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Abstract. The goal of this paper is to illustrate the signi�cance of informa-

tion acquisition in mechanism design. We provide a stark example of a mechanism

design problem in a collective choice environment with information acquisition. We

concentrate on committees that are comprised of agents sharing a common goal and

having a joint task. Members of the committee decide whether to acquire costly in-

formation or not at the outset and are then asked to report their private information.

The designer can choose the size of the committee, as well as the procedure by which

it selects the collective choice, i.e., the correspondence between agents' reports and

distributions over collective choices. We show that the ex-ante optimal device may be

ex-post ine�cient, i.e., lead to suboptimal aggregation of information from a statistical

point of view. For particular classes of parameters, we describe the full structure of

the optimal mechanisms.
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1. Introduction

In many real world situations information is not supplied freely and individuals choose

whether to acquire costly information concerning the decision tasks they face. For example,

trial jurors need to decide whether or not to attend to testimonies during a trial, referees

need to decide whether or not to carefully read a paper under consideration for publication,

and top management consultants need to choose the amount of time they invest in learning

about di�erent investment opportunities before convening to determine a course of action.

The current paper aims at exploring the potential signi�cance of information acquisition

to mechanism design problems. To that e�ect, we focus on a particular setting in which

a committee of homogenous agents, each capable of acquiring costly information, chooses

one of two alternatives. The designer chooses the size of the committee and the decision

rule in order to maximize the (common) expected utility of the collective decision. Unlike

most of the literature on mechanism design in which the distribution of agents' types is

exogenously given, the current setup allows for the endogenous determination of agents'

types. Speci�cally, this framework enables us to study mechanism design in situations where

there are two forces at play. On the one hand, the mechanism should use the information

available as e�ciently as possible. On the other hand, the mechanism needs to provide

agents with incentives to invest in information (which thereby changes their types).

The analysis of the optimal mechanism yields a few interesting insights. First, in order

to provide strong incentives for information acquisition, for a large class of parameters, the

optimal device is ex-post ine�cient, i.e., it does not necessarily utilize all the information

that is reported. Second, the optimal ex-post ine�cient mechanism is a product of a simple

cost-bene�t analysis. The designer looks for distortions that maximize the ratio of the

(positive) e�ect on incentives to the (negative) e�ect on her payo�s. In particular, we can

analytically describe the optimal mechanism for extreme values of signal accuracies. Last,

the comparative statics of the optimal mechanism exhibit some regularities and irregularities,

e.g., the expected social value is monotonic in the cost of information and accuracy of private
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information, but the optimal committee size is not monotonic in the signals' accuracy.

The paper contributes to the literature on mechanism design with endogenous infor-

mation. While most of this literature deals with auction and public good models (see, e.g.,

Auriol and Gary-Bobo [1999], Bergemann and V�alim�aki [2002], and references therein), there

are a few exceptions focusing on collective decision-making. Gersbach [1995] is one of the

�rst papers to study the incentives of committee members to become informed. Gersbach

assumes that collective decisions are made according to majority rule and shows that infor-

mation acquisition is not always socially e�cient. Persico [2004] analyzes a problem similar

to ours but restricts the designer to threshold voting rules that select one of the alternatives

if and only if a certain number of participants support that alternative. In this setup, the

optimal threshold rule ends up coinciding with the optimal statistical rule and is, in partic-

ular, ex-post e�cient. When we allow for a broader class of voting rules, as in the current

paper, we see that ex-post e�ciency no longer holds.

Li [2001] considers a committee of a �xed size and allows each player to invest in the pre-

cision of her private signal. When information is a public good, Li illustrates the optimality

of statistical distortions in the decision rule. In Li [2001] investments as well as signals are

publicly observed and thereby veri�able. In contrast, in our setup veri�ability assures that

a non-distortionary rule is optimal when the committee is large enough.

Cai [2003] looks at a continuous framework in which the policy preferences and infor-

mation structures are captured by normal random variables. Members exert non-veri�able

e�orts in gathering information, report these preferences to the principal, who then uses

the mean decision rule to determine the collective policy. Cai characterizes the optimal

committee size in this setting and shows that it is �nite. Furthermore, the optimal size is

non-monotonic in the variation of preferences of the committee members.

Gershkov and Szentes [2004] consider a problem similar to ours but restrict the set of

parameters to be such that the designer is indi�erent between the two alternatives when no

information is available . They allow the mechanism designer to approach agents sequen-

tially and characterize the optimal stopping rule when the designer is restricted to ex-post
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e�cient outcomes. In their setup, full ex-ante e�ciency may yield ex-post ine�ciency. In a

similar spirit, Smorodinsky and Tennenholtz [2006] allow agents to hold di�erential costs and

characterize environments in which the �rst best mechanism (corresponding to free infor-

mation) can be implemented using a potentially sequential mechanism. For some scenarios,

they illustrate speci�c mechanisms implementing the �rst best solution. The current paper

is complementary in that it considers a model germane to situations in which the number of

experts is �xed at the outset and communication is not allowed prior to information acquisi-

tion. There are many examples that satisfy these restrictions: e.g., a jury in which the size

of the jury is transparent but deliberations are allowed only after the testimonies have been

presented, a hiring search committee that convenes only after reading candidates' portfolios,

etc. In addition, our analysis pertains to a more general environment in that an uninformed

decision maker may strictly prefer one alternative over the other.

In broad terms, the current paper adds to the existing literature by introducing a general

static mechanism design analysis of problems pertaining to collective choice with information

acquisition. Technically, the paper's underlying model is one prevalent in the literature on

strategic voting (e.g., Austen-Smith and Banks [1996] and Feddersen and Pesendorfer [1996,

1998]).

The paper is structured as follows. Section 2 presents the design problem. Section 3 illus-

trates the important features of the optimal mechanism, regarding the way the information

agents report is aggregated. Section 4 provides an analysis of the optimal device for extreme

signal accuracy levels. It also illustrates various comparative statics results pertaining to

the optimal design solution. For the sake of presentation simplicity, throughout most of

the paper we assume that agents do not use mixed strategies in the information acquisition

stage. In Section 5 we illustrate that the underlying message of the paper, namely that ex-

ante optimal mechanisms may be ex-post ine�cient, carries through even when agents are

allowed to use fully mixed strategies. Section 6 concludes. Propositions' proofs are relegated

to the Appendix.
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2. The Model

We concentrate on the case replicating the standard committee voting problem (e.g., Fed-

dersen and Pesendorfer [1998]). While our setup is germane to many collective decision en-

vironments, the reader may �nd it useful to trace our modeling choices with a jury metaphor

in mind.

There are two states of the world, I (innocent) and G (guilty), with prior distribution

(P (I) ; P (G)) : The alternatives (or decisions) are A (acquittal); and C (conviction). There

is a pool of N > 2 identical agents (the potential jurors). All the agents as well as the

mechanism designer share the same preferences which depend on the state of the world and

the �nal decision. Let q be a number in (0; 1) : The common utility is given by:

u (d; !) =

8><>:
�q if d = C and ! = I

� (1� q) if d = A and ! = G

0 otherwise.

where d and ! denote the collective decision and the state of the world, respectively (using

the jury metaphor, preferences are such that jurors prefer to make the right decision and q

can be thought of as the threshold of reasonable doubt).

Each agent can purchase a signal of accuracy p > 1
2
: That is, upon paying the cost c > 0;

the agent receives a signal s 2 fi; gg satisfying Pr (s = ijI) = Pr (s = gjG) = p (each juror

has to decide whether to pay attention or not to the testimonies presented during the trial.

These testimonies provide a noisy signal concerning the guilt of the defendant).

If more than one agent purchases information, we assume their signals are conditionally

independent. As a starting point, we only attend to the case in which an agent can buy at

most one signal.

In our environment there are numerous ways to make a collective decision. First, we

can have committees of di�erent sizes. Second, for a committee of a given size there is a

continuum of ways of aggregating reports into �nal decisions. Of course, these variables will

a�ect the agents' decisions (whether they acquire information or not, as well as how they
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report that information) and, therefore, the quality of the �nal decision. We now analyze

the problem of designing the optimal mechanism. To accomplish this, we study the following

game.

Stage 1 The designer chooses an extended mechanism, i.e., the size of the committee n 6 N
and a mapping between reports in f;; i; ggn and probabilities of choosing A or C (;

stands for an agent who does not purchase information, and i or g stand for an agent

who purchases information and receives i or g as the realized signals, respectively).

Stage 2 All agents observe the designer's mechanism. Each agent j = 1; :::; n decides

whether to purchase a signal. These choices are made simultaneously, and each member

of the committee does not observe whether other members have acquired information.1

Stage 3 Each agent sends a message in f;; i; gg to the designer, who uses the chosen mech-

anism to select one of the alternatives.

Stages 2 and 3 constitute an extensive-form game played by the agents 1; :::; n: For the

sake of presentation simplicity, until Section 5 we restrict attention to sequential equilibria in

which the players use pure (behavioral) strategies in Stage 2; and are allowed to randomize

in Stage 3 (as will become clear shortly, allowing for randomization at Stage 3 does not

add complexity to the analysis, hence the apparent asymmetry). A strategy pro�le of this

game determines an outcome (i.e., the probabilities that the correct decision is made in

state I and in state G) and therefore, the expected common utility of the decision. The

designer chooses the mechanism to maximize her utility (from the decision). In particular,

the designer does not take into account the cost c incurred by an agent who purchases a

signal. There are di�erent situations in which this assumption is appropriate. The designer

may be a CEO who hires a committee of �nancial advisors. Alternatively, the decision may

1Our analysis would, in fact, be tremendously simpli�ed if investments were overt (see Footnote 4).
However, in many situations in which agents engage in information acquisition, investment in information is
indeed covert and signals are non-veri�able. For example, jurors would have a hard time proving they had
attended testimonies, committee members do not check whether their colleagues have gone over the relevant
background information before convening, etc.
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a�ect the welfare of every individual in a large society and the designer can be a benevolent

planner (e.g., the constitution writers). In this case, any increase in the utility from the

decision can compensate for the information costs paid by the agents.

Of course, as will be illustrated formally in what follows, increasing the committee size

expands the set of implementable outcomes. In particular, giving the designer the freedom

to choose the size of the committee is not crucial. Nonetheless, we view this assumption as

appealing in many real world examples in which committee participants are costly (and this

cost is independent of the information costs described above). For instance, it is costly to

have a juror appear at court instead of at her employment. Suppose that the designer has

lexicographic preferences and is willing to pay the additional cost as long as larger committees

lead to better decisions. Thus, if two committees of di�erent size lead to the same quality

of decisions then the designer strictly prefers the smaller committee. In what follows we

assume that for every level of feasible expected payo�s, the designer indeed chooses the

smallest committee that generates it.

We denote each agent j's type in Stage 3 by tj 2 Tj � f;; i; gg: The designer's problem

then constitutes of choosing the size n of the committee and a device, a mapping 
 : T1� :::�

Tn ! [0; 1] ; where 
 (t) denotes the probability the designer chooses the alternative C when

the vector of reports is t. Each game induced by n and 
 generates a set of equilibria. We will

use �j to denote player j's choice at the information acquisition stage. As already mentioned,

in this section we restrict attention to pure strategies in the information acquisition stage.

Thus, �j 2 f0; 1g where �j = 1 denotes the decision to become informed (in Section 5 we

consider the general case �j 2 [0; 1]).

Note that, in principle, we could consider an arbitrary set of messages available to each

player at Stage 3. Nonetheless, the revelation principle (see Myerson [1991] pages 258-263)

assures that it is without loss of generality to restrict attention to mechanisms in which the

set of messages of each player coincides with her set of types. Furthermore, the revelation

principle assures that it is without loss of generality to assume that players reveal truthfully

their types. Intuitively, the mechanism could replicate any garbling of information that would
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be generated by allowing the agents a larger set of messages or by having them independently

alter their reports.

As it turns out, we can put even further restrictions on the mechanisms we consider that

are without loss of generality:

1. All players acquire information. Suppose that an outcome is implemented

by a pair (((�1; : : : ; �n) ; 
)) in which only players 1; :::; n
0 acquire the signal (and reveal it

truthfully), where n0 < n: Consider the device 
0 de�ned as follows: for every vector of reports

t1; :::; tn0 ; 

0 (t1; :::; tn0) = 
 (t1; :::; tn0 ; ;; :::; ;) : Under the original pair (((�1; : : : ; �n) ; 
)), the

�rst n0 players know that players n0+1; :::; n do not purchase the signal and report message

; to the device 
 (remember that 
 induces truthful revelation): If players 1; :::; n0 decide to

acquire information and be sincere under 
 then they have an incentive to do the same under


0: Therefore, in the remainder of the section we focus on devices that induce all players to

acquire information and reveal it sincerely. We call these devices admissible. It is important

to note that admissible devices are characterized by two classes of incentive compatibility

constraints. The �rst is the already introduced truthful revelation constraint. The second

guarantees that each player best responds by acquiring information.

2. Players' message space is binary. Since we consider the case in which all players

acquire information we can use the revelation principle to further restrict the set of messages.

