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Abstract 

The estimation of income distributions is important for assessing income inequality 
and poverty and for making comparisons of inequality and poverty over time, 
countries and regions, as well as before and after changes in taxation and transfer 
policies. Distributions have been estimated both parametrically and non-
parametrically. Parametric estimation is convenient because it facilitates subsequent 
inferences about inequality and poverty measures and lends itself to further analysis 
such as the combining of regional distributions into a national distribution. Non-
parametric estimation makes inferences more difficult, but it does not place what are 
sometimes unreasonable restrictions on the nature of the distribution. By estimating a 
mixture of gamma distributions, in this paper we attempt to benefit from the 
advantages of parametric estimation without suffering the disadvantage of 
inflexibility. Using a sample of Canadian income data, we use Bayesian inference to 
estimate gamma mixtures with two and three components. We describe how to obtain 
a predictive density and distribution function for income and illustrate the flexibility 
of the mixture. Posterior densities for Lorenz curve ordinates and the Gini coefficient 
are obtained. 
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1. Introduction 

The estimation of income distributions has played a major role in economic analysis. 

Information from such estimations is used to measure welfare, inequality and poverty, 

to assess changes in these measures over time, and to compare measures across 

countries, over time and before and after specific policy changes, designed, for 

example, to alleviate poverty. Typical inequality measures are the Gini coefficient and 

Atkinson's inequality measure. Measures of poverty are based on the proportion of 

population below a threshold or the expected value of a function over that part of the 

income distribution below a threshold. See, for example, Kakwani (1999). Estimates 

of these quantities and the Lorenz curve, a fundamental tool for measuring inequality, 

depend on the income distribution and how it is estimated. Thus, the estimation of 

income distributions is of central importance for assessing many aspects of the well 

being of society. A convenient reference for accessing the literature on the various 

dimensions of inequality measurement, and how they relate to welfare in society is 

Silber (1999). 

A large number of alternative distributions have been suggested in the 

literature for estimating income distributions. See Kleiber and Kotz (2003) for a 

review of many of them, one of which is the Dagum distribution, whose inventor is 

being honoured by this volume. Further reviews of alternative income distributions 

appear elsewhere in this volume. After an income distribution model has been 

selected and estimated, probability distributions are used to draw inferences about 

inequality and poverty measures. These probability distributions can be sampling 

distributions for estimators of inequality and poverty, or Bayesian posterior 

distributions for inequality and poverty measures. In each case the required 
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probability distributions are derived from corresponding probability distributions for 

the parameters (or their estimators) of the assumed income distribution. This 

parametric approach to the analysis of income distributions can be applied to a sample 

of individuals, typically obtained via household surveys, or to more limited grouped 

data which may be the only form available. An advantage of the parametric approach 

is the ease with which probability distributions for inferences about inequality and 

poverty can be derived from those for the income distribution parameters. Also, in the 

case of more limited grouped data, the parametric approach gives a complete picture 

of the income distribution by allowing for within-group inequality. For an example of 

where the latter advantage is utilized, see Chotikapanich, Griffiths and Rao (2007) 

who estimated generalized beta distributions from grouped data. 

 Assuming a particular parametric distribution also has disadvantages.   

Inferences about inequality can depend critically on what distribution is chosen. This 

was evident in the work of Chotikapanich and Griffiths (2006) who found the 

posterior probabilities for Lorenz and stochastic dominance were sensitive to the 

choice of a Singh-Maddala or Dagum income distribution. To avoid the sensitivity of 

inferences to choice of income distribution, nonparametric approaches are frequently 

used. See Cowell (1999) and Barrett and Donald (2003) for examples of 

nonparametric sampling theory approaches and Hasegawa and Kozumi (2003) for a 

Bayesian approach. 

 One way of attempting to capture the advantages but not the disadvantages of 

a parametric specification of an income distribution is to use a functional form that is 

relatively flexible. This paper represents an attempt in this direction. Mixtures of 

distributions can provide flexible specifications and, under certain conditions, can 
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approximate a distribution of any form. With these characteristics in mind, we 

consider a mixture of gamma distributions; the gamma density is convenient one and 

it has been widely used for estimating income distributions. Our approach is 

Bayesian. Using data on before-tax income for Canada in 1978, taken from the 

Canadian Family Expenditure Survey and kindly provided by Gary Barrett, we find (i) 

posterior densities for the parameters of a gamma mixture, (ii) an estimate of the 

income distribution and 95% probability limits on the distribution, (iii) the posterior 

density for the Gini coefficient and (iv) an estimate of the Lorenz curve and 95% 

probability limits on this curve. 

