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Research and Development at U.S. Research Universities: 

An Analysis of Scope Economies 

 

1. Introduction  

Research and development (R&D) are fundamental to technological progress and 

economic growth. Because universities are dedicated to the production and dissemination of new 

knowledge and new technologies, university spillovers and their effects on economic growth 

have been the subject of much interest (e.g., Jaffe; Henderson et al.; Hall et al.; Branstetter; 

Scotchmer). In the early 1980s, changes in federal policies, starting with the Bayh-Dole Act, 

made it easier for U.S. universities to retain the property rights to inventions obtained from 

federally funded research. This broad institutional change in intellectual property rights, 

combined with recent tightening in state and federal budgets, have helped to increase university 

efforts to secure both research sponsorship and intellectual property right royalties from the 

private sector.  

In the mid-1990s, especially, academic patenting activity in the U.S. exploded (Foltz et 

al.).  University tech transfer offices, many recently established, intensified their efforts to secure 

property rights to new knowledge and to transfer their research findings to the private sector 

through licensing arrangements, start-ups, and other remunerative arrangements. These efforts  

have raised a wide range of questions about the changing role of public and private research 

universities in the economy, society, and the pursuit of knowledge (e.g., Azoulay et al.; 

Branstetter; Hall et al.; Henderson et al.; Jensen and Thursby; Sampat et al.). One key issue is the 

existence of possible synergies between patenting and more traditional university outputs. Since 

most universities are multi-output institutions, this raises the questions of the existence and 

nature of economies of scope within research universities.  
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Following the pioneering work by Baumol et al., economies of scope measure the benefit 

for a firm to produce multiple outputs. Measuring such benefits for universities has provided 

useful insights into their organizational structure (e.g., Cohn et al.; De Groot et al.; Sav). But, 

does the diversification of research universities into patenting activities generate significant 

synergies? In principle, university patenting and private-public partnering activities can help 

research universities become more effective in stimulating innovations (e.g., Hall et al.). 

However, at this point, the nature and magnitude of these benefits remain unclear. How large are 

these benefits? And how are they distributed among universities of different sizes or different 

types (e.g., private versus public universities)?  

This paper investigates the presence and sources of economies of scope in R&D 

production at U.S. research universities. The analysis addresses the following issue in the 

literature on academic patenting: whether synergies arise between traditional university research 

outputs (articles and doctorates) and the more recent and burgeoning output of academic patents. 

Framing the empirical analysis requires a theoretical exposition of the concept of economies of 

scope that deepens our understanding of this phenomenon in ways that are relevant not only to 

R&D processes but also to the many other economic contexts where scope economies may arise. 

Overall, our paper makes three methodological contributions.  

First, the conventional approach to economies of scope typically involves complete 

specialization among outputs (see Baumol et al.). This is especially relevant in the evaluation of 

mergers and acquisitions when firms are deciding on whether to produce jointly distinctive 

outputs or to spin off separate operations. However, universities are rarely completely 

specialized. On that basis, we develop an analysis of output specialization that spans a continuum 

ranging between fully integrated, partially specialized and fully specialized production processes. 
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Allowing for partial specialization permits a search for economies of scope across a more 

nuanced range of possible outcomes than is typically depicted in previous economies of scope 

studies.  

The second methodological contribution of this paper is to develop and apply a primal 

approach to economies of scope that relies only on the properties of the production technology, 

using the shortage function proposed by Luenberger. The shortage function is especially useful 

in measuring scope economies in contexts where input cost data are difficult to obtain or fraught 

with measurement problems, such as in our empirical study with respect to certain input prices 

that shape university research and teaching outputs.  

The third and perhaps most far-reaching contribution of this paper is its decomposition of 

economies of scope into three measures: complementarities between outputs, economies of scale 

in multiple outputs (along different degrees of specialization), and a convexity component. This 

decomposition provides a clear picture of the basis for scope economy outcomes in production of 

multiple outputs, because it permits identification of whether the scale of operation and/or the 

complementarity of outputs are driving scope benefits. This decomposition extends the 

contributions of Milgrom and Roberts by making identification of complementarity and other 

sources of scope economies both more tractable and intuitive. Our empirical analysis of U.S. 

research universities illustrates how both scale and complementarity can drive scope outcomes 

for economic agents as their size and type change.   

Finally, by applying our innovations in the analysis of economies of scope to U.S. 

research universities, this paper provides evidence on the synergies that exist between patenting 

and more traditional academic research outputs.  Below, R&D input and output data from 92 top-

tier U.S. research universities are used to estimate economies of scope for public and private 
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universities of different sizes. The estimates are obtained using a non-parametric representation 

of the underlying technology, and control for quality of article and patent outputs. The empirical 

results show that significant variations exist in the magnitude and sources of economies of scope 

across U.S. universities. Indeed, while scope economies are evident in most of the sample, 

evidence for strong complementarity among these research activities is more limited.  

The organization of the paper is as follows. Section 2 provides the basic multiple netput 

model and a characterization of firms as integrated, mildly specialized, and fully specialized, 

with respect to their production choices. Section 3 introduces the Luenberger shortage function 

and how it can be used to construct an estimate of scope economies from netput data. Section 4 

details the decomposition of scope economies and the logic of the multiple sources. Section 5 

presents the dataset on university research outputs and inputs and some of the key adjustments 

and specification concerns. Section 6 develops the non-parametric estimation approach used to 

estimate scope economy outcomes and their sources across a spectrum of fully specialized to 

partially specialized to fully integrated firms. Section 7 reports the empirical results, and section 

8 concludes.  

 

2. The Model  

Consider a firm facing a production process producing m outputs using n inputs, where y 

= (y1, …, ym) ∈ R m
+  is the vector of outputs, and x ∈ R n

+  is the vector of inputs. Using the netput 

notation (where inputs are negative and outputs are positive), the netputs are z ≡ (-x, y). The 

technology is represented by the production possibility set F ⊂ R n
− ×R m

+ , where z ≡ (-x, y) ∈ F 

means that outputs y can be produced from inputs x.  Throughout the paper, we assume that the 

set F is closed and with a non-empty interior. We want to investigate under what conditions the 
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multiproduct firm would gain (or lose) from reorganizing its production activities in a more 

specialized way. The reorganization involves breaking up the firm into K specialized firms, 2 ≤ 

K ≤ m. Given the output index I = {1, …, m}, consider its partition I = {IA1, IA2, …, IAK, IB}, 

where IA = {IA1, IA2, …, IAK}, IAk being the set of outputs that the k-th firm is specializing in, k = 

1, …, K, while IB being the set of outputs that no particular firm specializes in. Let yk = (y1
k, …, 

ym
k) denote the outputs produced by the k-th specialized firm, k = 1, …, K.  

Our analysis of the economics of specialization has two objectives in mind. First, we 

explore what happens under alternative specialization schemes holding total output constant. 