In fact, it is without loss of generality to constrain messages to be either i or g.

Let Uj
�
tj; t

0
j

�
denote the expected utility (from the decision) of player j when her type

is tj = i; g; she reports message t
0
j = i; g, and all her opponents acquire information and are

sincere. Let also Pr (tj) denotes the probability that agent j will observe signal tj = i; g if

she acquires information. It follows that agent j will purchase the signal if and only if the

following information acquisition constraints are satis�ed:

Pr (g) (Uj (g; g)� Uj (g; i)) > c; (1)
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Pr (i) (Uj (i; i)� Uj (i; g)) > c: (2)

These inequalities guarantee that agent j prefers to buy the signal and be sincere rather

than not buy the signal and always report one of s = i; g (i in the �rst inequality, g in the

second one).

Clearly, (1) and (2) also guarantee that a player who purchases a signal has an incentive

to reveal it truthfully. We can, therefore, think of an admissible device as a mapping 
 :

fi; ggn ! [0; 1] which satis�es conditions (1) and (2).

3. The optimal device is symmetric. Let �n denote the set of permutations on

f1; :::; ng: An admissible device 
 is symmetric if for all (t1; :::; tn) 2 fi; ggn and all ' 2 �n,


 (t1; :::; tn) = 

�
t'(1); :::; t'(n)

�
: In a symmetric device, the probability that the defendant

is convicted depends only on the number of messages g (or i) but not on the identity of

the players who send g: Suppose that 
 is an admissible device. For any ' 2 �n consider

the device 
'; where 
' (t1; :::; tn) = 

�
t'(1); :::; t'(n)

�
for every ft1; :::; tng in fi; ggn : Since

all players are identical and 
 is admissible, the device 
' is also admissible and outcome

equivalent to 
: It follows that the symmetric device ~
 =
�

1
j�nj

�P
'2�n 
' =

1
n!

P
'2�n 
'

is admissible and outcome equivalent to the original device 
: We thereby consider only

symmetric devices henceforth.

A symmetric device can be represented as a mapping 
 : f0; 1; :::; ng ! [0; 1] ; where


 (k) denotes the probability that the defendant is convicted (alternative C is chosen) when

k players report the guilty signal g (each player can report either i or g). For a symmetric

device 
 : f0; 1; :::; ng ! [0; 1] conditions (1) and (2) can be expressed as:

n�1X
k=0

�
n� 1
k

�
f (k + 1;n) (
 (k + 1)� 
 (k)) > c; (ICi)

n�1X
k=0

�
n� 1
k

�
f (k;n) (
 (k)� 
 (k + 1)) > c; (ICg)
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where f (�;n) : R! R is de�ned by:

f (x;n) = �qP (I) (1� p)x pn�x + (1� q)P (G) px (1� p)n�x :

In order to get an intuitive sense of each of these formulas, notice that

Pr(! = I j jfk j sk = ggj = x) =
P (I)(1� p)xpn�x

P (I)(1� p)xpn�x + P (G) px (1� p)n�x
:

Thus, f (x;n) is a proxy for the di�erence in expected payo� between choosing alterna-

tives A and C when x out of n signals are equal to g: In particular, the designer would like

to choose the alternative C whenever f(x;n) > 0 (the designer is, in fact, indi�erent when
equality holds). For any n; f(x;n) is strictly increasing in x:

The incentive constraints are derived by weighing these di�erences between the returns

to both alternatives by the probabilities of conviction for di�erent constellations of signal

realizations (where the binomial coe�cients account for the number of ways in which each

k guilty reports can be allocated among n� 1 players).

For each n; we look for the optimal admissible device, i.e., the admissible device that

maximizes the expected utility of the decision. This amounts to solving the following linear

programming problem Pn :

max

:f0;:::;ng![0;1]

� (1� q)P (G) +
nP
k=0

�
n
k

�
f (k;n) 
 (k)

s.t. (ICi), (ICg).

We denote by �
n the solution to the problem Pn (if it exists), and by V (n) the expected

utility of the optimal device. If Pn does not have any feasible solution, we set V (n) = �1.

The optimal mechanism consists of the optimal size of the committee n�; and the optimal

admissible device �
n� : n
� is such that V (n�) > V (n) ; for every nonnegative integer n 6 N .2

In what follows, we analyze the optimal pair (n�; �
n�):

2Notice that V (0) > �1; and, thus, n > 1 can be the optimal size only if problem Pn admits a feasible
solution.
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3. Features of The Optimal Extended Mechanism

The extended mechanism the designer chooses is comprised of the size of the committee

as well as the aggregation rule and, hence, the incentive scheme it will operate under. In

this section we illustrate some fundamental traits of the optimal device the designer would

choose. In particular, we show that imperfectly aggregating the available information may

induce more players to acquire information, thereby yielding a higher overall expected utility

level.

In order to analyze how the optimal device uses the information of the agents, we �rst

consider the case in which the designer makes the �nal decision after observing n free signals.

This will give us an upper bound on what the designer can achieve when she chooses a

committee of size n and information is costly. To that e�ect, we simply need to maximize

the objective function of problem Pn (without the constraints). We let 

B
n denote the solution

to this maximization problem. The device 
Bn ; which we term the Bayesian device, is of the

form:


Bn (k) =

8<: 0 if f (k;n) < 0

1 if f (k;n) > 0
;

(in fact, when f (k;n) = 0; 
Bn (k) can be any number in the unit interval).

To interpret this result, notice that f (k;n) is positive (negative) if and only if the cost

of convicting the innocent q is smaller (greater) than the probability that the defendant is

guilty given that k of n signals are g:

Recall that the function f (�;n) is increasing and that z (n) is de�ned by the equality

f (z (n) ;n) = 0: We have:

z (n) =
1

2

0@n+ ln
�

qP (I)
(1�q)P (G)

�
ln
�

p
1�p

�
1A : (3)

Let kn denote the smallest integer greater than or equal to z(n). Another way to express
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the Bayesian device 
Bn is:


Bn (k) =

8<: 0 if k < kn

1 if k > kn
:

For small values of n; z (n) can be negative or greater than n: In the �rst case, the optimal

decision is always to convict the defendant. In the latter case, the optimal decision is always

to acquit.3 For large values of n, however, z (n) is positive and smaller than n (z (n) =n

converges to 1=2 as n goes to in�nity).

We let V̂ (n) denote the expected utility of the Bayesian device:

V̂ (n) = � (1� q)P (G) +
X

k2f0;::;ng; k>z(n)

�
n

k

�
f (k;n) :

The utility V̂ (n) is non-decreasing in the number of signals n: Moreover, V̂ (n) is strictly

greater than V (0) ; the expected utility of the optimal uninformed decision, if and only if

z (n) belongs to (0; n) : If z (n) is not in (0; n) ; then V (0) = V̂ (1) = ::: = V̂ (n) :

When n becomes unboundedly large, the Bayesian device uses an in�nitely increasing

number of i.i.d. signals. The law of large numbers ensures that all uncertainty vanishes

asymptotically. In particular, V̂ (n) converges to zero, the no uncertainty value, when n goes

to in�nity.4

We now return to the original design problem. In what follows, we will mainly focus

on n > 1:5 Clearly, the expected utility of the optimal admissible device V (n) cannot be

3These cases arise when the designer is very concerned with a particular mistake (acquitting the guilty
(q � 0) or convicting the innocent (q � 1)), and the signal is not very accurate, i.e., p is close to 1=2: In
both cases the n signals are of no value.

4Note that if information acquisition is overt and c < 1, then V̂ (n) is implementable (in Nash equilibrium)
for su�ciently large n 6 N: Indeed, assume the designer selects the Bayesian device 
Bn as long as everyone
purchases information, and a device 
 that makes a choice contrary to the Bayesian prescription if any agent
does not purchase information (i.e., for all k; 
(k) = 1�
Bn (k)). The strategy pro�le under which all players
acquire information and are always sincere constitutes a Nash equilibrium. Under this pro�le, the expected
utility of the decision approaches 0: If one player deviates and does not acquire information, she drives the
common utility to a level that approaches �1. Finally, no agent has an incentive to lie upon acquiring
information.

5This is because the case of n = 1 is trivial in the sense that either the Bayesian device is admissible and,
hence, optimal, or there is no mechanism inducing the single agent to acquire information.



Information Acquisition in Committees 12

greater than V̂ (n). On the other hand, when the Bayesian device 
Bn is admissible, we have

V (n) = V̂ (n) : In this case the designer is able to give the incentive to the n agents to

acquire the signal and, at the same time, to make the best use of the available information.

Proposition 1 shows that this can happen if and only if the contribution of the last signal to

the utility of a single decision maker is greater than or equal to its cost.

Proposition 1. For every n > 1; V (n) = V̂ (n) if and only if V̂ (n)� V̂ (n� 1) > c:

The proof (which appears in Gerardi and Yariv [2003]) is straightforward and is thus

omitted. However, it is useful to see why the above inequality is necessary. Consider a

committee of size n and suppose that players 2; : : : ; n acquire the signal and announce it

truthfully. Notice that either kn = kn�1 or kn = kn�1 + 1: If kn = kn�1 (kn = kn�1 + 1)

then player 1 can achieve utility V̂ (n� 1) without acquiring the signal by simply announcing

signal i (g). Indeed, the defendant will be convicted only if kn�1 opponents of player 1 observe

signal g: Thus, player 1 can generate an expected utility of V̂ (n� 1) by not purchasing and

reporting the appropriate signal. As it turns out, when kn = kn�1 (kn = kn�1 + 1) the LHS

of IC (i) of the Bayesian device is smaller (larger) than the LHS of IC (g) :6 The result then

follows.

We assume that there exists at least one integer for which the Bayesian device is ad-

missible. Let nB denote the greatest such integer. That is, V̂
�
nB
�
� V̂

�
nB � 1

�
> c; and

V̂ (n) � V̂ (n� 1) < c for every n > nB: The existence of nB is guaranteed by the fact

that the sequence
n
V̂ (1) ; :::; V̂ (n) ; ::::

o
converges (to zero). The designer can induce more

than nB players to acquire information only if she selects a device that aggregates the avail-

able information suboptimally. On the other hand, more information will be available in

larger committees. How should the designer solve this trade-o�? Is the optimal size of the

committee equal to or larger than nB?

Note that if the optimal size of the committee is nB; the designer could restrict herself

to a simple class of devices characterized by threshold voting rules (the optimal threshold

6Note that this observations implies, in particular, that the �rst constraint to bind as the cost c increases
alternates with n:
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being determined by the Bayesian device, as in Persico [2004]). On the other hand, if the

optimal size is larger than nB; then mixing, and in particular ex-post ine�ciency, may play

a very important role in the choice of ex-ante optimal mechanisms. Proposition 2 shows that

this is indeed the case (at least when the cost is su�ciently low).7

Before formally stating the result, we need to introduce one technical assumption. We

say the environment is regular if
ln( qP (I)

(1�q)P (G))
ln( p

1�p)
is not an integer. This implies that for all n,

z(n); the Bayesian threshold value, is not an integer. In a regular environment, if n is such

that V̂ (n) > V (0); then for all n0 > n; V̂ (n0 + 1) > V̂ (n0): Note that the environment is, in
fact, generically regular.

Proposition 2. Fix P (I) ; q and p and assume the environment is regular. Let n� (c) 6 N
denote the optimal size of the committee when the cost of acquiring information is c: There

exists �c > 0 such that for every c < �c; whenever V̂ (N) � V̂ (N � 1) < c; then V (n� (c)) <

V̂ (n� (c)) :

The condition V̂ (N) � V̂ (N � 1) < c is equivalent to requiring that N > nB for the

parameters at hand. Note that whenever V̂ (N) � V̂ (N � 1) > c; the Bayesian device with
N agents is admissible and clearly optimal.

To understand the intuition of the proposition, it is perhaps easiest to consider a cost c

such that c = V̂ (nB + 1) � V̂ (nB) + " for a small " > 0, so that the Bayesian device with

nB + 1 players is \almost implementable." We now proceed in two steps. First, we explain

how small distortions to the Bayesian device with nB + 1 agents can generate a device

inducing nB + 1 agents to acquire information. Second, we show that for su�ciently small

"; such distorted devices yield a higher expected utility than the Bayesian device. Indeed,

consider the Bayesian device with nB + 1 agents, and for the sake of illustration, assume

7Note that there is an alternative way to interpret probabilistic choices. Namely, one could think of a
designer who delegates the decision to the committee. The designer chooses a voting rule (e.g., majority
or unanimity in the jury setup) and allows participants to deliberate inbetween acquiring information and
casting votes. Using Gerardi and Yariv [2007a], the optimal device 
 described in our analysis can be
interpreted as the optimal communication protocol (see Gerardi and Yariv [2003] for an elaboration).
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that z(nB + 1) is very close to (though greater than) knB+1 � 1 = knB so that the IC(g)

constraint is binding.

