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Summary findings

Some economists have urged reliance on fuel taxes and sectors but across producers of different sizes. Although
other fiscal incentives to reduce air pollution in semi- Eskeland and Jimenez (1990) may be correct in arguing
industrialized countries. They argue that policies that act that fiscal incentives are easier to implement than are

on relative prices are easier to enforce than those based direct emission controls, the costs of adjustment ar,
on emission monitoring, create less misallocation of likely to be concentrated fairly narrowly for some fuels.
resources, and are relatively free of the rent-seeking and The authors found bakeries, for example, to be very
corruption that accompany regulations administered at responsive to ch. :ges in the relative prices of alternative

the plant level. fuels. By contrast, energy demand in metal products
To be effective, however, fuel-specific taxes and plants appears to be very insensitive to relative prices, no

subsidies must inspire manufacturers to significantly matter what estimates are used. Meatpackers fall
adjust their input use as relative prices charnge. somewhere between the two - with little price
Moreover, these policies must not create politically responsiveness in electricity demand, but more in the
unacceptable income redistribution. demand for energy from other sources, especially if

Guo and Tybout shed light on both issues by analyzing coherency-constrained figures are used.

detailed panel data on Chilean manufacturing plants. It seems that the effects of fuel taxes vould depend in
Overall, their estimates suggest that there is substantial significant measure on the sectoral composition of

scone for fuel taxes to encourage fuel substitution, but manufacturing, since input composition varies and some

that the response will be very uneven - not only across sectors have little flexibility.
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I. Overview

In the major cities cf many semi-industrialized countries, air pollution has become a serious

problem. The most cursory tour of Mexico City, Santiago, or Jakarta is sufficient to convince one that

the externalities are massive. Now, after decades of neglect, many policy-makers are turning their

attention to the issue and debating the relative merits of alternative corrective measures.

Some economists have urged reliance on carbon taxes and other fiscal incen;ives (Eskeland and

Jimenez, 1990). Policies that act on relative prices are easier to enfarce than direct controls, creatc less

misallocation of resources, and are relatively free of the rent-seeking and corruption that accompany

regulations administered at the plant level. To be effective, however, fuel-specific taxes and subsidies

must inspire manufacturers to significantly adjust their production techniques as relative prices change.

Moreover, these policies must not create politically unacceptable income redistribution. The purpose of

this paper is to generate new evidence on both issues by analyzing detailed panel data on Chilean

manufacturing plants.

There is already a large body of evidence or. fuel elasticities of derrand. However, the relevance

of this literature is limited by several factors. First, most studies are baced on sectoral time series from

OECD economies, so the product mix and technologies they describe differ to an unknown extent from

those in the semi-industrialized countries. Second, to have a reasonable number of sectoral observations,

many years of data are necessary. I But technology is unlikely to remain fixed over the twenty to thirty

year time spans that are typically studied. Third, the econometric literature almost always begins from

the assumption that production technologies are homothetic in factor inputs. This is especially unlikely

to be true in developing countries, where the population of manufacturers ranges from cottage industry

to large multinationals. Finally, this literature also presumes complete flexibility to adjust all factor

stocks every year. But adjustments in fuel use patterns often require lumpy investments in retrofitting

I Not all analyses at the sectoral level are pure time series. Some use relatively short time periods
but pool across regions or countries, e.g., Fuss (1977).



or new capital equipment, so observed fuel use patterns reflect adjustment costs and and expectations

about the future.

We can do better on all counts by using plant-level panel data from Chile. First, we can explicity

account for non-homotheticities by allowing technolog.es to vary across plants of different sizes. Second,

because transportation costs and infrastructure induce substantial spatial variation in prices, we need not

use the time dimension of our data to identify paramneters. This means we can describe the technology

at a recent point in time, rather than some ill-defined temporal average for the past thirty years. Finally,

by taking plant-specific temporal averages of all variables before fitting our model, we come closer to

a representation of long run behavior than estimators based on a simple cross section or annual time

series.2

We estimate substitution elasticities using plant-level panel data that describe expenditure and

physical consumption levels for each of 12 alternative energy sources, inter alia. The data describe

virtWally all Chilean manufacturing plants with at least ten workers for the period 1979-1986.3 We find,

first, that the degree of substitutability between fuels is sutstantial in some sectors, but very limited in

others. Second, the variation in elasticities across the plant size spectrum is at least as large as it is across

industries. For both raasons, the incidence of carbon taxes is likely to be concentrated in certain types

of plants.

Several troubiesome econometric issues complicate the analysis. First, although an industry

consumes many fuels in the aggregate, each individual plant is unlikely to consume no more than several.

