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Abstract 
 
 This paper estimates and compares generalized Box-Cox and composite cost 

functions to identify scale and scope economies.  The robustness of the outcomes to 

different functional specifications was examined.  Increasing returns to scale was 

common for product-specific and the overall measures. Generalized Leontief and 

composite forms yielded more robust elasticity, scale and scope measures. The 

generalized Box-Cox model was selected as the appropriate functional form as all the 

special cases were rejected. 

 
 
 
1.  Introduction 

The search for appropriate functional forms in production agriculture has 

continued to dominate the economics literature.  Various functional forms have been used 

to more accurately explain or predict producer behavior.  The parameter estimates of 

interest can, however, be very sensitive to the types of functional forms used because of 

the different restrictions and assumptions that are basically imposed by the different 

forms.  Some of the time, researchers have failed to test the sensitivity of such estimates 

to different forms and under different assumptions.  In some cases, general comparisons 

of estimates are made to other related studies without considering the differing kernels 

and motivations for such studies.  The foregoing has implications for the 

recommendation and the utilization of the economic measures.    

 Berndt and Khaled (1979) proposed a generalized Box-Cox cost function, with 

and without technological change, that takes on special or limiting cases of generalized 

Leontief (GL), generalized square-root quadratic (GSRQ), and translog (TLOG) cost 
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functions.  Its one-output case, incorporating technological change, was applied by these 

authors to the manufacturing sector of the U.S. economy.  An extension of their 

generalized form into the multiple-output case was undertaken by Bruno De Burger 

(1992) to estimate cost structure and productivity growth in Belgian railroad operations. 

 In the context of the parametric estimation of scale and scope economies, indirect 

cost functions, which are based on duality theory, have generally been estimated.  The 

generalized translog function has been commonly used, while the composite form is 

becoming increasingly preferred by many analysts.  A two-input (labor and capital) two-

output (life insurance and superannuation) version of the generalized translog form was 

adopted by Khaled, Adams and Pickford (2001) to estimate a variety of measures of 

economies of scale and scope using 135 pooled observations for the non-bank life 

insurance operations in New Zealand.  They found that product-specific returns to scale 

were increasing for the small business but approximately constant for the larger ones, and 

that there were substantial economies of scale in the superannuation output for firms of 

all sizes.  There were diseconomies of scope in the small- and medium-sized firms.  The 

large firms, however, did not experience either economies or diseconomies of scope.    

 Neither functional form – the generalized Box-Cox nor the composite - has been 

commonly applied in production agriculture.  Aside from its use in a study involving the 

estimation of elasticities of substitution for U.S agricultural production (Chalfant, 1984), 

the generalized Box-Cox has not been used in farm analysis.  The composite counterpart, 

which is relatively new, has not been estimated for production agriculture.  Its advantages 

over a number of the common functional forms are mentioned in section 3 of this paper. 
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This paper analyzes the agricultural sector of Kansas economy via economies of 

scale and scope and attempts to determine the robustness of these measures under 

alternative functional forms. 

The paper is organized as follows.  The multiple-output Box-Cox cost function 

and its economic properties are reviewed in section 2.  In section 3, the composite form 

of cost function and its properties are discussed.  These two forms are estimated using 

Kansas data in section 4.  After the empirical results are discussed, the paper ends with 

concluding comments. 

 

2.  Generalized Box-Cox Cost Function 

The generalized Box-Cox cost specification, including its special and limiting 

cases of GL, GSRQ and TLOG (Berndt and Khaled 1979, Bruno De Burger 1992) is 

presented below. 
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The vector P consists of input prices, while the vector Z consists of the outputs.  The 

symmetry assumption implies that jiij γγ =  and kllk θθ = .  Linear homogeneity in prices, 

according to Berndt and Khaled (1979), occurs if and only if: 
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Imposing the homogeneity restrictions (5) on the GBC cost function (1) results in: 
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Several of the special or limiting cases can be seen in model (6).  For instance, when λ = 

2, the result is the generalized square-root quadratic (GSRQ) form: 
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When λ = 1, a GL function results: 
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To obtain the TLOG case, the limit of equation (9), derived by rewriting the GBC (1) as 