Consider an agent contemplating the two alternatives: acquiring a signal and reporting

an uninformed message g: Under the Bayesian device, the di�erence arises only from events

in which precisely knB of the other agents report the message g (so that our agent is pivotal)

and signal i is observed by the agent. The di�erence between reporting i and g in that case

can be arbitrarily close to 0 as z(nB + 1) approaches knB (formally, recall that this cost is

captured by f(knB ;n
B + 1) � f(z(nB + 1);nB + 1) � 0). Thus, the agent would have an

incentive to save the cost c and report an uninformed message g (in particular, this explains

why the binding constraint is IC(g)).

We now look for a device that makes reporting an uninformed message g more costly. Let

us consider the device identi�ed with the threshold knB : Again, we compute the di�erence

between acquiring a signal and reporting an uninformed message g: Note that now the

di�erence arises from events in which precisely knB�1 of the agent's peers report the message

g and she observes the signal i: The di�erence between reporting i and g in that case is

bounded away from 0 (formally, recall that f(x;n) is a strictly increasing function of x

and so the proxy for the cost of reporting g in lieu of i is given by f(knB � 1;nB + 1) <

f(knB ;n
B + 1) � 0).

Finally, consider combinations of these two devices, which boil down to acquitting when

less than knB agents report g; convicting (with probability 1) when knB + 1 or more agents

report g; and convicting with some probability � when precisely knB agents report g. When

" is su�ciently small, a low value of � assures that both constraints are satis�ed.8

Assuming that z(nB +1) is su�ciently close to knB allowed us to illustrate the feasibility

of the above distorted device regardless of the probabilities of an agent being pivotal under

the thresholds knB and knB +1: As it turns out, for arbitrary z(n
B+1), this intuition carries

through as long as nB is large enough, or equivalently, c is su�ciently small.

8Indeed, for su�ciently low �; IC(i) is satis�ed since it is not binding at � = 0 (corresponding to the
Bayesian device). The comparison above assures that for su�ciently small "; there exists �(") such that for
all � > �("); the IC(g) is satis�ed as well and �(")! 0 as "! 0.
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To summarize, there exists a distorted device that induces the nB + 1 agents to acquire

information. The size of the distortion depends on " (in particular, the distortion is small

when " is close to zero). This implies that for " small the utility of the above distorted

device with nB +1 agents is almost equal to (but smaller than) V̂ (nB +1), the utility of the

Bayesian device with nB + 1 agents. Clearly, V̂ (nB + 1) is bounded away from the utility

of the Bayesian device with nB agents. It follows that for " su�ciently small, when nB + 1

players are available, the designer is strictly better o� using the distorted device. In the proof

of Proposition 2 we extend this intuition to a wide range of cost values c and to arbitrary

z(nB + 1).9

Although we do not have a necessary condition for the optimal size to be greater than

nB; notice that the result in Proposition 2 cannot be extended to all values of c: It is possible

to construct examples in which the optimal size coincides with the Bayesian size.10

With regards to the optimal size of the committee, Proposition 1 in Gerardi and Yariv

[2003], as well as Theorem 3 in Al-Najjar and Smorodinsky [2000] imply that for any con-

stellation of parameters, there exists an upper bound �N such that whenever there are at

least �N available agents (i.e., N > �N), n�(c) = �N: This observation stands in contrast to

the underlying message of the information aggregation literature (see, e.g., Feddersen and

Pesendorfer [1996, 1997]) in which a large pool of agents yields complete aggregation of all

of the available information. The contribution of the result in Gerardi and Yariv [2003] lays

in the bounds it provides on the maximal n for which Pn has a feasible solution in our setup,

which are potentially useful for computational reasons.11

9A similar intuition holds for sequential mechanisms and indeed Gershkov and Szentes [2004] show that
distorted sequential mechanisms may be ex-ante optimal.
In Li [2001] the agents invest in the accuracy of signals and signals are publicly observed. Suppose

that uninformed agents prefer to convict. An aggregation rule that requires stronger evidence in favor of
conviction induces agents to invest more in information potentially supporting their preferred alternative
and is thus bene�cial for incentives. This is the driving intuition behind Li's results. Our underlying setup
is very di�erent as are our results. In particular, the direction of the distortion (in favor of acquittal or
conviction) depends on which constraint is binding.
10E.g., consider the environment P (I) = P (G); p = 0:85; q = 0:52; and c = 0:035 (which is regular).

Whenever N > 3; the optimal size coincides with the Bayesian size and equals 3.
11Indeed, it is interesting to note that the fact that P~n does not have any feasible solution does not imply

that Pn does not have any feasible solution for all n > ~n: For example, for P (I) = P (G) = 1
2 ; p = 0:8;
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4. Comparative Statics

In this section we analyze how the optimal extended mechanism and the quality of the

decision depend on the primitives of the model. We �rst provide some analytical results on

the structure of the optimal device for extreme values of information accuracy p: We then

look at the impact that changes in the information cost c and in the accuracy of the signal

p have on the expected utility of the designer and on the optimal size of the committee.

The Optimal Device

As was illustrated in Proposition 2, for certain parameters, the optimal device does not

coincide with the corresponding Bayesian device. The underlying intuition is that distortions

may increase the agents' incentives to acquire information. Proposition 2 illustrates that this

e�ect is stronger than the statistical e�ciency loss.

As it turns out, for extreme values of signal accuracy, we can actually describe the shape

of the distortions precisely.

We start with the case of very accurate signals. For any committee of size n 6 N we look

for the optimal mechanism in which all n agents acquire. Recall that under the Bayesian

device the defendant is convicted if and only if at least kn agents observe a guilty signal g;

where kn is the smallest integer greater than or equal to z (n) (de�ned in equation 3). Note

that when p is su�ciently large, kn 2
�
n
2
; n+1

2
; n
2
+ 1
	
and the Bayesian device essentially

takes the form of a majority rule.

When the cost c is su�ciently small the Bayesian device is admissible and, clearly, op-

timal. As we increase c; we reach a threshold in which (generically) one of the constraints

binds and distortions need to be introduced. As it turns out, the optimal device distorts

away from the middle and is weakly increasing between 0 and kn� 1 and between kn and n:

Formally, we have the following proposition:

Proposition 3. Fix n > 2; P (I) and q, and assume that the environment is regular. There
exists �pn 2

�
1
2
; 1
�
such that for each p > �pn the following holds. For any c > 0; the optimal

q = 0:7; and c = 0:032; P6 and P7 have feasible solutions, while P5 does not.
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device in which all players acquire (if it exists) takes the form:

�
n (0) = : : : = �
n (k
0 � 1) = 0; �
n (k

0) = �; �
n (k
0 + 1) = : : : = �
n (kn � 1) = 1;

�
n (kn) = : : : = �
n (k
00 � 1) = 0; �
n (k

00) = �; �
n (k
00 + 1) = : : : = �
n (n) = 1;

where �; � 2 [0; 1]; and 0 < k0 < kn 6 k00 < n.12

The proof is essentially a cost-bene�t analysis of all potential distortions. Indeed, we look

for the distortion that maximizes the ratio of \e�ect on binding constraint(s)" to \e�ect on

designer's payo�." The proof of Proposition 3 therefore requires the comparison of a large

set of potential distortions and may be found in a technical addendum, Gerardi and Yariv

[2007b].

For the sake of brevity, in the Appendix, we prove Proposition 3 for the case in which

c is larger but su�ciently close to V̂ (n) � V̂ (n � 1) (so that the Bayesian device with n

players is \almost" implementable). In that case, say the binding constraint is IC(i); so

that kn = kn�1: We show that the optimal device entails only distortions at kn: Intuitively,

when p is su�ciently large, it is optimal to make the ex-post ine�cient decision when the

number of agents who report signal i is almost identical to the number of agents who report

g: Recall, in fact, that when p is large kn is close to
n
2
: Clearly, when p is su�ciently close to

one it is very unlikely that each signal is observed by half of the agents. This suggests that

the e�ect of a distortion at kn on both the designer's payo� as well as on the IC (i) constraint

converges to zero as p goes to one. However, in the Appendix we show that the convergence

of the e�ect on the designer's payo� is much faster. Similar considerations hold for the more

general case pertaining to Proposition 3 when we compare distortions at arbitrary points k

and k0.

So far, we have considered the optimal device corresponding to a given size n: Consider

now the extended mechanism design problem in which the committee size is a choice pa-

rameter. First, for any �xed N; for p su�ciently large (namely, p > maxf�p2; :::; �pNg), it
12Of course, the case �
n (k

0 + 1) = : : : = �
n (kn � 1) = 1 is relevant only when k0 + 1 6 kn � 1: The same
observation applies to the adjacent interval on which �
n is constant.
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follows that the optimal solution to the extended mechanism design problem takes the shape

of the devices described in Proposition 3. Second, while this in itself does not rule out the

possibility of the optimal device being non-distortionary, Proposition 2 can in fact be readily

extended to the case in which N is �xed and p is su�ciently close to 1; under mild condi-

tions. Namely, assume that qP (I) > 2(1 � q)P (G) or that qP (I) < 1
2
(1 � q)P (G): There

exists ~p such that for any p > ~p; the following holds. If the Bayesian device with n agents,

2 6 n < N; is admissible then there exists an admissible distorted device with n+ 1 players
that yields expected utility greater than V̂ (n) (see proof in Gerardi and Yariv [2007b]).

To summarize, �x N and assume that the above conditions are satis�ed, and pick p

su�ciently large. Finally, assume that c > V̂ (N) � V̂ (N � 1) and that there exists n =

2; :::; N � 1 for which c < V̂ (n) � V̂ (n � 1); so that the Bayesian device is not admissible

with the entire set of N accessible agents, but admissible for some non-trivial subset. The

solution to the extended mechanism design problem: a. entails a distortionary device; and

b. takes the form described in Proposition 3.

We now turn to the other extreme case of inaccurate signals. Admittedly, this case is

perhaps of less interest than the previous one since as signals become extremely uninforma-

tive, small committees generate precisely the same expected utility as the fully uninformed

choice. Consequently, the design problem boils down to a comparison between the utility

generated by large groups of agents and that generated by the uninformed decision.

Speci�cally, consider the case in which the optimal uninformed decision is A (the analysis

of the complementary case is analogous). Thus, we assume that

y � qP (I)

(1� q)P (G) > 1:

Clearly, if p is su�ciently close to 1
2
; the aggregate information is outweighed by the

prior and the designer would have no desire to induce the agents to acquire information.

Notice that if p = y1=N

1+y1=N
> 1

2
then z (N) = kN = N: When p is slightly above

y1=N

1+y1=N
; then

N � 1 < z (N) < N and the Bayesian device convicts the defendant only when all N agents
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observe the guilty signal g: In that case, utilizing a group of n < N agents cannot generate

a higher expected utility than the uninformed decision. In what follows we assume that p

is small but larger than y1=N

1+y1=N
: Thus, we focus on the extreme case in which the designer

faces a trade-o� between implementing the uninformed decision and using the entire set of

accessible agents.

Of course, if c 6 f (N ;N) the Bayesian device with N agents can be implemented and

would constitute the optimal solution. As c increases above the critical level f (N ;N) the

�rst constraint to bind for the Bayesian device is IC (i) : Our next proposition shows that

when c is slightly above f (N ;N) it is optimal to introduce a distortion at k = 0: It then

follows from continuity that for su�ciently low cost levels, utilizing N agents by ways of a

distorted device would indeed yield greater expected utility than the uninformed decision.

Proposition 4. Fix P (I) and q with y > 1: There exists p
�
2
�

y1=N

1+y1=N
; 1
�
such that for

each p; y1=N

1+y1=N
< p <p

�
, the following holds. There exists " > 0 such that for c 2

(f (N ;N) ; f (N ;N) + ") the optimal device with N agents takes the form:

�
N (k) =

8><>:
� for k = 0


BN (k) = 0 for k = 1; : : : ; N � 1

BN (k) = 1 for k = N

where � 2 (0; 1] is such that the IC (i) constraint is satis�ed with equality.

The proof of Proposition 4 follows the same logic as the proof of Proposition 3. We show

that when p is su�ciently small the ratio of \e�ect on IC (i)" to \e�ect on designer's payo�"

is maximized at k = 0:13

13In fact, much in the spirit of Proposition 3, it is also possible to show that when p is within the range
of Proposition 4, increasing further the cost c yields an optimal mechanism of the following structure:

�
N (0) = : : : = �
N (k
0 � 1) = 1; �
N (k

0) = �; �
N (k
0 + 1) = : : : = �
N (k

00 � 1) = 0;
�
N (k

00) = �; �
N (k
00 + 1) = : : : = �
N (N) = 1;

where �; � 2 [0; 1]; and 0 6 k0 < k00 6 N � 1:
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The Cost of Information

The �rst, obvious, result is that the expected utility of the optimal device is decreasing

in the cost of information acquisition. Indeed, for any given size of the committee, if a device

is admissible when the cost is c; then the device is also admissible when the cost is lower

than c:

We now consider how the optimal size is a�ected by a change in the information cost.