2 In principle, of course, we could do better by specifying an explicitly dynamic model (e.g., Rust,
1987). Hovwever, the returns to this strategy are limited by the fact that we don't observe details of the
capital stock. Moreover, dynamic panel data models suffer from the "init.al conditions" and "incidental
parameters" problems, which would necessitate going to considerably more complicated estimation
techniques (Heckman, 1981).

3 These data were originally obtained from the Chilean government by the World Bank for the
research project "Industrial Competition, Productive Efficiency, and their Relation to Trade Regimes,"
RPO 674-46.
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This suggests that at the typical plant, some fuels cost more than their marginal revenue products at zei J

consumption, and accordingly, the first-order conditions that are used to estimate fuel demads with

sectoral data cannot be justified. We adopt the technique developed by Lee and Pitt (1987) to deal with

this problem.

Ano.aer problem is that to estimate fuel demands we must observe a plant-specific price for every

fuel, whether it is actually used or not Given that we observe physical quantities and expenditures for

each fuel that is used, we surmount this problem by estimating fuel price equations that relate unit values

of the fuels to exogenous plant characteristics such as geographic region, industry and size. These

equations are fitted fuel by fuel, using the subset of plants for which unit fuel prices could be calculated.

Then fitted values from these equations are constructed for all plants and treated as the market prices that

producers face. We view this technique as not only solving the problem of unobservable prices, but

removing noise from plant-specific unit values.

II. The Empirical Model

The Likelihood Function: Our representation of producer behavior is a slight generalization of

Lee and Pitt's (1987). Suppose that output is a function of capital (K), labor (L), materials (M), and a

vector of energy inputs (X), some of which may not be used. Then the profit maximizing choice of

energy inputs can characterized be using the Lagrangian:

L = PKK + PLL + PmM + P,,X + X(Y -F(KL,M,XJ) - X

where 0 is a vector of Kuhn-Tucker multipliers that impose non-negativity constraints on the elements

of X. The relevant first-order conditions are:

4



aF 
dX = Px, - Xi ' (2;ax1 - (1)

oj 2G
So if producers were confronted with virtual prices, t, instead of actual prices, they would behave as if

they were at an interior solution. Accordingly, standard first-order conditions can be used to identify the

production technology once this substitution has beer, made.

Proceeding to do so, suppose that the production function is weakly separable in energy inputs:

Y = F[K,L,M,e(X)J

This ensures that for a given input of the energy aggregate, E, and a given vector of factor input prices,

the choice of energy inputs satisfies the cost minimization problem:

min eX subject to E = e(X)
x

The mix of energy inputs that solves this problem yields some levei of costs, Ce, which we approximate

with a standard translog function:

InC = aJ + , ailnti + ylnE + ; j Oij Intilnj+ 1+ I Ei InElnti + eInti (2)

Here the disturbance vector e = (e1,e2,e3) picks up plant-specific variation in technology. Then the

associated share equations implied by Sheppard's lemma are:

Si' = a;i + 0,5 E + Ej Oij In tj + ei, i = 1, 2, 3 (3)

Combined with the bounds on virtual prices implied by (1),

(i = Px, if Si. > o

t C< PX if s, = 0

5



and with the assumption that e is distributed N(O,E), these share equations form the basis for Lee and

Pitt's (1987) likelihood function. Details are provided ifi the appendix.

Parameter constrain.:: The cost function (2) must be homogtneous of degree 1 in prices, which

implies the following standard parameter constraints:

Ejcx, + Ee = 1,

i= 0l = 0 for all i and j,
(4)

Ei OEi =°

j= j3, i • j.

To nornalize disturbances, we restate the first restriction as: E, cii = 1 and E, ei = 0.

Depending upon which combination of inpuits is consumed, there are seven possible demand

regimes for any plant. Each of these may be classified as one of three basic types: all three inputs are

used, only two inputs are used, and only one kind of input is used. The likelihood fimction will be well

defined only if the seven regime probabilities sum to one for each possible realization on exogenous

variables. Lee and Pitt term this condition "coheiency," and show that it amounts to concavity of the

log cost function (2) in log prices. Coherency will hold automatically if the underlying production

technology is strictly concave in factor inputs. Unfortunately, concavity does not hold globally for

translog functions. Thus, to ensure a well-defined likelihood function we impose and test the coherency

constraints that ,B, < 0, 22 <0, 0 33 < 0, 01122 - (212 > 0, 011033 - 03 > 0, and t22v33 - 223 > 0. We

caution that even this is insufficient to gaurantee that our estimated cost function is concave in prices at

all data points in the sample.4

I In estimating the parameters of their energy cost function, Lee and Pitt (1987) only impose the
restrictions that all the own-price parameters 0j are non-positive.
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Homotheticicry: Notice that we have departed from Lee and Pitt (1987), and most others, by

letting e(X) be non-homothetic. (That is, Ei * 0 may occur for particular i values.) As mentioned in

the introduction, we do so because we believe technologies in semi-industrialized countries are very size-

specific. Others have presumably imposed homotheticity to simplify estimation, given that E is both

unobserved and endogenous. In princi, le, the simultaneity problem can be dealt with by instrumenting