0→λ  yields the TLOG function (10). 
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The TLOG, however, involves an additional parameter restriction on (5), because as 

0→λ , the expression (a) becomes: 
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Corresponding to the GBC (6), the following factor demand system can be derived (De 

Burger) (1992): 
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In addition, the Allen partial elasticities of substitution ( ijσ ) are specified as: 
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The input price elasticities are then derived from the Allen Partial elasticities: 

  Njis ijjij ,........,1,, == ση      (17) 
 
Finally, the cost elasticities with respect to the outputs are given as: 
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Expressions 17 and 18 are used to verify if the regularity conditions implied by the 

economic theory are satisfied is this analysis.  

 In a multiple-output estimation, scale economies can result from two sources: 

scope economies and/or product-specific economies (Featherstone and Moss, 1994).  
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Economies of scope measures the cost advantage associated with producing several 

output simultaneously.  For two outputs, a measure of scope economies (SCP), according 

to Baumol, Panzar and Willig (1982), is: 
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where C(y1,0) is the cost of production if good y2 is not produced.  C(0,y2) is the cost of 

production if good y1 is not produced, while C(y1,y2) is the cost of producing y1 and y2 

together.  Economies of scope exists (does not exist) if SCP is greater (less) than zero.  

Product-specific economies of scale (SCLi) measures the short-run impact of expanding 

the production of a single product while input prices, fixed inputs and other output levels 

remain constant.   The SCLi are measured as: 
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An overall measure of the returns to scale for an individual firm, also referred to as scale 

economies (SCL), can result from the combination of both economies of scope and 

product-specific economies.  For a two-output firm, this is stated as: 

( )
( )SCP

SCLSCL
SCL

−
+

=
1

2211 θθ
     (22) 

 

where 
∑

==+
j jj MCy

MCy
and 11

121 ,1 θθθ ,  j = 1, 2.     (23) 

 6



 
The existence of economies of scale is therefore sensitive to the relative magnitudes and 

nature of SCLi and the SCP.  For instance, if economies of scope equal zero, economies 

of scale will exist if one of the output exhibits increasing returns (IRS) to scale while the 

other output has constant returns to scale (CRS).  Different outcomes are expected if 

scope economies exist. 

 
 

3.  The Composite Cost Function 

 The composite form of cost function was proposed by Pulley and Braunstein and 

was applied to economies of scope in the banking industry.  It is a flexible multiproduct 

function, in the sense of Diwert (1974), which combines the log-quadratic input price 

structure of the translog model with a quadratic structure for multiple outputs as well as 

satisfies the properties of linear homogeneity in input prices, non a priori imposition of 

separability between ouputs and inputs, and has the ability to model cost behavior in the 

range of zero outputs, a limitation of translog forms.  The non-imposition of separability 

in the composite model gives it an added advantage over other multiplicatively separable 

forms such as the quadratic, the translog and the CES-Quadratic functions.  The 

motivation to develop the composite function was aroused by an earlier suggestion of a 

quadratic output structure in the measurement of scale and scope economies as well as 

subadditivity by Baumol, Panzar and Willig.     

 Very few empirical studies (Pulley and Braunstein, Khaled) that have been known 

to have applied the composite model in the estimation of multiple-output technologies 
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have been in the banking and insurance sectors.  None of such use has however been 

found in agricultural fields.  The composite model is given by:   
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where C is the cost, ε is an error term, qi,j refers to the outputs and rk are the input prices.  

The exponential in 24 is stated as: 
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Equation (25) is a translog function of the input prices (rk).  The symmetry condition 

requires that jiijlkkl ααββ == ,

∑

, while linear homogeneity of cost in input prices 

requires that ∑∑ = klk k ,1 ββ ==
l ikand 0,0 δ

k
.  It was suggested that 0β  be 

chosen arbitrarily since it is not defined (Pulley and Humphrey).  The price and output 

interaction terms both in the output and the input structures of the composite model are 

included in order to avoid the imposition of separability.  Equation 24 can be written in 

its logarithmic form, the only change being that the multiplicative exponential part 

involving the price structure now becomes additive.  The logarithmic version may 

however provide better description of some data sets because of the combination of the 

outputs quadratic structure with that of the log-quadratic for input prices as described 

above.   