Clearly, given any cost c with optimal size n� (c) < N; we can always �nd another cost c0;

su�ciently lower than c; such that n� (c0) is greater than n� (c) (it is enough to choose c0 such

that the Bayesian device 
Bn is admissible for some n greater than n
� (c)): Unfortunately, it

is less straightforward to perform the comparative statics for small changes of the informa-

tion cost. In all the examples we have constructed, the optimal size decreases when the

information cost increases. However, we have not been able to prove that this is a general

result. To illustrate why it is di�cult to obtain analytical results, consider two committees

of size n and n+1: For any cost c; consider the di�erence between the utility of the optimal

device at n+1 and the utility of the optimal device at n: It is possible to construct examples

such that this di�erence is positive for low and high values of the cost, but is negative for

intermediate values (in a sense, the utility does not exhibit a single crossing property). In

other words, suppose we start with a level of the cost such that size n+1 is better than size

n: In general, we cannot conclude that this relation holds when the cost becomes smaller.

Therefore, it remains an open question whether the optimal size is indeed always decreasing

in the cost or not.

The Signals' Accuracy

For a committee of a given size n; it is straightforward to show that the utility of the

optimal device increases when the quality of the signal improves. Intuitively, when signals

are more accurate, the designer can always garble the reported information and replicate the

optimal device corresponding to less accurate signals.14

14See the exact construction in Gerardi and Yariv [2003].
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Note that while in our model the designer always bene�ts from a more informative signal,

this is not necessarily the case when restricting the aggregation devices to be ex-post e�cient.

In that case, the designer can induce n agents to acquire information if and only if V̂ (n)�

V̂ (n� 1) is greater than the information cost. When the signal is very informative, V̂ (n)

is close to zero for n relatively small, and therefore it is impossible to induce many players

to acquire information. In contrast, when the signal is less accurate, the di�erence V̂ (n)�

V̂ (n� 1) can be larger than the cost for large values of n: It is possible for the designer to

prefer having many uninformative signals over a few very accurate ones.15

As far as the optimal size of the committee is concerned, several examples indicate that

it is not monotonic in p.16

5. Mixed Strategies

So far, we have assumed that agents' decisions in Stage 2, the information acquisition stage,

are pure binary and cannot be random. Of course, allowing agents to mix expands the set of

equilibria corresponding to each extended mechanism. Consequently, the maximal expected

payo�s generated by ex-post e�cient mechanisms could conceivably be higher when random

acquisition is allowed. It is therefore important to check whether the results regarding ex-

post ine�ciency of ex-ante optimal mechanisms continue to hold true when agents' strategies

are unrestricted. In this section we show that the result of Proposition 2 extends to the case

of mixed strategies.

We consider our extended mechanism problem (with n 6 N players) and allow each

agent j to acquire the signal with probability �j 2 (0; 1] : As explained in Section 2 we can

disregard the case �j = 0 because equilibria in which some players do not acquire the signal

can be \replicated" by committees of smaller size in which all agents become informed with

positive probability.

15To give a concrete example, let us assume that P (I) = 1
2 ; q = 0:82; and c = 0:0013: When p = 0:85; the

Bayesian size is nB = 10 while for p = 0:95; the Bayesian size is nB = 4: Furthermore, the expected utility
corresponding to the optimal device when p = 0:85 is higher than that corresponding to p = 0:95:
16Consider, for instance, the case P (I) = 1

2 ; q = 0:62; and c = 0:004: For any N > 24; the optimal size is
13 for p = 0:55; 24 for p = 0:65; and 15 for p = 0:75:
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In Section 2 we also pointed out that if a player j acquires the signal with probability

�j = 1 then we can, without loss of generality, assume that the set of messages available to j

is fi; gg : Of course, this does not hold for a player j who randomizes with probability �j < 1:

In this case, each type tj 2 f;; i; gg has positive probability and the set of messages of j must

be f;; i; gg : Therefore, it is enough to restrict attention to pairs (�; 
) of the following form.

� = (�1; : : : ; �n) denotes the players' strategies at the information acquisition stage (since

all players are ex-ante identical, without loss of generality, we restrict attention to pro�les in

which �1 6 : : : 6 �n). 
 is a mapping from M =M1� : : :�Mn into [0; 1] where Mj = fi; gg

if �j = 1 and Mj = f;; i; gg if �j < 1 (
 (m) denotes the probability of conviction if the

players announce the pro�le of messages m 2M).

We say that a pair (�; 
) is admissible if the following is true. Consider the game in

which the players decide whether to become informed or not and then send a message to the

designer who, in turn, makes a (random) decision according to 
: Then this game admits

an equilibrium in which each player j acquires the signal with probability �j and reports

it truthfully. We let V (�; 
;n) denote the designer's expected payo� associated with this

equilibrium.

We say that an admissible pair (�; 
) is ex-post e�cient if for every m 2 M; 
 (m)

assigns probability one to the alternative that is optimal given the number of signals i and

g contained in m: If this condition is violated we also say that the admissible pair (�; 
)

is ex-post ine�cient. Finally, we say that the strategy pro�le � = (�1; : : : ; �n) is weakly

symmetric if �1 = : : : = �k = � < 1 and �k+1 = : : : = �n = 1 where k = 0; : : : ; n: In a

weakly symmetric strategy pro�le there are at most two probabilities with which the players

acquire information.

In general, there exist ex-post e�cient admissible pairs (�; 
) such that � is not weakly

symmetric. However, this can occur only in non-generic cases. In fact, it is possible to show

that for generic values of P (I) ; p; q; and c; if (�; 
) is admissible and ex-post e�cient then

� is weakly symmetric. Moreover, each player j with �j = 1 has a strict incentive to acquire
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information.17 In what follows we restrict attention to generic cases (this also means that

we continue to assume that the environment is regular).

We are now ready to state our �nal result. We assume that N > 2 and that n 6 N:

Proposition 5. Fix n > 2 and an ex-post e�cient admissible pair (�; 
) with � weakly

symmetric.18 Suppose that V (�; 
;n) > V̂
�
nB
�
. Then there exists an ex-post ine�cient

admissible pair (�0; 
0) (with �0 weakly symmetric) such that V (�0; 
0;n) > V (�; 
;n) :

Consider an ex-post e�cient admissible pair (�; 
) in which �n players acquire the signal

with probability �̂ 2 (0; 1) and n � �n acquire with probability one. It is immediate to

see that V (�; 
;n) > V̂
�
nB
�
implies �n > 2: The proof of Proposition 5 considers ex-post

ine�cient devices 
0 of the following form. Fix " > 0 and k 2 f0; �ng: If n � �n + k0 (where

k0 = 0; : : : ; �n and k0 6= k) players acquire information then the designer makes the ex-post

e�cient decision. If precisely n� �n+k players acquire information, then the designer makes

the ex-post e�cient decision with probability 1� " and chooses the uninformed (i.e., relying

only on the prior) inferior alternative with probability ":

It turns out that there is always a value of k 2 f0; �ng such that for su�ciently small

"; two things occur: (i) there exists a weakly symmetric equilibrium in which the �rst �n

players acquire the signal with probability � (") > �̂ and the last n � �n players acquire it

with probability one; and (ii) the designer gets overall higher utility under this equilibrium

than under the original pair (�; 
) :19

To summarize, the main message of this section is that for any �xed number of experts, for

generic parameter constellations, the designer cannot be optimizing by choosing an ex-post

e�cient mechanism and having the agents use a mixed equilibrium.

17For brevity, we omit the proofs of these technical results.
18As mentioned above, we also assume that each player j with �j = 1 has a strict incentive to acquire

information and that the environment is regular.
19Note that there are two forces at play: on the one hand, the distorted mechanism makes the players

more likely to acquire the signal and, therefore, allows a higher expected accuracy of aggregate information;
on the other hand, the mechanism introduces \mistakes." As it turns out, for the appropriate choice of k
and " the former prevails.
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6. Conclusions

The current paper analyzed a mechanism design problem pertaining to collective choice with

information acquisition.

Our analysis yielded three key insights. First, the optimal incentive scheme in such

an environment balances a trade-o� between inducing players to acquire information and

extracting the maximal amount of information from them. In particular, the optimal device

ex-ante may be ine�cient ex-post (i.e., aggregate information suboptimally from a statistical

point of view). Second, the optimal distortions to the ex-post e�cient rule depend crucially

on the accuracy of the (costly) signals, and can be described analytically for extreme accuracy

levels. Third, the comparative statics of the optimal mechanism exhibit some regularities

and irregularities, e.g., the expected social value is monotonic in the cost of information and

accuracy of private information, but the optimal committee size is not monotonic in the

signals' accuracy.

There are many directions this framework suggests pursuing. For example, adding het-

erogeneity amongst agents, in the form of di�erential preferences, may a�ect the optimal

design. Indeed, in our model, both the designer and all of the players share the same utility

parameter q: However, in many situations it is conceivable that agents have heterogenous

preferences (e.g., jurors with di�erent conviction thresholds, political advisors of di�ering

political agendas, department members in di�erent �elds, etc.). One could then study the

extended mechanism design problem in which, at stage 1, the designer chooses the distri-

bution of preference parameters of the committee members, in addition to choosing the

committee's size and the aggregation rule. An analysis of such a scenario would entail de�n-

ing carefully the goal of the designer (maximizing her own preferences, as characterized by

one given q; or implementing a point in the Pareto frontier of the equilibria set). It would

be especially interesting to gain insights into the optimal composition of the committee.

In particular, would the designer choose a committee comprised of agents with preferences

coinciding with her own or would she choose agents with diverging tastes?
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Another interesting complication arises when considering environments with more than

two alternatives and a richer set of signals. When signals are binary, an agent who acquires

information automatically has incentives to reveal her information truthfully. In contrast,

this is not necessarily the case when signals have more than two realizations. The analysis

of such setups is qualitatively di�erent and is left for future research.

Appendix

Proof of Proposition 2 For every c; let nB (c) denote the largest integer for which the

Bayesian device is admissible. We show that if nB (c) is su�ciently large then V
�
nB (c) + 1

�
>

V̂
�
nB (c)

�
: This will complete the proof of Proposition 2 since nB (c) is decreasing in c:

We now �x c and write n for nB (c). We assume 0 < kn � z (n) < 1
2
(the proof for the

case 1
2
< kn � z (n) < 1 is similar and is therefore omitted).20 The Bayesian device 
Bn is

admissible, and so the following two (Bayesian) constraints hold:�
n� 1
kn � 1

�
f (kn;n) > c; (4)

�
�
n� 1
kn � 1

�
f (kn � 1;n) > c: (5)

Consider now a committee of size n + 1: For every � in the unit interval, let the device


� : f0; :::; n+ 1g be de�ned by:


� (k) =

8><>:
0 if k = 0; :::; kn � 1
� if k = kn

1 if k = kn + 1; :::; n+ 1

:

The constraints that the device 
� has to satisfy to be admissible can be expressed as:

F (�) =

�
n

kn

�
f (kn + 1;n+ 1) + �

��
n

kn � 1

�
f (kn;n+ 1)�

�
n

kn

�
f (kn + 1;n+ 1)

�
> c;
(6)

L (�) = �
�
n

kn

�
f (kn;n+ 1)+�

��
n

kn

�
f (kn;n+ 1)�

�
n

kn � 1

�
f (kn � 1;n+ 1)

�
> c: (7)

20Since the environment is regular, kn � z(n) 6= 1
2 ; 1:



Information Acquisition in Committees 26

The function F is decreasing in �: We now assume that n is su�ciently large, so that

kn � 1 > n (1� p) and kn 6 np: This implies:

F (0) =

�
n

kn

�
f (kn + 1;n+ 1) >

�
n� 1
kn � 1

�
f (kn;n) > c;

and that L is an increasing function that satis�es:

L (1) = �
�

n

kn � 1

�
f (kn � 1;n+ 1) > �

�
n� 1
kn � 1

�
f (kn � 1;n) > c:

We let �̂1 denote the greatest value of � for which the device 
� satis�es constraint (6).

Similarly, we let �̂2 denote the smallest value of � for which the device 
� satis�es constraint

(7). Notice that �f (kn � 1;n) > f (kn;n) since we are assuming that kn� z (n) is in
�
0; 1

2

�
.

Thus, the cost c can be at most
�
n�1
kn�1

�
f (kn;n) since the Bayesian device 


B
n is admissible.