This requires selecting the outputs of specialized firms such that ∑ K
1k=  yk = y, where the K 

specialized firms produce the same aggregate output vector y as the original firm. Second, we 

want to allow various degrees of specialization, going from “mild specialization” to “complete 

specialization”. In this context, given y = (y1, …, ym), consider the following patterns of 

specialization for the k-th firm 

yi
k  = β yi, if i ∈ IAk,  (1a) 

= yi (1-β)/(K-1), if i ∈ IAk’, k’ ≠ k,  (1b) 

 = yi/K, if i ∈ IB,  (1c) 

for some β, 1/K < β ≤ 1, k = 1, …, K. This represents a reorganization of the original firm into K 

firms toward greater specialization, where the k-th firm becomes more specialized in the 

production of outputs in the sets IAk, k = 1, …, K.  

Note that the specification (1a)-(1c) always satisfies ∑ K
1k=  yi

k = yi, i = 1, …, m. This 

guarantees that the same aggregate outputs are being produced before and after the firm 

reorganization. The parameter β in (1a) represents the proportion of the original outputs {yi: i ∈ 

IAk} produced by the k-th firm. And from (1b), (1-β) represents the proportion of the original 
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outputs {yi: i ∈ IAk’, k’ ≠ k} produced by the k-th firm. When β = 1, this means that the k-th firm 

produces the same quantities {yi: i ∈ IAk} as the original firm and that such outputs are produced 

only by the k-th firm. In this case, the k-th firm is completely specialized in the production of the 

outputs in the set IAk (and it produces none of the other outputs in the sets IA). Alternatively, 

when 1/K < β < 1, we allow for partial specialization. For example, if K = 2 and β = 0.9, then the 

first firm (corresponding to k = 1) produces 90% of the quantities {yi: i ∈ IA1} produced by the 

original firm, while the second firm (corresponding to k = 2) produces the remaining 10%. And 

the second firm (k = 2) produces 90% of the quantities {yi: i ∈ IA2} produced by the original firm, 

while the first firm (k = 1) produces the remaining 10%. Finally, note that (1c) allocates the 

outputs in the set IB equally among the K specialized firms. This simply reflects that the outputs 

in IB are not involved in the patterns of specialization as the firm reorganizes.  

Equations (1a)-(1c) include as a special case the situation where β = 1 and IB =  ∅. This 

is the case of complete specialization (e.g., as investigated by Baumol et al. based on a cost 

function). As such, our approach extends previous analysis in two directions. First it allows for 

specialization in a subset of outputs (when IB ≠ ∅). This can become relevant in the economics 

of specialization when 2 ≤ K < m, i.e., when the number of specialized firms is less than the 

number of outputs. Second, as noted above, it allows for partial specialization in the outputs of 

the set IA (with 1/K < β < 1). This is relevant when the K firms want to explore the economics of 

becoming more specialized (thus deemphasizing the production of some of their outputs) but 

without a complete shutdown of some of their production lines.  
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3. Economies of Scope  

To investigate the economics of specialization, we need to rely on measures that can be 

meaningfully added across firms. This is the case of the cost function which has provided the 

standard basis for measuring economies of scope. In this context, Baumol et al. have defined 

economies of scope (diseconomies of scope) as situations where it is less costly (more costly) to 

produce the aggregate outputs y from an integrated firm as compared to specialized firms. This 

has stimulated empirical analyses of the benefit (or cost) of producing from an integrated multi-

output firm. However, the cost function requires that all inputs be market goods with observable 

prices. There are situations where some inputs have prices that are not observable or that do not 

reflect their marginal contribution to the production process. An example in higher education 

includes Ph.D. students: their cost to a university can differ significantly from their marginal 

contribution to university research productivity. Under such scenarios, the use of the cost 

function becomes problematic. But under the convexity assumption, it is well known that the 

cost function is dual to the underlying technology. This means that there are alternative ways of 

measuring economies of scope directly from the production technology. Like the cost function, 

this requires using a measurement of the production technology that can be meaningfully added 

across firms. A measurement that satisfies this property is Luenberger’s shortage function, which 

we use below in our analysis of the scope economies associated with integrated production.  

Following Luenberger, letting g ∈ R mn+
+ -{0} be some reference netput bundle, define the 

shortage function: 

σ(z, g) = minγ {γ : (z - γ g) ∈ F} if (z - γ g) ∈ F for some scalar γ, (2) 

= +∞ otherwise. 
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The shortage function σ(z, g) in (2) measures how far the point z is from the frontier of 

technology, expressed in units of the reference bundle g. To illustrate, consider the case where g 

= (0, …, 0, 1). Then, the shortage function is σ(z, g) = minγ {γ: (z1, …, zm-1, zm - γ) ∈ F} = zm - 

f(z1, …, zm-1), where f(z1, …, zm-1) is a (multi-output) production frontier, and feasibility implies 

that zm ≤ f(z1, …, zm-1). Under differentiability, this implies that ∂σ/∂zi = -∂f/∂zi, i.e. that the 

marginal shortage ∂σ/∂zi is the negative of the marginal product ∂f/∂zi with respect to the i-th 

netput, i = 1, …, m-1. Note that, given a reference bundle g, the shortage function can be 

meaningfully added across firms. As such, the shortage function provides a convenient basis for 

analyzing scope issues and the benefit/cost of specialization.1  

Starting from a firm using netputs z ≡ (-x, y), we analyze whether there are any benefits 

from reorganizing its production activities according to equation (1), where yk ∈ R m
+  is produced 

by the k-th specialized firm, k = 1, …, K, with y = ∑ =
K

1k yk. If the k-th firm uses inputs xk, the 

shortage function associated with (-xk, yk) is σ(-xk, yk, g). In a way similar to (1c), consider the 

case where inputs x are equally divided between the K firms, with xk = x/K, k = 1, …, K.  

Definition 1: Given equations (1), economies of scope (diseconomies of scope) with respect to 

the partition I = {IA1, …, IAK, IB} in the production of outputs y are said to exist if  

S(β, IA1, …, IAK, IB, z, g) ≡ ∑ =
K

1k σ(-x/K, yk, g) - σ(z, g) > (<) 0,. (3) 

 

Note that | ∑ =
K

1k σ(-x/K, yk, g)| can be interpreted as the smallest distance to the 

technology frontier (as measured by the number of units of the reference bundle g) when the 

aggregate netputs z = (-x, y) are produced by K specialized firms: (-x/K, yk), k = 1, …, K. Thus, 
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equation (3) compares the distance to the technology frontier producing y from an integrated 

firm versus specialized firms.  

 To help interpret (3), consider the case where netputs are market goods with prices p ∈ 

R mn+
++ . Then, starting from the aggregate netput z and under technical efficiency, πa = p ⋅ [z - σ(-x, 

y, g) g] is profit for the integrated firm, while πs = p ⋅ [ ∑ =
K

1k zk - σ(-x/K, yk, g) g] is aggregate 

profit for the K specialized firms, where zk = (-x/K, yk), and yk satisfies (1), k = 1, …, K. It 

follows that the difference in profit is  

πa - πs = [ ∑ =
K

1k σ(-x/K, yk, g) - σ(-x, y, g)] p ⋅ g, 

where (πa - πs) measures the benefit of integrated production in a multiproduct firm. When 

positive, this difference reflects positive synergy among outputs. Given p ⋅ g > 0, this makes it 

clear that S(β, IA1, …, IAK, IB, z, g) > 0 in (3) corresponds to economies of scope, identifying the 

presence of synergies or positive externalities in the production process among the outputs in IAk, 

k = 1, …, K. Alternatively, diseconomies of scope exist (with S(β, IA1, …, IAK, IB, y, g) < 0) if 

producing netputs z from an integrated firm (as opposed to K specialized firms) reduces benefit. 