 In order to gain better understanding on the choice of empirical specification in 

their analysis, the proponents of the composite model opted for the adoption of the 

“transform-both-sides” procedure of Carroll and Ruppert (1984, 1987, 1988).  This 

procedure suggests a Box-Cox transformation of both sides of equation 24 to enable its 
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simultaneous estimation with the logarithmic counterpart.  Incorporating the 

transformation on both sides of the composite cost function results in its hybrid 

representation presented as follows:  
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where the superscript (ø) refers to the Box-Cox transformation and q’=q-1.  This implies 

that equation 24 and its logarithmic version are special cases of equation 26 when ø 

equals 1 and 0, respectively1.  Applying Shephard’s Lemma to equation 26 results in the 

share equations shown as: 
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The appropriate point of entry for the price-output interaction terms needs to be 

investigated.  Pulley and Braunstein found that incorporating the terms through the output 

structure by deleting µik from the models resulted into best fit in their study of the 

banking industry. 

 For the composite form, Khaled gives the product-specific scale economies 

(SCLi), the scope economies (SCP) of Pulley and Humphrey and the overall scale 

economies (SCL) as equations 28, 29 and 30, respectively: 
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1 This approach of Box-Cox-Composite (BCC) procedure could be estimated, but equation 24 is used in 
this paper. 
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The magnitude of SCLi depends on αii.  SCLi will be less than one if αii is greater than 

zero, which signifies increasing returns to scale and greater than one if αii is less than 

zero, a case of decreasing returns to scale.  In both cases, the cost function must satisfy 

output regularity in form of positive marginal costs.  If, however, αii equals zero, returns 

to scale are constant at all output levels, i.e. product-specific economies of scale neither 

arise owing to economies of scope (αij < 0) nor due to cost complementarities. 

 Considering equation 29, the existence of economies of scope is determined either 

by α0, which represents a spread of fixed cost over a variety of outputs or αij, which is the 

cross output interactions.  If the non-specific fixed cost component α0 is close to zero and 

αij are all of the same signs, economies of scope either exist or not at all sizes of outputs.  

The measure in equation 30 is in line with Baumol, Panzar, and Willig in that economies 

of scale depends on both product-specific economies of scale and economies of scope.  

Whether there is increasing or decreasing returns to scale will depend however on the 

signs on the individual components of αij in relation to αo at different output levels. 
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4.  Data and Estimation Procedure 

 The data used in this paper comprise of the prices of eight inputs (seed, fertilizer, 

pesticides, feed, energy, labor, land and machinery) as well as the gross output quantities 

for crop and livestock production.  The observations span across 106 farms over 26 years, 

amounting to 2756 observations2.  The normalized versions of both functional forms 

(GBC and Composite) using machinery were estimated3.  This might seem reasonable 

since they are only needed in this context in the evaluation of curvature property, which 

was not imposed in this paper. 

 Systems of cost and factor demand or share equations including the error terms 

were estimated using a Marquardt nonlinear estimation procedure in SAS.  The system of 

nonlinear equations can be estimated using a seemingly unrelated regression (SUR) 

method.  However, this will be inappropriate in this context since it may generate 

inconsistent estimates because of the endogeneity of the observed cost, which appears on 

the right hand side of the factor demand equations in the Box-Cox specifications.  As an 

alternative, iterative 3-stage least squares (IT3SLS), which guarantees a level of 

consistency is therefore used in this paper.  This requires inclusion of instruments defined 

as lagged prices, cost and outputs up to a 3rd-lag. 

