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Abstract

We examine the problem of selecting the discount rate for far dis-
tant cash-flows when there is much uncertainty about what will be
the future investment opportunities in the economy. We show that
it is efficient to take a discount rate that is increasing with the time
horizon, and that this rate should tend to the largest possible rate as
the horizon tends to infinity. These recommendations are opposite to
the ones proposed by Weitzman (2001) in this journal.

∗This paper has benefitted from intense discussions with François Salanié and Richard
Zeckhauser.
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1 Introduction

Suppose that we have to decide whether or not to implement an investment
project whose rate of return is 1% per year with certainty. It is a very long-
term project whose future benefits can be cashed only in a far distant future,
say more than 200 years. There is much uncertainty about the rate of return
of capital in the remaining of the economy. To keep it simple, suppose that
experts are equally divided in two groups. In the first group, it is believed that
the rate of return of capital will be a sizeable 5% per year. The second group
of experts is pessimistic with a zero rate of return. The question is: should
we invest in this long-term project that yields a sure 1% rate of return per
year? To answer this question, one should use the standard arbitrage analysis
which underlies the idea of discounting. Suppose that we have one dollar to
spend today to improve the future. We then need to compare the sure future
benefit of investing it in the above-mentioned project to the uncertain benefit
of investing the same dollar in the capital market. In Table 1, we present
these numbers for different time horizons, where (x; y) represents the two
equally likely future payoffs of the capital market.

Time horizon
Sure payoff
of the project

Equally likely payoffs
of the capital market

200 years 7 (1; 17× 103)
500 years 145 (1; 39× 109)
1000 years 21× 103 (1; 15× 1020)

Table 1: future cash-flow of one dollar invested in the project or in the
market.

We see the power of compound interests at work in this simple exercise.
This is particularly explicit for the 5% rate of return of the capital market
if we are lucky. Telling what to do ex ante is not easy in this case because
of the size of the risk on the capital market. Suppose that our time horizon
for the investment project is 200 years. If we assume risk neutrality, it is
obvious that it is optimal to invest in the market rather than in the project,
since, on average, the future value generated by the market is 2,363 larger
than the one of the project. Things are even clearer for longer horizons, with
a ratio of expected future cash-flows of 27 107 for 500 years, and 74 1015 for
a millennium. We conclude that, if the representative agent is risk neutral,
it is better not to invest in the project with a sure 1% rate of return.
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In this note, we reexamine this question of the long-term discount rate
to be used for cost-benefit analysis of such important economic problem
as global warming, nuclear wastes, and the management of exhaustible re-
sources, for example. We show how to take into account of the considerable
uncertainty surrounding the future rate of return on capital.

2 The model

Consider a sure investment project which requires one unit of the single
consumption good at date 0, and which generates a single payoff Z at date
t. Z can be the reduction in damages due to global warming generated by
a reduction in the current emission of greenhouse gases. These efforts are
aimed at improving the welfare of the generation leaving at date t. A social
planner is asked to determine whether or not to invest in this project. He
learned in a good Business School that an investment project is desirable
only in comparison to other investment opportunities. Those alternative
investments are generically characterized by the risk-free rate of return x
of capital markets. Thus, he compares the final future payoff of the two
investments at date t, i.e., he compares Z to ext. In other words, he compares
the return t−1 lnZ of the project to the return of the financial markets. Or,
else, he computes the net future value NFV = −ext + Z. Investments are
thus ranked according to their net future value.
So far, so good. Suppose now that the future risk-free rate of return of

capital markets is uncertain. The planner and the experts believe that this
rate will be constant in the future but, as of today, they don’t know the
level at which it will stabilize soon in the future.1 Let ex denote the random
variable characterizing this uncertainty. Its support is in [−1,+∞[. Because
the economy is neutral to risk, the planner extends the above decision rule
to uncertainty in the following way.

Criterion 1 Different investment projects should be ranked according to their
expected net future value.

This means that our project, when compared to doing nothing, should be
implemented if −Eeext+Z is positive. This is equivalent to requiring that the

1If the delay to get the information is relatively short, one should add some option
value to wait into the cost-benefit analysis. See Ingersoll and Ross (1992).
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future payoff Z be larger than the expected payoff of investing the money
on the capital market. Observe that one can define an equivalent per period
interest rate R that would do the same job. Indeed define R(t) in such a way
that

eR(t)t = Eeext. (1)

With this definition the above criterion becomes equivalent to accepting the
project if it satisfies condition −eR(t)t + Z ≥ 0. Since this is equivalent to
−1 + Ze−R(t)t ≥ 0, it is equivalent to accepting any risk-free investment
project that has a nonnegative net present value, where rate R(t) is used to
discount cash-flows occurring at date t.