E with its exogenous determinants: Q, Px. and non-energy factor prices. But since E is not actually

observed, we simply include the instrumental variables directly in our cost function, sans non-energy

factor prices (which were not available). Since P. already appears directly as a cost determinant, this

amounts to replacing E with Q in equation (3).

One disavantage of our approach is that it does not permit one to isolate the role of energy prices

in changing E from the direct effect of factor priWes on shares. But this problem may well be negliglible

since the vast majority of the variation in E is due to Q, and in any case, a more severe bias is present

when homotheticity is vrongly imposed. At a minimum, our model constitutes a generalization of the

standard specification, and affords a framework for testing the homotheticity restriction.5

III. Estimation

A. Price Data

As mentioned in the introduction, we use predicted values of fuel prices for all plants. There are

two reasons for doing so. First, most plants report zero consumption for some fuels. For these plants

and fuels, the unit price is not available. Second, even though unit fuel prices are available for plants

with non-zero consumption, these are likely to partly reflect cross-plant differnces in fuel quality. Hence

I An alternative way to motivate our specification is to simply begin from a cost function that

takes the form: C = C(PK, PLP,,P, C(PX, Q), Q) where r is the rental rate on capital, w is the wage

rate, m is the price of materials, and P, is the price of the energy aggregate.
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if we were to use unit values instead of predicted unit values, we would proba'oly be introducing

measurement error bias in our estimator, biasing elasticities toward zero. (Given that we treat the

predicted prices as the "true" ones, we make no correction to the standard errors in our estimated share

equations.)

The regression model used to impute price for energy j is given by

lnPij. = 8j + y'jZj, + niit,

where i indexes planit, t indexes year, and Z is the vector of exogenous variables. It includes dumnies

for year, 3-digit or 4-digit industry, region, and business type, and the logrithm of number of workers.

For each energy source j, Oj and yj are estimated for plants with positive consumption. The estimated

regression equation for each energy source is then used to impute its predicted price for all plants.

Further analysis of the sources of price variation in our data can be found in Moss and Tybout (1992).

B. Choice of Sector and Futl Grouping

The panel data at our disposal describe virtually all Chilean manufacturing establishments with

at least ten workers over the period 1979-86. For each plant and year, they includes expenditure and

volume data on 12 energy sources: electricity, coal, carbon, coke, fuel oil, diesel, benzine, parafin,

liquid gas, canned gas, fuel wood, and other fuels. There are 29 3-digit industries in total, but we iimit

our attention to two 4-digit and three 3-digit industries which are large and/or energy intensive: meat

processing (SIC 3111), bakeries (SIC 3117), textile (SIC 321), chemical products (SiC 351), and metal

products (SIC 381). Descriptive statistics for these sectors are presented in Table 1.

Because all sectors use a substantial amount of electricity, this is always defined as the first

energy source. We define the second and third energy sources as aggregations over subgroups of the

8



eleven fuel types, using different aggregations for different sectors. In forming these groups we

considered two facLors: shares in total energy expenditure, and similarity of the fuels. The second

subgroup is firewood for meatpackcrs and bakeries; it is coal, carbon and coke for textiles; it is fuel cil

and diesel for chemical products and metal prod.;cts. The third subgroup is, of course, everything else.

9



Table 1: Basic Characteristics

Meatpacking | Bakeries Textiles Chemicals Metal Prodlets

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Electricity Share 0.497 0.236 0.419 0.215 0.790 0.251 0.562 0.346 0.667 0.284

2nd Input Share 0.107 0.177 0.326 0.244 0.010 0.069 0.220 0.290 0.077 0.175

3rd Input Share 0.396 0.253 0.256 0.270 0.200 0.245 0.218 0.281 0-256 0.248

Electricity Price (In) 1.460 0.138 1.622 0.105 1.485 0.130 1.404 0.151 1.537 0.130