This identifies the presence of negative externalities in the production process among the outputs 

in IAk, k = 1, …, K.  

How does S in (3) compare with the traditional cost-based measure of scope proposed by 

Baumol et al.?  Baumol et al. define economies of scope when S’ ≡ ∑ =

K

1k
C (r, yk) - C(r, y) > 0, 

where r is the input price vector and C(r, y) = minx {r ⋅ x: (-x, y) ∈ F) is the cost function. 

Consider the case where g = (gx, 0), and x is the cost-minimizing input bundle under outputs y: x 

∈ argminx’ {r ⋅ x’: (-x’, y) ∈ F}. Note that cost minimization implies that C(r, yk) ≤ r ⋅ [x/K - σ(-

x/K, yk, gx) gx]. For given input prices r, it follows that S’ = ∑ =

K

1k
C(r, yk) – r ⋅ x ≤ ∑ =

K

1k
r ⋅ 
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[x/K - σ(-x/K, yk, gx) gx] = (r ⋅ gx) S. When input prices are normalized such that r ⋅ gx = 1, this 

implies that S’ ≤ S: the Baumol scope measure S’ is a lower bound on S in (3). This reflects 

possible allocative inefficiencies when x/K does not minimize the cost of producing yk, k = 1, .., 

K. Alternatively, if r ⋅ gx = 1 and x/K did minimize the cost of producing each yk, then S’ = S and 

the two scope measures become identical. Of course, this is conditional on input prices r. In 

situations where input prices are difficult to assess, then only the primal measure S in (3) remains 

empirically tractable.  

 

4. A Decomposition of Economies of Scope  

For simplicity, we focus our attention on the case of splitting the original firm (which 

produces the output vector y) into two firms (K = 2).2 Then, with the partition I = {IA1, IA2, IB}, 

the first firm (k = 1) specializes in the outputs in IA1, the second firm (k = 2) specializes in the 

outputs in IA2, and y = (yA1, yA2, yB), where yA1 = {yi: i ∈ IA1}, yA2 = {yi: i ∈ IA2}, yA = (yA1, yA2), 

and yB = {yi: i ∈ IB} are the remaining outputs. From equations (1), it follows that y1 = (β yA1, 

(1-β) yA2, ½ yB), and y2 = ((1-β) yA1, β yA2, ½ yB).  

A useful decomposition of S in (3) is presented next. See the proof in Appendix A.  

Proposition 1: Assume that the shortage function σ(z, g) is continuous in z and differentiable 

almost everywhere in y ∈ R m
+ . Under equations (1) with K = 2, there are economies of scope in 

the production of outputs y = (yA1, yA2, yB) ∈ R m
++  if and only if  

S(β, IA1, IA2, IB, z, g) ≡ SC(β, IA1, IA2, IB, z, g) + SR(β, IA1, IA2, IB, z, g)  

+ SV(β, IA1, IA2, IB, z, g) > 0,  (4) 

where 
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SC(β, IA1, IA2, IB, z, g) ≡ - ∫ −

A2

A2

y β

y β)(1
[∂σ/∂γ(-½ x, β yA1, γ, ½ yB, g)  

- ∂σ/∂γ(-½ x, (1-β) yA1, γ, ½ yB, g)] dγ,  (5a)  

SR(β, IA1, IA2, IB, z, g) ≡ 2 σ(½ z, g) - σ(z, g), (5b) 

SV(β, IA1, IA2, IB, z, g) ≡ σ(-½ x, β yA, ½ yB, g) + σ(-½ x, (1-β) yA, ½ yB, g)  

- 2 σ(½ z, g).  (5c)  

 

Proposition 1 gives a necessary and sufficient condition for economies of scope in the 

production of outputs y. Equation (4) decomposes the scope measure S(β, IA1, IA2, IB, z, g) in (3) 

into three additive terms: SC(β, IA1, IA2, IB, z, g) given in (5a), SR(β, IA1, IA2, IB, z, g) given in 

(5b), and SV(β, IA1, IA2, IB, z, g) given in (5c).  

The term SC in (5a) depends on how yA1 affects the marginal shortage of yA2. As 

illustrated in section 3, marginal shortage can be interpreted as the negative of the marginal 

product. With this interpretation in mind, given β ∈ (0.5, 1], we define complementarities 

between yA1 and yA2 at point y as any situation where the shortage function σ(z, g) satisfies 

[∂σ/∂yA2(-½ x, β yA1, γ yA2, ½ yB, g) - ∂σ/∂yA2 (-½ x, (1-β) yA1, γ yA2, ½ yB, g)] ≤ 0 for all γ ∈ [0, 

1], with the inequality being strict over a set of nonzero measure. Then, it is clear from (5a) that 

SC > 0 if the shortage function exhibits complementarities between yA1 and yA2. Thus, the term 

SC can be interpreted as reflecting the role of complementarities between yA1 and yA2 in 

economies of scope.   

Note that when, the shortage function σ(z, g) is twice differentiable in y ∈ R m
+ , then SC in 

(5a) can be alternatively written as  

SC ≡ - ∫ −

A2

A2

y β

y β)(1 ∫ −

A1

A1

y β

y β)(1
∂2σ/∂γ1∂γ2(-½ x, γ1, γ2, ½ yB, g) dγ1 dγ2.  (5a’) 
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When β ∈ (0.5, 1], equation (5a’) makes it clear that the sign of SC depends on the sign of 

∂2σ/∂yA1∂yA2. This shows that, under twice differentiability, complementarities can be defined as 

any situation where ∂2σ/∂yA1∂yA2(-½ x, γ1 yA1, γ2 yA2, ½ yB, g) ≤ 0 for all γi ∈ [0, 1], i = 1, 2, 

with the inequality being strict over a set of nonzero measure. Recall that the term ∂σ/∂yi can be 

interpreted as the negative of the marginal product with respect to yi. Thus, when ∂2σ/∂yA1∂yA2 < 

0, complementarities mean that yA1 has positive effects on the marginal product of yA2, implying 

positive synergies between yA1 and yA2 (see Baumol et al.; Milgrom and Roberts).   

To interpret the term SR in (5b), using lemma 1 in Appendix A, note that 2 σ(½ z, g) <, =, 

or > σ(z, g) under decreasing return to scale (DRTS), constant return to scale (CRTS), or 

increasing return to scale (IRTS), respectively. It follows that  

SR(β, IA1, IA2, IB, z, g) 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

>
=
<

 0 under 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

IRTS
CRTS
DRTS

.  (5b’)  

Equation (5b’) implies that SR vanishes under CRTS, but is positive (negative) under IRTS 

(DRTS). Thus, the term SR can be interpreted as capturing scale effects generated as the output 

vector y is produced by more specialized firms. Also, equation (5b’) shows that SR ≥ 0 under 

non-decreasing returns to scale.  