 The coefficient ‘lambda’ in the Box-Cox model, in conjunction with other 

parameters, was estimated parametrically and hypothesis testing was done, using Wald, 

test.  The parametric estimation of lambda was difficult until a range (bound) of 0.3 ≤ λ ≤ 

5 was imposed in the SAS proc model.  Numbers outside this were problematic, 

especially those very close to zero or involving negative signs.  This is understandable 

                                                 
2 Zero output quantities were substituted with a 10 percent of the mean to avoid missing values as well as 
estimation problems when the natural logarithm was taken.  
3 The share equation for machinery input was not recovered. 
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since equations 3 and 4 will only be finite for lambda values that are greater than zero. 

Estimation involving lambda equals zero and lambda equals one (i.e. special or limiting 

cases of TLOG and GL cost functions, respectively) therefore proved to be complex.  To 

manage this problem, a grid search4 was done by estimating lambda at values close to one 

(GL case).  The estimated lambda values that do not increase the objective values5 away 

from 1 was adopted in place of the exact values that were problematic.  Trials with 

different values yielded 1.13 for lambda equals 1(GL).  This value was adopted in 

computing other economic estimates of interest since it is not expected to perform poorly.  

Another alternative, in the sense of Bruno De Burger, would be to specify and estimate 

the translog and the generalized Leontief functions separately without incorporating them 

within the generalized Box-Cox specification.  A separate function was therefore 

specified and estimated for the translog case.  In both cases of the translog and the 

composite cost function, the same estimation procedures (Marquardt and IT3SLS) as 

obtained for generalized Box-Cox were used.  This is to enable consistent comparison of 

the parameters that are obtained from them. 

 

5.  Empirical Results and Discussion  

 The estimated results from the four different cases of the generalized Box-Cox 

cost function (GBC, GL, GSRQ, and TLOG) as well as those from the composite cost 

function are reported in tables 1, 2, 3 and 4.   

Table 1 presents the parameter estimates for generalized Box-Cox cost functions.  

Of the 47 coefficients, 40 and 31 were significantly different from zero at the 5% level 

                                                 
4 Thanks to Dr. James Chalfant of University of California, Davis and Dr. Bruno De Burger of University                                        
of Antwerp, Antwerp, Belgium for their suggestions in this regard. 
5 Since this is a cost minimization exercise. 
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for the GBC and the GL, respectively.  For the TLOG, 38 coefficients were significant.  

In the remaining special case, GSRQ, much less statistical significance was observed.  

The use of the Wald (table 3) test statistic indicates that the special cases are rejected at 

the 5% level.   

 The composite cost function results, depicted in table 3, indicate that 41 out of 55 

coefficients are significantly different from zero at the 5% level.  Estimated elasticity 

measures (both of substitution and price) are presented in tables 5 to 8.  The marginal 

costs are in table 9, while the cost elasticities measures with respect to the output of crop 

and livestock are depicted in table 10.  All elasticity estimates were calculated at the 

mean of the price and output variables.  These estimates seem reasonable, but only that 

some of the own-price elasticities are not consistent with the theory.  There is therefore a 

need for the curvature imposition, although was not carried out as mentioned earlier.   

The marginal costs are all positive except for the GBC function (table 9).  The 

negative values for the GBC result in the negative values of the cost elasticities.  Table 11 

contains the estimates for the multi-product (overall) economies of scale as well as the 

product-specific counterpart.  The product-specific scale measures are positive unless that 

for livestock under the TLOG and the GBC.  There are mixed outcomes for these 

measures, indicating all three types of returns to scale – increasing returns to scale (IRS) 

if measures are greater than 1, decreasing returns to scale (DRS) if lower than 1, and 

constant returns to scale (CRS) if close to 1.  IRS seems to dominate for the product-

specific economies.  In the case of the overall scale economies, both DRS and IRS 

dominate.   
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The economies of scope measures are presented in table 12.  The GSRQ produces 

a negative scope measure, therefore indicating that diseconomies of scope exist.  They 

are, however, positive under other forms.  This shows that economies of scope exist 

meaning that splintering production into single crop or livestock operation would not be 

cost efficient.  Both scope and product-specific measures have therefore contributed in 

varying degree to cost efficiency of farms as recorded in the results tables. 