 In Section 2 we specify the Gamma mixture and describe the Markov chain 

Monte Carlo algorithm (MCMC) for drawing observations from the posterior density 

for the parameters of the mixture. The data set and our selection of prior parameters is 

given in Section 3. Section 4 contains the results and a summary of the expressions 

used to obtain those results. Goodness-of-fit comparisons with other functional forms 

for the income distribution are given in Section 5. Some concluding remarks appear in 

Section 6. 

2. Estimating the Gamma Mixture Model 

An income distribution that follows a gamma mixture with k components can be 

written as 

  
1

( | , , ) ( | , )
k

z z z
z

f x w G x v v
=

z= μ∑w μ v     (1) 

where x is a random draw of income from the probability density function (pdf) 

( | , , )f x w μ v , with parameter vectors, 1 2( , , , )kw w w ′= …w , 1 2( , , , )k ′= μ μ μ…μ , and 
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1 2( , , , )kv v v ′= …v . The pdf ( | , )z z zG x v v μ  is a gamma density with mean  and 

shape parameter . That is,  

0zμ >

0z >v

  1( )( |G x v

zμ

, ) exp
( )

z
z

v
vz z z

z z z
z z

v vv x x
v

− ⎛ ⎞μ
μ = −⎜ ⎟Γ μ⎝ ⎠

   (2) 

Including the mean  as one of the parameters in the pdf makes the parameterization 

in (2) different from the standard textbook one, but it is convenient for later analysis. 

The parameter  is the probability that the i-th observation comes from the z-th 

component in the mixture. To define it explicitly, let 

zw

1 2( , , , )nx x x= …x  be a random 

sample from (1), and let 1 2, , , nZ Z Z…  be indicator variables such that iZ z  wh= en the 

i-th observation comes from the z-th component in the mixture. Then, 

     for ( | )i zP Z z w= =w 1,2, ,z k= …  

with  and . Also, conditional on 0zw > 1
k
z=∑ 1zw = iZ z= , the distribution of ix  is 

( ),z z zG v v μ . 

 To use Bayesian inference, we specify prior distributions on the unknown 

parameters , w μ , and , and then combine these pdfs with the likelihood function 

defined by (1) to obtain a joint posterior pdf for the unknown parameters. This joint 

posterior pdf represents our post-sample knowledge about the parameters and is the 

source of inferences about them. However, as is typically the case in Bayesian 

inference, the joint posterior pdf is analytically intractable. This problem is solved by 

using MCMC techniques to draw observations from the joint posterior pdf and using 

these draws to estimate the quantities required for inference. Because we are 

interested in not just the parameters, but also the income distribution, the Gini 

v
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coefficient, and the Lorenz curve, the parameter draws are also used in further 

analysis to estimate posterior information about these quantities. 

The MCMC algorithm used to draw observations from the posterior density 

for ( , , )μ v w  is taken from Wiper, Rios Insua and Ruggeri (2001). In the context of 

other problems, Wiper et al. consider estimation for both a known and an unknown k. 

We will assume a known value of k that is specified a priori. In our empirical work 

we considered k = 3 and k = 2 but settled on k = 2 as an adequate formulation. The 

MCMC algorithm is a Gibbs’ sampling one where draws are taken sequentially and 

iteratively from the conditional posterior pdfs for each of the parameters. Because 

only the conditional posterior pdfs are involved in this process, it is not necessary to 

specify the complete joint posterior pdf. The relevant conditional posterior pdfs are 

sufficient; they are specified below after we introduce the prior pdfs. 

Following Wiper et al. (2001), the prior distributions used for each of the 

parameters are 

 1 2 11 1
1 2( ) ( ) k

kf D w w wφ −φ − φ −= ∝ …w φ    (Dirichlet)  (3) 

 { }( ) expz zf v ∝ −θv      (exponential)  (4) 