Finally, the term SV(β, IA1, IA2, IB, z, g) in (5c) reflects the effect of convexity. From 

lemma 2 in Appendix A, if the technology F is convex, the shortage function σ(z, g) is convex in 

z and satisfies σ(θ z + (1-θ) z’, g) ≤ θ σ(z, g) + (1-θ) σ(z’, g) for any  θ ∈ [0, 1] and any z and z’. 

Choosing θ = ½, it follows that SV(β, IA1, IA2, IB, z, g) ≥ 0 under a convex technology. In other 

words, a convex technology is sufficient to imply that SV ≥ 0. In addition, note that SV = 0 when 
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β = 0.5. Thus, under a convex technology, one can expect SV to increase with the degree of 

specialization β ∈ [0.5, 1].   

The decomposition provided in Proposition 1 indicates that there can be multiple sources 

of economies of scope. Identifying the role played by each source appears useful as it can 

provide useful insights into the economics of specialization. This is illustrated next in an 

application to U.S. universities.    

 

5. Data  

The dataset combines information on research inputs and outputs in the sciences and 

engineering for 92 US universities, including 61 public universities and 31 private universities 

for the period of 1995-1998. This dataset contains for all 92 universities the following data:  

1) Total patent counts and patent citations from all science and engineering fields (U.S. 

Patent Office; and Hall et al.),  

2) Article counts and citations from all science and engineering fields (ISI Web of 

Science),  

3) Total number of doctorates and bachelor degrees granted in the sciences as well as the 

number of graduate students, faculty, and post-docs (NSF Webcaspar).  

Further details on the sources of the data and key choices in the construction of the 

dataset can be found in Appendix B. One key aspect of the dataset warrants discussion here. The 

dataset focuses on scientific inputs and outputs, reflecting our interest in studying economies of 

scope between university research and university patents. Thus, our measures of scientific inputs 

and outputs are appropriate to investigate the possible tradeoff that exists between university 

research outputs and university patents (which are almost entirely produced by the sciences).   
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In order to proceed with the empirical analysis, we need a representation of the university 

production process. In the case of student training, we measure undergraduate bachelor’s degrees 

in the sciences as university outputs. However, graduate students can be both inputs and outputs: 

they are outputs of the university educational function; but they are also inputs into the research 

process (especially through their theses and dissertations). To account for this dual function of 

graduate students, we assume that they are outputs, except in their final year when they are 

treated as inputs into the university research process. Since there is typically a one or two year 

delay between when research takes form as an article or patent and when a graduate student 

worked on it, we think that our assumption is a reasonable match with the output data we have. 

Thus, we measure continuing graduate students as outputs, and PhD’s granted as inputs. In this 

context, universities are involved in the production of four outputs (journal articles, patents, 

trained undergraduate students, and trained graduate students) using three inputs (faculty, post-

doctoral researchers, and PhD graduate students). 

To account for quality differentials, quality adjustments are made on university output 

measures of patents and articles as well as input measure of faculty. Quality-adjusted output 

measures are obtained, where citations of articles and patents are used to control for quality of 

those two research outputs. Quality-adjusted input measure for faculty is done by obtaining total 

faculty salary (NSF Webcaspar). Science patent assignee and citation information were obtained 

from the NBER patent database (Henderson et al.), while the Science Citation Index (ISI Web of 

Science) provided the science article and citation counts by year for each university. Patents are 

credited by application year rather than by grant date in order to measure them as close as 

possible to the date research efforts occurred. Quality adjustments were sought because in the 

case of research output, quality is likely to matter significantly to the implicit value of the 
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research and also to the potential synergies between patents and articles. In the first case, highly 

cited articles and patents are likely to generate flows of additional research or licensing funds to 

the author or assignee, while in the latter research that gives rise, for example, to an article that is 

highly cited may also be more likely to generate a patent than would a larger number of un-cited 

articles. Empirically, studies of patent citations have shown that they provide a reasonable proxy 

for both the quality of a patent and knowledge spillovers from patents, because each time a new 

patent uses a piece of research from another patent it is obligated to cite the previous patent 

(Henderson et al.). Article citations are also commonly used as measures of quality in studies of 

departmental or university quality (e.g., Adams).    

 Using citations as a quality measure requires attending to the time dependency of the 

counts, namely the truncation problem associated with more recent articles or patents that may 

not have had time to generate many citations (Sampat et al.).  The quality adjustment measure 

used for each life science article/patent is the deviation from the average citation rate of an 

article/patent in the same broad class/category published in the same year. For example, a 1995 

biochemistry article with 10 citations is compared to the average level of citations of all 

biochemistry articles produced in that year. For a given year, the average article within a 

category has a citation rate of 1, with higher quality articles then having a measure greater than 

one and lower quality articles receiving a measure between zero and one. This relative citation 

approach minimizes a truncation bias that would be introduced by using an absolute citation 

count. Further details on the citation measure are in Appendix B. 

Finally, we account for the fact that the production process for universities is dynamic: 

the process of scientific discovery is typically time-consuming. For example, lagged inputs can 

affect current outputs in the presence of production lags (e.g., it takes time for research to be 
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published). And lagged outputs may affect current outputs in the presence of temporal synergies 

in production. This implies a need to incorporate dynamics in the representation of the 

underlying technology. This is done by specifying and estimating a multi-period production 

technology over a four-year period. Outputs for the current year are assumed to depend on inputs 

of the current year, but also on inputs and outputs from the three previous years. The effects of 

lagged quantities are captured by a weighted average of the corresponding quantities, with 

weight equal to 0.5 for lag one-year, 0.37 for lag two-years, and 0.13 for lag three-years. As a 

result, our dynamic production process is represented by eight outputs (four current outputs and 

four lagged outputs) and six inputs (three current inputs, and three lagged inputs). Our empirical 

investigation of economies of scope between university research outcomes (patents and articles) 

relies on data for 1995-1998 (the most recent years with complete data available).  

 

6. Empirical Analysis  

The shortage function described in equation (2) provides a generic representation of the 

frontier of technology. It can be estimated either using parametric methods (involving a 

parametric specification followed by an econometric estimation of the parameters) or non-

parametric methods. Below, we rely on a non-parametric approach for several reasons. First, it 

provides a flexible representation of the multi-output production frontier. Second, it does not 

require imposing a parametric structure on the problem. Third, when the number of netputs is 

large, it is not subject to collinearity problems. Fourth, it does not require that each data point be 

on the frontier technology. This allows for possible technical inefficiencies (see Foltz et al.). 

Finally, it is easy to implement empirically.  
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Thus, we use input and output data to recover an estimate of the underlying multi-output 

production technology for universities. Again, this is done by representing the dynamic process 

of producing outputs (research articles, patents, undergraduate degrees granted, and graduate 

students (excluding final-year doctorates)) using a set of inputs (post-docs, doctorates in their 

final year of study, and faculty). And using the shortage function in (2), we have measurements 

of how far is each point from the production frontier. 