Proposition 1 Criterion 1 implies that any risk-free investment with a non-
negative net present value should be accepted, with an horizon-dependent dis-
count rate R(t) defined by (1).

It is interesting to examine how the discount rate to be used in cost-
benefit analysis is related to the time horizon. Our findings are summarized
in the following Proposition.

Proposition 2 The socially efficient discount rate R(t) is increasing with
the time horizon t. It converges to the upper bound of the support of ex as t
tends to infinity.

Proof: R(t) can be seen as the certainty equivalent of the random payoffex for an agent with a constant absolute degree of risk aversion −t. As shown
for example by Pratt (1964), a decrease in the degree of risk aversion, i.e.,
an increase in t, implies an increase in the certainty equivalent R(t). The
fact that R(t) tends to the maximum of the support of ex is well-known. It
is the dual to the result that the certainty equivalent tends to the minimum
possible payoff when risk aversion tends to infinity. ¥
Thus, our recommendation is to take a larger interest rate to discount

long-term cash-flows with respect to short-term ones. Moreover, as time
horizon recedes to infinity, the discount rate should tend to the maximum
possible rate.

3 Post Scriptum

Of course, this recommendation goes against many voices that rather suggest
that we take a decreasing discount rate. Some scholars, such as Weitzman
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(1998, 2001), go to the extreme by suggesting a zero discount rate for far
distant cash-flows. Implementing such a recommendation could have extreme
consequences on how much effort our generation should exert to make far
future generations better off, maybe at the expense of future generations
that are closer to us.
Paradoxically, Weitzman (1998, 2001)’s argument is totally symmetric to

ours. He considers the following decision criterion:

Criterion 2 Different investment projects should be ranked according to their
expected net present value (ENPV).

This criterion yields an equivalent discount rate RW (t) that satisfies con-
dition Ee−R

W (t)t = Ee−ext. RW (t) is decreasing in t, and it tends to the
minimum possible rate. Clearly, we cannot be both right. In fact, to tell the
truth, I believe that we are both wrong, because our criteria are arbitrary, as
they do not rely on actual preferences. For example, a third possible criterion
would have been to rank investment projects on the basis of their expected
returns. Using this criterion would yield an horizon-independent discount
rate. By the way, this assumption corresponds in the theory of finance to
the well-known Expectation Hypothesis.2

The question is whether the ENPV criterion or the ENFV criterion has
any economic meaning when the risk is about the future economic environ-
ment. Taking the expected net future value is equivalent to assuming that
all risks will be borne by the future generation. The current generation has a
fixed budget for investing for the future. It only arbitrage among different in-
vestment strategies with the same initial cost. Using the expected net present
value implicitly means that it is the current generation who bears the risk. As
soon as x will be know, the current generation will invest enough money to
guarantee a sure payoff independent of x for the future generation. Because
the two approaches lead to radically different recommendations, we see that,
to solve the problem, we cannot escape the discussion of who should bear
which risk. The existing literature on the term structure of interest rates
provides the relevant models to deal with these questions. It is true that
these models are technical, but this is probably the cost to be paid to make
policy recommendations that have an economic sense.

2For a discussion of this hypothesis, see for example Cochrane (2001), or Campbell, Lo
and MacKinlay (1997).

5



REFERENCES

Campbell, J.Y., A.W. Lo, and A.C. MacKinlay, (1997), The
econometric of financial markets, Princeton University Press.

Cochrane, J., (2001), Asset Pricing, Princeton University Press.

Ingersoll, J.E., and S.A. Ross, (1992), Waiting to invest: Invest-
ment and uncertainty, Journal of Business, 65, 1-29.

Pratt, J., (1964), Risk aversion in the small and in the large,
Econometrica, 32, 122-136.

Weitzman, M.L., (1998), Why the far-distant future should be
discounted at its lowest possible rate?, Journal of Environ-
mental Economics and Management, 36, 201-208.

Weitzman, M.L., (2001), Gamma discounting, American Eco-
nomic Review, 91, 260-271.

6