 ( ) ( ) ( 1), expz z
z z z z

z

f GI − α + ⎧ ⎫β
μ = α β ∝ μ −⎨ ⎬μ⎩ ⎭

  (inverted gamma) (5) 

       for 1,2,z k,= …  

The Dirichlet distribution is the same as a beta distribution for  and a 

multivariate extension of the beta distribution for . Its parameters are 

2k =

2k >

1 2( , , , )k ′= φ φ φ…φ . To appreciate the relationship between the gamma and inverted 
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gamma pdfs, note that if ~ ( , )y G α β , then (1 ) ~ ( , )q y GI= α β . The pdfs in (3), (4) 

and (5) are chosen because they combine nicely with the likelihood function for 

derivation of the conditional posterior pdfs, and because they are sufficiently flexible 

to represent vague prior information which can be dominated by the sample data. In 

addition to the above prior pdfs, the restriction 1 2 kμ < μ < < μ"  is imposed a priori 

to ensure identifiability of the posterior distribution. Settings for the prior parameters 

 are discussed in Section 3. ( , , ,z zθ α βφ )

 After completing the algebra necessary to combine the prior pdfs with the 

likelihood function in such a way that isolates the conditional posterior densities for 

use in a Gibbs’ sampler, we obtain the following conditional posterior pdfs.  

The posterior probability that the i-th observation comes from the z-th 

component in the mixture, conditional on the unknown parameters, is the discrete pdf 

( )
1 2

| , , ,z iz

ik
i

i i

pP Z
p p p+"

= =x w v μ     (6) 
+ +

where 

( )
( )

   1 ex
z

z

v
z z v

iz z i

v
p w x

v
−μ

p z i

z z

v x⎧ ⎫
= −⎨ ⎬Γ μ⎩ ⎭

 

The posterior pdf for the mixture-component probabilities , conditional on 

the other parameters and on the realized components for each observation 

, is the Dirichlet pdf 

w

, )nz ′1 2( , ,z z= …z

( ) ( )| , , ,f D= +w x z v μ φ n      (7) 
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where , with  being the number of observations for which 1 2( , , , )kn n n ′= …n zn iZ z= . 

Thus, .  
1

k

z
z

n n
=

=∑

The posterior pdfs for the means of the component densities , conditional 

on the other parameters and on z , are the inverted gamma pdfs 

zμ

( ) ( )| , , , ,z z z z z z zf GI n v S vμ = α + β +x z w v     (8) 

where .  
: i

z i
i Z z

S x
=

= ∑

The form of the posterior pdfs for the scale parameters of the component 

densities , conditional on the other parameters and on z , is not a common 

recognizable one. It is given by 

kv

( )
( )

| , , , exp log log
z z

z

n v
z z

z z zn
zz

v S
z zf v v n

v
P

⎧ ⎫⎛ ⎞⎪ ⎪∝ − θ+ + μ −⎨ ⎬⎜ ⎟μ⎪ ⎪Γ⎡ ⎤ ⎝ ⎠⎩ ⎭⎣ ⎦
x z w μ  (9) 

where . 
: i

z i
i Z z

P x
=

= ∏

 A Gibbs sampling algorithm that iterates sequentially and iteratively through 

the conditional posterior pdfs can proceed as follows: 

1. Set 0t =  and initial values (0) (0) (0), ,w μ v . 

2. Generate ( )t( 1) ( ) ( ) ( )| , , ,t t t+z x w v μ  from (6). 

3. Generate ( )t( 1) ( 1) ( ) ( )| , , ,t t t+ +w x z v μ  from (7). 

4. Generate ( )+  from (8), for ( 1) ( 1) ( ) ( 1)| , , ,t t t t
z
+ +μ x z v w 1,2, ,z k= … . 
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5. Generate ( )+  from (9), for ( 1) ( 1) ( 1) ( 1)| , , ,t t t t
zv + + +x z μ w 1,2, ,z k= … . 

6. Order the elements for ( 1)t+μ  such that 1 2 kμ < μ < < μ…  and sort ( 1)t+w  and 

( 1)t+v  accordingly. 

7. Set 1t t= +  and return to step 2. 

To describe each of the generation steps in more detail, first consider (6). In this case 

we divide the interval (0,1) into k sub-intervals with the length of the z-th sub-interval 

equal to . A uniform random number is generated from the (0,1) 

interval. The value assigned to 

( | , , ,iP Z z= x w v μ)

iZ  is the sub-interval in which the uniform random 

number falls. To generate observations from the Dirichlet density in (7), we first 

generate k gamma random variables, say  from , 1,2, ,z z kγ = … ( ,1)z zG nφ +  densities, 

and then set 1
k

z z jjw == γ ∑ γ . To generate zμ  from (8), we generate a random 

variable from a ( )z zS v,z z zG n vα + βz +  density and then invert it. 