It follows that:

�̂1 >
�
n
kn

�
f (kn + 1;n+ 1)�

�
n�1
kn�1

�
f (kn;n)�

n
kn

�
f (kn + 1;n+ 1)�

�
n

kn�1
�
f (kn;n+ 1)

� �1;

�̂2 6
�
n�1
kn�1

�
f (kn;n) +

�
n
kn

�
f (kn;n+ 1)�

n
kn

�
f (kn;n+ 1)�

�
n

kn�1
�
f (kn � 1;n+ 1)

� �2:

With a slight abuse of notation we let V (�) denote the expected utility of the device 
� :

V (�) = � (1� q)P (G) + �
�
n+ 1

kn

�
f (kn;n+ 1) +

n+1X
k=kn+1

�
n+ 1

k

�
f (k;n+ 1) :

The di�erence between V (�) and V̂ (n) is equal to:

V (�)� V̂ (n) =
�
n

kn

�
f (kn;n+ 1)

�
n+ 1

n� kn + 1
�� 1

�
:

Let �� = n�kn+1
n+1

: Then V (�) is greater than V̂ (n) if and only if � < ��:

It remains to be shown that �2 < �
� and �2 < �1 for su�ciently large values of n. Let
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us start with the �rst inequality. We need to show:

(n� kn + 1)
h�

n
kn

�
f (kn;n+ 1)�

�
n

kn�1
�
f (kn � 1;n+ 1)

i
>

(n+ 1)
h�

n�1
kn�1

�
f (kn;n) +

�
n
kn

�
f (kn;n+ 1)

i
;

which can be rewritten as:

�
�
n� 1
kn � 1

�
(nf (kn;n+ 1) + nf (kn � 1;n+ 1) + (n+ 1) f (kn;n)) > 0:

We divide the above the expression by
�
n�1
kn�1

�
; and notice that

f (kn;n+ 1) + f (kn � 1;n+ 1) = f (kn � 1;n) :

We obtain:

�nf (kn � 1;n)� (n+ 1) f (kn;n) > 0:

After dividing both sides by qP (I) (1� p)z(n) pn�z(n) and rearranging terms we have:�
p

1� p

�1�2�
>

n+ p

n+ 1� p;

where � = kn � z (n) : The left hand side is greater than 1 since � belongs to
�
0; 1

2

�
; while

the right hand side is decreasing in n; and converges to 1 as n goes to in�nity.

We now compare �1 and �2. We divide both the numerator and the denominator of �1

by
�
n�1
kn�1

�
qP (I) (1� p)z(n) pn�z(n); rearrange terms, and obtain:

�1 =

�
(1� p)� p�� � p� (1� p)��

�
+
�
n
kn

��
� (1� p)1+� p�� + p1+� (1� p)��

�
�
n
kn

��
� (1� p)1+� p�� + p1+� (1� p)��

�
+
�

n
n�kn+1

��
(1� p)� p1�� � p� (1� p)1��

� :
We now take the limit of �1 as n goes to in�nity. Both

�
n
kn

�
and

�
n

n�kn+1

�
converge to
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2 as n grows large. Thus, we have:

��1 = lim
n!1

�1 =

1
2

�
(1� p)� p�� � p� (1� p)��

�
� (1� p)1+� p�� + p1+� (1� p)��

� (1� p)1+� p�� + p1+� (1� p)�� + (1� p)� p1�� � p� (1� p)1��
:

In a similar way we derive:

��2 = lim
n!1

�2 =

1
2

�
� (1� p)� p�� + p� (1� p)��

�
� (1� p)� p1�� + p� (1� p)1��

� (1� p)� p1�� + p� (1� p)1�� + (1� p)��1 p2�� � p��1 (1� p)2��
:

It is tedious but simple to show that ��2 < ��1 for all p in
�
1
2
; 1
�
and all � in

�
0; 1

2

�
:

Proof of Proposition 3 As mentioned in the body of the paper, we focus on a special

case of Proposition 3. Namely, we restrict attention to the following:

Proposition 3*. Fix n > 2; P (I) and q: There exists �p 2
�
1
2
; 1
�
such that for each p > �p

the following holds. If the environment is regular and kn = kn�1 then there exists " > 0

such that for c 2 (ĉ; ĉ+ ") the optimal device with n agents takes the form:

�
n (k) =

8>>><>>>:

Bn (k) = 0 for k = 0; : : : ; kn � 1
� for k = kn


Bn (k) = 1 for k = kn + 1; : : : ; n

where ĉ = V̂ (n) � V̂ (n � 1) =
�
n�1
kn�1

�
f (kn;n) and � 2 [0; 1) is such that the IC (i)

constraint is satis�ed with equality.21

Proof of Proposition 3* For a given number n > 2 of agents who acquire information,
the designer's problem can be written as:

max

(0);:::;
(n)2[0;1]

� (1� q)P (G) +
nX
k=0

v (k) 
 (k)

21In a similar way, we can show that when signals are very accurate, kn = kn�1+1 (i.e., IC (g) is the �rst
constraint to bind with the Bayesian device), and the cost c is slightly above �

�
n�1
kn�1

�
f (kn � 1; n) then it is

optimal to distort the Bayesian device at kn � 1:
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s.t.
nP
k=0

a (k) 
 (k) > c

nP
k=0

b (k) 
 (k) > c;

where

v (k) =

�
n

k

�
f (k;n) ;

a (k) =

�
n� 1
k � 1

�
f (k;n)�

�
n� 1
k

�
f (k + 1;n)

is the coe�cient of 
 (k) in IC (i) ; and

b (k) =

�
n� 1
k

�
f (k;n)�

�
n� 1
k � 1

�
f (k � 1;n)

is the coe�cient of 
 (k) in IC (g) : We use the convention
�
n�1
�1
�
=
�
n�1
n

�
= 0:

It is immediate to see that when p is su�ciently large (and the environment is regular)

the following holds: a (0) = �f (1;n) > 0; a (n) = f (n;n) > 0; b (0) = f (0;n) < 0 and

b (n) = �f (n� 1;n) < 0:

Notice that for k = 1; : : : ; n� 1; we can rewrite a (k) and b (k) as

a (k) =

�
n� 1
k � 1

�
1

k

h
(n (1� p)� k) qP (I) (1� p)k pn�k�1 + (k � np) (1� q)P (G) pk (1� p)n�k�1

i
;

b (k) =

�
n� 1
k � 1

�
1

k

h
(k � n (1� p)) qP (I) (1� p)k�1 pn�k + (np� k) (1� q)P (G) pk�1 (1� p)n�k

i
:

Clearly, a (k) < 0 and b (k) > 0 for any k 2 [n (1� p) ; np] :

For p su�ciently close to one, n (1� p) < 1 and np > n� 1 and so the signs of fa(k)gnk=0
and fb (k)gnk=0 are determined: Notice also that for p su�ciently large kn is equal to n+1

2

when n is odd and equal either to n
2
or n

2
+ 1 when n is even.

Recall that we consider the case kn = kn�1: Thus, ĉ =
�
n�1
kn�1

�
f (kn;n) denotes the largest

value of c for which the Bayesian device is admissible (ĉ is the LHS of IC (i) of the Bayesian

device). Suppose now that the cost c is slightly above ĉ: Clearly, when using the Bayesian

device the IC (i) constraint is violated (while the IC (g) is not binding). There are two ways
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to satisfy IC (i) at c : (i) decrease 
 (k) for some k = kn; kn+1; : : : ; n�1 (recall n�1 < np);

or (ii) increase 
 (0) (recall n (1� p) < 1).22 Of course, it is optimal to choose k which

maximizes the function ����a (k)v (k)

���� :
In what follows we show that����a (kn)v (kn)

���� > ����a (kn + 1)v (kn + 1)

���� > : : : ����a (n� 1)v (n� 1)

���� > ����a (0)v (0)

���� :
First, we show that ����a (k)v (k)

���� > ����a (k0)v (k0)

���� (8)

for any k; k0 with kn 6 k < k0 6 n� 1:
Consider k = kn; : : : ; n � 2: Notice that a (k) v (k) < 0 and a (k0) v (k0) < 0:23 Thus,

inequality (8) is equivalent to
a (k)

v (k)
<
a (k0)

v (k0)
:

Notice that

a (k)

v (k)
=

�
n�1
k�1
�
f (k;n)�

�
n�1
k

�
f (k + 1;n)�

n
k

�
f (k;n)

=
k

n
� n� k

n

f (k + 1;n)

f (k;n)
:

Thus, it is enough to show that

k � (n� k) f (k + 1;n)
f (k;n)

< k0 � (n� k0) f (k
0 + 1;n)

f (k0;n)
;

or equivalently (notice that f (k;n) > 0; f (k0;n) > 0)

(kf (k;n)� (n� k) f (k + 1;n)) f (k0;n) < (k0f (k0;n)� (n� k0) f (k0 + 1;n)) f (k;n) :
22It is also obvious that it is optimal to satisfy the IC (i) constraint with equality.
23Recall that the environment is regular and, thus, v (kn) > 0:
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By using the de�nition of the function f we get

(1� p)2n�k�k
0�1

h
�kqP (I) (1� p)2k�n+1 pn�k + k (1� q)P (G) pk (1� p)+

(n� k) qP (I) (1� p)2k�n+2 � (n� k) (1� q)P (G) pk+1
i

�
�qP (I) (1� p)2k

0�n pn�k
0
+ (1� q)P (G) pk0

�
<

< (1� p)2n�k�k
0�1

h
�k0qP (I) (1� p)2k

0�n+1 pn�k
0
+ k0 (1� q)P (G) pk0 (1� p)+

(n� k0) qP (I) (1� p)2k
0�n+2 � (n� k0) (1� q)P (G) pk0+1

i
�
�qP (I) (1� p)2k�n pn�k + (1� q)P (G) pk

�
:

We divide both sides by (1� p)2n�k�k
0�1 and take the limit as p becomes close to one.

The LHS converges to (k � n) ((1� q)P (G))2 : The RHS converges to (k0 � n) ((1� q)P (G))2

if k > n
2
and to (k0 � n) ((1� q)P (G))2 + (n� k0) q (1� q)P (I)P (G) if k = kn =

n
2
: In

any case the strict inequality is satis�ed.

Similarly, it is easy to show that for p su�ciently close to one����a (n� 1)v (n� 1)

���� > ����a (0)v (0)

���� :
The result then follows.

Proof of Proposition 4 Let y > 1 be given. Suppose that p is slightly larger than

y1=N

1+y1=N
. Clearly, the Bayesian device is 
BN (0) = : : : = 


B
N (N � 1) = 0 and 
BN (N) = 1: This

device is admissible as long as the cost is smaller than or equal to f (N ;N) (this is the LHS

of IC (i) of the Bayesian device).

It is easy to show that there exists k̂ 2 [0; N (1� p)) such that a (k) is negative if

k = k̂ + 1; : : : ; N � 1 and positive if k = 0; : : : ; k̂ or if k = N:

Suppose now that the cost is slightly above f (N ;N) : Clearly, there is only one way to

satisfy the incentive constraint IC (i): increase 
 (k) for some k = 0; : : : ; k̂:

Notice that if N = 2 then k̂ = 0 and the proof is complete. We now assume N > 2 and
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show that ����a (0)v (0)

���� > : : : >
�����a(k̂)v(k̂)

����� :
This implies that the optimal distortion is at k = 0:

Notice that a (k) v (k) < 0 and, thus, it su�ces to show that the function a(k)
v(k)

is increasing

in the interval [0; N (1� p)) : We now illustrate that a(k)
v(k)

is increasing in k when p = y1=N

1+y1=N
:

By continuity, the result holds if p is su�ciently close to y1=N

1+y1=N
: Let us �x p = y1=N

1+y1=N
: Using

previous algebraic manipulations, we have

a (k)

v (k)
=
k

N
� N � k

N

�qP (I) (1� p)k+1 pN�k�1 + (1� q)P (G) pk+1 (1� p)N�k�1

�qP (I) (1� p)k pN�k + (1� q)P (G) pk (1� p)N�k
=

k

N
+
N � k
N

qP (I)
�
1�p
p

�k+1
pN � (1� q)P (G)

�
p
1�p

�k+1
(1� p)N

�qP (I)
�
1�p
p

�k
pN + (1� q)P (G)

�
p
1�p

�k
(1� p)N

:

We use the de�nition of p and divide both the numerator and the denominator of the

RHS of the above equality by (1� q)P (G)
�
1 + y1=N

�N
. We get:

a (k)

v (k)
=
k

N
+
N � k
N

y
2N�k�1

N � y k+1N
�y 2N�kN + y

k
N

:

Remember that y > 1 and k < N (1� p) < N � 1: Thus,

y
2N�k�1

N � y k+1N
�y 2N�kN + y

k
N

< 0:

We compute the derivative of a(k)
v(k)

with respect to k and obtain

1

N
� 1

N

y
2N�k�1

N � y k+1N
�y 2N�kN + y

k
N

+

�
N � k
N

��
2 ln y

N

�
y
2N+1
N � y 2N�1N�

�y 2N�kN + y
k
N

�2 > 0;
and the result follows.

Proof of Proposition 5 Consider a cost level c; a committee of size n > 2 and an

ex-post e�cient admissible pair (�; 
) with � weakly symmetric and such that each player
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j with �j = 1 has a strict incentive to acquire information. Let �n 6 n be such that

�1 = : : : = ��n = �̂ < 1 and ��n+1 = : : : = �n = 1: It follows from V (�; 
;n) > V̂
�
nB
�
that

�n > 2: The fact that the designer always makes the ex-post e�cient decision and the fact that
each player has at least one opponent who randomizes imply that each player j = 1; : : : ; n

has a strict incentive to reveal truthfully her type after making the information acquisition

decision (here we use the assumption that the environment is regular).