2nd Input Price (In) 0.748 0.190 0.690 0.136 1.576 0.104 2.564 0.107 2.665 0.099

3rd Input Price (In) 2.487 0.073 2.469 0.064 2.445 0.087 2.228 C.081 2.!59 0.084

Output Value (In) 10.422 1.647 9.284 0.790 9.746 1.271 11.215 1.496 9.658 1.299

Sample Size 173 1176 631 100 671

Cases of Positve
Consumption:

Electricity 171 1176 631 98 671

2nd Input 88 936 31 58 197

3rd Input 152 992 392 71 491

The second and third inputs are aggregated from several actual fuels (11 types in total) used by firms. The groupings of the second input are
firewood for meatpacking and bakeries; coal, carbon, and coke for textiles; fuel oil and diesel for chemicals and metal products.



Once the two non-electric energy sources had been constructed we constructed price indicies for

each as weighted averages of the prices of the individual components:

A

pa = wjpi,

Here G is the set of fuels being aggregated, w is the weight of expenditure of fuel j in that group, and

Pj is its imputed price in logarithms. The groupings of fuels for each sector are shown in Table 1.

IV. Results

A. Tests of the Coherency Constraint

Before discussing parameter estimates it is necessary to test whether the coherency constraints

required by the Lee and Pitt framework are consistent with our data. In sectors where they are not, it

is difficult to proceed. On the one hand, if the constraints are not imposed the likelihood function is ill-

defined. On the other hand, if they are imposed, we have found that it usually means that ,, or 322 are

pushed to zero, implying in turn that O12 is zero, so it becomes impossible to solve for virtual prices using

equations A2 or A5 (see the Appendix). Under these circumstances the only sensible conclusion is that

the Lee and Pitt framework does not provide a reasonable representation of the process that generated

the data. This may be due to unmodelled dynamics, to heterogenous technologies, or to inappropriate

aggregation across the individual fuels when we form our three categories.

Table 2 reports values of the likelihood function, with and without the coherency constraint

imposed, for the non-homothetic version of our model. Notice that the constraint is accepted in the cases

of bakeries, metal products, and (at a values less than .05) meatpacking. On the other hand, it is

strongly rejected for chemicals, and we were unable to obtain constrained results for the textile industry.
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Accoringly, in what follows we will focus on the former three sectors.

Table 2: Tests of The Coherency Restrictions*

Industry No. of Unconstrained Constrained Likelihood
Observations Log Likelihood Likelihood Ratio Statistic

Function Function

Meatpacking 173 -88.86 -93.85 9.98

Bakeries 1176 -463.06 -463.06 0.00

Textiles 631 -370.18 no convergence n.a.

Chemicals 100 -61.75 -98.72 73.94

Metal Products 671 -567.52 -568.94 2.84

C ritical values for the X2(4 ) distributionare 7.78 at a= .01, 9.49 at a= .05, 11.14 at c = .025 and
13.28 at a=.01.

B. Homotheticity

We next turn to parameter estimates sector by sector. These are presented in table 3. Given that

coherency is a necessary condition for the likelihood function to be well-defined, there is no clear

interpretation for tests based on sectors where coherency fails. However, following Lee and Pitt, we

report them nonetheless for completeness.

The first issue we wish to address is whether energy demands are homothetic of degree one with

respect to output. This hypothesis amount to the claim that iQ, = OQ2 = OQ3 = 0. Clearly for the

sectors where inference is possible, it can be rejected.6 In fact, almost every OQ, value for which standard

errors are obtained is highly significant. (Caution must be exercized when interpreting standard errors

for chemicals, since this sector fails the coherency test.)

6 For bakeries, the likelihood ratio statistic that tests 03Q, = OQ2 = OQ3 = 0 is 98.57. The critical
X2(2) value is 9.21 when testing at the ox=.01 level.
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Table 3A: Unconstrained Parameter Estimates by Sector