 Generating zv  from equation (9) is more complicated, requiring a Metropolis 

step. We draw a candidate ( 1)t
zv +�  from a gamma density with mean equal to the 

previous draw . That is, a candidate ( )t
zv ( 1)t

zv +�  is generated from a ( )( ), t
zG r r v  

distribution and is accepted as ( 1t
zv )+  with probability 

( )
( )

( )
( )

( 1) ( 1) ( 1) ( 1) ( 1) ( )

( ) ( 1) ( 1) ( 1) ( ) ( 1)

| , , , ,
min 1,

| , , , ,

t t t t t t
z z

t t t t t t
z z

f v p v v

f v p v v

+ + + + +

+ + + +

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

� �

�
x z w μ

x z w μ
z

z
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where  is the gamma density used to generate ( ( ) ( 1),t t
z zp v v +� ) ( 1)t

zv +� . Non-acceptance of 

 implies . The value of r is chosen by experimentation to give an 

acceptance rate of approximately 0.4. 

( 1)t
zv +� ( 1)t

zv + ( )v= t
z

3. Data Characteristics and Prior Parameters. 

Characteristics of the sample of incomes from the 1978 Canadian Family Expenditure 

Survey are presented in Figure 1. The units are thousands of Canadian dollars. There 

are 8526 observations with values ranging from 0.281 to 173.8. Sample mean income 

is 35.5 and the sample median income is 32.4. The histogram reveals two modes, one 

at approximately 23 and the other at approximately 32. The Gini coefficient computed 

from the sample is 0.3358.  

[Insert Figure 1 near here] 

 In choosing values for the parameters of the prior densities, our objective was 

to have proper but relatively uninformative priors so that posterior densities would be 

dominated by the sample data. We initially tried a mixture of 3k =  components but 

encountered identification problems and then reduced the number of components to 

. 2k =

 We set  for all z, thus implying a uniform prior for the weights on each 

component. For the exponential prior on the scale parameters  we set . A 

95% probability interval for this prior is (0.5, 161) implying a large range of values 

are possible. For the  we initially set 

1zφ =

zv 0.02θ =

zμ 2.2zα =  for 1, 2,3z =  and , , 

. Then, when we proceeded with 

1β = 24 2β = 54

3 120β = 2k = , we set 1 30β =

2

 and . From 

this latter setting, and ignoring the truncation 

2 95β =

1μ < μ , 95% prior probability intervals 
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for  are, respectively, (5, 98) and (16, 306). In light of the sample mean of 

35.5, these intervals suggest priors that are relatively uninformative. 

1  and μ 2μ

4. Results 

The algorithm described in Section 2 was used to generate 200,000 observations from 

the joint posterior density for the parameters ( ), ,w μ v

k

 and the first 100,000 were 

discarded as a burn in. In our first attempts with 3=  there appeared to be an 

identification problem with the second and third components. For separate 

identification of these two components, we require 2 3μ < μ . If 2 3μ = μ , some other 

mechanism is required for identification (Wiper et al. 2001). The two-dimensional 

plot of the draws for  and 2μ 3μ  given in Figure 2 shows a large number of 

observations on the boundary where 2 3μ = μ . Other evidence is the bimodal 

distributions for  and  (Figure 3), the very high correlation between  and  

(Figure 4) and the fact that the marginal posterior densities for  and  were mirror 

images of each other. 

2v 3v 2w 3w

2 3ww

[Insert Figures 2, 3 and 4 near here] 

 These issues led us to consider instead a model with two components ( ). 

In this case there was no apparent identification problem, and the Gibbs sampler 

showed evidence of converging. Summary statistics for the draws on the parameters 

are given in Table 1. There is relatively large weight (about 0.9) on the second 

component and a relatively small weight (about 0.1) on the first component. The 

posterior mean for the mean of the first component is relatively small (compared to 

2k =
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the sample mean) and, likely, serves to help capture the first mode of the income 

distribution. 