We now turn to the incentives at the information acquisition stage of a player who

randomizes, say player 1: For each k = 0; : : : ; �n; let w (k) = V̂ (n� �n+ k) denote the

expected utility of the Bayesian device with n� �n+ k players. Suppose that players 2; : : : ; �n

acquire the signal with probability �, players �n+1; : : : ; n acquire the signal with probability

one and that each player j = 2; : : : ; n reveals her type truthfully. Suppose also that the

designer uses the device 
 (i.e., she makes the ex-post optimal decision). Let W 1 (�; 
)

denote the expected utility (from the decision) for player 1 when she acquires the signal and

is sincere. Similarly, let W 0 (�; 
) denote the utility of player 1 when she does not acquire

the signal and is sincere. We have:

W 1 (�; 
) =
�n�1P
k=0

�
n�1
k

�
�k (1� �)�n�1�k w (k + 1) ;

W 0 (�; 
) =
�n�1P
k=0

�
n�1
k

�
�k (1� �)�n�1�k w (k) :

We also let H (�) denote the di�erence between the utility of becoming informed and the

utility of remaining uninformed:

H (�) =W 1 (�; 
)�W 0 (�; 
) =
�n�1X
k=0

�
n� 1
k

�
�k (1� �)�n�1�k [w (k + 1)� w (k)] :

Of course, the function H (�) is continuous and H (�̂) = c (so that W 0(�̂; 
) =W 1(�̂; 
)�

c). Finally, notice that the designer's utility V (�; 
;n) associated with the ex-post e�cient
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admissible pair (�; 
) can be expressed as

V (�; 
;n) = �̂W 1 (�̂; 
) + (1� �̂)W 0 (�̂; 
) =W 1 (�̂; 
)� (1� �̂) c:

We now construct an ex-post ine�cient admissible pair that guarantees the designer an

expected payo� higher than V (�; 
;n) :We need to distinguish between two cases depending

on whether H (�) approaches H (�̂) from below or from above as � approaches �̂ from above.

Case 1: lim
�&�̂

H(�)�H(�̂)
jH(�)�H(�̂)j = �1

Consider the following class of devices. The set of messages available to players 1; : : : ; �n

is f;; i; gg while the set of messages available to players �n + 1; : : : ; n is fi; gg : The designer

uses the following decision rule 
": If at least one of the �rst �n players acquire the signal (and

report i or g) then the designer makes the ex-post e�cient decision. If nobody of the �rst

�n acquires the signal then the designer makes the ex-post e�cient decision with probability

1 � " and chooses the uninformed (i.e., relying only on the prior) inferior alternative with

probability " > 0:

Consider player 1 and suppose that players j = 2; : : : ; �n acquire the signal with prob-

ability �, players j = �n + 1; : : : ; n acquire the signal with probability one, and that each

player j = 2; : : : ; n reveals her type truthfully. Let W 1 (�; 
") and W 0 (�; 
") denote the

expected payo� (from the decision) of player 1 if she acquires and if she does not acquire the

signal, respectively (in both cases we assume that player 1 is sincere). Of course, player 1 is

indi�erent between the two courses of actions if and only if � is such that:

W 1 (�; 
")�W 0 (�; 
") = H (�) + " (1� �)�n�1 (w (0)� v) = c;

where v < w (0) denotes the designer's expected payo� from making the wrong uninformed

decision. Note that for " su�ciently small, there exist �1 > �̂ and �2 < �̂ such that

H (�1) + " (1� �1)
�n�1 (w (0)� v) < c;

H (�2) + " (1� �2)
�n�1 (w (0)� v) > c:
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Therefore, by continuity for " > 0 there exists �(") 2 (�1; �2) for which

H (�(")) + " (1� �("))�n�1 (w (0)� v) = c:

Moreover, it follows from the implicit function theorem that � (") > �̂ for " > 0 (of course,

lim"&0 �(") = �̂). Again, from the above equality, W 0 (�("); 
") =W 1 (�("); 
")� c:

Consider the pair (�"; 
") where �"1 = : : : = �
"
�n = � (") and �

"
�n+1 = : : : = �

"
n = 1: Recall

that with the original pair (�; 
) only the information acquisition constraints of the �rst �n

players are satis�ed with equality. All the other constraints hold with strict inequality. It

follows that for " su�ciently small the ex-post ine�cient pair (�"; 
") is admissible.

Notice that

W 1 (� (") ; 
") =
�n�1X
k=0

�
n� 1
k

�
� (")k (1� � ("))�n�1�k w (k + 1) > W 1 (�̂; 
) ;

where the inequality follows from � (") > �̂:

The designer's expected utility associated with (�"; 
") is equal to

V (�"; 
";n) = � (")W 1 (� (") ; 
") + (1� � ("))W 0 (� (") ; 
") =

= W 1 (� (") ; 
")� (1� � (")) c:

Hence, � (") > �̂ and W 1 (� (") ; 
") > W 1 (�̂; 
) imply V (�"; 
";n) > V (�; 
;n) :

Case 2: lim
�&�̂

H(�)�H(�̂)
jH(�)�H(�̂)j = 1

This case is analogous to the previous one. We consider a class of devices in which the

�rst �n can announce a message in f;; i; gg and the last n � �n have to report a message in

fi; gg : The designer uses a device 
" which makes the ex-post e�cient decision when at least

one of the �rst �n players does not acquire the signal. If the �rst �n players all acquire the

signal then the designer makes the right decision with probability 1 � " and chooses the

uninformed inferior alternative with probability ":

Proceeding as in Case 1 it is possible to show that for " su�ciently small there exists an

ex-post ine�cient admissible pair (�"; 
") with �"1 = : : : = �
"
�n = � (") > �̂ and �

"
�n+1 = : : : =
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�"n = 1:

Notice that � (") > �̂ implies that

W 0 (� (") ; 
") =

�n�1X
k=0

�
n� 1
k

�
� (")k (1� � ("))�n�1�k w (k) > W 0 (�̂; 
) :

Finally, it follows from the two inequalities above that V (�"; 
";n) > V (�; 
;n) :
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Information Acquisition in Committees:
Technical Addendum

Dino Gerardi�and Leeat Yarivy
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1 Proof of Proposition 3

Consider a committee of size n: We look for the optimal mechanism under the re-
striction that all n players acquire information.
The problem is:

max

(0);:::;
(n)2[0;1]

� (1� q)P (G) +
nP
k=0

v (k) 
 (k)

s.t.
nP
k=0

a (k) 
 (k) > c
nP
k=0

b (k) 
 (k) > c;

where

v (k) =

�
n

k

�
f (k; n) ;

a (k) =

�
n� 1
k � 1

�
f (k; n)�

�
n� 1
k

�
f (k + 1; n)

is the coe�cient of 
 (k) in IC (i) ; and

b (k) =

�
n� 1
k

�
f (k; n)�

�
n� 1
k � 1

�
f (k � 1; n)

is the coe�cient of 
 (k) in IC (g) : We use the convention
�
n�1
�1
�
=
�
n�1
n

�
= 0:

�Department of Economics, Yale University, 30 Hillhouse Avenue, New Haven, CT 06511. e-mail:
donato.gerardi@yale.edu

yDivision of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA
91125. e-mail: lyariv@hss.caltech.edu
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Our optimization problem falls under the class of problems known as parametric
linear programs. In particular, notice that the solution is continuous in the cost c
(see, for instance, Zhang and Liu [1990]).
The goal is to show that when p is su�ciently close to one the optimal mechanism

takes the form:

�
n (0) = : : : = �
n

�
k̂ � 1

�
= 0; �
n

�
k̂
�
= �; �
n

�
k̂ + 1

�
= : : : = �
n (kn � 1) = 1;

�
n (kn) = : : : = �
n
�
�k � 1

�
= 0; �
n

�
�k
�
= �; �
n

�
�k + 1

�
= : : : = �
n (n) = 1;

where �; � 2 [0; 1]; and 0 < k̂ < kn 6 �k < n:
We assume that p is su�ciently large. Of course, a (0) = �f (1; n) > 0; a (n) =

f (n; n) > 0; b (0) = f (0; n) < 0 and b (n) = �f (n� 1; n) < 0:
Notice that for k = 1; : : : ; n� 1; we can rewrite a (k) and b (k) as

a (k) =

�
n� 1
k � 1

�
1

k

h
(n (1� p)� k) qP (I) (1� p)k pn�k�1 + (k � np) (1� q)P (G) pk (1� p)n�k�1

i
;

b (k) =

�
n� 1
k � 1

�
1

k

h
(k � n (1� p)) qP (I) (1� p)k�1 pn�k + (np� k) (1� q)P (G) pk�1 (1� p)n�k

i
:

Clearly, a (k) < 0 and b (k) > 0 for any k 2 [n (1� p) ; np] :
Since p is close to one, n (1� p) < 1 and np > n� 1 and, therefore, a (k) < 0 and

b (k) > 0 for every k = 1; : : : ; n� 1:
Throughout, we assume that n is odd and that kn = kn�1 (so that IC (i) is the

�rst constraint to bind when the device is Bayesian). In this case, kn is equal to
n+1
2
:1

We know that when the cost is ĉ =
�
n�1
kn�1

�
f (kn; n), the Bayesian device satis�es

the IC (i) constraint with equality. For costs above ĉ we need to introduce distortions
in order to induce all n players to acquire information. We also know from Proposition
3* in the Appendix of the paper that for c su�ciently close to ĉ it is optimal to distort
the mechanism at kn =

n+1
2
and set 
 (kn) smaller than one. As c increases, 
 (kn)

decreases. Notice, however, that there exists a critical value of the cost �c > ĉ such
that at �c the optimal mechanism is 
 (0) = : : : = 


�
n�1
2

�
= 0; 


�
n+1
2

�
2 (0; 1) ;



�
n+3
2

�
= : : : = 
 (n) = 1; and the value of 


�
n+1
2

�
is such that both constraints

are satis�ed with equality. To see this, note that if 
 (0) = : : : = 

�
n+1
2

�
= 0

and 

�
n+3
2

�
= : : : = 
 (n) = 1; then the LHS of the IC (g) constraint is equal to

�
�
n�1
kn

�
f (kn;n) < 0:

We now show that as the cost increases above �c it is optimal to continue decreasing
the value of 


�
n+1
2

�
and to start increasing the value of 


�
n�1
2

�
: More generally, we

prove the following.

1The cases in which n is even and/or kn = kn�1 + 1 can be analyzed in a similar way.
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Claim 1 Assume that we are at a point c > �c where the optimal mechanism is

�
n (0) = : : : = �
n

�
k̂
�
= 0; �
n

�
k̂ + 1

�
= : : : = �
n (kn � 1) = 1;

�
n (kn) = : : : = �
n
�
�k � 1

�
= 0; �
n

�
�k
�
= �; �
n

�
�k + 1

�
= : : : = �
n (n) = 1;

(1)
� 2 (0; 1) ; and 0 < k̂ < kn 6 �k < n: Suppose that the cost increases. Then it is

optimal to continue decreasing �
n
�
�k
�
and to start increasing �
n

�
k̂
�
:

In what follows, we provide a proof for Claim 1. A symmetric claim also holds:

Claim 2 Assume that we are at a cost c > �c where the optimal mechanism is

�
n (0) = : : : = �
n

�
k̂ � 1

�
= 0; �
n

�
k̂
�
= �; �
n

�
k̂ + 1

�
= : : : = �
n (kn � 1) = 1;

�
n (kn) = : : : = �
n
�
�k � 1

�
= 0; �
n

�
�k
�
= �
n

�
�k + 1

�
= : : : = �
n (n) = 1;

where � 2 (0; 1) ; and 0 < k̂ < kn 6 �k < n: Suppose that the cost increases. Then it
is optimal to continue increasing �
n

�
k̂
�
and to start decreasing �
n

�
�k
�
:

The proof of Claim 2 is identical to that of Claim 1 and is thus omitted. The
combination of these two claims (together with Remark 3 below) provide the proof
of Proposition 3.2

Proof of Claim 1
Note that the optimal device is the solution to a linear programming problem with

two constraints, IC (i) and IC (g) ; and the additional constraints that every 
 (k)
belongs to [0; 1] : It follows that there will be at most two values of k at which 
 (k)
is di�erent from 0 or 1 (see, e.g., Luenberger [1965], Chapter 3). Clearly, the optimal
mechanism is continuous in c: Thus, if we start from the device (1) and increase c by
a small amount, the optimal mechanism is such that the value of �
n

�
�k
�
is close to �:

Therefore, if we start from (1) and increase c; one change must pertain to �
n
�
�k
�
:

In principle, there are di�erent ways to satisfy the constraints when c increases:

1. Decrease the value of 

�
�k
�
and increase the value of 
 (k) for some k = 1; : : : ; k̂;

2. Decrease the value of 

�
�k
�
and increase the value of 
 (k) for some k =

kn
�
= n+1

2

�
; : : : ; �k � 1;

3. Increase the value of 

�
�k
�
and decrease the value of 
 (k) for some k = �k +

1; : : : ; n� 1;
2Note that in generic environments the optimal distortionary device entails randomization for at

least one pro�le of reports. Our proof does, however, extend to non-generic cases in which for some
cost levels, the optimal distortionary device entails no randomization.
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4. Increase the value of 

�
�k
�
and decrease the value of 
 (k) for some k = k̂ +

1; : : : ; kn � 1
�
= n�1

2

�
;

5. Increase the value of 

�
�k
�
and increase the value of 
 (0) ;

6. Decrease the value of 

�
�k
�
and decrease the value of 
 (n) :

In all cases, the optimal thing to do is to satisfy both constraints with equality.
Recall that we start at a point where both constraints are binding and the mechanism
is not Bayesian. If we end up with a mechanism under which one constraint is not
binding, the mechanism cannot be optimal.3

Below we prove the following facts:

A In case 1, the optimal distortion is to use k̂; the largest k available.