Next, a nonparametric representation of economies of scope is investigated. To assess 

economies of scope between research articles and patents, we break up the original university 

into 2 specialized universities. We then identify the following partition I: IA1 = patents, IA2 = 

research articles, IB = doctoral students in labs and bachelor degrees. This partition corresponds 

to scenarios of increasing specialization, where one university may specialize in patents while 

another in research publications. Note also that doctoral students in labs and bachelor degrees are 

included in the set of outputs that no particular firm specializes in. As shown in section 3, 

economies of scope (diseconomies of scope) with respect to the partition I = {IA1, IA2, IB} are 

defined as in equation (3).   

Evaluating equation (3) requires the estimation of the shortage function under alternative 

scenarios. This requires first choosing a reference bundle g that will be the same under each 

scenario. Our chosen reference bundle g = (g1, …, gn+m) involves choosing gi = 1 for current and 

lagged faculty input, gi = 0.00513 for current and lagged post-docs, gi = 0.00335 for current and 

lagged doctorates in their final year of study, and gi = 0 otherwise. The numbers 0.00513 and 

0.00335 are the ratios of post-docs per faculty, and of final-year doctorates per faculty, evaluated 

at sample means. Given the choice gi = 1 for faculty means that our reference bundle can be 

interpreted as a typical input bundle associated with one faculty. Here faculty is measured in 
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terms of (adjusted) faculty salary. With all shortage measurements being made in terms of units 

of this reference bundle g, it follows that such measurements can be interpreted in terms of 

changes in faculty salaries, with proportional adjustments in post-docs and final-year doctorates. 

This provides a simple and logical measure of the distance from the frontier technology under 

alternative scenarios. A strength of this approach, as opposed to a dual counterpart (a cost 

function approach), is that the price information of some major inputs (e.g., post-docs, doctorates 

in their final year of study) are not required to assess economies of scope.  

The non-parametric estimation of the technology and the associated shortage function is 

done as follows. Following Afriat, Varian and others, given a set of observations on T 

universities, zt ≡ (-xt, yt), t = 1, …, T, a nonparametric representation of the technology under 

variable return to scale (VRTS) is Fv = {z: ∑ =
T

1t λt zt ≥ z, ∑ =
T

1t λt = 1, λt ≥ 0, t = 1, …, T}. In 

general, the set Fv is convex and satisfies (-xt, yt) ∈ Fv, t = 1, …, T. It does not require that all 

firms be technically efficient. Indeed, while technically efficient firms are necessarily located on 

the boundary of Fv, it allows for technically inefficient firms (located in the interior of Fv).  

Finally, it allows for increasing, constant, as well as decreasing return to scale. Then, given Fv, a 

nonparametric estimate of the shortage function under VRTS is 

σ (-x, y, g) = minγ,λ { γ: ∑ =
T

1t λt zt ≥ z - γ g, ∑ =
T

1t λt = 1, λt ≥ 0, t = 1, …, T}. (6) 

This is standard linear programming problem.3 It can be solved for different values of z ≡ 

(-x, y). For example, when evaluated at yk and x/2 (as given in (1) where ∑ =
2

1k yk = y), this 

yields σ(-x/2, yk, g). This provides the information required to evaluate economies of scope S (as 

given in equation (3)).  

From proposition 1, we have shown that S can be decomposed into three additive parts 

(see equation (4)). The parts associated with scale effects (SR in equation (5b)) and convexity 
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effects (SV in equation (5c)) can be easily obtained from (6) evaluated at appropriate netput 

levels z. The part associated with complementarity effects (SC in (5a)) can be recovered from 

equation (4) by subtracting SR and SV from our scope measure S. This provides all the 

information necessary to both evaluate economies of scope S in (3) as well as its decomposition 

given in (4) and (5).  

Finally, the analysis can be conducted with various degree of specialization. Since the 

complete shutdown of any operation in university production is not plausible, we will focus our 

attention on partial specialization scenarios where 1/2 < β < 1.  

 

7. Results and Implications 

In general, economies of scope reflect properties of the underlying technology. This 

means that, for a given feasible set F, any two universities using/producing similar netputs would 

exhibit the same economies of scope. This means that presenting scope analysis at the university 

level would not be useful. Yet, there is much heterogeneity among universities both in terms of 

size and scope. In this context, a small university and a large university are located at different 

points of the feasible set F. Similarly, some universities are more specialized than others, which 

again locate them at different points of the underlying technology. Given a flexible 

representation of the technology F, economies of scope may possibly vary depending on the 

point of evaluation. For example, it may be that the nature of complementarities between outputs 

varies between small university and large universities.  

Selected scope estimates and their decomposition are presented in Table 1, evaluated at β 

= 0.8 (partial integration). To facilitate interpretation, scope benefits are measured relative to 

faculty input: S/Fac. Given that the reference bundle g involves one “unit of faculty”, this 
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measures the proportion of faculty that can be saved by producing university outputs in an 

integrated fashion (compared to more specialized schemes). Similarly the decompositions of 

scope into complementarity, scale and convexity effects are measured relative to faculty input: 

SC/Fac, SR/Fac, and SV/Fac, respectively. Table 1 reports relative scope estimates for seven 

public universities, and six private universities. These universities was chosen on the following 

basis: 1/ each is on the production frontier; 2/ each is involved in patenting; and 3/ together, they 

offer a cross-section representation of universities with respect to type (public vs. private) and 

size. For each university, economies of scope were estimated using equations (3) and (6). And a 

decomposition of economies of scope was obtained from equations (4) and (5). As noted above, 

this decomposition provides useful insights in the economics of university specialization.  

As shown in Table 1, the proportion S/Fac varies from -0.037 (for Texas A&M 

University) to 1.038 (for Caltech), with most estimates for economies of scope falling in the 

positive range. Overall, in the sample data, economies of scope are prevalent between patents 

and more traditional university outputs. However, Table 1 also shows that the relative measures 

of S/Fac may vary systematically across universities. For example, S/Fac tends to be larger for 

smaller universities (as measured by Fac) and for private universities (compared to public 

universities). Note that these estimates are all obtained assuming a uniform technology for all 

universities. These results suggest that the assessment of scope benefits can vary a lot depending 

on the point of evaluation, and raise the question: what is the source of scope? For example, 

finding that private universities tend to generate greater relative scope benefit S/Fac does not 

necessarily imply that these benefits are due to strong complementarity effects between patents 

and traditional university outputs. The sources of scope are addressed by investigating the 

decomposition of economies of scope proposed in Proposition 1.  
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For β = 0.8, table 1 reports relative measures of scope decomposition for the selected 

universities, SC/Fac, SR/Fac, and SV/Fac. The relative complementarity measure SC/Fac varies 

from -0.007 (for Dartmouth) to 0.264 (for MIT). It is positive for most universities. This 

indicates the presence of synergies between research publications and university patenting. 

