutive periods. They have CARA utilities with risk aversion parameter γ. There are N risky

assets, each generating a stream of cash flows at time t = 0, 1, ..,∞.

In period t: Generation t enters the market at the beginning of the period. There is a mass

one continuum of competitive agents a ∈ [0, 1]. Each agent receives cash K at this point in time.

Each agent a will also receive a state–contingent endowment eta at time t+ 1, which includes labor

income and revenue from other assets than stocks. Furthermore, agent a observes signal yta, about

next period’s payoff. After privately observing signals, agents trade qta at price pt. Market clearing

requires that the new generation (t) buy the entire supply of tradeable assets (denoted x) from the

previous generation (t− 1).

In period t+1: At the beginning of the period, the vector of asset payoffs (f t+1) and the

state contingent endowments of the consumption good are realized and distributed. Cash flows and

aggregate endowments are publicly observed. Then, generation t sells its holdings at price pt+1.

Before leaving the market, they consume their wealth:

W t
a = qta

′(f t+1 + pt+1) + (K − qta
′
pta)(1 + r) + eta,

where r is the exogenous risk-free rate.

From the perspective of agent a at time t, eta and f t+1 + pt+1are two random variables. To

analyze the distribution of the final wealth of the agent at time t + 1 we need to consider the

joint distribution of these two random variables. To do this, it is convenient to project eta onto
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f t+1 + pt+1:

eta = (zta)
′
(f t+1 + pt+1) + ηt+1

a ,

where E(ηt+1
a |f t+1 + pt+1) = 0. This equation is simply a statistical representation, and does not

rely on any economic assumption about prices, cash flows and endowments.4 Yet, it can be given an

economic interpretation. The regression coefficient, zta, measures the sensitivity of the endowment

shocks to the risky assets’ returns. ηt+1
a corresponds to the component of the shock that is not

spanned by the risky assets. When receiving her endowment at time t, agent a does not know what

the future prices and cash flows or the noise term (ηt+1
a ) will be. On the other hand, she knows the

probabilistic structure of her random endowment and observes zta at time t. As will be apparent

below, because we assume it is uncorrelated with the other random variables in the model, ηt+1
a

does not affect the decisions of the agents. In contrast, zta does. Hence, we will hereafter (somewhat

loosely) refer to zta as the endowment shock of the agent.5 Summarizing the above discussions, the

sequence of events is depicted in Figure 1.

2.1.2 Informed and uninformed agents

A fraction λ of the agents has observed a private signal about the payoff of the asset at the next

period. The other agents are uninformed. In general, all agents could receive endowment shocks. To

reduce the notational and computational burden, we consider a simpler case. We assume that only

the informed agents have endowment shocks, i.e., for the uninformed zta = 0. Random endowment

shocks for the informed agents are needed to prevent prices from being fully revealing. To further

simplify the analysis we assume the informed agents all observe the same signal: yt = f t+1 + εt.

One should bear in mind that these restrictions are made only for the sake of simplicity. We

checked that in a more complicated model, where uninformed agents could receive endowment

shocks, qualitatively similar results obtain.6 The econometric implications of our analysis that we

examine in the next sections, are not affected by these simplifying assumptions.
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One advantage of the theoretical framework we develop here is that it is in line with the empirical

approach taken in the following sections. The uninformed agents in the theoretical model solve the

same problem as the econometrician in the empirical analysis in the next section.

The aggregate endowment shock at time t is zt. The endowment shock of the informed agent

indexed by a is: zta = zt+ζt
a

λ , where the ζta are i.i.d. across agents. The law of large numbers writes

as:

∫
a∈S

ztada = zt,

where S is the set of informed agents. We assume zt follows an autoregressive process:

zt = ρzz
t−1 + εtz, (1)

where εz is white noise, with variance σ2
z , and ρz is a coefficient matrix with eigenvalues strictly

less than one, so that z is stationary.

Since all the informed agents observe the same signal, they don’t need to filter out information

from the price. Hence they don’t need to form beliefs about the shocks of the others. The un-

informed agents, in contrast, need to infer information from prices. In doing this, however, they

don’t need to be concerned about the distributions of the individual shocks. In equilibrium, only

the aggregate shock (zt) matters for them. Finally note that our assumption that uninformed

agents have no endowment shock simplifies the analysis, since it rules out inferences about zt from

their own shock.

We assume the cash flows generated by the risky assets at each period follow an autoregressive

process:

f t+1 = µ+ ρff
t + εtf , (2)

where εf is white noise with variance σ2
f , µ is a non–negative constant, and ρf is such that f is

stationary.
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The private signals are equal to the realization of the cash flow plus a noise term:

yt = f t+1 + εt.

The variance of εt is denoted by σ2. All the random variables are assumed to be jointly normal.

2.2 Analysis

2.2.1 Prices and demand

We look for a stationary linear rational expectations price function:

pt = Af t +Byt − Czt −Dzt−1 +G. (3)

Imposing this stationary form, where the coefficients are time independent, rules out bubbles (which

are non stationary). The price function in equation (3) is similar to the equilibrium price function

in equation (3) in Admati (1985). The main difference is that in Admati (1985) the equilibrium

price is a function of only two variables, the final cash flow and the current supply shock, while in

the present model it is also a function of the prior cash flow and the prior shock. In our dynamic

analysis, it is necessary to include these two additional variables to summarize the past of the

process. Note however that, in the simple environment we consider, it is enough to include only

the prior cash flow and the prior shock. Previous realizations of the variables don’t enter the

equilibrium price function. This differs from Brennan and Cao (1997) and Wang (1993) where

the entire past history entered the price function. Our price equation is similar to that obtained

by Watanabe (2005), up to some minor differences reflecting alternative modeling choices. For

example, like Admati (1985), Watanabe (2005) assumes all agents observe private signals with

independent errors. By the law of large numbers, their errors integrate out. Hence, in his analysis,

the price is a function of the realized cash flow. This differs from our analysis where there is only

one private signal.
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The final wealth of agent a can be rewritten as:

W t
a = (qta + zta)

′(f t+1 + pt+1) + (K − qta
′
pta)(1 + r) + ηt+1

a .

Because of linearity, conditionally on the price, all the random variables are jointly normal. Thus,

with CARA utilities, the program of agent a at time t is:

Maxqt
a
E[W t

a|Ita]−
γ

2
V ar[W t

a|Ita],

where Ita is the information set of agent a at time t. That is:

Maxqt
a
E[(qta+z

t
a)
′(f t+1+pt+1)−qta

′
pt(1+r)+ηt+1

a |Ita]−
γ

2
{V ar[(qta+zta)′(f t+1+pt+1)|Ita]+V ar(ηt+1

a )}.

(4)

All expectations and variances are taken conditionally upon the information set of the agent at

the beginning of period t, including in particular the publicly observed variables: f t and zt−1. For

brevity, we hereafter omit to writing these variables explicitly in the conditioning set. The optimal

demand of the informed agents is:

1
γ

(
V ar[f t+1 + pt+1|yt]

)−1 {
E[f t+1 + pt+1|yt]− pt(1 + r)

}
− zta.

V ar[f t+1+pt+1|yt] is constant over time because of linearity and stationarity of the pricing function

and joint normality of the variables. The inverse of this matrix is τy, the precision of the information

of the informed agents. The demand of the informed agents is written as:

τy
γ

{
E[f t+1 + pt+1|yt]− pt(1 + r)

}
− zta.

This demand reflects the endowment shock zta, as agents seek to trade away from their undiversified

endowments, to hold more balanced portfolios. For example, consider an agent working for Exxon,

whose income and wealth are exposed to the risk of this firm and, more generally, to the oil industry.

This agent will form his optimal portfolio taking into account his exposure to this firm and industry.
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The demand of the uninformed agent is:

(
γV ar[f t+1 + pt+1|pt]

)−1 {
E[f t+1 + pt+1|pt]− pt(1 + r)

}
.

That is:

τp
γ

{
E[f t+1 + pt+1|pt]− pt(1 + r)

}
, (5)

where τp denotes the precision of the information set of the uninformed agents. Importantly, this

information set includes the current price. Equation (5) shows that, as discussed in Grossman and

Stiglitz (1980), the demand of the uninformed agent is contingent on prices, not only because of

the standard effect of price on demand, but also because the expectation of future cash flows and

their variance are conditional on prices. Hereafter, we refer to this demand as the “optimal price

contingent strategy.”

2.2.2 Equilibrium

Market clearing implies:

λτy[E[f t+1 + pt+1|yt]− pt(1 + r)] + (1− λ)τp[E[f t+1 + pt+1|pt]− pt(1 + r)] = γ(x+ zt).

This yields the market–clearing price:

pt =
ωE[f t+1 + pt+1|yt] + (I − ω)E[f t+1 + pt+1|pt]− γ(λτy + (1− λ)τp)−1(x+ zt)

1 + r
, (6)

where the constant ω is such that:

ω = (λτy + (1− λ)τp)−1λτy,

and I is the identity matrix. Defining the average expectation as:

Em[f t+1 + pt+1] = ωE[f t+1 + pt+1|yt] + (1− ω)E[f t+1 + pt+1|pt],
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and the average variance–covariance matrix as:

Ωm = (λτy + (1− λ)τp)−1,

one obtains the pricing relation stated in the following proposition.

Proposition 1: If there exists a stationary linear rational expectations equilibrium, prices are

such that:

pt =
1

1 + r
{Em[f t+1 + pt+1]− γΩm(x+ zt)}. (7)

Equation (7) essentially tells us that the portfolio of aggregate risk, x + zt, is mean-variance

optimal for the average expectations vector: Em[f t+1 + pt+1] and variance–covariance matrix: Ωm.

Otherwise stated, equilibrium prices are identical to those which would obtain in a homogeneous

information–representative agent economy, where the market portfolio would be equal to the supply

of securities (x) augmented by the aggregate risky endowment (zt) and the representative agent

would have the average beliefs Em and Ωm. A CAPM return-covariance relationship holds, from

the perspective of the representative agent, relative to this augmented portfolio (x + zt), which

differs from the index (x). After standard manipulations, equation (7) yields the classic CAPM

equilibrium return equation, for our representative agent economy:

Em(rt+1
i )− r = βti(E

m(rt+1
m )− r),

where rt+1
i = (pt+1

i +f t+1
i −pti)/pti is the return on asset i, rt+1

m =
∑N

j=1(xi+ztj)r
t+1
j is the return on

the portfolio of aggregate risks, expectations are taken from the point of view of the representative

investor’s average belief, and βti is defined as:

βti =
Cov(rt+1

i , rt+1
m |zt)

V ar(rt+1
m |zt)

.