Parameter Meatpacking Bakeries Textilesb Chemicals Metal
Productsb

aI .651 (.165) .267 (.090) 3.40 1.05 (.346) .515

a2 .039 (.148) .291 (.122) -1.27 -. 739 (.232) -1.26

a3 .310 (.240) .442 (.165) -1.13 .692 (.208) 1.74

OQJ .001 (.015) -.056 (.010) -. 177 -.071 (.035) .015

13Q2 -.029 (.013) -.058 (.013) .062 .101 (.023) .106

OQ3 .027 (.022) .114 (.017) .115 -.030 (.019) -. 121

Oil .428 (.163) -. 329 (.069) .666 -. 288 (.403) .182

012 -. 108 (.045) -.214 (.035) -.570 .158 (.221) -.003

013 -.320 (.124) .542 (.073) -.096 1.j (.182) -. 179

022 -.088 (.049) -.207 (.044) .464 -.046 (.065) -.005

O3 _ ..196 (.088) .421 (.074) .105 -. 112 (.157) .008

133 .123 (.062) -.963 (.121) -.009 -.018 (.026) .171

.227 (.017) .201 (.005) .407 .343 (.038) .258

.239 (.023) .311 (.008) .491 .267 (.025) .405

° 12 .012 (.011) -.003 (.003) -.169 -.072 (.017) -.046

Log
Likelihood -88.864 -463.064 -370.176 -61.751 -567.518

No.
Observations 173 1176 631 100 671

aFigures in parentheses are standard deviations.

bStandard deviations were not obtained for textiles and metal products due to irregularity of the estimated
Hessian.
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Table 3B: Constrained Parameter Estimates by Sector"

Parameter Meatpacking Bakeries Textilesb Chemicalsc Metal
Products'

.653 .267 (.090) n.a. 1.28 .556

Ci2 -.184 .291 (.122) n.a. -1.00 -1.25

0%3 .531 .442 (.165) n.a. .727 1.70

1QI -.014 -.056 (.010) n.a. -.070 -7.5e-4

OQ2 -.052 -.058 (.013) n.a. .121 .106

OQ3 .066 .114 (.017) n.a. -.051 -.105

-5.0e-6 -.329 (.069) n.a. -.062 .000

112 -3.9e-5 -.214 (.035) n.a. .062 .000

_ 131 4.4e-5 .542 (.073) n.a. -1.9e-5 .000

022 -.422 -.207 (.044) n.a. -.062 .000

023 .422 .421 (.074) n.a. 2.3e-5 .000

033 -.422 -.963 (121) n.a. -5.0e-6 .000

a °' .255 .201 (.005) n.a. .348 .260

Cr2 .269 .311 (.008) n.a. .407 .406

a,2 -.013 -.003 (.003) n.a. -.083 -.047

Log
Likelihood -93.849 -463.064 n.a. -98.721 -568.935

No.
Observations 173 1176 631 100 671

2 Figures in parentheses are standard deviations.

b Our solution algorithm failed to converge for this sector.

Standard deviation were not obtained for meatpacking, chemicals, and metal products because
the coherency constraint was binding, making the Hessian singular.
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Larger plants appear more likely to use fuel oil, carbon, and coke; but less likely to use firewood.

For example, in metal products, a doubling of plant size leads to about a ten percentage point increase

in the share of these fuels. This finding has clear implications concerning the incidence of dirty fuel

taxes; it also implies that virtually all of the existing econometric literature on energy substitution is mis-

specified. As we will discuss shortly, the implications concerning substitution elasticities are also non-

trivial.

C. Implied Elasticities

At the Plant Level Bccause we allow for non-homothetic technologies, each plant has its own

matrix of price elasticities. To dramatize this heterogeneity, we construct plant-specific elasticities using

predicted shares in equation (6), which are evaluated at the cross-plant mean price vector, but at plant-

specific output levels. Given energy shares, partial own and cross-price elasticities of at a particular plant

can be constructed as:7

o if Si = (
(6-1)

[Sj3 + S1(S, - 1)]/S, otherwise

and

O if Si = O

Xii 1. -(6-2)
' + S1Sj)/S, otherwise.

These elasticities are partial because they account only for substitution between fuels, and do not reflect

any adjustments in overall energy usage by the plant. Allen (1938) showed that the partial price

elasticities are related to the partial elasticities of substitution (ojj) as 71ij = criS,. Hence, even though the

' See, for example, Griffin and Gregory (1976) and Pindyck (1979).
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Allen partial cross elasticities of substitution are symmetric, plant-level partial cross-price elasticities (and

sector elasticities) will generally not be.

Figures 1 through 9 are based on the parameter estimates in Table 3A. They show how own-

and cross-price elasticities depend upon plant size in the bakery industry, which we choose because it

seems to fit the model best. Each circle corresponds to an actual plant, so most plants lie in the ranges

of solid black along the curve. Notice that the (partial) elasticity of demand for electricity ranges from

around -1 for small plants to -2 for moderately sized plants, implying that bigness leads to more flexibility

in electricity use (figure 1). On the other hand, with the exception of a handful of outliers, ther is very

little variation in own-price elasticity of demand for 'irewood (figure 2). Moreover, small plants are

much more responsive to changes in the price of other fuels than their larger counterparts (figure 3).