B Any change in which we increase 
(k0) and decrease 
(k00); where k0 = kn; :::; n�2
and k00 = k0+1; :::; n� 1 has a negative e�ect on the designer's expected utility
(the objective function). Furthermore, this change is worse than any change in
which we decrease 
(k0) and increase 
(k); where k = 1; :::; k̂:

C Case 4 is not feasible.

D Case 5 is not feasible.

E Case 6 is not feasible.

Note that the distortions mentioned in Fact A certainly generate a decrease in the
expected value of the designer's objective function. Fact B implies that case 3 cannot
be optimal directly. In fact, it implies that distortions of the type speci�ed in case 3
generate lower expected values to the designer than distortions of the type speci�ed
in case 1. In particular, the former yield a decrease in the designer's expected value
as well. Fact B also implies that case 2 cannot be optimal. Indeed, suppose we end
up with a device in which 


�
�k
�
2 (0; 1) and 
 (k) 2 (0; 1) for some k = kn; : : : ; �k� 1:

Then consider the following deviation. Decrease the value of 
 (k) and increase the
value of 


�
�k
�
so that the LHS of both constraints decreases by the same (small)

amount �: It follows from the �rst part of Fact B that this change will increase the
value of the objective function by some amount � > 0.4 Now, decrease the value of

3The proof of this fact depends on which case -1 through 6- we are considering. In each case, it
is straightforward to identify a deviation that does not violate either constraint and improves the
utility. For the sake of brevity, we do not include the relevant calculations.

4We know from Fact B that if we increase 
 (k0) and decrease 
 (k00) ; where k0 = kn; :::; n � 2
and k00 = k0 + 1; :::; n� 1; then the expected utility decreases. Notice that �k 6 n� 1: Therefore, if
we decrease the value of 
 (k) for some k = kn; : : : ; �k � 1 and increase the value of 


�
�k
�
(i.e., we

take a \mirror image" of the type of changes described in Fact B), then the expected utility must
increase.

4




 (k) and increase the value of 

�
~k
�
; for some ~k = 1; : : : ; k̂; so that the LHS of both

constraints increases by � given above. This will decrease the value of the objective
function by �0 > 0: The second part of Fact B implies that � > �0 and so the the
combination of the two changes is feasible and strictly bene�cial.

Proof of Fact A
The goal of this section is as follows. Fix k0 = kn

�
= n+1

2

�
; : : : ; n � 1 and k =

1; : : : ; n+1
2
� 2

�
= n�3

2

�
: Suppose that we decrease 
 (k0) by � > 0 and increase the

value of 
 (k) by " > 0 to increase the LHS of both constraints by the same (small)
number � > 0 (we will show that this is possible). Let Z (k) denote the change of the
value of the objective function. We show that Z (k) < Z (k + 1) < 0:
Consider k: To �nd " and �; we need to solve

a (k) "� a (k0) � = �;
b (k) "� b (k0) � = �:

The solution to this system is

" = a(k0)�b(k0)
b(k)a(k0)�b(k0)a(k)�;

� = a(k)
a(k0)

a(k0)�b(k0)
b(k)a(k0)�b(k0)a(k)� �

1
a(k0)�:

Notice that a (k0)� b (k0) < 0 and a (k0) < 0: Thus, to show that " > 0 and � > 0;
it is necessary and su�cient that

b (k) a (k0)� b (k0) a (k) < 0:

To simplify the notation we de�ne:

a1 (k) =
�
n�1
k�1
�
1
k
(n (1� p)� k) qP (I) pn�k�1

a2 (k) =
�
n�1
k�1
�
1
k
(k � np) (1� q)P (G) pk

so that
a (k) = a1 (k) (1� p)k + a2 (k) (1� p)n�k�1 :

Similarly, de�ne

b1 (k) =
�
n�1
k�1
�
1
k
(k � n (1� p)) qP (I) pn�k

b2 (k) =
�
n�1
k�1
�
1
k
(np� k) (1� q)P (G) pk�1

so that

b (k) = b1 (k) (1� p)k�1 + b2 (k) (1� p)n�k

5



Notice that
b1 (k) a1 (k

0) = b1 (k
0) a1 (k)

b2 (k) a2 (k
0) = b2 (k

0) a2 (k)

and so

b (k) a (k0)� b (k0) a (k) =

b1 (k) a2 (k
0) (1� p)n�k

0+k�2 + b2 (k) a1 (k
0) (1� p)n�k+k

0

�b1 (k0) a2 (k) (1� p)n�k+k
0�2 � b2 (k0) a1 (k) (1� p)n�k

0+k :

Note that the smallest power of the term (1� p) in the expression above is n �
k0+k�2: Therefore, for p close to 1 the sign of b (k) a (k0)� b (k0) a (k) coincides with
the sign of b1 (k) a2 (k

0) ; which is negative.
The total e�ect Z (k) on the utility is then

Z (k) = v (k) "� v (k0) � =�
v (k)� v (k0) a(k)

a(k0)

�
a(k0)�b(k0)

b(k)a(k0)�b(k0)a(k)� +
v(k0)
a(k0)�;

which is negative. In a similar way, for k + 1 we get

Z (k + 1) =

�
v (k + 1)� v (k0) a (k + 1)

a (k0)

�
a (k0)� b (k0)

b (k + 1) a (k0)� b (k0) a (k + 1)�+
v (k0)

a (k0)
�:

Recall that we need to show that Z (k + 1) > Z (k) : We subtract v(k0)
a(k0)� from

Z (k) and Z (k + 1) : We then multiply both terms by the positive quantity (recall
a (k0) < 0 and b (k0) > 0)

a (k0)

a (k0)� b (k0)
1

�
:

We need to show

v (k + 1) a (k0)� v (k0) a (k + 1)
b (k + 1) a (k0)� b (k0) a (k + 1) >

v (k) a (k0)� v (k0) a (k)
b (k) a (k0)� b (k0) a (k) :

We multiply both sides by

[b (k + 1) a (k0)� b (k0) a (k + 1)] [b (k) a (k0)� b (k0) a (k)] > 0

and obtain

[v (k + 1) a (k0)� v (k0) a (k + 1)] [b (k) a (k0)� b (k0) a (k)] >
[v (k) a (k0)� v (k0) a (k)] [b (k + 1) a (k0)� b (k0) a (k + 1)] : (2)
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Each side of the inequality contains several terms. However, as p approaches 1, it
su�ces to consider the terms with the smallest power of (1� p) to determine whether
the inequality is satis�ed or not.
We now write

v (k) = v1 (k) (1� p)k + v2 (k) (1� p)n�k ;

where we de�ne
v1 (k) = �

�
n
k

�
qP (I) pn�k;

v2 (k) =
�
n
k

�
(1� q)P (G) pk:

Then,

v (k) a (k0)� v (k0) a (k) = v1 (k) a1 (k0) (1� p)k+k
0
+ v1 (k) a2 (k

0) (1� p)k+n�k
0�1+

v2 (k) a1 (k
0) (1� p)n�k+k

0
+ v2 (k) a2 (k

0) (1� p)2n�k�k
0�1 � v1 (k0) a1 (k) (1� p)k+k

0

�v1 (k0) a2 (k) (1� p)k
0+n�k�1 � v2 (k0) a1 (k) (1� p)n�k

0+k � v2 (k0) a2 (k) (1� p)2n�k�k
0�1 :

The smallest power of (1� p) is k+n�k0�1 (similarly, if we switch k with k+1,
the smallest power would be k + n� k0).
Consider now the LHS of inequality (2):

[v (k + 1) a (k0)� v (k0) a (k + 1)] [b (k) a (k0)� b (k0) a (k)] :

The term with the smallest power of (1� p) is v1 (k + 1) a2 (k0) b1 (k) a2 (k0) and
that power is 2 (n� k0 � 1 + k) :
Consider the RHS of inequality (2):

[v (k) a (k0)� v (k0) a (k)] [b (k + 1) a (k0)� b (k0) a (k + 1)] :

The term with the smallest power of (1� p) is v1 (k) a2 (k0) b1 (k + 1) a2 (k0) and
that power is 2 (n� k0 � 1 + k) :
Thus, the two sides have the same powers and we have to show that

v1 (k + 1) b1 (k) (a2 (k
0))
2
> v1 (k) b1 (k + 1) (a2 (k

0))
2
:

We divide both sides by (a2 (k
0))2 and compute the value of

v1 (k + 1) b1 (k)� v1 (k) b1 (k + 1)

when p = 1 (by continuity, the sign of the expression extends to p close to 1).
When p = 1;

v1 (k + 1) b1 (k)� v1 (k) b1 (k + 1) =

(qP (I))2
�
�
�
n
k+1

��
n�1
k�1
�
+
�
n
k

��
n�1
k

��
=
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(qP (I))2
h
� n!
(k+1)!(n�k�1)!

(n�1)!
(k�1)!(n�k)! +

n!
k!(n�k)!

(n�1)!
k!(n�k�1)!

i
=

(qP (I))2 n!(n�1)!
(n�k�1)!(n�k)!(k!)2

�
� k
k+1

+ 1
�
> 0:

This concludes the proof of Fact A.

Proof of Fact B
In this section we will prove the following. Consider k0 = kn

�
= n+1

2

�
; : : : ; n � 2;

k00 = k0+1; : : : ; n� 1 and k = 1; : : : ; n�1
2
: Consider two di�erent courses of action. In

the �rst one, we decrease 
 (k0) by � > 0 and increase the value of 
 (k) by " > 0 to
increase the LHS of both constraints by the same (small) number � > 0. Let Z (k)
denote the corresponding change of the value of the objective function (this is the
case analyzed in the previous section). In the second course of action, we increase

 (k0) by � > 0 and decrease the value of 
 (k00) by " > 0 to increase the LHS of
both constraints by the same (small) number � > 0. This will change the value of
the objective function by �Z (k00) : We want to show that �Z (k00) < Z (k) : (Recall that
Z (k) < 0: Thus, the inequality �Z (k00) < Z (k) will also prove the �rst part of Fact
B.)
Consider the second course of action. We need to solve the following system of

equations:
�a (k00) "+ a (k0) � = �;
�b (k00) "+ b (k0) � = �:

The solution is
" = a(k0)�b(k0)

b(k0)a(k00)�b(k00)a(k0)�;

� = a(k00)
a(k0)

a(k0)�b(k0)
b(k0)a(k00)�b(k00)a(k0)� +

1
a(k0)�:

It is simple to check that when p is close to 1 both " and � are positive. Notice
also that the denominator of " is negative.
The total e�ect on the objective function �Z (k00) is equal to

�Z (k00) = v (k0) � � v (k00) " =�
v (k0) a(k

00)
a(k0) � v (k

00)
�

a(k0)�b(k0)
b(k0)a(k00)�b(k00)a(k0)� +

v(k0)
a(k0)�:

Recall that Z (k) is equal to

Z (k) =

�
v (k)� v (k0) a (k)

a (k0)

�
a (k0)� b (k0)

b (k) a (k0)� b (k0) a (k)� +
v (k0)

a (k0)
�:

We subtract v(k
0)

a(k0)� from both
�Z (k00) and Z (k) and multiply both by � a(k0)

a(k0)�b(k0) > 0:
It remains to show that

v (k) a (k0)� v (k0) a (k)
b (k) a (k0)� b (k0) a (k) >

v (k0) a (k00)� v (k00) a (k0)
b (k0) a (k00)� b (k00) a (k0) :
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We multiply both sides by [b (k) a (k0)� b (k0) a (k)] [b (k0) a (k00)� b (k00) a (k0)] > 0
and get

[v (k) a (k0)� v (k0) a (k)] [b (k0) a (k00)� b (k00) a (k0)] >
[v (k0) a (k00)� v (k00) a (k0)] [b (k) a (k0)� b (k0) a (k)] : (3)

For each term inside the square brackets we now identify the element with the
smallest power of (1� p) :
We already know from the previous section that for [b (k) a (k0)� b (k0) a (k)] we

select b1 (k) a2 (k
0) (1� p)n�k

0+k�2 :

In a similar way, for [b (k0) a (k00)� b (k00) a (k0)] we select b1 (k0) a2 (k00) (1� p)n�k
00+k0�2 :

Consider now [v (k) a (k0)� v (k0) a (k)]. We select v1 (k) a2 (k0) (1� p)k+n�k
0�1 :

Finally, consider [v (k0) a (k00)� v (k00) a (k0)] : We select

[v2 (k
0) a2 (k

00)� v2 (k00) a2 (k0)] (1� p)2n�k
0�k00�1 :

Thus for p close to 1, inequality (3) is satis�ed if and only if the following inequality
is satis�ed:

v1 (k) a2 (k
0) b1 (k

0) a2 (k
00) (1� p)2n�k

00+k�3 >

[v2 (k
0) a2 (k

00)� v2 (k00) a2 (k0)] b1 (k) a2 (k0) (1� p)3n+k�2k
0�k00�3 :

The exponent of the RHS is strictly smaller than the exponent of the LHS. Thus,
it su�ces to show

[v2 (k
0) a2 (k

00)� v2 (k00) a2 (k0)] b1 (k) a2 (k0) < 0:

Notice that for p close to 1, b1 (k) a2 (k
0) < 0: We now evaluate the di�erence

v2 (k
0) a2 (k

00)� v2 (k00) a2 (k0) at p = 1 and show that it is positive. By continuity, the
above inequality will be satis�ed when p is close to 1.
When p = 1;

v2 (k
0) a2 (k

00)� v2 (k00) a2 (k0) =

((1� q)P (G))2
��
n
k0

��
n�1
k00�1

�
k00�n
k00 �

�
n
k00

��
n�1
k0�1

�
k0�n
k0

�
=

((1� q)P (G))2 n!(n�1)!
(n�k0)!(n�k00)!k0!k00! (k

00 � k0) > 0:

This concludes the proof of Fact B.