At time t, the representative agent knows zt. But through time zt follows a stochastic process.

Hence betas are stochastically evolving.
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This pricing relation cannot be directly relied upon in the econometrics to estimate a represen-

tative agent model, however. Indeed, the beliefs of the representative agent are not observable by

the econometrician. Nor is the portfolio of aggregate risk (x+ z) observable, a point that is related

to the Roll (1977) Critique.7 Thus we take another route to confront our model to the data, as

explained in the next section.

The aggregation result we obtain in our dynamic rational expectation equilibrium context is

related to previous results obtained in static models, but it also differs from them. First, the pricing

equation (7) differs from that stated in Corollary 3.5 in Admati (1985). Admati (1985) characterizes

the ex–ante expected price, computed by averaging across all realizations of the random variables.

She shows that an aggregate CAPM obtains on average across possible realizations of the random

variables. This contrasts with the equilibrium relationship (7) obtained in the present paper, which

holds in every possible state of the world. Second, as in Mayers (1974), investor’s risk exposure and

hence market pricing are affected by the non-tradeable endowment shocks. Third, our aggregation

result with heterogeneous beliefs reflects in part our assumption that agents have exponential

utility. This is in line with the Gorman aggregation results obtained by Wilson (1968) (see also

Huang and Litzenberger, 1988, p. 146-148) and Lintner (1969). In these analyses, however, beliefs

are exogenous, and inconsistent with rational expectations. In ours, aggregation obtains with

endogenous beliefs and rational expectations. Fourth, DeMarzo and Skiadas (1998) also offer a

theoretical analysis of a CAPM with heterogeneous information, but our model differs from theirs.

On the one hand they allow for a more general class of utility functions than we do. On the

other hand, a key ingredient in our model is that the aggregate portfolio of risks is unknown

by the uninformed agents, which prevents prices from being fully informative. In contrast, the

CAPM result obtained by DeMarzo and Skiadas (1998) reflects their assumption that the aggregate

supply of each of the risky assets is common knowledge for all the agents.8 Finally, O’Hara (2003)
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also focuses on the impact of asymmetric information on portfolio choice and asset pricing in the

Grossman and Stiglitz framework. Our dynamic analysis differs from the static model of O’Hara

(2003).

Simple manipulations of the market–clearing condition (6) yield the following result:

Proposition 2: If there exists a stationary linear rational expectations equilibrium, the demand

of the uninformed agent is:

(x+ zt) +
λ

γ
[τp
{
E[f t+1 + pt+1|pt]− pt(1 + r)

}
− τy

{
E[f t+1 + pt+1|yt]− pt(1 + r)

}
].

The demand of the uninformed agent is equal to the portfolio of aggregate risk, x + zt, which

she would hold if information was homogeneous, minus a correction term. The latter underscores

the winner’s curse problem faced by the uninformed agent. She invests more than the aggregate

portfolio in asset i when she is more optimistic about this asset than the informed agent, while she

invests less otherwise. Hence, portfolio separation does not obtain in our asymmetric information

environment. Different agents hold different portfolios, to the extent that they have different

information sets.9

In contrast with the homogeneous information case, the uninformed agent does not buy the

portfolio of aggregate risk (x + z). She does not do so intentionally, because she does not know

this portfolio. However, she invests optimally given the information she observes, which includes

in particular the current prices. Thus the portfolio she holds outperforms the index. One might

wonder how uninformed agents can obtain such superior performance. It arises because the agents

with endowment shocks are willing to pay a premium to hedge their risk. Thus, the performance

obtained by the uninformed agents reflects the price other agents are willing to pay for insurance.

Since the uninformed agent does not know the structure of the portfolio of aggregate risk, her

deviation from this portfolio can be interpreted as estimation risk. In the past (e.g., Kandel and

Stambaugh [1996]), estimation risk has been studied under homogeneous information, in which
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case it only adds to variance. In our asymmetric information setting, estimation risk also yields a

winner’s curse. Consequently, our analysis introduces a new dimension to the nature of estimation

risk.

Computing explicitly the demand functions of the informed and uninformed agents and equating

the price relation obtained from the market–clearing condition with the conjectured price function

(3), we obtain the next proposition:

Proposition 3: There exists a linear stationary rational expectations equilibrium, if there exists

a solution B ,C ,D to the following system:

B = Φ−1(λτy + (1− λ)τp)−1λτy[I − (1 + r)−1ρf ]−1V ar(εtf )V ar(εtf + εt)−1,

C = Φ−1γ(λτy + (1− λ)τp)−1,

D = Φ−1(Cρz +D)ρz + [I − (1 + r)Φ−1][[I − (1 + r)−1ρf ]−1V ar(εtf )B′ + (Cρz +D)V ar(εtz)C
′]

(
BV ar(εtf + εt)B′ + CV ar(εtz)C

′)−1 (Cρz +D),

where Φ, τy and τp are functions of B ,C ,D given by equations (20), (22), and (23) in the Appendix.

The two other parameters of the equilibrium price function A and G are also functions of B ,C

and D given in equations (24) and (28) in the Appendix.

The system of nonlinear equations stated in Proposition 3 is rather complicated. This contrasts

with the elegant closed–form solutions obtained by Admati (1985). The additional complexity

we face here stems from the dynamic nature of the problem. The price at time t reflects the

expectations of the agents about the cash flow and the price at time t + 1. Thus, the rational

expectations loop is more complicated than in the one-period case. In the latter, agents must have

rational expectations about the link between the current price and the current signals. In the

dynamic case, there is also a link between the current price and the next period’s price function.

A similar complexity arises in the dynamic analysis of asset pricing under asymmetric information
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by Wang (1993).10 Watanabe (2005) obtain a slightly closer characterization of equilibrium than

we do. This reflects alternative modeling choices. For example, he assumes dividends and supply

shocks are random walks, which simplifies the computations. Our more complicated structure helps

generating rich dynamics.

2.2.3 Special cases

In special cases, the existence and properties of equilibrium can be analyzed explicitly. First

consider the simplest case, without endowment shocks and without private signals. In this case,

market clearing yields:

pt = (1 + r)−1{E(pt+1 + f t+1)− γτ−1x},

where τ−1 = V ar(εf ). The standard dynamic–CAPM obtains. All agents have the same beliefs

and they all hold the market portfolio, i.e., indexing is optimal. In this case, there exists a unique

stationary linear rational expectations equilibrium, spelled out in the next corollary.11

Corollary 1: When there are no endowment shocks and no private signals, there exists a unique

stationary, linear, rational expectation price function: pt = Af t+G, where: A = ρf [(1+r)I−ρf ]−1

and G = r−1[(I +A)µ− γτ−1x].

The empirical asset pricing literature has documented important stylized facts about the time–

series of stock returns. It has been found that returns were predictable (see, e.g., Cochrane, 1999).

In particular, stocks whose return over the past twelve months is low relative to that of others tend

to underperform, while stocks with recent strong returns tend to outperform. Hence, shorting the

losers and investing the proceeds in recent winners generates high expected returns. This strategy

has become known as the momentum strategy. It has been analyzed in depth by Chan, Jegadeesh

and Lakonishok (1996). These empirical findings have motivated theoretical analyses based on

the assumptions that some investors are irrational. Our framework offers an opportunity to check
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whether momentum and predictability are consistent with equilibrium in a dynamic CAPM where

all agents are rational.12

The time t+ 1 return is:

Rt+1 = pt+1 + f t+1 − pt. (8)

To implement the momentum strategy, we form a portfolio investing in assets proportionally to

their excess return relative to the average across all assets. This leads indeed to buying winners

and selling losers. More precisely, the strategy involves purchasing:

Rti − R̄t

N
, (9)

units of asset i, where Rti is the return on this asset in period t, R̄t is the average return (computed

across assets) for period t, and N is the number of risky assets.

The following corollary provides information about the time series properties of returns and

the profitability of this momentum strategy in the special case of our model where a dynamic

CAPM obtains. For simplicity, we focus on the case where risky assets are ex-ante identical and

independent and ρf = ρ̄fI, where ρ̄f ∈ [0, 1].

Corollary 2: When there are no endowment shocks and no private signals, under our assump-

tions individual return autocorrelations are positive, and the expected return on the momentum

strategy is positive for large N .

In our framework, cash flows f t are positively serially correlated. The corollary states that

equilibrium returns will be positively correlated too. Momentum and predictability arise, yet

pricing is rational and indexing is optimal. As a result, momentum and predictability cannot

be relied upon to outperform the passive strategy of holding the index. Nor do momentum and

predictability suffice to reject CAPM pricing.

Another interesting special case is when there are endowment shocks but no private signal, i.e.
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λ = 0, as analyzed by Spiegel (1998).13 In this case the standard CAPM no longer holds. The

relevant measure of aggregate risk is not the index, but the index augmented by the aggregate

endowment shock. All agents have the same beliefs and share risk equally. As shown by Spiegel

(1998), when equilibrium exists it is generically not unique. Multiplicity arises because of the

circularity involved by the dynamic rational expectations loop: the price function depends upon

the expectation of the price function. To illustrate this assume for simplicity that ρz = 0. Denote

V ar(εz) = σ2
zI and V ar(εf ) = σ2

fI, where σ2
z and σ2

f are scalars. Manipulating the system in

Proposition 3 yields the following result:14

Corollary 3: Assume there are no private signals (λ = 0), endowment shocks are white noise

( ρz = 0) and the risky assets are ex–ante identical and independent. If 1 + r < ρ̄f + 2γσfσz, there

does not exist a linear rational expectation equilibrium. In contrast, if 1 + r > ρ̄f + 2γσfσz, then

there exist 2N solutions to the quadratic matrix equation:

τ−1 = [1 +
ρ̄f

(1 + r)− ρ̄f
]2σ2

fI + [
γ

1 + r
]2σ2

z(τ
−1)′τ−1. (10)

Each of these solutions corresponds to a linear rational expectation equilibrium price function of

the form: pt = Af t − Czt + G, where: A = ρf ((1 + r)I − ρf )−1, C = γ
1+rτ

−1 and G = r−1[(I +

A)µ− γτ−1x].