Given these patterns it is unsurprising that cross-price partial elasticities are also very size-

dependent. This is particularly true for elasticities that involve energy sources other than electricity and

firewood. Interestingly, not only are cross-price elasticities non-syrnmetric, but the tend to change in

opposite directions as plant size grows. This is a consequence of the structure of equation (6-2), which

has a negative partial derivative with respect to Si and a positive partial derivative with respect to Sj.

At the Sector Level: The principal issue of policy interest is the sensitivity fuel demands to

changes in relative fuel prices. We construct these as consumption-weighted averages of the plant-specific

elasticity expressions above:

Eii = E.m 7 i(ei /Xi) and E1j = Em fj( /Xi)

Here m indexes the plant, ei is its consumption of energy source i, and Xi is industry-wide consumpition

of energy source i. Also, to obtain standard errors for these expressions, we begin by approximating the

standard errors of the plant-specific elasticities with:

16



A A A

Var[U7i] = Var[, i ]/S2a.

For this expression we have treated predicted cost shares SI as non-stochastic. We then aggregate up to

standard errors for the sectoral elasticities, treating consumption levels Xi' as non-stochastic:

Var[E J = (Em Xim/S m)2Var[,3 J, and

Var[E1 ] (E m xm/Sm) Var[4, i]

A A A

where Xtm = x1
m/Xi. Obviously our assumptions about exogeneity are not strictly justified, but they

should have only a minor effect on the estimated variances.

17



Table 4a: Partial Sectoral Price Elasticities, Meatpacking'

Elasticity of Demand for:

With Electricity Fuel wood Other Fuels
Respect to:

Pelectricity .513 (.384) -.335 (.324) -.257 (.243)
-.498 (n.a.) .444 (n.a.) .371 (n.a.)

.161 (.302) -.044 (.242) .044 (.193)
-.498 (n.a.) .444 (n.a.) .371 (n a.)

Pfuel wow -.103 (.106) -1.35 (.351) .577 (.173)
.131 (n.a.) -3.75 (n.a.) 1.12 (n.a.)

-.016 (.079) -1.09 (.226) .393 (.125)
.131 (n.a.) -3.03 (n.a.) .880 (n.a.)

P.d.r -.318 (.292) 1.99 (.633) -.170 (.122)
.445 (n.a.) 3.90 (n.a.) -1.24 (n.a.)

-.059 (.231) 1.35 (.456) -.233 (.101)
.445 (n.a.) 3.05 (n.a.) -1.05 (n.a.)

The top figure in each cell is based on our nonhomothetic model without coherency restrictions;
the second figure is based on the same model with coherency restrictions; the third figure is based
on our homothetic model without coherency restrictions; and the last figure is based on the same
model with coherency restrictions. Standard deviations are in parentheses when available.
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Table 4b: Partial Sectoral Price Elasticities, Bakeries'

l___________ Elasticity of Demand for:

With Electricity Fuel wood Other Fuels
Respect to:

PelectIkity -1.36 (.181) -.401 (.125) 1.45 (.157)
-1.36 (.181) -.401 (.125) 1.45 (.157)

-.715 (.131) .890 (.157) .153 (.050)
l__________ -.715 (.131) .890 (.157) .153 (.050)

rpf6m .W -.301 (.093) -1.26 (.155) 1.29 (.157)
-.301 (.093) -1.26 (.155) 1.29 (.157)

.661 (.117) -1.80 (.316) .723 (.166)
.661 (.117) -1.80 (.316) .723 (.166)

Pl.h. 1.82 (.193) 1.88 (.261) -2.44 (.259)
1.82 (.193) 1.88 (.261) -2.44 (.259)

.180 (.061) 1.04 (.275) -.685 (.126)

.180 (.061) 1.04 (.275) -.685 (.126)

See footnote to table 4a.

19



Table 4c: Partial Sectoral Price Elasticities, Textilesa

Elasticity of Demand for:

With Electricity Coal, Other Fuels
Respect to: Carbon,

____________ Coke

| Pelecticiry 0.967 (n.a.) -3.10 (n.a.) .206 (n.a.)
n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)

5.20 (1.04) -11.9 (2.77) -.941 (.490)
n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)

| pcm etc. -1.13 (n.a.) 2.30 (n.a.) .321 (n.a.)
n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)

4.33 (.956) 13.6 (3.33) -.640 (.574)
n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)

| POttef ~~.217 (n.a.) 1.06 (n. a.) -.445 (n.a.)
n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)

-1.02 (.511) -2.21 (1.73) 1.53 (.263)
n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)

See footnote to table 4a.
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Table 4d: Partial Sectoral Price Elasticities, Chemicalsa

|_________ Elasticity of Demand for:

With Electricity Fuel Oil, Other Fuels
Respect to: Diesel

PelerLricity -.884 (.823) .618 (.364) 1.33 (1.38)
-.423 (n.a.) .407 (n.a.) .337 (n.a.)