Overall, using the t-test, the GL and the composite form appear to have performed 

better than the other functional specifications.  This is because they result in many 

significant coefficients as well as more robust economies measures.  The TLOG 

measures of scale and scope might have been affected by the method used via the 

incremental, marginal and total costs calculated using the simple calculus.  When the 

Wald test is administered, GBC with a lambda value of 0.3712 stands out to be the 

appropriate functional form.  This lambda value could be approximated to zero, which 

makes the TLOG also a candidate for appropriate form although it is rejected with the 

other special cases of GL and GSRQ. 

 

6.  Summary and Conclusion  

 Five functional forms, four of which are special cases in Box-Cox specification 

and the composite type were used in this paper.  By making series of estimations with 

different bounds, lambda was parametrically estimated.  All the special cases for the Box-

Cox (GL, TLOG, GSRQ) were rejected when tested against the GBC at the 5% chi-

square level.  Nevertheless, the GL and the composite forms give the more robust 

measures.  The results also show the IRS is common for product-specific economies, 
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while DRS and IRS prevails for the overall counterpart.  It could be summarized that 

major contribution to cost efficiency has comes from joint production of crop and 

livestock.  

 The results could be improved in some ways.  The first and the most important 

suggestion for further research is that of curvature imposition since the results need to be 

consistent with the theory.  The elasticity estimates and other economic parameters 

derived from the functional forms will only be reliable if the regularity properties are 

satisfied.    Alternative specification of GL is needed since it was approximated by using 

grid search in the neighborhood of one.  The use of a full information maximum 

likelihood (FIML) method is recommended.  This enables easy computation of the 

generalized R-square, which is appropriate to test the goodness of fit of the different 

forms specifications.       
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Table 1: Estimated Generalized Box-Cox (GBC) Cost Function. 
 