In equilibrium a variety of return dynamics can arise. Since returns reflect cash flows (f t) and

since the latter are persistent, there is some persistence in returns, which can generate momentum.

On the other hand, returns also include a transient component (zt). This can give rise to mean

reversion. Depending on parameter values, one effect or the other can dominate. Hence, momentum

or reversals can arise in our dynamic rational expectations equilibrium. This is illustrated in the

simulations presented next.
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2.2.4 Numerical analysis

To illustrate quantitatively major aspects of our model, such as equilibrium momentum, the per-

formance of the price–contingent strategy and the effect of variation in the proportion of informed

agents, we now offer a numerical analysis of the dynamic rational expectations equilibrium. This

analysis is cast in the context of the simple case characterized in the next corollary.15

Corollary 4: Consider the case where ρz = µ = 0, N = 2 and the cash–flows and endowments

of the two risky assets are ex–ante identically and independently distributed, and denote:

V ar(εf ) =

 σ2
f 0

0 σ2
f

 , V ar(ε) =

 σ2 0

0 σ2

 and V ar(εz) =

 σ2
z 0

0 σ2
z

 .

There exists a symmetric equilibrium where B,C, Φ, τy, τp and ω are symmetric 2 by 2 matrices,

if there exists a solution b,c to the following system of scalar equations:

b =
σ2
fλιy(λιy + (1− λ)ιp)−1

φ(σ2
f + σ2)(1− ρf (1 + r)−1)

, (11)

c =
γ

φ(λιy + (1− λ)ιp)
, (12)

where the scalars φ,w, ιy, ιp are such that:

φ = (1 + r)−
σ2
f [1− λιy(λιy + (1− λ)ιp)−1]b

((σ2
f + σ2)b2 + σ2

zc
2)(1− ρf (1 + r)−1)

, (13)

ι−1
y =

σ2
fσ

2

(σ2
f + σ2)(1− ρf (1 + r)−1)2

+ ((σ2
f + σ2)b2 + σ2

zc
2), (14)

ι−1
p =

σ2
f [1− b2σ2

f{(σ2
f + σ2)b2 + σ2

zc
2}]

(1− ρf (1 + r)−1)2
+ ((σ2

f + σ2)b2 + σ2
zc

2). (15)

The solutions to this system: b and c and the corresponding values of φ, ιy, and ιp are the eigen-

values of the symmetric matrices B,C, τy,τp,and Φ. D = 0 and A is obtained from B and C as in

Proposition 3.
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To conduct our numerical analysis, we rely on Corollary 4. Thus, we focus on symmetric

equilibria.16 We discuss below the instances where results qualitatively differ across equilibria.

Also, we focus on a set of parameters such that 1 + r > ρ̄f + 2γσfσz, so that linear equilibria exist

in the symmetric information case, and we select parameters such that the momentum strategy

(as defined in the description leading to Corollary 2) can generate positive average returns. Thus,

we set ρf = 0.990, since momentum arises when cash flow are persistent. As discussed by Spiegel

(1998, page 436), it is plausible that the variance of supply shocks is relatively small compared to

that of cash flows. Correspondingly, we set σ2
f = 0.100 and σ2

z = 0.010. Furthermore we focus

on the case where informed signals are quite precise and set: σ2 = 0.001. Note also that we set

r = 0.10; ρz = 0; γ = 1.735 and we normalize x to 1.17

Figure 2 plots the equilibrium parameters as a function of λ, for one of the two symmetric

equilibria. For simplicity, we focus on the diagonal terms. First note that, when λ = 0, B = 0,

which is a sanity check for our analysis: when no agent in the market is privately informed, the

private signal is not revealed in prices at all. Second, note that A decreases and B increases

with λ. As λ increases, more private information gets impounded in prices and B increases.18

Correspondingly, less weight is given to the prior expectation of cash flows (reflecting f t) and A

decreases.

For the equilibrium on which we focus, Figure 3 displays average returns for the momentum

and price–contingent portfolios, as defined in the theoretical analysis above (see equations (9) and

(5) respectively). Estimates are based on 60-period average returns and 500 random replications.

Results are shown as a function of λ, for λ ≤ 8%. The left panel shows average momentum returns

in excess of average index returns. The right panel displays the average excess returns earned by

the price–contingent strategy. 95% confidence intervals are depicted.

On average, the price contingent strategy generates larger returns than the market portfolio,

thus illustrating our theoretical analysis. Of course, this also obtains in the three other equilibria.
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The average return on the price contingent strategy goes down with λ. The source of performance

for this strategy is the supply of liquidity to agents with endowment shocks. The cost of this

strategy stems from trading with superiorly informed agents. When λ goes up, the former effect

remains constant, while the latter is strengthened.

In the equilibrium on which we focus, the momentum portfolio also beats the index for λ

above 5%. This shows that asymmetric information can give rise to momentum in a dynamic

noisy rational expectations equilibrium. Otherwise stated, outperformance of the index by the

momentum portfolio should not be viewed as evidence of deviation from rational expectations. It

should be noted, however, that in the other equilibria we simulated the momentum portfolio did

not outperform the index. Thus the excess performance of the momentum portfolio is not a robust

feature of our equilibria, in contrast with the excess performance of the price contingent portfolio.

3 Econometric approach

3.1 Testable restriction implied by theory

Hansen and Singleton (1982) test whether the representative agent invests optimally. This is not

feasible in our setting, where the econometrician does not observe the endowment shocks and the

signals necessary to construct the representative investor. On the other hand, the information set of

the econometrician is similar to that of the uninformed agent in our model. The uninformed agent’s

demand is the solution to a simple mean–variance portfolio choice problem, where the information

content of prices is used to estimate expected returns and variances. This is the price–contingent

strategy defined in equation (5). Our theoretical analysis implies that, in the partially revealing

rational expectations equilibrium, this investment strategy fares better, in mean–variance terms,

than indexing. In contrast, if the CAPM holds, then indexing is optimal. Hence, to test the partially

revealing rational expectations equilibrium against the CAPM, we compare the performance of the
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index to that of the price–contingent portfolio strategy of the uninformed agent.

We focus upon what is likely to be the most robust implication of the theory, i.e., that prices

contain information, rather than on more parametric aspects of the model. Spiegel (1998) and

Watanabe (2005) show that equilibrium multiplicity arises in dynamic rational expectations equi-

libria. Yet, irrespective of which equilibrium the agents in the economy select, equation (5) still

describes the optimal investment strategy of a rational uninformed investor. This empirical impli-

cation is also robust to alternative parametrizations of our model, e.g., in which some uninformed

agents would be exposed to endowment shocks or informed agents would observe various signals.

While, in equation (5), the optimal strategy involves conditioning on price levels, in our econometric

analysis, for statistical reasons, we will use relative prices instead.

Our comparison of the performance of the price–contingent strategy to that of the index is in

the line of empirical investigations of asset pricing models, testing the efficiency of a particular

portfolio, such as a market proxy. However, our approach differs from previous empirical results

on the inefficiency of market proxies.

First, our theory implies that indexing should be inferior to a portfolio strategy constructed

using public information available to the agent when he makes his investment decision. Hence our

empirical analysis will be ex–ante, i.e., to form portfolios at date t, we will use only data observed

prior to t. In contrast, Fama and French [1996] and Davis, Fama and French [2000]) rely on ex–post

information. They find that proxies of the market portfolio are mean-variance suboptimal relative

to some ex–post determined combination of three specific factor portfolios: the market proxy itself,

a portfolio long in small firms and short in large firms, and a portfolio long in value stock and short

in growth stock. Cooper, Gutierrez and Marcum [2005] show that if one uses only information

in prior returns to determine optimal combinations, the improvement from investing in Fama and

French’s factor portfolios is insignificant.

Second, we compare indexing against a portfolio strategy based on specific information suggested
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by theory, namely, relative prices, as opposed to information obtained through an exhaustive search

over all available information. Without the discipline that theory imposes, such an exercise runs into

the danger of data snooping. Information in relative prices has never been explicitly conditioned

on before. This information may have been implicitly conditioned on in other studies, such as those

evaluating momentum investment. We discuss the difference between our price-contingent strategy

and momentum investment in the next section.

3.2 The Data

We focus on monthly returns on U.S. common stock listed on the NYSE, AMEX and NASDAQ,

as recorded by CRSP for the period from July 1927 until December 2000. The null hypothesis is

that the value-weighted CRSP index is optimal. This index has been used as the market proxy

in previous empirical studies. Against the null hypothesis, we test the hypothesis that the index

is outperformed by the price-contingent portfolio. In principle, one can construct those portfolios

by combining individual stocks. This requires, however, that one handle thousands of different

stocks, correlating their returns to their prices, a computationally challenging exercise. A more

parsimonious approach is to use groups of stocks as building blocks for our portfolios.

A natural choice for these groups of stocks is to focus on the six portfolios which have been

used extensively in the empirical asset pricing literature. These are specific portfolios constructed

from a double sort of the securities based on the size of the issuing firms as well as the ratio of

book value to market value. We will refer to them as the six FF benchmark portfolios. Portfolio

1 selects stocks of large companies with low ratio of book to market value. Portfolio 2 also selects

large companies, but with medium book to market value. Portfolio 3 is comprised of large value

companies. Portfolios 4 to 6 are analogous to portfolios 1 to 3, but for small firms only. All

portfolios are value-weighted. Details can be found on Ken French’s website.

Monthly returns are taken from Ken French’s web site.19 We use the returns that are adjusted
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for the substantial transaction costs caused by flows of individual assets in and out of the portfolios.

Such flows are the result of changes in firm size, book and market values.

The choice of these assets for studying the information content of prices is suitable in light of

the well–known dispersion in their relative prices over time, enhancing the potential power of our

statistical analysis. However, the size or value strategies do not significantly outperform indexing

on an ex ante basis, as shown by Cooper, Gutierrez and Markum [2005]. Hence, the performance of

price-contingent strategies using only ex ante information to form portfolios of these assets cannot

be due to data mining.