Table 1 Posterior Summary Statistics for Parameters 

Name Mean St.Dev Min Max 

1μ  9.6134 0.35688 7.8906 11.130 

2μ  38.704 0.42069 36.903 40.768 

1w  0.10896 0.012091 0.06080 0.15656 

2w  0.89104 0.012091 0.84344 0.93920 

1v  7.4761 0.80874 5.2314 12.653 

2v  3.3616 0.11977 2.9667 3.9985 
 

Having obtained M MCMC-generated observations from the posterior density 

( , , | )f w μ v x , for a sample of observations  we can proceed to obtain estimates for 

the density and distribution functions for income and for the corresponding Lorenz 

curve as well as probability bands around these functions. Indexing an MCMC-

generated observation by a superscript (j), an estimate for the density function at a 

given income x is given by 

x

 (( ) ( ) ( ) ( )

1 1

1( | ) | ,
M k

)j j j j
z z z

j z
f x w G x v v

M = =
= ∑∑x zμ     (10) 

This function was calculated for 101 values of x from 0 to 200 such that the intervals 

between successive values of log x were equal. For each x 95% probability bands 

were found by sorting the M values of  

  ( )( ) ( ) ( ) ( ) ( ) ( ) ( )

1
( | , , ) | ,

k
j j j j j j j

z z z
z

f x w G x v v
=

= μ∑w μ v z  

and taking the 0.025 and 0.975 percentiles of these values. The plots for the mean 

distribution and its probability bounds appear in Figure 5. The bimodal nature of the 
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distribution has been well captured, although, as one would expect, it is at the peaks 

of the distribution where the greatest uncertainty is exhibited through wider bounds. 

[Insert Figure 5 near here] 

 An estimate of the distribution function and probability bounds on that 

distribution can be found in a similar way. In this case the value of the distribution 

function for a given value x is given by 

 

( )( ) ( ) ( ) ( )

1 1 0

( ) ( ) ( )

1

1( | ) | ,

1 ( | , , )

xM k
j j j j

z z z z
j z

M
j j j

j

F x w G t v v dt
M

F x
M

= =

=

= μ

=

∑∑ ∫

∑

x

w μ v

   (11) 

This function was evaluated for the same 101 values of x. To estimate the Lorenz 

curve we consider for each x the M points ( )( ) ( ) ( )| , ,j j jF x w μ v  and the corresponding 

points for the first moment distribution which is given by  

( ) ( )

( )

( )( )

( ) ( ) ( ) ( ) ( ) ( )
( )

0

( ) ( ) ( ) ( )
( )

1 0

( ) ( ) ( ) ( ) ( )
( )

1 0

1| , , | , ,

1 | ,

1 | 1 ,

x
j j j j j j

j

xk
j j j j

z z z zj
z

xk
j j j j j

z z z z zj
z

x t f t dt

w t G t v v dt

w G t v v

=

=

η =
μ

= μ
μ

= μ + μ
μ

∫

∑ ∫

∑ ∫

w μ v w μ v

dt

  (12) 

where ( ) ( ) ( )

1

k
j j j

z z
z

w
=

μ = μ∑ . 

 To see how to use these points to estimate a Lorenz curve and find its 

probability bounds it is instructive to examine a graph of the M points for 

( ) ( ) ( )( | , , )j j jF x w μ v  and ( ( ) ( ) ( )| , , )j j jxη w μ v  for a given value of x. Such a graph for 
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the point  is given in Figure 6. A graph like that in Figure 6 could be drawn for 

each of the 101 x points. To estimate the Lorenz curve and draw probability bounds 

around it, we need to “select” three points from each graph, an estimate of the Lorenz 

curve for each x and its corresponding upper and lower probability bounds. As an 

estimate of the Lorenz curve for a given x we can take the mean values of all the 

points in Figure 6. That is, the point [ (

35x =

| ), ( | )]x F xη x x  where 

( ( ) ( ) ( )| , , )
1

1( | )
M

j j jη w
j

x x
M =

η = ∑x μ v

( ) ( ), )

     (13) 

and is given in (11). Then an estimate of the complete Lorenz curve is 

obtained by joining these points for all x. 

(F x | )x

[Insert Figure 6 near here] 

 Finding 95% probability bounds for the Lorenz curve is more difficult than it 

is for the density and distribution functions because, for each x, we have a 2-

dimensional space for ( )( | ,j ( )( ) ( ) ( )| , ,j j jw μ vj jF x w μ v xη and  to consider. Two 

approaches were taken. In the first, for each x, we regressed the M values of 

( ) ( )| , )( ( ),j jμ v jxη w  on the corresponding M values of ( ) ( )( | , ( ), )j j jF x w μ v

.025

 via a least 

squares regression. The residuals from this regression were ordered and the 0.025 and 