1.02 (.693) -.779 (.412) -.969 (.763)
n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)

Pfel od etc, .593 (.452) -.273 (.107) -.445 (1.19)
.384 (n.a.) -.300 (n.a.) .459 (n.a.)

-.787 (.511) .249 (.261) 2.11 (.922)
n.a.(n.a.) n.a. (n.a.) n.a. (n.a.)

Pother .371 (.371) -.145 (.258) -.883 (.197)
.092 (n.a.) .100 (n.a.) -.748 (n.a.)

-.276 (.205) .546 (.200) -.999 (.195)
n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)

See footnote to table 4a.
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Table 4e: Partial Sectoral Price Elasticities, Metal Products'

Elasticity of Demand for:

With Electricity Fuel Oil, Other Fuels
Respect to: Diesel

PelecLricty -.004 (n.a.) .302 (n.a.) -.172 (n.a.)
-.401 (n.a.) .310 (n.a.) .373 (n.a.)

n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)
n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)

fel oil etc. .254 (n.a.) -.465 (n.a.) .213 (na.)
.262 (n.a.) -.451 (n.a.) .184 (n.a.)

n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)
n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)

P.Ox -.134 (n.a.) .169 (n.a.) .043 (n.a.)
.288 (n.a.) .146 (n.a.) -.479 (n.a.)

n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)
n.a. (n.a.) n.a. (n.a.) n.a. (n.a.)

a See footnote to table 4a.
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Table 4 presents our estimates of partial price elasticity of demand at the sector level along with

their standard errors. The top figure in each cell is based on our nonhomothetic model without coherency

restrictions (Table 3A); the second figure is based on the same model with coherency restrictions (Table

3B); the third figure is based on our homothetic model without coherency restrictions (unreported

parameter estimates); and the last figure is based on the same model with coherency restrict'ias

(unreported parameter estimates). As already discussed, the framework we are using does not seem to

fit the data for textiles and chemicals well, so we confine our attention to the remaining three sectors.

The most noteworthy feature of these results is that elasticities differ substantially across sectors.

It appears that bakeries are very responsive to changes in the relative prices of alternative fuels, especially

carbon-based energy sources. In contrast, energy demand appears to be very insensitive to relative prices

among metal products plants, regardless of what set of estimates are used. Finally, rneatpackers fall

somewhere in between, with little price responsiveness in electricity demand, but more for other energy

sources, especially if coherency-constrained figures are used. Therefore, it appears that the incidence of

carbon taxes would depend in significant measure on the industrial sector, with metal products plants least

able to adjust. Of course, more information on market structure and demand in these sectors would be

needed before a full analysis of incidence could be accomplished.

In their closely related work, Lee and Pitt found elasticities that tended to be larger than the ones

we report here. There are a number of possible explanations. One is that by imposing homotheticity,

they forced cross-plant variation in technologies to show up as price-induced substitution since fuel prices

vary across the plant size spectrum (MWss and Tybout, 1992). Support for this explana.ion is provided

by contrasts between oui elasticity estimates with and without homotheticity imposed. Another

possibility is that physical quantities or expenditures are measured with error, so that when physical prices

are imputed, they are contaminated by spurious negative correlation with quantities (e.g., Deaton, 1987).

Our approach should not be subject to this bias because we have instrumented noise out of prices.
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It is difficult to compare our results with those in most other studies because we are working with

data from a semi-industrialized country, and estimating industry-specific parameters. However, several

observations are worth making. First, sectoral-level studies tend to find partial own-price elasticities of

demand that are similar in magnitude to ours, and lower than Lee and Pitt's. Second, like us, studies

based on aggregated data tend to find that the own-price elasticity of demand for electricity is lower than

elasticities for other energy sources (e.g., Fuss (1977) and Pindyck (1979)).

V. Conduding Remarks

Overall, our estimates suggest that there is substantial scope for carbon taxes to induce fuel

substitution, but that the response will be very uneven, not only across sectors, but across producers of

different sizes. Therefore, although Eskeland and Jimenez (1990) may be correct in arguing that fiscal

incentives are less susceptible to manipulation by special interest groups than direct emission controls,

the costs of adjustment are likely to be concentrated fairly narrowly for some fuels.