It is not obvious how to measure the relative prices on which our portfolio allocation strategy

will be based. We opted to use the weights in a buy-and-hold portfolio of the six FF benchmark

portfolios, reinvesting returns (including dividends) into the FF portfolio that generates them.

More specifically, let rti denote the rate of return on FF benchmark portfolio i (i = 1, ..., 6) over

month t. (t = 1 corresponds to 7/1927). Let pti denote our measure of the relative price of portfolio

i at the beginning of month t. It is computed as follows:

pti =
pt−1
i (1 + rti)∑6

j=1 p
t−1
j (1 + rtj)

, (16)

t > 0. Notice that
∑6

i=1 p
t
i = 1, so our prices are effectively portfolio weights in a portfolio of the

six FF benchmark portfolios. This portfolio starts with $1 at the end of 6/1927. The initial weights

used to initialize this procedure are arbitrarily chosen and we checked that they do not affect our

empirical results. Our proxies for relative prices are thus weights in a value-weighted portfolio.

One could be concerned about persistence in the prices. Our portfolio allocation strategy will

be based on projections of a month’s returns onto the vector of relative prices at the beginning of

the month. The properties of estimated projection coefficients are known to be unusual when the

explanatory variables exhibit persistence. In particular, the significance of the projection coefficients

may be spurious, and the out-performance of the resulting price-contingent strategy may be a
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statistical artifact. To be sure that this is not the case, it is imperative that we perform an ex-

ante portfolio performance evaluation. As mentioned before, this is exactly what we do. If the

significance of the projection coefficients is not spurious, persistence in the regressors (relative

prices) is actually a virtue. Standard least squares projection coefficients converge faster.

3.3 Portfolio Allocation Strategy

The allocation strategy we implement is in line with the mean variance optimization described in our

theoretical analysis in equation (4), which gave rise to the optimal price–contingent strategy given

in equation (5). For each month in the sample, referred to as the target month, we determine the

composition of the portfolio that promises the highest conditional expected return for a volatility

equal to that of the benchmark CRSP index. Thus, to determine the portfolio qt, we solve:20

MaxqtE(qt′rt+1|pt), s.t., V ar(qt′rt+1|pt) = V t
index,

where V t
index is the conditional variance of the index as of t. Determining this portfolio requires

estimating expectations (E(qt′rt+1|pt)) and variances (V ar(qt′rt+1|pt); V t
index).

In line with our theory, we estimate conditional expectations by projecting returns onto relative

prices. Variances and covariances are estimated from the errors of these projections. To determine

the optimal portfolio for any target month, we use observations from the sixty-month period prior

to the target month. That is, our analysis is entirely ex–ante, i.e., only based on information that

investors had available at the beginning of the target month. Generalized Least Squares (GLS) are

used to estimate the coefficients in projections of returns onto prices, to adjust for the substantial

autocorrelation in the error (it sufficed to adjust for first-order autocorrelation). No further adjust-

ments were made, although one obviously could think of many potential improvements (Iterated

Least Squares, higher-order autocorrelation in the error term, autoregressive heteroscedasticity,

etc.).21
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To estimate the volatility of the index V t
index, we perform GLS projections of index returns

onto the prices of the 6 FF benchmark portfolios over the 60 months prior to the target months,

accounting for first-order autocorrelation in the error term. The ex-ante volatility of the index

return is then obtained from the standard deviation of the prediction error of these GLS projections.

Estimating the volatility of the price–contingent portfolio is more complicated, as discussed below.

3.4 Accounting For Errors In Estimating Optimal Portfolio Weights

Because optimal weights for our price-contingent strategy are based on estimated expected returns,

variances and covariances, we inevitably introduce estimation error. When we base ex-ante volatility

estimates on the covariance matrix of the prediction errors from GLS projections of returns onto

prices, we fail to properly account for estimation error. As a result, the ex-post volatilities may

be higher. The ex-post volatilities can readily be estimated as mean squared differences between

returns actually recorded over the target months and ex–ante expected returns (from the GLS

projections). In contrast, since no estimation of optimal portfolio weights is involved, the ex-ante

volatility of the market indexing strategy is likely to be a good estimate of its ex-post volatility.

Consequently, we suspected that the ex–post volatility of our price–contingent strategy may be

much higher than that of the market portfolio, even if volatilities matched ex-ante. The data

confirmed our suspicion.

To accommodate estimation error, one could directly adjust estimates of the ex–ante volatilities

of the price-contingent strategy. The necessary adjustments are rather involved, and unfortunately,

they require additional assumptions on the data generating process that reduce the robustness of

the inference (e.g., the projection errors are jointly normal and independent over time).22

Instead, we correct for estimation error by matching ex-post volatilities, as is often done in

finance.23 In particular, we determine the right combination of our price-contingent strategy with

investment in the market portfolio that generates the same ex-post volatility as the index.24 With
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our return history, a 50-50 combination ensures that variances are matched. As a result, in the

performance evaluation to follow, we will compare the returns of two strategies: (i) a strategy

that constantly re-invests 50% in our optimal price-contingent portfolio and 50% in the market

portfolio; (ii) 100% market indexing. These two strategies generated approximately the same ex-

post volatility over the period 7/1927 to 12/2000.

For brevity, we will refer in the sequel to the 50-50 combination of the optimal price-contingent

portfolio and the market as our price-contingent strategy. But bear in mind that it in fact mixes

indexing with optimal price-contingent investing.

3.5 Performance Evaluation

To evaluate the performance of the optimal price–contingent strategy, we compare its Sharpe ratio

to that of the index. For each month t, we compute the average return of the price–contingent

portfolio as a 60-month moving average centered on t. We proceed similarly for the index. We

estimate the volatility of the index as the mean squared difference between its return and that

predicted by the GLS regression. The difference between the Sharpe ratios of the two portfolios is

estimated as the difference between the two average returns, divided by the volatility of the index.

We use the same denominator for the two Sharpe ratios, since the price–contingent strategy is

constructed to have the same volatility as the index.

To complement this comparison of Sharpe ratios and evaluate the statistical significance of the

outperformance, we use a z–test. Its intuition can be summarized as follows: We compute the

average difference between the returns on the price–contingent portfolio and the index; we divide

it by the standard deviation of this difference; we scale up this ratio by the square root of the

number of observations. Relying on the functional central limit theorem we compute a confidence

interval.25 More precisely, we compute partial z-statistics as follows. Let rtC denote the return on

the CRSP over month t. Let rtP denote the month-t return on our price-contingent portfolio. For
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a sample that starts at T1 and ends at T2, the partial z-statistics are computed from the partial

sums of the difference between the return on the price contingent portfolio and that on the index:

zT1,T2,t =
1√

T2 − T1

t∑
τ=T1+1

rτP − rτC
σ

.

We estimate σ as

σ̂ =

√√√√ 1
T

T∑
τ=1

{rτP − rτC}2.

This is a (heteroscedasticity-consistent) estimate of the standard deviation of the return differences,

under the null that the expected return differences equal zero.26

The partial z-statistics form a stochastic process on [T1, T2], so they are easy to visualize. The

functional central limit theorem predicts that, in large samples (meaning T2 − T1 →∞),

zT1,T2,t ∼W (
t− T1

T2 − T1
),

where W denotes a standard Brownian motion on [0, 1]. Note that the usual z-statistic over [T1, T2]

has t = T2 and hence: zT1,T2,T2 ∼ W (1), i.e., its asymptotic distribution is standard normal, in

accordance with the usual central limit theorem. Confidence bands of 95% can readily be computed

as:

±1.97
√

t− T1

T2 − T1
.

We provide plots of the partial z-statistics for T1 = 0 (before the start of our sampling period,

i.e., 6/1927), and T2 = T (the end of our sampling period, namely, 12/2000). That is, we report

z0,T,t. In that case, the 95% confidence intervals are given by:

±1.97

√
t

T
.

One can compute confidence intervals starting at any T1 > 0 and conditional on the partial z-

statistic at that point, z0,T,T1 . These derive from the fact that27

z0,T,t − z0,T,T1 = zT1,T,t

√
T − T1

T
∼W (

t− T1

T − T1
)

√
T − T1

T
.

30



(T1 < t ≤ T ). Hence, the confidence interval starting T1 and conditional on z0,T,T1 equals

z0,T,T1 ± 1.97

√
t− T1

T
.

We plot such conditional confidence intervals at ten-year intervals.

4 Empirical Results

4.1 Main Results

The main results are displayed in Figures 4 and 5. The average return on our price-contingent

strategy is 1.4% per month (18% on an annual basis); that of the market portfolio equals 1.2% (15%

on an annual basis). The ex-post standard deviation on both portfolios is 21% per year. Figure 4

shows the evolution of the difference in Sharpe ratio between the optimal price-contingent portfolio

and the CRSP index. The average difference in Sharpe ratios is 0.048. Our price-contingent strategy

thus adds substantially to the achievable return. Figure 4 demonstrates that, with the exception of

a few subperiods, our price-contingent optimal strategy outperforms the CRSP index consistently

since the beginning of the sampling period.

Figure 5 displays the evolution of the partial z-statistic. It confirms that the outperformance

was significant. Consider the evolution of the z–statistic from the beginning of the sample period

(1927) to its end (2000). The square-root function depicts the confidence bounds. The z–statistic

crosses the confidence bound, indicating significant outperformance, as soon as the 1930’s. The

final value of the statistic, at the end of the sample, reaches a highly significant value of 2.7. The

gradual increase in the z-statistic indicates that the outperformance of the price-contingent strategy

is not the effect of a few outliers. Figure 5 also enables the reader to check the significance of the

outperformance of the price–contingent strategy for any of the decades in our sample: 1932–1942,

1942–1952, ..., 1982–1992, 1992-2000. The z–statistic is positive at the end of the decade in all but

one ten-year subperiod; the corresponding p-level is 0.06.28 The performance is significant at the
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5% level in 2 out of 7 ten-year subperiods; the corresponding p level is about 0.05.29 That is, there

is little doubt about the significance of the outperformance.

Thus we find that our price-contingent allocation strategy significantly outperforms the index.

This is consistent with our Noisy Rational Expectations model, where prices reflect economically

relevant information, while at the same time not fully revealing all of it.