        GBC      GL    GSRQ 

 
 Parameter Std Error Parameter Std Error Parameter Std Error 
       

      γ11 4.1592* 1.2671    0.0139* 0.0064 0.0053 0.0047 
γ12 -0.6405 0.9123   -0.0035 0.0028 -0.0024 0.0024 
γ13  0.4277 0.8734   -0.0050 0.0031 -0.0028 0.0031 
γ14 -2.9627* 0.8385   -0.0033 0.0021 0.0025 0.0021 
γ15   0.8685 0.6003    0.0007 0.0014 0.0013 0.0014 
γ16 -4.6448* 1.2093   -0.0057 0.0033 -0.0032 0.0029 
γ17 6.6477* 2.3126    0.0145 0.0115 -0.0008 0.0000 
γ22 11.1730* 2.2042    0.0056 0.0035 -0.0085 0.0063 
γ23   0.4355 0.9122    0.0019 0.0026 0.0039 0.0033 
γ24 2.2904* 0.8627    0.0045 0.0023 0.0206 0.0147 
γ25 -1.4965* 0.5625  -0.0013 0.0013 -0.0034 0.0026 
γ26 4.3792* 1.3054   -0.0138* 0.0056 -0.0066 0.0051 
γ27 -24.0088* 5.3881    0.0661* 0.0252 -0.0036 0.0000 
γ33 -2.4540*   1.0258   -0.0039 0.0030 -0.0092 0.0072 
γ34 -4.0270* 1.0102   -0.0019 0.0020 0.0038 0.0031 
γ35   0.1015 0.5300 -0.0047* 0.0022 -0.0053 0.0039 
γ36 2.0104* 0.9156 0.0208* 0.0084 0.0099 0.0072 
γ37 8.2845* 2.5365 -0.0375* 0.0183 -0.0003 0.0000 
γ44  -1.5413 1.0694   0.0045 0.0024 -0.0394 0.0284 
γ45 3.2787* 0.8014 0.0044* 0.0019 0.0122 0.0086 
γ46 -0.9379 0.8649   0.0014 0.0023 0.0063 0.0048 
γ47 10.6039* 3.3329 -0.0731* 0.0292 -0.0059 0.0000 
γ55 9.6914* 1.9752 0.0066* 0.0029 0.0070 0.0050 
γ56 2.5550* 0.8274 -0.0166* 0.0062 -0.0110 0.0078 
γ57 -26.2777* 5.9200 0.0523* 0.0189 -0.0007 0.0000 
γ66 7.2711*    1.7305 -0.0081* 0.0039 0.0080 0.0057 
γ67 -11.3067* 2.9660 0.0331* 0.0134 -0.0034 0.0000 
γ77 15.0992* 4.2821 0.4845* 0.2027 1.6100 1.1925 
βc -1.2023* 0.0400 0.7650* 0.0636 1.1341* 0.0830 
βl -0.6424* 0.0476 0.9910* 0.0533 2.0962* 0.0412 
θcc 0.1940* 0.0076 0.1035* 0.0068 0.1439* 0.0095 
θlc 0.1461* 0.0043 -0.2041* 0.0067 -0.2530* 0.0065 
θll 0.0071* 0.0030 0.1501* 0.0032 0.0241* 0.0045 
φc1 -0.0050* 0.0013 0.0143* 0.0009 0.0001* 0.0000 
φc2 0.0395* 0.0012 -0.0013 0.0012 0.0001* 0.0000 
φc3 -0.0152* 0.0016 0.0238* 0.0009 0.0001* 0.0000 
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φc4 -0.0965* 0.0035 -0.0270* 0.0029 -0.0005* 0.0000 
φc5 0.0556* 0.0019 -0.0024* 0.0007 0.0001* 0.0000 
φc6 -0.0263* 0.0020 0.0281* 0.0016 0.0000* 0.0000 
φc7 0.2590* 0.0088 -0.1130* 0.0037 0.0001* 0.0000 
φl1 -0.0079* 0.0009 -0.0102* 0.0005 -0.0001* 0.0000 
φl2 -0.0142* 0.0007 -0.0011 0.0008 -0.0001* 0.0000 
φl3 -0.0032* 0.0011 -0.0118* 0.0005 0.0000* 0.0000 
φl4 0.0949* 0.0021 0.0769* 0.0019 0.0006* 0.0000 
φl5 -0.0088* 0.0016 0.0042* 0.0005 0.0000* 0.0000 
φl6 0.0099* 0.0013 -0.0054* 0.0010 0.0000* 0.0000 
φl7 -0.0445* 0.0077 0.0560* 0.0031 -0.0004* 0.0000 
λ   0.3712      -   1.13      -    2.0        - 

 
  Std Error=Standard error;  GBC=Generalized Box-Cox;  
                GL=Generalized Leontief; GSRQ=Generalized Square-Root Quadratic.    
                * indicates significant at the 5 percent level 
 
 
 

Table 2. Estimated Translog(TLOG) Cost Function 
  

 Parameter Std Error  Parameter Std Error  Parameter Std Error 
         
α0 -5.9747* 1.3069 γ26 -0.0008 0.0120 βl 0.6997* 0.1890 
α1 0.0000 0.0286 γ27 -0.0885* 0.0168 θcc 0.1134* 0.0138 
α2 -0.0525 0.0323 γ33 0.0017 0.0048  θlc 0.4238* 0.0341 
α3 -0.0123 0.0252 γ34 -0.0091 0.0067 θll 0.1212* 0.0056 
α4 -0.4719* 0.0294 γ35 -0.0204* 0.0053 φc1 0.0141* 0.0007 
α5 0.0912* 0.0203 γ36 0.0042 0.0102 φc2 0.0128* 0.0010 
α6 0.1290* 0.0345 γ37 0.0133 0.0132 φc3 0.0161* 0.0007 
α7 1.3165* 0.0585 γ44 0.0455* 0.0057 φc4 -0.0178* 0.0020 
γ11 0.0339* 0.0073 γ45 0.0204* 0.0045 φc5 0.0000 0.0006 
γ12 -0.0138 0.0095 γ46 0.0318* 0.0075 φc6 0.0142* 0.0010 
γ13 -0.0143 0.0083 γ47 -0.1902* 0.0136 φc7 -0.0395* 0.0020 
γ14 -0.0038 0.0073 γ55 0.0233* 0.0025 φl1 -0.0082* 0.0005 
γ15 -0.0119 0.0059 γ56 -0.0518* 0.0065 φl2 -0.0135* 0.0007 
γ16 -0.0640* 0.0120 γ57 -0.0047 0.0107 φl3 -0.0040* 0.0005 
γ17 -0.0032 0.0151 γ66 -0.0109* 0.0087 φl4 0.0684* 0.0014 
γ22 0.0447* 0.0064 γ67 0.1015* 0.0181 φl5 -0.0048* 0.0004 
γ23 -0.0013 0.0083 γ77 0.1604* 0.0152 φl6 0.0040* 0.0007 
γ24 0.0173* 0.0087 βc 0.0212* 0.2443 φl7 -0.0419* 0.0014 
γ25 -0.0092 0.0057       
 