However, the complementarity benefits are found to be small for some universities. For example, 

for the University of California-Irvine and Stanford University, the complementarity benefits 

amount to less than 1 percent of the faculty input. At the other extreme, among public 

universities, the University of Texas-Austin and the University of Wisconsin-Madison exhibit a 

relatively large SC/Fac, indicating that the complementarity benefits amount to 11-12 percent of 

faculty input. Among private universities, SC/Fac this percentage varies between -0.1 percent (for 

Dartmouth) and 8.4 percent (for Johns Hopkins), with the exception of MIT where the 

percentage rises to 26.4 percent. This indicates that, while complementarity benefits can be large 

for some universities, they do not appear to be widespread across all universities.  

From Table 1, we can also see that some universities exhibit positive economies of scope 

but little complementarity between publication and patents (e.g., University of California-Irvine). 

In this case, economies of scope must come from sources other than complementarity, i.e. from 

the scale component SR and/or the convexity component SV. The relative scale component 

SR/Fac reported in Table 1 shows that scale effects are indeed important. From (5b’), SR is 

positive, zero, or negative under IRTS, CRTS, or DRTS, respectively. In general, the larger 

universities exhibit a negative SR/Fac and thus are operating in the region of decreasing returns 

to scale, while smaller universities are operating in the region of increasing returns to scale with  

positive estimates for SR/Fac. For example, Table 1 shows that SR/Fac varies from -0.174 (for 

university of Michigan) to 0.621 (for Dartmouth). This means that “being too large” (e.g., 
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University of Michigan) can contribute to diseconomies of scope (SR < 0). Alternatively, “being 

too small” (e.g., Dartmouth) can contributes to economies of scope (SR > 0), but perhaps in a 

manner that is less easily exploited (as increasing a university’s size markedly may be more 

difficult than adjusting the mix of outputs). In this case, small universities (e.g., University of 

California-Irvine, Dartmouth) can exhibit economies of scope in the absence of complementarity. 

Finally, universities operating close to the region of constant returns to scale are associated with 

small SR/Fac (e.g., University of California-Berkeley, University of Wisconsin-Madison).   

The relative convexity component SV/Fac reported in Table 1 varies between 0.017 (for 

Texas A&M) and 0.546 (for Johns Hopkins). As expected, it is non-negative under a convex 

technology. The results indicate that the degree of convexity of the technology also varies across 

evaluation points.  

Additional estimates of relative economies of scope are presented in Figures 1 and 2. 

Figure 1 depicts for selected public universities how the relative scope measure S/Fac varies with 

the degree of specialization, β. In general, scope benefits increase with the degree of 

specialization, which demonstrates that the incentives of selected universities to take advantage 

of such benefits by combining patenting and article producing activities are most evident under 

scenarios associated with high degrees of specialization.  However, note that this tendency also 

varies across universities. This increase in scope benefits is found to be modest for the University 

of California-Irvine, but quite large for the University of Michigan. Figure 2 depicts similar 

estimates for selected private universities. Figure 2 illustrates that the relative scope benefits 

S/Fac increase with β, strongly so for some universities (e.g., Johns Hopkins) but only mildly so 

for others (e.g., Dartmouth). Again, it appears that the benefits of integration across outputs 

depend on the degree of specialization.  
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Additional information on complementarity effects is presented in Figures 3 and 4 for 

public and private universities, respectively.  These figures depict how the relative 

complementarity component SC/Fac varies with the degree of specialization β ∈ [0.5, 0.8]. Since 

SC = 0 when β = 0.5, we find in general that SC/Fac tends to increase with β. Again, this indicates 

that complementarity effects tend to be larger when comparing a university as an integrated firm 

with two more highly specialized firms. This is true for public universities as well as private 

universities.  However, the patterns differ between public and private universities.  For the 

former, except for the University of California-Irvine (for which changing β has little impact), 

SC/Fac tends to increase significantly as β rises, reflecting the strong potential for exploiting the 

apparent complementarity between publications and patents by producing them in an integrated 

fashion. As shown in Figure 3, the rate of increase is particularly high for the University of 

Wisconsin-Madison for β ≥ 0.7, and for the University of Texas-Austin. For these two 

universities, the productivity gains due to publications-patents complementarities appear to be 

especially large when evaluated at a level above β ≥ 0.7, corresponding to a high degree of 

specialization.  Figure 4 shows that the relative complementarity effects SC/Fac are small for all 

private universities when β ∈ [0.5, 0.65]. Except for Johns Hopkins and MIT, they remain small 

for private universities (including here Cal Tech, Stanford, and Northwestern) as the degree of 

specialization β rises. Only above β > 0.7 for MIT does there appear to be large scope economies 

attributable to complementarity between articles and patents. Overall, these estimates suggest 

that the benefits of complementarity vary markedly across universities as well as degree of 

specialization, and that complementarities between articles and patents contribute significantly to 

scope benefits only for selected universities. 
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8. Concluding Remarks 

We have presented an economic analysis of scope economies at US universities, with a 

focus on the decomposition of economies of scope evaluated directly from the technology. We 

first developed a conceptual model allowing for the investigation of economies of scope in a 

primal framework where the benefits of producing from an integrated firm can be measured 

directly from the technology of university production, using Luenberger’s shortage function. 

This measure covers both the case of complete specialization (typically found in previous 

literature on economies of scope) and the case of partial specialization (suitable for investigating 

economies of scope in university production). Further, this approach allows for a decomposition 

of economies of scope into three additive parts measuring scale effects, complementarity effects 

and convexity effects. Relying on a non-parametric approach, we first recovered the production 

technology of 92 US universities using 1995-1998 data, and evaluated the associated 

Luenberger’s shortage function. Then, measures of economies of scope and their decomposition 

results are obtained and analyzed.  

Our analysis uncovered several important findings. First, we find that economies of scope 

are prevalent between patents and more traditional university outputs. Second, we documented 

how economies of scope measures of US universities during the 1995-1998 period vary with 

university size. We find that economies of scale (diseconomies of scale) associated with small 

(large) universities contribute to generating economies (diseconomies) of scope. Third, we 

uncovered evidence that complementarity effects are size-sensitive and vary across universities. 

We found large complementarity benefits between researching and patenting for a few 

universities, both private (MIT) and public (University of Texas-Austin, University of 

Wisconsin-Madison). However, such complementarity effects are found to be negligible for 
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small universities, as well as some large universities. This suggests that synergies between 

publications and patenting exist but are not widespread within the academic community. Fourth, 

our decomposition of scope effects into scale component, complementarity component and 

convexity component provides useful information on the sources of scope benefits. For example, 

we found that scope effects tend to be important for small universities because of scale effects 

(and not because of complementarity effects). However, for the large public/private universities, 

scale effects tend to be smaller, while complementarity effects can become more important.   

Our analysis suggests a need for future research to evaluate whether economies of scope 

may have changed over time. Also, our finding that economies of scope and complementarities 

can vary a lot across universities raises the question: what factors contribute to the presence of 

scope economies and complementarities in the research activities at U.S. universities? That 

undertaking appears challenging, because at the core of the university research mission is the 

creative process of inquiry, discovery, invention, and innovation. For example, given the 

complexities involved in the dynamic production of new knowledge, identifying why major 

complementarities in research activities arise for some universities (e.g., MIT or the University 

of Wisconsin-Madison) and not others may be quite difficult. Nonetheless, exploring such issues 

has considerable value, even if it could only identify that some complementarity and scope 

benefits may not be easily transferable across universities. Finally, while this paper focused on 

the presence and sources of scope economies at U.S. research universities, it would be useful to 

undertake similar analyses of other multiproduct industries (e.g., the banking industry, R&D in 

life sciences, the food industry, and environmental management). 