4.2 Perspective

To build perspective, we now compare the performance of our price-contingent strategy to that

of alternative strategies, which have been claimed to improve upon indexing: the size, value and

momentum strategies (see e.g., Cochrane [1999], Cooper, Gutierrez and Marcum [2005], Davis,

Fama and French [2000], Fama and French [1996], Chan, Jegadeesh and Lakonishok [1996] and

Lewellen [2002]).

The size strategy exploits the difference between the returns of small firms and those of large

firms. The standard portfolio that implements this strategy is a zero-investment strategy, taking

a long position in small firms and a short position in large firms. It is referred to as the Fama-

French SMB (“small minus big”) portfolio.30 Analogously, the value strategy exploits the difference

between the returns of firms with high book value of equity relative to market value and firms with

low book-to-market ratio. It is a zero-investment portfolio taking a long position in high-value

firms, while shorting low-value firms. It is referred to as the Fama-French HML (“high minus

low”) portfolio. The momentum strategy exploits persistence in stock returns. It establishes a

long position in recent winners, while shorting recent losers. Usually, a twelve-month window is

considered to determine if stocks have been winners or losers. Portfolio weights are proportional to

the difference between the return over the previous 12 months relative to the average performance.

Note that these are zero–investment strategies, not portfolios. Therefore, returns are not defined

for these strategies (computing returns would involve dividing by 0) and it is impossible to position
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them directly in a mean–return/variance space.31 To be able to measure returns and analyze mean–

variance efficiency, Cochrane (1999) combines these zero–investment strategies with the risk–free

asset. This gives rise to portfolios, with well defined returns, which can be cumulated over time.

Furthermore, to control for risk, Cochrane (1999) designs these portfolios to match their volatility

with that of the index. We follow the approach in Cochrane (1999), but we combine the SMB,

HML and momentum strategy with the index, instead of the riskfree asset.32 Since SMB, HML and

the momentum portfolio are zero-investment portfolios, combining them with the index amounts

to adjusting standard market portfolio weights. For instance, investing in the market plus SMB

translates into over-weighing small firms and under-weighing large firms (relative to the index).

Of these strategies, the combination of the index and a momentum portfolio comes closest in

spirit to our price-contingent strategy, because both exploit information in past returns. As shown

in Section II, the momentum effect is perfectly consistent with our theoretical framework. It is,

however, a secondary effect, which means that the momentum strategy should not out-perform

our price-contingent strategy when evaluated in mean-variance space. The relationship between

our price-contingent strategy and size and value investing is less clear, because there is no role for

firm size or book value of assets in our theoretical framework. To the extent that size and value

are secondary effects, enhancement of indexing by skewing weights towards small firms or high

book-to-market value ratios should not lead to out-performance relative to our price-contingent

strategy.

Figure 6 compares the performance of the price–contingent, size, value and momentum portfo-

lios. We plot the evolution of the wealth of an investor starting on 6/30/1932 with one dollar and

investing according to one of five possible strategies. The five strategies were constructed to have

the same ex–post monthly return volatility over the period 7/1932-12/2000. Hence, the ordering

in mean-variance space can be readily inferred from the relative wealth levels that the strategies

generate. The five strategies are as follows.
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1. Indexing : The investor holds the CRSP value-weighted index throughout the 68 1/2-year

period.

2. Indexing With Size Enhancement : The investor invests 95% in the index and 5% in three-

month Treasury bills, adding 0.2 units of the (zero-investment) Fama-French SMB portfolio

for every dollar invested in the index, and re-balancing at the end of each month.

3. Indexing With Value Enhancement : The investor invests 95% in the index and 5% in three-

month Treasury bills, adding 0.25 units of the (zero-investment) Fama-French HML portfolio

for every dollar invested in the index, and re-balancing at the end of each month.

4. Indexing With Momentum Enhancement : The investor invests 95% in the index and 5% in

three-month Treasury bills, adding 0.2 units of a momentum portfolio for every dollar invested

in the index, and re-balancing at the end of each month. The (zero-investment) momentum

portfolio invests in each of the 6 FF benchmark portfolios in proportion to the return they

generated over the previous 12 months relative to the average return.

5. Price-Contingent Strategy : The investor puts 50% of wealth in the index, and 50% in the

optimal price-contingent strategy with the same ex-ante volatility as the index; the portfolio

is re-balanced monthly.

The portfolio structures in strategies 2 to 5 are designed to ensure that the (ex-post) variance

of the portfolio matches that of the index. While the price contingent portfolio is simply combined

with the index, the size, value and momentum portfolios are also combined with Treasury bills (for

5% of the portfolio.) This was necessary to match their volatility with that of the index. The SMB,

HML and momentum portfolios have virtually zero correlation with the market (as also found by

Cochrane, 1999). Hence, simply adding these zero-investment portfolios to the market would have

increased the volatility of the portfolio above that of the index. To offset this increase, 5% of the
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wealth is invested in Treasury bills.33 In contrast, it was not necessary to include the risk–free asset

in the price–contingent strategy to match its volatility with that of the index.

Figure 6 confirms the performance of the value and momentum strategies. Combining the

market portfolio with the Fama-French HML portfolio improves upon indexing; a combination

with the momentum portfolio does even better. The standard t-statistics for the outperformance

of the size, value, momentum and price–contingent portfolios relative to the market are -0.45, 1.46,

2.14, and 2.66, respectively. Figure 6 also illustrates that the price-contingent strategy outperforms

the four alternatives. Even compared to the best alternative (i.e., the momentum strategy) the

outperformance of the price contingent strategy is marginally significant (the t-statistic for the

difference between the performance of these two strategies is 1.88.)

The reader may wonder why we did not rely on an approach that has become standard in finance:

Fama and French regressions. The two approaches are analogous. We compare the performance

of identically risky portfolios, relying on Sharpe ratios and cumulated returns. Fama and French

regressions test whether some combination of the index and the value or size strategies outperforms

the index. But our test is more specific since we ask whether a particular portfolio rather than “some

combination of FF factors” outperforms the index. Furthermore, the specific portfolio we consider

is suggested by theory and is constructed using only ex–ante information.

4.3 The Nature Of The Return-Price Relationship

In principle, the return-price relationships that are at the heart of the success of our price-contingent

strategy can be rather counter-intuitive. For instance, as shown in Admati (1985, Section 4, pages

641 to 646), it is possible that a relatively high price for a given asset be associated with a relatively

low rate of return. All depends on the correlation structure between the payoffs in the multi–asset

economy. The pattern of correlations thus arising is much more complex and richer than the simple

pattern of continuations upon which the momentum strategy relies.
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To document this point we estimated the partial correlation between a portfolio’s return and

its own price. Below is a list of the average slope coefficients in the GLS projections of the returns

of the 6 FF benchmark portfolios onto prices.34 We only report the slope coefficient corresponding

to a portfolio’s own price. Each sixty-month estimation period prior to a target month generates

one estimate. The sample standard deviation of the estimated slope coefficients is reported in

parentheses. We only report results from non-overlapping sixty-month periods.35 The FF bench-

mark portfolios are identified as holding stock in big firms (B), small firms (S), high-value (H),

medium-value (M) or low-value firms (L).

BL BM BH SL SM SH

-0.51 0.84 -1.53 -2.01 -0.47 -5.47

(0.25) (0.60) (0.77) (1.27) (1.00) (1.69)

The (partial) correlation between a portfolio’s return and its own price tends to negative,

especially for firms with extremely high or low book-to-market value ratios. Again, this points to

the difference between the price–contingent strategy and the momentum strategy.

4.4 The structure of the price–contingent portfolio

To better document the nature of the optimal price contingent strategy, we also computed the

average weight it places on the six Fama and French portfolios. To obtain these numbers, we took

the weights placed by the optimal price contingent strategy on each of the 6 portfolios for each

month in our sample. We then averaged these weights across months. The average weights are

reported in the next table. For the sake of comparison, the table also reports the structure of the

portfolio of the six Fama and French portfolios which best replicated the index during our sample

period. When considering these numbers, one should bear in mind that they are averages, around

which actual weights fluctuate significantly throughout the sample period.
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BL BM BH SL SM SH

Price contingent strategy .525 .435 .035 -.490 .555 -.055

Index replication .580 .270 .070 .050 .030 .000

The table shows that the optimal price contingent strategy places a lot of weight on big cap-

italization stocks with a low ratio of book to market value. This is approximately in line with

the weight placed on those stocks by the portfolio replicating the index. In contrast, the optimal

price contingent strategy involves shorting small capitalization stocks with a low ratio of book to

market value. This departs markedly from the portfolio replicating the index. The price contingent

strategy also places a relatively large weight on the medium value stocks, be they small or big

capitalization stocks. Finally, like the portfolio replicating the index, it places negligible weight on

high value small stocks. In line with the results presented in Subsections 4.2 and 4.3, these figures

illustrate that the optimal price contingent strategy differs from the size and value strategies.

5 Conclusion

This paper studies the implications of information asymmetry for equilibrium asset pricing and

portfolio choice. In our dynamic multi-asset rational expectations model, prices are only partially

revealing because the demand of informed investors reflects their random endowment shocks, along

with their signals. Equilibrium prices are set as in a representative agent economy where the market

portfolio would include the aggregate risky endowment shock and the beliefs of the representative

agent would average those of the informed and the uninformed. This pricing relation cannot be

directly tested since the beliefs of the representative agent are not observable to the econometrician.

On the other hand, the information set of the econometrician is comparable to that of some agents

in the model: the uninformed agents with no endowment shocks. We implement empirically the

optimal portfolio strategy implied by our theory for these agents. Thus we construct their condi-
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tional mean–variance optimal portfolio. Consistent with our theory, we find that it outperforms

the index both economically and statistically.

There is still ample scope for improving the performance of price–contingent strategies. Our

results are based on rather crude groupings of stocks. Less aggregate groupings should be con-

templated, as well as other groupings (e.g., industry-based portfolios).36 Our estimation of the

correlation between returns and prices is based on simple linear generalized least squares. We did

not investigate more sophisticated specifications or estimation strategies, such as nonlinear least

squares or conditional heteroscedasticity. No attempt was made to estimate the optimal window

size on which to estimate the correlation between prices and returns. Refining the statistical anal-

ysis along those and other lines may yield more powerful information extraction and consequently

superior performance.