Unfortunately, the evidence on elasticities we report is not sufficient to assess the distribution of

adjustment burdens. It is limited to several sectors, and it must be combined with information on the

shares of energy spending in total costs, and on product market demand elasticities. However, combined

with descriptive statistics on energy use patterns in all manufacturing sectors (see Moss and Tybout,

1992), our figures should provide the basis for an assessment of all but the latter.
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Appendix

In this appendix we summarize the likelihood function that Lee and Pitt (1987) developed. For

our purposes it is sufficient to consider three types of regimes: all three fuels are used, two of the three

fuels are used, and only one of the three fuels are used. As in the text, let asterisks denote observed (as

opposed to notional) shares, so that the first type of regime occurs whe.. all elements of S = (Sl, S;,

S3 )are strictly positive. Under these conditions notional and observed shares coincide, thus in terms of

exogenous variables and disturbances, equation (3) implies that the first regime is observed when:

61 + ,B,'lnP + el > 0, (Al-1)

62 + # 2 lnP + E2 > 0, (A 1-2)

61 + 62 + (1 + i 2 )1'nP + El + e 2 < 1. (A1-3)

Here Ai = (iij,2,00), InP = (InP,lnP2,1nP3)', and 6i = cx, + OQilnQ. Given that one of the three

disturbances is redundant by equation (4), the conditional likelihood function for observations from this

regime is:

f(Si - 61 - ,B,lnP, S; - 62 - 2 InP),

where f(*) is the bivariate normal density function for (e1,e2).

An example of the second type of regime occurs when S = (0, S;, S3), where S; > 0 and S; >

0. Here the logarithmic viitual price for input I at S is obtained by setting S, = 61 + 0,/1'nP + e1 =

0:

Int, = -(63 + ,32 lnP2 + 0,31nP3 + e3)/, 1. (A2)
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Substituting Int1 for InP, in equation 5, the observed cost share for the second energy subgroup satisfies.

S: = 62 + 22 llnP + E2 + O3,(lnt, - lnP,)

= 62 + 12 InP + E2 - (321/111)(61 + 01 InP + e). (A3)

Hence the regime conditions i • P, and 0 < S; < 1 can be expressed in terms of exogenous variables

and disturbances as:

(l/,~)(6, + 131InP + e,) 2 0, (A4- 1)

1 > 62 + 0 2 InP + e2 - (021/22)(61 + 13InP + el) > 0. (A4-2)

If 1,, < 0, the set of (el,e2) values that satisfy these conditions will not overlap with the (e1,e 2 ) values in

conditions (Al). This "coherency" requirement ensures, from (A4-1), that

e1 < -(6w + 1 InP),

and the conditional likelihood function, given S' = (O,S:,S;), becomes

+1 + I1nP) f(el,Z2(S;,ej)) dE,,

-oo

where 2(S241) = S- - 62 - 02'lnP + (021/311)(61 + 1 InP + e,), a rearrangement of (A3).

An example of the third type of regime occurs when S = (0,0,1), that is, inputs I and 2 are not

consumed. By setting S, = 0 and S2 = 0, the virtual prices for input 1 and 2 can be expressed as

27



ln [InPi 5 /3I13 2 5-1 61 + 10lnP + (AS)

l t2 I 1nP 2 L3 21 2 2 62 + 32 lnP + E2

The regime conditions are , S PI and t2 c P2, or using (A5):

(1/(0131122 13l2))[,B22(0I + 0, InP + el) -

012(02 + 02'nP + E,)] 2 0, (A6-1)

(1011322 - 132))[-021((1 + 1I1 nP + el)

01102 + 012lnP + e2)] > O (A6-2)

The (el,e2) values that satisfy conditions (A6) will not overlap with those in (Al) or (A3) only if 01,022 -

21,2 > 0. Using this coherency requirement, (A6) becomes

ti - (0 12 /022)E2 C ((12/022)(62 + 02 InP) - (61 + (1 lnP),

-(3 12 /31 O)E1 + E2 C (121/111)(61 + 10 InP) - (62 + 12 InP),

and the conditional likelihood function, given S' = (0,0,1), can be written as

J (1312/1322(62 + 12" lnP) - (56 +13'nP) I (012I/)(6b+O,1lnP) - (62+12lnP) g(e,,eDde,de;,

where g is the bivariate normal density function of e and e2, with

C- = e, - (012/922)e2 and eL = -(012/3 11)e1 + e2.

The likelihood functions for the other regimes can similarly be derived. The coherency requirements 022
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< 0, 033 < 0, 011033 1 t3 > 0, and 033 _ t23 > 0 are also needed to ensure that the seven regimes

not overlap one another, that is, that the regime probabilities sum to one.
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