* indicates significance at 5 percent level. 
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 Table 3.  Test Results on GBC 
 

        λ Value   Wald Statistic  
TLOG  0        1709.10          
GL  1        4905.70              
GSRQ  2      32914.00 
GBC              0.37                   -  
 Note:  GBC cannot be rejected.  All others forms are rejected. 

 
 

 Table 4: Estimated Composite Cost Function 
(a) Output Portion: 

 Parameter       Std Error   Parameter Std Error 
          α0 30.0957 20.1372                γc5 -0.0007 0.0024 

α1 0.3771* 0.0836 γc6 0.0497* 0.0127 
α2 0.4688* 0.1040 γc7 -0.2106* 0.0456 
α11 -0.0001* 0.0000 γl1 -0.0020 0.0046 
α12 -0.0004* 0.0001 γl2 -0.0283* 0.0074 
α22 0.0000* 0.0000 γl3 0.0277* 0.0070 
γc1 0.0504* 0.0111 γl4 0.3149* 0.0673 
γc2 0.0290* 0.0070 γl5 -0.0159* 0.0043 
γc3 0.0631* 0.0138 γl6 0.0648* 0.0160 
γc4 -0.0268* 0.0092 γl7 -0.3168* 0.0680 

(b)Translog Portion (i.e., of input prices): 
 Parameter        Std Error  Parameter Std Error  

         β1 -0.0383 0.1084 β26 0.0715* 0.0121 
β2 0.7108* 0.0753 β27 -0.0556* 0.0027 
β3 -0.4366* 0.0781 β33 0.0346* 0.0117 
β4 -0.1353* 0.0404 β34 -0.0277* 0.0082 
β5 0.1532* 0.0522 β35 -0.0101 0.0052 
β6 0.9976* 0.0968 β36 -0.0145 0.0124 
β7 -0.2514* 0.1132 β37 0.0077* 0.0026 
β11 0.0782* 0.0144 β44 0.0645* 0.0141 
β12 -0.0072 0.0090 β45 -0.0025 0.0046 
β13 -0.0017 0.0095 β46 -0.0332* 0.0110 
β14 -0.0211* 0.0080 β47 -0.0181* 0.0055 
β15 0.0028 0.0055 β55 0.0681* 0.0044 
β16 -0.0502* 0.0137 β56 -0.0198* 0.0075 
β17 -0.0077* 0.0023 β57 -0.0406* 0.0017 
β22 0.0994* 0.0113 β66 0.1801* 0.0161 
β23 -0.0024 0.0092 β67 0.0046 0.0048 
β24 -0.0145 0.0087 β77 -0.2896* 0.0064 
β25 0.0051 0.0048  

        * shows significace at the 5 percent level 
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Table 5: Elasticities of Substitution between Inputs (GBC) 
 
   Seed Fert    Pest     Feed    Energy   Labor   Land 
Seed   14.4241  -0.3476   0.5930  -6.8131   7.1878 -33.9020  10.1578 
Fert   -0.3476   6.5508   3.3887   3.8005  -2.6964  16.4790  -9.5408 
Pest    0.5930   3.3887 -29.9173 -10.4393   5.1341  11.5289  13.5612 
Feed   -6.8131   3.8005 -10.4393  -6.0375   7.0608  -3.0022   6.0877 
Energy  7.1878  -2.6964   5.1341   7.0608   4.2563  15.6117 -16.7315 
Labor -33.9020  16.4790  11.5289  -3.0022  15.6117  41.8664  -3.9009 
Land   10.1578  -9.5408  13.5612   6.0877 -16.7315  -3.9009  -9.5188  
 
Fert=Fertilizer; Pest=Pesticides; GBC=Generalized Box-Cox. 
 