The significant outperformance we uncover suggests that the price–contingent investment ap-

proach is a valuable complement to fundamental and quantitative investment analysis. It should

be emphasized that our results are out of sample, so that the outperformance we obtain is based

on information that was available to the investors at the time portfolio allocation decisions had to

be made. Our results suggest that value can be created not only in traditional ways, by designing

optimal portfolios (quantitative investment analysis) or estimating cash flows (fundamental invest-

ment analysis), but also by studying price formation in the marketplace and using the results to

infer information about future returns that only competitors observe directly. Our setting provides

a reconciliation between the philosophies of active and passive portfolio management as investors

tilt their portfolios in favor of the assets for which they are particularly optimistic and in that sense

follow active strategies.
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Figure Legends

Figure 1: Sequence of events in the theoretical model.

Figure 2: Estimates of price equation coefficients as a function of the proportion lambda (λ) of

informed agents. Parameters: Two identical risky securities with uncorrelated payoffs and signals,

both in unit supply; r = 0.100; ρf = 0.990, ρz = 0; σ2
f = 0.100, σ2

z = 0.010, σ2 = 0.001; γ = 1.735.

Figure 3: Estimates of 60-period average return (in excess of the market) of the momentum

portfolio (left panel) and the optimal price contingent portfolio of an uninformed agent without

endowment shocks (right panel) as a function of the proportion (λ) of informed agents. Vertical

bars denote 95% confidence interval. Parameters: Two identical risky securities with uncorrelated

payoffs and signals, both in unit supply; r = 0.100; ρf = 0.990, ρz = 0; σ2
f = 0.100, σ2

z = 0.010,

σ2 = 0.001; γ = 1.735.

Figure 4: Evolution of the difference between the Sharpe ratios of: (i) a strategy with 50% in the

CRSP value-weighted index (the market index) and 50% in the optimal price-contingent portfolio

whereby the return-prices relationship is estimated from the sixty months prior to the target month

[weights change as a function of (a) expected returns based on relative prices and the estimated

price-return relationship and (b) corresponding prediction error variances; the ex-ante volatility of

this portfolio is the same as that of the market index], and (ii) the market index, 7/1927-12/2000.

The two strategies generate the same ex-post volatility. The difference in Sharpe ratios is estimated

on the basis of a moving, fixed-length window of sixty months centered around the target month.

Figure 5: Evolution of the partial z-statistic of the difference in return between: (i) a strategy with

50% in the CRSP value-weighted index (the market index) and 50% in the optimal price-contingent

portfolio whereby the return-prices relationship is estimated from the sixty months prior to the

target month [weights change as a function of (a) expected returns based on relative prices and the

estimated price-return relationship and (b) corresponding prediction error variances; the ex-ante
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volatility of this portfolio is the same as that of the market index], and (ii) the market index,

7/1927-12/2000. The two strategies generate the same ex-post volatility. Strategy (i) outperforms

strategy (ii) when the partial z-statistic is positive; the performance is significantly different from

zero in a given ten-year period if the partial z-statistic moves outside the 95% confidence region

bounded by the square-root function anchored at the beginning of the ten-year period.

Figure 6: Wealth evolution from investing one dollar on 6/30/1932 and monthly re-investing

returns, various strategies (natural log scale). All strategies generated the same (ex-post) volatility

over the period 7/1932-12/2002. The strategies are: (i) Indexing (solid line; 100% investment in

the CRSP value-weighted index [the market portfolio]); (ii) Indexing with Size Enhancement (dash-

dotted line; 95% investment in the market portfolio, plus 20% invested in the Fama-French SMB

zero-investment portfolio and 5% in three-month Treasury bills; the SMB portfolio is long small

firms and short large firms); (iii) Indexing with Value Enhancement (dashed line; 95% investment in

the market portfolio, plus 25% invested in the Fama-French HML zero-investment portfolio and 5%

in three-month Treasury bills; the HML portfolio is long firms with high book-to-market value ratio

and short firms with low book-to-market value ratio); (iv) Indexing with Momentum Enhancement

(dotted line; 95% investment in the market portfolio, plus 20% invested in the standard zero-

investment momentum portfolio and 5% in three-month Treasury bills; the momentum portfolio

is long recent winners and short recent losers among the 6 FF benchmark portfolios; winners and

losers are determined by the return over the previous 12 months relative to the average); (v) Our

price-contingent strategy (heavy solid line; 50% in the market portfolio and 50% in an optimal

price-contingent portfolio, as explained in the captions of Figures 4 and 5).
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Appendix: Proofs

Proof of Proposition 2: The market-clearing condition is:

γ(x+ zt) = λτy{E[f t+1 + pt+1|yt]− (1 + r)pt}+ (1− λ)τp{E[f t+1 + pt+1|pt]− (1 + r)pt}.

Thus:

τp
E[f t+1 + pt+1|pt]− (1 + r)pt

γ

= (x+ zt)− λ

γ
[τy{E[f t+1 + pt+1|yt]− (1 + r)pt} − τp{E[f t+1 + pt+1|pt]− (1 + r)pt}].

Noting that the left–hand–side of this inequality is equal to the demand of the uninformed agent,

we obtain the proposition.

QED

Proof of Proposition 3: By the projection theorem:

E[f t+1 + pt+1|pt] = E(f t+1 + pt+1) + Cov(f t+1 + pt+1, pt)(V ar(pt))−1(pt − E(pt)).

Substituting the conjectured price function (3) and the recursive definition of f t+1 and zt+1((2)

and (1) respectively) into this conditional expectation:

E[f t+1 + pt+1|pt]

= µ+ ρff
t + E[Af t+1 +Byt+1 − Czt+1 −Dzt +G]

+ Cov(ρff t + εtf +Af t+1 +Byt+1 − Czt+1 −Dzt, Af t +Byt − Czt −Dzt−1)

× (V ar(Af t +Byt − Czt −Dzt−1))−1

× [pt − E(pt)].
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Denote: ψ = I +A+Bρf . The intercept simplifies to:

(I +A)µ+ (I +A)ρff t + E[Byt+1 − (Cρz +D)zt] +G

= (I +A)µ+ ψρff
t − (Cρz +D)ρzzt−1 +G+B(I + ρf )µ.

The slope becomes:

Cov(ρff t + εtf +A(ρff t + εtf ) +Byt+1 − C(ρzzt + εt+1
z )−Dzt),

Af t +Byt − C(ρzzt−1 + εtz)−Dzt−1)

×
(
V ar(Af t +Byt − Czt −Dzt−1)

)−1

Now, at time t, f t and zt−1 are known, hence the slope simplifies to:

Cov((I +A)εtf +Byt+1 − C(ρzzt + εt+1
z )−Dzt, Byt − Cεtz)× (V ar(Byt − Czt))−1.

Substituting the recursive equation for z and y, after some simplifications we get that:

Cov(f t+1 + pt+1, pt)(V ar(pt))−1 =

(
ψV ar(εtf )B′ + (Cρz +D)V ar(εtz)C

′) (BV ar(εtf + εt)B′ + CV ar(εtz)C
′)−1

. (17)

Finally,

E[pt] = E(Af t +Byt − Czt −Dzt−1) +G = (ψ − I)f t − (Cρz +D)zt−1 +G+Bµ.

Putting all this together, the conditional expectation of the uninformed agents is:

E[f t+1 + pt+1|pt]

= (ψ +B)µ+ ψρff
t − (Cρz +D)ρzzt−1 +G

+
{
ψV ar(εtf )B′ + (Cρz +D)V ar(εtz)C

′}× [pt − (ψ − I)f t + (Cρz +D)zt−1 −G−Bµ]

×
(
BV ar(εtf + εt)B′ + CV ar(εtz)C

′)−1
.
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For the informed agent, by the projection theorem:

E[f t+1 + pt+1|yt] = E[f t+1 + pt+1] + Cov(f t+1 + pt+1, yt)
(
V ar(yt)

)−1 [yt − E(yt)].

The intercept is the same as for the uninformed agent. Now:

Cov(f t+1 + pt+1, yt) = ψ, (18)

and:

V ar(yt)−1 = V ar(εtf )V ar(εtf + εt)−1. (19)

After some manipulation, the slope simplifies to: (I+A+Bρf )V ar(εtf )
(
V ar(εtf + εt)

)−1
. Also,

E(yt) = µ+ ρff
t.Thus the conditional expectation for the informed agents is:

E[f t+1 + pt+1|yt]

= (I +A)µ+ ψρff
t − (Cρz +D)ρzzt−1 +G+B(I + ρf )µ

+ ψV ar(εtf )
(
V ar(εtf + εt)

)−1 [yt − µ− ρff t].

Putting these results together, the price equation becomes:

pt(1 + r)

= (I +A)µ+ ψρff
t − (Cρz +D)ρzzt−1 +G+B(I + ρf )µ

+ ωψV ar(εtf )(V ar(εtf + εt))−1[yt − µ− ρff t]

+ (I − ω)[ψV ar(εtf )B′ + (Cρz +D)V ar(εtz)C
′]

×
(
BV ar(εtf + εt)B′ + CV ar(εtz)C

′)−1

×[pt − (ψ − I)f t + (Cρz +D)zt−1 −G−Bµ]

− γ(λτy + (1− λ)τp)−1(x+ zt).

Denote:

Φ = (1 + r)I − [I − (λτy + (1− λ)τp)−1λτy]
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[ψV ar(εtf )B′ + (Cρz +D)V ar(εtz)C
′][BV ar(εtf + εt)B′ + CV ar(εtz)C

′]−1. (20)

The price equation can be rewritten as:

Φpt

= {[(I +A) +Bρf − ωψV ar(εtf )(V ar(εtf + εt))−1]ρf

−(I − ω)[ψV ar(εtf )B′ + (Cρz +D)V ar(εtz)C
′]

×
(
BV ar(εtf + εt)B′ + CV ar(εtz)C

′)−1 (ψ − I)}f t

+ {ωψV ar(εtf )(V ar(εtf + εt))−1}yt

− {γ(λτy + (1− λ)τp)−1}zt

− {(Cρz +D)ρz

−(I − ω)[ψV ar(εtf )B′ + (Cρz +D)V ar(εtz)C
′]

×
(
BV ar(εtf + εt)B′ + CV ar(εtz)C

′)−1 (Cρz +D)}zt−1

−(I − ω)[ψV ar(εtf )B′ + (Cρz +D)V ar(εtz)C
′]

×
(
BV ar(εtf + εt)B′ + CV ar(εtz)C

′)−1 (G+Bµ)

+G+ (ψ +B)µ− ω(I +A+Bρf )V ar(εtf )(V ar(εtf + εt))−1µ

− γ(λτy + (1− λ)τp)−1x.