0.975 percentiles of the residuals were noted. Denoting them by  and , the 

bounds at a given x were taken as the points 

ê .975ê

[ ].025ˆ, ( | )x eη +x x  and [ ].925ˆ, ( | )x eη +x x( | )F x ( | )F x   (14) 

Note that , so we add it rather than subtract it from .025ê < 0 ( | )xη x . To obtain the 

lower bound on the Lorenz curve, we computed [ ].̂( | )x eη +x x 025( | ),F x  for each x, 
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and joined these points. Similarly, to obtain the upper Lorenz bound, we computed 

[ ].925ˆ( | ), ( | )F x x eη +x x  for each x and joined these points. These bounds and the 

estimated Lorenz curve are plotted in Figure 7. However, the bounds are so narrow 

that they are indistinguishable from the estimated curve. In Figure 8 we present a 

more distinct cross section of the plots for 0.4 ( ) 0.6F x< <

1 2 101, , ,

 and . 

Also, to give an idea of the width of the bounds, in Figure 9 we plot  and  

against . The maximum width of the probability interval is less than 0.008, 

implying the Lorenz curve is accurately estimated. 

0.2 ( ) 0.4x< η <

.025ê .975ê

( )F x

[Insert Figures 7, 8 and 9 near here] 

To introduce our second approach for finding probability bounds on the 

Lorenz curve, first note that, in the first approach, the bounds do not correspond to 

one set of parameter values for all x. The upper and lower extreme 2.5% of parameter 

values is likely to be different for each x setting. While this is not necessarily a bad 

thing – it is also a characteristic of the estimated density function for income – it is 

interesting to examine an alternative method of obtaining bounds that “discards” the 

same parameter values for each x. One way to use a unique set of upper and lower 

2.5% of parameter values is to order Lorenz curves on the basis of their Gini 

coefficients. Denoting the 101 x points as x x x…

) (

( )

( ) ( ) ( )

( ) ( )
1

, |

,

j j j
m m

, the Gini coefficient for the j-

th set of parameters can be approximated by  

( )( ) ( ) ( ), ,j j j (

(

100
( ) ( )

1
1

100
( ) ( )

1

| , , ,

| , |

m
)( )

( ) ( ), ,

j j j

)j j j
m m

F x

x F +

v w

j j j

v

m

x

x

+
=

=

= η

− η

∑

∑

v w μ μ

w

Gini w μ

μ
     (15) 

v w μ v
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In this approach the probability bounds of the Lorenz curve were taken as the Lorenz 

curves corresponding to the parameter values that yield the 0.025 and 0.975 

percentiles for the Gini coefficient. Thus, the bounds on the Lorenz curve are found 

by using the area under the Lorenz curve to determine a parameter ordering. 

Specifically, if the parameter values corresponding to the 0.025 and 0.975 percentiles 

of the Gini coefficient are  and , then the upper 

bound is the curve joining the points 

.025 .025 .025( , ,w μ v ) ).975 .975 .975( , ,w μ v

( )975 .975 .975, , ( |x Fv w.975 . .975 .975, , ,xμ μ v[ |η w )]  for 

each x, and the lower bound is the curve joining the points ( )5.025 .025 .02, ,w μ v[ |xη ,

)

 

 for each x.  .025 .025 .025( | , , )]F x w μ v

While it is straightforward to draw the bounds in this way, it is not obvious 

how one might define the “errors” between the estimated Lorenz curve and its 95% 

probability bounds if one is interested in these values. In the regression approach, 

where  was treated as the “dependent” variable and F was treated as the 

“explanatory” variable, it was natural to define the errors as the vertical distances as 

specified in (14). In this case, however, there is no reason why they should be vertical 

or horizontal distances. To solve this dilemma, we define the errors as the orthogonal 

distances from the Lorenz curve 

η

( ) (( )22
.975 .975 .975 .975 .975 .975

ˆ ( ) ( | , , ) ( | ) | , , ( | )Ud x F x F x x x= − + ηw −ημ v x w μ v x  

( ) (( )) 22
.025 .025 .025 .025 .025 .025

ˆ ( ) ( | , , ) ( | ) | , , ( | )Ld x F x F x x x= − + ηw −ημ v x w μ v x  

 Once again, it turned out that the Lorenz curve is estimated very accurately 

with the probability bounds not discernible from the mean Lorenz curve. Rather than 

present another figure that appears identical to Figure 7, in this case we simply plot 
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the errors  and  that appear in Figure 10. The pattern of these differences 

is a strange one, and, as expected, they are larger than those obtained using the 

regression method. Larger differences are expected because the regression method 

minimizes the “error” for each x. Nevertheless, the largest error is still relatively 

small, being less than 0.016. 