Proof of Fact C
Consider k = 1; : : : ; kn� 1

�
= n�1

2

�
and k0 = kn

�
= n+1

2

�
; : : : ; n� 1. Suppose that

we want to decrease the value of 
 (k) and increase the value of 
 (k0) to increase the
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LHS of both constraints by the same positive amount �: We now show that this is
impossible.
If the change described above is possible then there exist " > 0 and � > 0 that

solve the following system

�a (k) "+ a (k0) � = �;
�b (k) "+ b (k0) � = �:

The solution is
" = a(k0)�b(k0)

b(k0)a(k)�b(k)a(k0)�;

� = a(k)
a(k0)

a(k0)�b(k0)
b(k0)a(k)�b(k)a(k0)� +

1
a(k0)�:

Notice that a (k0) � b (k0) < 0: Moreover, we know from the analysis above that
for p close to 1 the sign of

b (k0) a (k)� b (k) a (k0)
coincides with the sign of �b1 (k) a2 (k0) ; which is positive. Thus, " and � must be
negative.

Proof of Fact D
Consider k = kn; : : : ; n � 1: Suppose that we want to increase both the value

of 
 (k) and the value of 
 (0) to increase the LHS of both constraints by the same
positive amount �: We now show that this is impossible.
If the change described above is possible then there exist " > 0 and � > 0 that

solve the following system
a (0) "+ a (k) � = �;

b (0) "+ b (k) � = �:

The solution is
" = a(k)�b(k)

b(0)a(k)�b(k)a(0)�;

� = � a(0)
a(k)

a(k)�b(k)
b(0)a(k)�b(k)a(0)� +

1
a(k)
�:

Notice that a (k)� b (k) < 0:We now show that b (0) a (k)� b (k) a (0) is positive,
which implies that " is negative.
Recall that

a (0) = �f (1;n) = qP (I) pn�1 (1� p)� (1� q)P (G) p (1� p)n�1

and that
b (0) = f (0;n) = �qP (I) pn + (1� q)P (G) (1� p)n :

For p close to 1 the sign of b (0) a (k) � b (k) a (0) coincides with the sign of
�qP (I) a2 (k) which is positive.
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Proof of Fact E
Consider k = kn; : : : ; n � 1: Suppose that we want to decrease both the value

of 
 (k) and the value of 
 (n) to increase the LHS of both constraints by the same
positive amount �: We now show that this is impossible.
If the change described above is possible then there exist " > 0 and � > 0 that

solve the following system

�a (k) "� a (n) � = �;
�b (k) "� b (n) � = �:

The solution is
" = a(n)�b(n)

b(n)a(k)�b(k)a(n)�;

� = � a(k)
a(n)

a(n)�b(n)
b(n)a(k)�b(k)a(n)� �

1
a(n)
�:

Recall that

a (n) = f (n;n) = �qP (I) (1� p)n + (1� q)P (G) pn

and that

b (n) = �f (n� 1;n) = qP (I) p (1� p)n�1 � (1� q)P (G) pn�1 (1� p) :

De�ne a1 (n) = �qP (I) and a2 (n) = (1� q)P (G) pn: Also, de�ne b1 (n) =
qP (I) p and b2 (n) = � (1� q)P (G) pn�1:
The numerator of " is positive. We now show that the denominator of " is negative.
We have to show b (n) a (k) � b (k) a (n) < 0 for p large. Notice that (after some

simpli�cations)

b (n) a (k)� b (k) a (n) = b1 (n) a2 (k) (1� p)2n�k�2 + b2 (n) a1 (k) (1� p)k+1

�b1 (k) a2 (n) (1� p)k�1 � b2 (k) a1 (n) (1� p)2n�k :

The smallest power of (1� p) is k � 1, and thus for p close to 1 the sign of
b (n) a (k)� b (k) a (n) coincides with the sign of �b1 (k) a2 (n) which is negative.

Remark 3 Suppose that there exists a cost c0 such that the optimal device takes the
form


 (0) = 0; 
 (1) = : : : = 
 (kn � 1) = 1; 
 (kn) = : : : = 
 (k0 � 1) = 0

 (k0) = � 
 (k0 + 1) = : : : = 
 (n) = 1

(4)

then k0 = n� 1 and � < 1.

11



Similarly, suppose that there exists a cost c00 such that the optimal device takes the
form

�
n (0) = : : : = �
n (k
00 � 1) = 0; �
n (k

00) = �; �
n (k
00 + 1) = : : : = �
n (kn � 1) = 1;

�
n (kn) = : : : = �
n (n� 1) = 0; �
n (n) = 1;

then k00 = 1 and � > 0.

An implication of the �rst part of the remark is the following. Suppose k0 were
smaller than n�1; and consider a cost c above c0: To satisfy the constraints, we could
increase the value of 
 (k0) and decrease the value of 
 (k) for some k = k0+1; : : : ; n�1:
On the other hand, if k0 = n � 1 as claimed then it is impossible to modify the
mechanism in order to satisfy both constraints. A similar implication follows from
the second part of the remark and therefore the optimal device must take the form
speci�ed in Proposition 3.

Proof of Remark 3
We provide the proof for the �rst claim. The proof for the second claim is analo-

gous.
To see that k0 = n� 1 when p is close to 1, consider the device described in (4).

Both constraints are satis�ed with equality. Thus,

f (1;n)�
�
n�1
n�1
2

�
f
�
n+1
2

�
+ �

�
n�1
k0�1

�
f (k0;n) + (1� �)

�
n�1
k0

�
f (k0 + 1;n) =

�f (0;n) +
�
n�1
n�1
2

�
f
�
n�1
2

�
� �

�
n�1
k0�1

�
f (k0 � 1;n)� (1� �)

�
n�1
k0

�
f (k0;n)

(and both sides are equal to c0). Notice that as p approaches 1 the RHS of the equality
converges to qP (I) (since �f (0;n) contains the term qP (I) pn and every other term
contains (1� p)r for some r > 0). If k0 < n � 1; the LHS converges to zero (since
each term contains (1� p)r for some r > 0) and the equality cannot be satis�ed.

2 Distortionary Mechanisms when N is Fixed and

p is Close to 1

In Proposition 2 we �x q; P (I) ; p and let N go to in�nity. In Proposition 3 and
the notes above, we �x N and let p approach 1. The following Proposition extends
Proposition 2 and provides conditions for the optimal extended mechanism to involve
distortions when, indeed, N is �xed and p is large.

Proposition 2� Fix N; q and P (I) and assume that either qP (I) > 2 (1� q)P (G)
or qP (I) < 1

2
(1� q)P (G) : There exists ~p < 1 such that for every p > ~p the

following holds. For any n = 2; :::; N; suppose that the Bayesian device with n
agents is admissible. Then there exists an admissible distortionary device with
n+ 1 agents that yields greater expected utility than V̂ (n) :
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Proof of Proposition 2�

To simplify the notation, we de�ne D � qP (I) and E � (1� q)P (G) : The proof
depends on which of the two cases speci�ed in the proposition holds and on whether
n is even or odd. We present the proof for the case D > 2E and n odd (so that
n > 3). The other three cases follow analogously.
When p is close to 1, and n is odd, then kn =

n+1
2
. Moreover, z (n) is strictly

larger than n
2
but very close to n

2
: In particular, kn � z (n) < 1

2
:

We now adapt the proof of Proposition 2. Clearly, when p is close to 1; the
inequalities used in the proof of Proposition 2: kn � 1 > n (1� p) and kn 6 np; are
satis�ed. As in the proof of Proposition 2 we need to show that �2 < �

� and �2 < �1;
where

�1 =

�
n
kn

�
f (kn + 1;n+ 1)�

�
n�1
kn�1

�
f (kn;n)�

n
kn

�
f (kn + 1;n+ 1)�

�
n

kn�1
�
f (kn;n+ 1)

;

�2 =

�
n�1
kn�1

�
f (kn;n) +

�
n
kn

�
f (kn;n+ 1)�

n
kn

�
f (kn;n+ 1)�

�
n

kn�1
�
f (kn � 1;n+ 1)

;

and

�� =
n� kn + 1
n+ 1

:

The denominators of �1 and �2 are positive. We begin with the inequality �
� > �2:

We need to show�
n� n+1

2
+ 1
� h�

n
n+1
2

�
f
�
n+1
2
;n+ 1

�
�
�

n
n+1
2
�1
�
f
�
n+1
2
� 1;n+ 1

�i
>

(n+ 1)
h�

n�1
n+1
2
�1
�
f
�
n+1
2
;n
�
+
�
n
n+1
2

�
f
�
n+1
2
;n+ 1

�i
:

The easiest way to show that the inequality is satis�ed for p close to 1 is to identify,
for each term f (k0;n0) ; the component with the smallest power of (1� p) :
For f

�
n+1
2
;n+ 1

�
we select �D (1� p)

n+1
2 p

n+1
2 + E (1� p)

n+1
2 p

n+1
2 :

For f
�
n�1
2
;n+ 1

�
we select �D (1� p)

n�1
2 p

n+3
2 :

For f
�
n+1
2
;n
�
we select E (1� p)

n�1
2 p

n+1
2 :

Thus, when p is su�ciently close to 1, the above inequality is satis�ed if and only
if

n+ 1

2

�
n
n�1
2

�
D > (n+ 1)

�
n� 1
n�1
2

�
E

which is equivalent to
n

n+ 1
D > E:

Clearly, if D > 2E then the inequality is satis�ed for every n > 3:
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Consider now the inequality �1 > �2: We need to show (recall the denominators
are positive):h�

n
n+1
2

�
f
�
n+3
2
;n+ 1

�
�
�
n�1
n�1
2

�
f
�
n+1
2
;n
�i h�

n
n+1
2

�
f
�
n+1
2
;n+ 1

�
�
�
n
n�1
2

�
f
�
n�1
2
;n+ 1

�i
>h�

n�1
n�1
2

�
f
�
n+1
2
;n
�
+
�
n
n+1
2

�
f
�
n+1
2
;n+ 1

�i h�
n
n+1
2

�
f
�
n+3
2
;n+ 1

�
�
�
n
n�1
2

�
f
�
n+1
2
;n+ 1

�i
We proceed as above and identify the components with the smallest power of

(1� p).
For f

�
n+3
2
;n+ 1

�
we select E (1� p)

n�1
2 p

n+3
2 :

For f
�
n+1
2
;n+ 1

�
we select �D (1� p)

n+1
2 p

n+1
2 + E (1� p)

n+1
2 p

n+1
2 :

For f
�
n�1
2
;n+ 1

�
we select �D (1� p)

n�1
2 p

n+3
2 :

For f
�
n+1
2
;n
�
we select E (1� p)

n�1
2 p

n+1
2 :

Thus, we need to show

E
h�

n
n+1
2

�
�
�
n�1
n�1
2

�i
(1� p)

n�1
2 D

�
n
n�1
2

�
(1� p)

n�1
2 >

E
�
n�1
n�1
2

�
(1� p)

n�1
2 E

�
n
n+1
2

�
(1� p)

n�1
2 :

We divide both sides by E (1� p)n�1 yielding

D

��
n
n+1
2

�
�
�
n� 1
n�1
2

���
n
n�1
2

�
> E

�
n� 1
n�1
2

��
n
n+1
2

�
Notice that

�
n
n+1
2

�
= n

n+1
2

�
n�1
n�1
2

�
and that

�
n
n+1
2

�
=
�
n
n�1
2

�
: Therefore, the inequality

above translates into

D

�
n� 1
n�1
2

��
n
n+1
2

� 1
��

n
n�1
2

�
> E

�
n� 1
n�1
2

��
n
n+1
2

�
:

We divide both sides by
�
n�1
n�1
2

��
n
n�1
2

�
and get

D

�
2n

n+ 1
� 1
�
> E

The inequality is satis�ed for every odd n > 3 provided that D > 2E:
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