 



 26

References 

Adams, Amy. (1998). “Citation Analysis: Harvard Tops in Scientific Impact.” Science. Vol. 281 

(September 25): 1936.  

Afriat, Sidney. “Efficiency Estimation of Production Functions” International Economic Review 

13(1972): 568-598.  

Azoulay, P., W. Ding, and T. Stuart. “The Impact of Academic Patenting on Public Research 

Output.” Working Paper, Columbia University, New York, July 2004. 

Baumol, William J., John C. Panzar, and Robert D. Willig. Contestable Markets and the Theory 

of Industry Structure. Harcourt Brace Jovanovich, Inc., New York, 1982.  

Branstetter, L. “Is Academic Science Driving a Surge in Industrial Innovation? Evidence from 

Patent Citations.” Working Paper, Columbia Business School, New York, January 2003. 

Chambers, R.G., Y. Chung, and R. Färe. “Benefit and Distance Functions” Journal of Economic 

Theory 70(1996): 407-419.  

Cohn, E., S.L.W. Rhine, and M.C. Santos. “Institutions of Higher Education as Multi-product 

Firms: Economies of Scale and Scope” Review of Economics and Statistics 71(1989): 

284-290.  

De Groot, H., W.W. MacMahon, and J.F. Volkwein. “The Cost Structure of American Research 

Universities” Review of Economics and Statistics 73(1991): 424-431.  

Färe, R., and S. Grosskopf. “Theory and Applications of Directional Distance Functions” 

Journal of Productivity Analysis 13(2000): 93-103.  

Foltz, J.D., B.L. Barham, J.P. Chavas, and K. Kim “Efficiency and Technological Change at US 

Research Universities” Working Paper, University of Wisconsin, Madison, 2005.  

Hall, B.H., A.N, Link, and J.T. Scott. “Universities as Research Partners” Review of Economics 

and Statistics 85(2003): 485-491.  



 27

Henderson, R., A. Jaffe, and M. Trajtenberg. “University as a Source of Commercial 

Technology: A Detailed Analysis of University Patenting, 1965-1998.” Review of 

Economics and Statistics 80(1998): 119-27.  

ISI Web of Science. “Science Citation Index (SCI)”.  Thompson Scientific Publishing.  Accessed 

online at http://isi0.isiknowledge.com/ (Last accessed May, 2002).  

Jaffe, A.B. “Real Effects of Academic Research” American Economic Review 79(1989): 957-970. 

Jensen, R.A., and M.C. Thursby. “Proofs and Prototypes for Sale: The Licensing of University 

Inventions” American Economic Review 91(2001): 240-259.  

Luenberger, David G. Microeconomic Theory. McGraw-Hill, Inc., New York, 1995.  

Milgrom, Paul, and John Roberts. “The Economics of Modern Manufacturing: Technology, 

Strategy and Organization” American Economic Review 80(1990): 511-528.  

National Science Foundation. (2000). "NSF Webcaspar: Your Virtual Bookshelf of Statistics on 

Academic Science and Engineering." http://caspar.nsf.gov/ 

Sampat, B., D. Mowery, and A. Ziedonis. “Changes in University Patent Quality after the Bayh-

Dole Act: A Re-Examination.” Working Paper, Georgia Institute of Technology, 2003.   

Sav, G. Thomas. “Higher Education Costs and Scale and Scope Economies” Applied Economics 

36(2004): 607-614. 

Shephard, Ronald. Theory of Cost and Production Functions, Princeton University Press. 

Princeton, NJ, 1970.  

Scotchmer, Suzanne. Innovation and Incentives. MIT Press, Cambridge, MA, 2004. 

U. S. Patent Office. "Patent Bibliographic and Abstract Database." 

http://www.uspto.gov/patft/index.html. 

Varian, H. “The Nonparameteric Approach to Production Analysis” Econometrica 52(1984): 

579-597.  



 28

Table 1: Relative scope measure (S/Fac) and its decomposition into complementarity component 

(SC/Fac), scale component (SR/Fac), and convexity component (SV/Fac) for selected 

universities (evaluated at β = 0.8).  

 

Public Universities Fac S/Fac SC/Fac SR/Fac SV/Fac
UNIV MICHIGAN 138736 0.105 0.060 -0.174 0.219
UNIV TEXAS AUSTIN 131748 0.162 0.115 -0.007 0.054
MICHIGAN STATE UNIV 120453 -0.051 0.059 -0.132 0.022
TEXAS A&M UNIV 109692 -0.037 0.003 -0.057 0.017
UNIV CALIF BERKELEY 100450 0.179 0.063 0.005 0.112
UNIV WISCONSIN MADISON 91804 0.227 0.117 0.012 0.098
UNIV CALIF IRVINE 44792 0.200 0.008 0.143 0.049

  
Private Universities  

STANFORD UNIV 80592 0.270 0.007 0.049 0.214
MIT 80223 0.684 0.264 0.154 0.266
NORTHWESTERN UNIV 70883 0.109 0.040 -0.024 0.093
JOHNS HOPKINS UNIV 61116 0.549 0.084 -0.081 0.546
CALTECH 30181 1.038 0.011 0.594 0.433
DARTMOUTH COLL 25823 0.647 -0.007 0.621 0.032
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Figure 1: Relative Economies of Scope (S/Fac) at Selected Public Universities by Degree of 

Specialization (β) 
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Figure 2: Relative Economies of Scope (S/Fac) at Selected Private Universities by Degree of 

Specialization (β) 
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Figure 3: Relative Complementarity (SC/Fac) at Selected Public Universities by Degree of 

Specialization (β) 
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Figure 4: Relative Complementarity (SC/Fac) for Selected Private Universities by Degree of 

Specialization (β) 
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Appendix A 

Proof of Proposition 1: From equation (4), economies of scope are defined as 

S ≡ σ(-½ x, β yA1, (1-β) yA2, ½ yB, g) + σ(-½ x, (1-β) yA1, β yA2, ½ yB, g)  

- σ(x, y, g) > 0.  

When σ(z, g) is continuous in z and differentiable almost everywhere in y, this can be 

alternatively written as  

S = - ∫ −

A2

A2

y β

y β)(1
[∂σ/∂γ(-½ x, β yA1, γ, ½ yB, g) - ∂σ/∂γ(-½ x, (1-β) yA1, γ, ½ yB, g)] dγ  

+ σ(-½ x, β yA, ½ yB, g) + σ(-½ x,(1-β) yA, ½ yB, g) - 2 σ(½ z, g), 

+ 2 σ(½ z, g) - σ(-x, y, g).  