ˆ ( )Ud x ˆ ( )Ld x

[Insert Figure 10 near here] 

 Also, of interest is the Gini coefficient. Its posterior density, estimated from 

the 100,000 points defined by equation (15), is plotted in Figure 11. The posterior 

mean is 0.337 and 95% probability bounds for the Gini coefficient are 0.333 and 

0.342. 

[Insert Figure 11 near here] 

5. Goodness of Fit 

Given our objective was to specify a gamma mixture as a flexible parametric model 

for an income distribution, it is useful to assess its goodness of fit against those of 

some common income distributions. To do so we compare the estimated distribution 

function  with the empirical distribution function ( | )F x x 0 ( ) /jF x j n=  where j refers 

to the j-th observation after ordering them from lowest to highest and n is the sample 

size. We compute goodness of fit using the root mean squared error 

( )( )2

0
1

1 | (
n

j j
j

RMSE F x F x
n =

= −∑ x )

)

 

In addition we perform a Kolomogorov-Smirnov test which is based on the largest 

difference between  and ( |jF x x 0 ( )jF x . Table 2 contains the results for the 



 18

Bayesian-estimated gamma mixture and for maximum likelihood estimates of the log-

normal, beta2, Singh-Maddala and Dagum distributions. Clearly, the gamma mixture 

is far superior to other models in terms of goodness of fit. 

Table 2: Goodness of Fit Comparisons 

 RMSE Max Dif ( )nδ  n nδ  p-value 

Gamma Mix 0.0064 0.01449 1.33795 0.055738 
LogNormal 0.0414 0.07449 6.87813 0.000000 
Beta2 0.0310 0.05523 5.09974 0.000000 
Singh-Maddala 0.0122 0.02757 2.54571 0.000005 
Dagum 0.0135 0.03146 2.90490 0.000000 

  

6. Concluding Remarks 

A mixture of gamma densities has been suggested as a model for income 

distributions. Mixtures have the advantage of providing a relatively flexible functional 

form and at the same time they retain the advantages of parametric forms that are 

amenable to inference. We have demonstrated how a Bayesian framework can be 

utilized to estimate the gamma mixture and related quantities relevant for income 

distributions. In addition to showing how the income distribution estimate and its 95% 

probability bounds can be calculated, we considered the distribution function, the 

Lorenz curve and the Gini coefficient. Two ways of computing 95% probability 

bounds for the Lorenz curve were explored. Goodness-of-fit comparisons showed the 

gamma mixture fits well compared to a number of commonly used income 

distributions. 

 An attempt to estimate a mixture with 3 components was not successful 

leading us to opt for a model with 2 components. The results for 3 components 
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suggested a lack of identification between the second and third components. Most 

likely, the empirical characteristics of the distribution are well captured by 2 

components, making it hard for the data to discriminate when 3 are specified. This 

outcome does not necessarily imply 2 will always be adequate. There could be other 

distributions where more components improve the specification. Also, the number of 

components can be treated as an unknown parameter which, in a Gibbs sampling 

algorithm, can vary from iteration to iteration. 

 Further research will focus on the use of estimated gamma mixtures in the 

measurement of inequality and poverty and in methodology for examining stochastic 

and Lorenz dominance for income distributions. Expressing uncertainty about such 

quantities in terms of posterior densities facilitates making inferences and probability 

statements about relative welfare scenarios. 
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Figure 1: Characteristics of Canadian income data 

 

 

 

 
Figure 2: Posterior observations on 2μ  and 3μ  for 3k =  
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Figure 3: Posterior observations on 2 3and  for 3v v k =  

 

 

 

 
Figure 4: Posterior observations on 2 3and for 3w w k =  
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Figure 5: Mean and 95% probability bounds for the predictive density for income 

 

 

 

 
Figure 6: Plots of 100,000 pairs of F(x) and ( )xη  for 35x =  
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Figure 7: Entire Lorenz curve and 95% probability bounds 
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Figure 8: Close up of Lorenz curve and 95% probability bounds 
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Figure 9: Plots of the differences between  

the estimated Lorenz curve and 95% probability bounds 
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Figure 10: Orthogonal differences between Lorenz curve 

and 95% probability bounds. 
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Figure 11: Posterior density for the Gini coefficient. 
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