The conditional precision of the information of the informed agent is:

(τy)−1 = V ar(f t+1 + pt+1)− Cov(f t+1 + pt+1, yt)
(
V ar(yt)

)−1
Cov(f t+1 + pt+1, yt)′.

The first term is:

V ar(f t+1+pt+1) = ψV ar(εtf )ψ′+B[V ar(εtf )+V ar(εt+1)]B′+[Cρz+D]V ar(εtz)[Cρz+D]′+CV ar(εtz)C
′.

(21)

Substituting from equations (18), (19), and (21):

(τy)−1 = ψV ar(εtf )ψ′ +BV ar[(εtf ) + V ar(εt+1)]B
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+[Cρz +D]V ar(εtz)[Cρz +D]′ + CV ar(εtz)C
′ − ψV ar(εtf )

(
V ar(εtf + εt)

)−1
V ar(εtf )′ψ′. (22)

The conditional precision of the information of the uninformed agent is:

(τp)−1 = V ar(f t+1 + pt+1)− Cov(f t+1 + pt+1, pt)
(
V ar(pt)

)−1
Cov(f t+1 + pt+1, pt)′.

Substituting from equations (17) and (21), we get:

(τp)−1 = ψV ar(εtf )ψ′ +B[V ar(εtf ) + V ar(εt+1)]B′ + [Cρz +D]V ar(εtz)[Cρz +D]′ + CV ar(εtz)C
′

−{ψV ar(εtf )B′ + (Cρz +D)V ar(εtz)C
′} × {BV ar(εtf + εt)B′ + CV ar(εtz)C

′}

×{ψV ar(εtf )B′ + (Cρz +D)V ar(εtz)C
′}′. (23)

Identifying the price function resulting from the market–clearing condition with the conjectured

price function, one gets the following system of equations:

ΦA = [(ψ − ωψV ar(εtf )(V ar(εtf + εt))−1]ρf

−(I−ω)[ψV ar(εtf )B′+(Cρz+D)V ar(εtz)C
′]
(
BV ar(εtf + εt)B′ + CV ar(εtz)C

′)−1 (A+Bρf ). (24)

ΦB = ωψV ar(εtf )(V ar(εtf + εt))−1. (25)

ΦC = γ(λτy + (1− λ)τp)−1. (26)

ΦD = (Cρz +D)ρz

−(I−ω)[ψV ar(εtf )B′+ (Cρz +D)V ar(εtz)C
′]
(
BV ar(εtf + εt)B′ + CV ar(εtz)C

′)−1 (Cρz +D) (27)

−ΦG = (I −ω)[ψV ar(εtf )B′+ (Cρz +D)V ar(εtz)C
′]
(
BV ar(εtf + εt)B′ + CV ar(εtz)C

′)−1 (G+Bµ)

45



−(G+ (ψ +B)µ) + ωψV ar(εtf )(V ar(εtf + εt))−1µ+ γ(λτy + (1− λ)τp)−1x. (28)

Note that equation (26) directly yields the expression for C in Proposition 3. To simplify this

system of equations, we rely on the following lemma:

Lemma 1: ψ = [I − (1 + r)−1ρf ]−1.37

Proof of Lemma 1: From (24) and the definition of Φ, we have that: A = Φ−1{[ψ −

ωψV ar(εtf )(V ar(εtf + εt))−1]ρf + [Φ− (1 + r)I](ψ− I)}. Combining this with (25), we obtain that:

I +A+Bρf = I + Φ−1{ψρf + [Φ− (1 + r)I](ψ − I)}, which, after some simplifications, yields the

result.

QED

Substituting ψ from Lemma 1 and ω in equation (25) we obtain the expression for B in Propo-

sition 3. Noting that −Φ−1(I −ω) = I − (1 + r)−1Φ−1 and substituting ψ and ω into equation (27)

we obtain the expression for D in Proposition 3. Substituting ψ from Lemma 1 in τp and τy from

(22) and (23), we get ω, τp and τy as functions of the exogenous parameters and B,C and D, as

stated in Proposition 3. Similarly, substituting Φ, ψ, ω, τp and τy into (24) and (28) we get A and

G as functions of B,C, and D, as stated in Proposition 3.

QED

Proof of Corollary 1: To establish that the price function stated in the corollary is an

equilibrium price, we substitute the linear price function in the market-clearing condition and

check that the equality holds for the coefficients stated in Corollary 1. Substituting: pt = Af t +G,

into: pt = (1 + r)−1{E(pt+1 + f t+1)− γτ−1x}, yields: Af t +G = (1 + r)−1{E(Af t+1 +G+ f t+1)−

γτ−1x}.That is:Af t + G = (1 + r)−1{(I + A)(µ + ρff
t) + G − γτ−1x}. Or: [(1 + r)A − (I +

A)ρf ]f t = −rG + (I + A)µ − γτ−1x. For this to hold for each realization of f t, we need that:

(1 + r)A− (I+A)ρf = 0 and: rG = +(I+A)µ−γτ−1x. This directly yields the coefficients stated
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in Corollary 1.

QED

Proof of Corollary 2: Substituting the price function (3) and the recursive definition of f t+1

(2) into the return equation (8) yields: Rt+1 = (I + A)µ + ((A + I)ρf − A)f t + (A + I)εtf . With

ex-ante identical and independent dividend processes, the coefficient matrix A is diagonal with

common diagonal element ā(> 0). For the nth asset, the (unconditional) return autocovariance

Cov(Rt+1
n , Rtn) equals:

Cov(((ā+ 1)ρ̄f − ā)(ρff t−1
n + εt−1

f,n ) + (ā+ 1)εtf,n, ((ā+ 1)ρ̄f − ā)f t−1
n + (ā+ 1)εt−1

f,n ).

Now, in this simple case we have: ā = ρ̄f (1 + r − ρ̄f )−1, so:

(ā+ 1)ρ̄f − ā =
1 + r

1 + r − ρ̄f
ρ̄f −

ρ̄f
1 + r − ρ̄f

=
rρ̄f

1 + r − ρ̄f
.

Hence the covariance Cov(Rt+1
n , Rtn) is :

(
rρ̄f

1 + r − ρ̄f
)2ρ̄fV ar(f t−1

n ) + (
rρ̄f

1 + r − ρ̄f
)(

1 + r

1 + r − ρ̄f
)V ar(εt−1

f,n ) > 0.

Now turn to the momentum strategy. Let M denote the (unconditional) expected return on

asset n. Letting µ̄ denote the nth element of µ (they are all the same, so we drop the subscript

n), and denote M = E[Rt+1
n ]. The position in asset n equals (1/N)(Rtn − R̄t). The return on the

momentum portfolio equals:

1
N

(Rt − R̄t1)′Rt+1 =
1
N

(Rt −M1)′Rt+1 − 1
N

(R̄t −M)1′Rt+1.

As N →∞, the second term on the right-hand-side converges to zero (based on the principle that

if a sequence of random variables XN converges in probability to 0 and another one YN converges

in probability to Y , then XNYN converges in probability to zero as well). So, we only need to
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investigate the first term:

E[
1
N

(Rt −M1)′Rt+1] =
1
N

N∑
n=1

Cov(Rt+1
n , Rtn) > 0.

QED

Proof of Corollary 3: With random endowment shocks and no private information, the linear

price function is: pt = Af t − Czt + G, and Proposition 3 yields: A = ρf [(1 + r)I − ρf ]−1, C =

γ
1+r τ

−1, G = r−1[(I+A)µ−γτ−1x], and: τ−1 = [I+A]′V ar(εtf )[I+A]+CV ar(εtz)C
′. Substituting

for A and C in the latter equation, we obtain:

τ−1 = [I + ρf [(1 + r)I − ρf ]−1]′V ar(εtf )[I + ρf [(1 + r)I − ρf ]−1] +
γ

1 + r
τ−1V ar(εtz)(

γ

1 + r
τ−1)′.

Substituting ρf = ρ̄fI, V ar(εz) = σ2
zI and V ar(εf ) = σ2

fI, this rewrites as:

τ−1 = (I + ρ̄fI ((1 + r)I − ρ̄fI)−1)′σ2
fI(I + ρ̄fI ((1 + r)I − ρ̄fI)−1) + (

γ

1 + r
τ−1)′σ2

zI(
γ

1 + r
τ−1).

(29)

That is:

τ−1 = [1 +
ρ̄f

(1 + r)− ρ̄f
]2σ2

fI + [
γ

1 + r
]2σ2

z(τ
−1)′τ−1. (30)

To solve the equilibrium, we must study if equation (30) admits a solution, and if, it does, find its

roots. Denote:

α = [
γ

1 + r
]2σ2

z and β = [1 +
ρ̄f

(1 + r)− ρ̄f
]2σ2

f = [
1 + r

1 + r − ρ̄f
]2σ2

f ,

and τ−1 = Q. Equation (30) writes as:

aQ′Q−Q+ bI = 0. (31)

SinceQ is a symmetric matrix, it can be written as: Q = V ΛV ′,where V is the matrix of eigenvectors

and Λ the diagonal matrix of eigenvalues. So we can rewrite (31) as:

α(V ΛV ′)′V ΛV ′ − V ΛV ′ + βI = 0. (32)
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Note that V is also the eigenvector matrix of I, i.e.: V IV ′ = V V ′ = I. Note also that V = V ′

since V is symmetric. Thus, (32) is equivalent to:

αV Λ′V ′V ΛV ′ − V ΛV ′ + βI = V (αΛ′Λ)V ′ − V ΛV ′ + V βIV ′ = 0. (33)

Thus we can rewrite this equation as:

V (aΛ′Λ− Λ + bI)V ′ = 0. (34)

(34) can be rewritten as:

V PV ′ = 0, (35)

where P is the diagonal matrix, whose diagonal elements are roots of the quadratic scalar equation:

αl2 − l + β = 0. (36)

Existence and multiplicity of equilibria will therefore depend on the sign of the discriminant of this

equation:

∆ = 1− 4αβ = 1− 4[
γ

1 + r − ρ̄f
]2σ2

fσ
2
z .