 

Lemma 1: σ(k z, g) 
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Proof: By definition, the technology exhibits increasing return to scale (IRTS), constant return to 

scale (CRTS), or decreasing return to scale (DRTS) when, for all α > 1, α F ⊂ F, α F = F, 

or α F ⊃ F, respectively. Let k ∈ (0, 1). Consider the case where there is a γ satisfying (k 

z - γ g) ∈ F. Then 

σ(k z, g) = minγ {γ: (k z - γ g) ∈ F},  

= k minδ {δ: (z - δ g) ∈ (1/k) F}, where δ = γ/k,  
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Lemma 2: The shortage function σ(z, g) is convex in z if F is a convex set.   

Proof: Consider any two netput vectors z ∈ Rn+m and z’ ∈ Rn+m. First assume that σ(z, g) and 

σ(z’, g) are finite. It follows that (z - σ(z, g) g) ∈ F and (z’ - σ(z’, g) g) ∈ F. Let z” = θ z 

+ (1-θ) z’, for any scalar θ, 0 ≤ θ ≤ 1. If the set F is convex, it follows that 

[z” - θ σ(z, g) g - (1-θ) σ(z’, g) g] ∈ F. 

The shortage function being defined as a minimum in (2), this yields 

σ(z”, g) = σ(θ z + (1-θ) z’, g) ≤ θ σ(z, g) + (1-θ) σ(z’, g). 

Second, consider the case where σ(z, g) and/or σ(z’, g) are infinite. Then, the above 

inequality always holds. This shows that the shortage function σ(z, g) is convex in z 

when F is a convex set. 
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Appendix B: Data 

 
Patents 
Patent data were culled from the NBER patent database, where they were identified as having a 
university assignee.  Patents assigned to the University of California system were associated with 
a campus (Berkeley, Davis, Los Angeles, etc.) by the location of their authors through searches 
of campus directories. 
 
Patents were categorized as life sciences based on the categories and sub-categories in Hall, Jaffe, 
Trajtenberg (pp. 452-453).  Patents were chosen in the NBER sub-categories 33 (biotechnology 
as part of the drugs and medical category), 61(agriculture, husbandry, and food as part of the 
“other” category), and 11(Agriculture, food, and textiles, as a part of the chemical category).  
Within these subcategories, some US patent classes did not fit with a life sciences definition, 
mostly because they were classes that had agricultural, food processing, or textile machinery.  
Therefore, patents in 6 US patent classes (8, 19, 43, 99, 131, 442) were dropped.  The resulting 
database includes patents in the following US Classes (47, 56, 71, 111, 119, 127, 426, 435, 449, 
452, 460, 504, 800).   
 
Relative citations for patents were generated by year and by patent class comparing each 
individual patent to the universe of all patents in that class (whether owned by universities or 
not).  A university’s patent count for that year is then adjusted by the ratio of number of citations 
received to the expected citations for that portfolio: 
 

)(
##

citationsE
receivedcitationspatentsPatentsAdjustedQuality ×=  

 
where the number of expected citations, E(citations) is calculated as the number of citations that 
same portfolio of patents would receive if each patent received the average citation rate for its 
US patent class for that year.   
 
Articles 
Article data were culled from the ISI-Web of Science database based on universities included in 
their “University Science Indicators” and categories established in that same document.  The 
Web of Science includes only the major journals in a field as identified by impact factors, such 
that our article measures necessarily cut out articles written for lesser journals.  In addition the 
citation measures are only for citations in other major journals.  This truncation, we believe 
serves our purposes of adding a subtle quality measure even to our quantity measures. 
 
The categories were chosen based on the journals that were included and the match of those 
journals with both the patent and funding data.  They are: Agriculture, Biology & Biochemistry, 
Ecology/environment, Molecular Biology & Genetics, Microbiology, Multidisciplinary, Plant & 
Animal Sciences.  While most of the categories are self explanatory, it is worth noting that the 
“Multidisciplinary” designation is used for major scientific journals such as Science, 
Proceedings of the National Academy of Sciences, and Nature.  While this inevitably adds some 
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noise to the data, we thought it better than “punishing” universities that regularly publish in the 
top journals. 
 
Relative citations for articles were generated by category compared to citations of other articles 
assigned to the universities in the sample, rather than to all articles, and these measures were 
constructed annually.   The same techniques of generating relative citations used for patents were 
used for articles. 
 
Universities included in the sample: 
Arizona State U., Baylor College, Boston U., Brandeis U., Brown U., Caltech, Carnegie Mellon 
U., Colorado State U., Cornell U., Dartmouth College, Emory U., Florida State U., Georgetown 
U., Harvard U., Indiana U., Iowa State U., Johns Hopkins U., Lehigh U., Louisiana State 
U., Loyola U., Michigan State U., MIT, N Carolina State U., New Mexico State 
U.,  Northwestern U., Ohio State U., Oregon Health Sciences U., Oregon State U., Penn State 
U., Princeton U., Purdue U., Rice U., Stanford U., Syracuse U., Texas A&M U., Tufts U., Tulane 
U., U. Alabama, U. Alaska, U. Arizona, U. C. Berkeley, U. C. Davis, U. C. Irvine, U. C. Los 
Angeles, U. C. Riverside, U. C. San Diego, U. C. Santa Barbara, U. C. Santa Cruz, U. 
Chicago, U. Cincinnati, U. Colorado, U. Connecticut, U. Delaware, U. Florida, U. Georgia, U. 
Hawaii, U. Illinois Urbana, U. Iowa, U. Kansas, U. Kentucky, U. Maryland Baltimore, U. 
Maryland College Park, U. Miami, U. Michigan, U. Minnesota, U. Missouri, U. N. Carolina 
Chapel Hill, U. Nebraska, U. New Hampshire, U. New Mexico, U. Oregon, U. Penn, U. 
Pittsburgh, U. Rochester, U. So Calif, U. Tennessee, U. Texas Austin, U. Texas Houston, U. 
Utah, U. Vermont, U. Virginia, U. Washington, U. Wisconsin Madison, Utah State 
U., Vanderbilt U., Virginia Polytech Inst, W. Virginia U., Wake Forest U., Washington State 
U., Washington U., Wayne State U., Yale U., Yeshiva U. 
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Footnotes 

                                                 
1 Note that other measures have been developed in the literature. They include the directional 

distance function Dg(z, g) discussed by Chambers, Chung and Färe, and Färe and Grosskopf: 

Dg(z, g) ≡ maxβ {β: (z + β g) ∈ F}. Since it satisfies σ(z, g) = -Dg(z, g), it should be clear that the 

analysis presented below could be presented equivalently using the directional distance function. 

Other measures include Shephard’s output distance function DO(z) ≡ minθ {θ: (-x, y/θ) ∈ F}, and 

Shephard’s input distance function DI(z) ≡ maxθ {θ: (-x/θ, y) ∈ F}. The relationships between 

these functions and the shortage function have been analyzed in the literature (Färe and 

Grosskopf; Chambers, Chung, and Färe). However, by measuring input or output proportions, 

the Shephard’s functions are not additive across firms. As such they do not provide attractive 

measurements for analyzing economies of scope.  

2 Note that, in the case where IB = ∅ and β = 1, this involves no loss of generality since any 

partition of IA can always be decomposed into a series of binary partitions.  

3 Below, the linear programming problem (6) is solved using GAMS software.  