If ∆ is negative then there is no solution to (34) and thus there does not exist a linear rational

expectation equilibrium. ∆ is positive iff:

1 + r > ρ̄f − 2γσfσz. (37)

If this inequality holds, then there are two roots to (34). In that case, there exists 2N possi-

ble matrices P , solving equation (35). Correspondingly there are 2N linear rational expectations

equilibria.

QED

Proof of Corollary 4: Since endowment shocks are not serially correlated, D = 0. In this

simple 2 assets case, A,B and C are two by two matrices and G is a two by one vector. In line

with the symmetry of the distributions of the two assets, we focus on symmetric equilibria where
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the coefficients are the same for the two assets in the parameter matrices and vector: A,B,C and

G. We know from Proposition 3 how A and G can be obtained from B and C, so we focus only

on the latter. Since B is a symmetric matrix, it can be expressed as: B = V ΛBV ′,where V is the

matrix of eigenvectors and ΛB the diagonal matrix of eigenvalues:

ΛB =

 b 0

0 b

 . (38)

In the symmetric equilibrium case, the matrices share common eigenvectors. Thus we can write:

C = V ΛCV ′,where:

ΛC =

 c 0

0 c

 , (39)

is the matrix of eigenvalues of C. Similarly, ω = V ΛωV ′ and Φ = V ΛΦV
′, where:

Λω =

 w 0

0 w

 , (40)

and,

ΛΦ =

 φ 0

0 φ

 . (41)

Under our distributional assumptions, Φ simplifies to:

Φ = (1 + r)I − σ2
f (I − ω)ψB′((σ2

f + σ2)BB′ + σ2
zCC

′)−1.

Using the decomposition of the matrices in eigenvectors and eigenvalues and Lemma 1, and noting

that V V ′ = I, this yields:

V ΛΦV
′ = (1+r)V V ′−σ2

f (V V ′−V ΛωV ′)[I−(1+r)−1ρf ]−1V ΛBV ′((σ2
f+σ2)BB′+σ2

zCC
′)−1. (42)

Note that BB′ = V ΛBΛBV ′ and CC ′ = V ΛCΛCV ′. Substituting (38) and (39), we get that:

((σ2
f + σ2)BB′ + σ2

zCC
′)−1 = V

 ((σ2
f + σ2)b2 + σ2

zc
2)−1 0

0 ((σ2
f + σ2)b2 + σ2

zc
2)−1

V ′.
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Also,

[I − (1 + r)−1ρf ]−1 = V

 (1− ρf (1 + r)−1)−1 0

0 (1− ρf (1 + r)−1)−1

V ′,

and:

V V ′ − V ΛωV ′ = V

 σ2
f (1− w) 0

0 σ2
f (1− w)

V ′.

Substituting into (42), we get that:

V ΛΦV
′ = V

 (1 + r)− σ2
f (1−w)b

((σ2
f +σ2)b2+σ2

zc
2)(1−ρf (1+r)−1)

0

0 (1 + r)− σ2
f (1−w)b

((σ2
f +σ2)b2+σ2

zc
2)(1−ρf (1+r)−1)

V ′.

Hence:

φ = (1 + r)−
σ2
f (1− w)b

((σ2
f + σ2)b2 + σ2

zc
2)(1− ρf (1 + r)−1)

.

Proceeding similarly, we get the eigenvalues of B,C,w, τy, and τp stated in Corollary 4.

QED
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Notes

1See, e.g., Chan, Jegadeesh and Lakonishok (1996) and Lewellen (2002).

2Another difference is that finite horizon models are non–stationary, while we analyze stationary price equilibrium

functions.

3There also is a similar rational expectations loop in Spiegel (1998). In that overlapping generations model, prices

change because of supply shocks and public information, but there are no private signals.

4Investors can perform the projection because they know the parameters of the cash flows, endowment processes

as well as the pricing equation.

5Our modeling and interpretation of state contingent endowment shocks differs slightly from that of Watanabe

(2005). In our analysis, zt
a is the sensitivity of personal income to risky asset returns. Watanabe (2005) models

shocks in the supply of risky assets. In terms of theoretical modeling, there is no significant mathematical difference

between the two approaches. But our interpretation emphasizes the difference between tradeable risky assets and

aggregate risk exposure. This matters for the interpretation of our theoretical and empirical results.

6Van Nieuwerburgh and Veldkamp (2005) extends our analysis. They study portfolio implications of particular

types of information heterogeneity. Their approach is static, however, as in Admati’s original model.

7In the Roll Critique, the econometrician cannot observe the market portfolio. In our analysis, the econometrician

and the uninformed agents cannot observe the portfolio of aggregate risk. While in the original Roll Critique, lack of

observability has statistical consequences only, in our analysis it also has economic consequences, as it precludes full

revelation of the private signals. That is, the Roll Critique states that the CAPM can be tested in principle, but not

in practice; if our model of partial revelation is true, then the CAPM–like pricing equation cannot even be tested in

principle.

8Proposition 6 in DeMarzo and Skiadas (1998) establishes that a CAPM holds in equilibrium. They assume that

the endowment of agent i is ei = ai + biV , where V is the value of the asset and ai and bi are coefficients such that:

a =
P

i ai and b =
P

i bi are common knowledge to all the agents (see Definition 4, pages 138 and 139). Hence, in

this economy, the aggregate endowment of the risky assets is common knowledge.

9This contrasts with two-fund separation result obtained by the DeMarzo and Skiadas (1998) under the assumption

that the aggregate supply of risky assets is common knowledge.

10There is an additional complexity arising in Wang (1993), but not in the present analysis. We assume the informed

agents observe a signal on the next cash flow, which is then publicly observed. Wang (1993) assumes informed agents

observe the stochastically evolving mean of the cash–flow process. Thus, the uninformed agents must continuously
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learn about this state variable. Hence, to write the equilibrium price as a function of observable variables, one would

have to include the entire history of the process.

11This is similar to the dynamic CAPM studied by Stapleton and Subrahmanyam (1978).

12The observation in Lucas (1978) that dynamic general equilibrium may give rise to a variety of types of pre-

dictability already foreshadowed that it would be possible to generate momentum in specific cases.

13As λ goes to 0,
R

a∈S
zt

ada is scaled such that in the limit zt does not go to 0.

14We are grateful to the referee for suggesting to us this result and its proof.

15We are grateful to the referee for suggesting to us this result and its proof.

16In a previous draft of the paper, we also considered asymmetric equilibria. For these we could not rely on simple

equations similar to those stated in Corollary 4. To analyze this more complicated case we relied on a numerical

method known as perturbation analysis. See Biais, Bossaerts and Spatt (2007). Note also that the symmetric

case gives rise to multiplicity to the extent that there are multiple eigenvectors. This would no longer arise with

non–diagonal exogenous parameter matrices.

17It’s not clear what an appropriate order of magnitude should be for the coefficient of absolute risk aversion in a

CARA model. Indeed, one must bear in mind that cash does not affect choices in such a context, so that total wealth

does not show up in the equilibrium restrictions. Wang (1993) normalizes the coefficient of absolute risk aversion

to 1. We normalize the total endowment of risky assets to one, and arbitrarily set γ to 1.735. We checked that,

when one varies the value of this coefficient, equilibrium parameters change (reflecting a change in the risk–return

tradeoff), but not in a dramatic way, i.e., there is no local instability.

18We checked that in the other symmetric equilibria B also increases with λ. But, while C decreases with λ in the

equilibrium upon which we focus, it increases in the other symmetric equilibrium.

19http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

20In accordance with our theory and extant empirical studies, short-sale constraints are not imposed.

21Since the error terms in the return-price projections will be correlated, one may want to use Seemingly Unrelated

Regressions (SUR). Because the regressors are the same for each of the six projections, however, SUR boils down to

ordinary Least Squares.

22For an in-depth analysis, see, e.g., Kandel and Stambaugh [1996].

23See, e.g., Cochrane [1999], Figure 6.

24Cochrane [1999] compares the performance of indexing against that of alternative strategies by combining the

latter with investment in Treasury bills. In contrast, we combine our price-contingent strategy with investment in
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the market portfolio.

25See Bossaerts (1995) for an earlier illustration of the use of partial z -statistics.

26Results do not change qualitatively if σ̂ is computed without the assumption that the expected return differences

equal zero.

27The functional central limit theorem predicts that the asymptotic behavior of the partial z-statistic is that of the

standard Brownian motion. This not only means that partial z-statistics are normally distributed (one could have

derived that from a standard central limit theorem), but, more importantly, that increments are independent. It is

precisely this independence that allows us to “re-start” the confidence intervals at any T1 > 0 as if a new, independent

sample was produced.

28This p-level is based on a simple binomial test evaluating the probability of at least x positive outcomes (perfor-

mance) in n independent trials (periods) when the probability of a positive outcome is 0.5. In the above, x = 6 and

n = 7.

29This p-level is based on a simple binomial test evaluating the probability of at least x rejections in n independent

trials (periods) when the probability of a rejection is 0.05. In the above, x = 2 and n = 7.

30Historical monthly returns of SMB and HML (referred to later) can be retrieved from Ken French’s web site;

these were used in the present study.

31This problem did not arise in our numerical analysis above, where, in line with our Cara–Normal model, we

considered dollar returns, as opposed to percentage returns.

32When combining the zero–investment strategies with the risk-free asset only, the combinations generated inferior

performance. Thus, our choice to combine with the market index effectively stacks the deck against finding evidence

that the price contingent strategy outperforms strategies based on size, value or momentum.

33Treasury bill return data are from CRSP.

34These GLS projections were the inputs of our optimal price-contingent portfolio strategy.

35The results are not sensitive to the choice of series of non-overlapping sixty-month periods.

36Jimenez Garcia (2004) offers an interesting empirical analysis of asset pricing under private information, relying

on industry groupings.

37We thank the referee for suggesting to us this result.
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Figure 2:
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Figure 3:
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Figure 4:
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Figure 5:
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Figure 6:
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