 
Table 6: Elasticities of Substitution between Inputs (GL) 
 
    Seed      Fert     Pest     Feed    Energy   Labor    Land 
Seed  23.5662   -4.2057 -13.5464  -1.7151   1.9450 -15.9314   2.7116 
Fert   -4.2057   -0.3791   4.7877   4.1395  -1.3562 -16.9336   3.6745 
Pest  -13.5464    4.7877 -45.7285  -1.7317  -7.5895  67.5496  -3.8361 
Feed   -1.7151    4.1395  -1.7317  -9.0150   4.6619   0.3685  -0.9864   
Energy  1.9450   -1.3562  -7.5895   4.6619   2.5218 -32.1512   5.0965 
Labor -15.9314  -16.9336  67.5496   0.3685 -32.1512 -79.1947  13.5098 
land    2.7116    3.6745  -3.8361  -0.9864   5.0965  13.5098   1.4668 
 
Fert=Fertilizer; Pest=Pesticides; GL=Generalized Leontief.  
 
 
Table 7: Elasticities of Substitution between Inputs (GSRQ) 
 
     Seed            Fert         Pest Feed     Energy           Labor      Land 
Seed  -304.637   64.190   160.286  -46.845  -56.142   208.528  0.368 
Fert    64.190  106.643  -106.479 -176.258   66.674   204.766  1.862  
Pest   160.286 -106.479   537.296  -70.5134 226.145  -665.743 -0.513 
Feed   -46.845 -176.258   -70.513  223.999 -162.306  -132.234  2.206   
Energy -56.142   66.674   226.145 -162.306 -216.870   534.746 -0.105 
Labor  208.528  204.766  -665.743 -132.234  534.746  -598.858  5.326 
Land     0.368    1.862    -0.513    2.206   -0.105     5.326 -1.748   
 
Fert=Fertilizer; Pest=Pesticides; GSRQ=Generalized Square Root Quadratic. 
 
 
 
Table 8: Price Elasticity of Demand for Seed 
 
     Seed  Fert     Pest Feed    Energy   Labor    Land 
GBC    0.7080   0.6520  -1.3274  -0.8600   0.3374   1.9563  -2.6446 
TLOG    0.0491   0.0996   0.0444   0.1433   0.0792   0.0467   0.2776 
GL    1.1567  -0.0377  -2.0289  -1.2842   0.1999  -3.7005   0.4075 
GSRQ  -14.9520  10.6141  23.8388  31.9079 -17.1933 -27.9823  -0.4856 
Comp    0.0511   0.0981   0.0491   0.1994   0.0770   0.0622   0.2617 
 
Fert=Fertilizer; Pest=Pesticides. GBC=Generalized Box-Cox; TLOG=Traslog; GL=Generalized Leontief; GSRQ=Generalized 
Square Root Quadratic; and Comp=Composite. 
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Table 9: Estimated Marginal Cost 
 
   Crop  Livestock 
 
GBC             -0.7618       -0.1493 
TLOG            1.4613        1.1746 
GL       0.8529        0.9853 
GSRQ       1.0195        2.0713 
Composite      0.4041        0.6067 
 
GBC=Generalized Box-Cox; TLOG=Traslog; GL=Generalized Leontief; GSRQ=Generalized 
Square Root Quadratic; and Comp=Composite. 
 
 
 
 
Table 10: Cost Elasticities Measures 
 
       Crop      Livestock 
GBC      -0.6480       -0.0986 
TLOG       1.2432        0.7760 
GL       0.7256        0.6509 
GSRQ       0.8673        1.3684 
Composite      0.3438        0.4008 
 
GBC=Generalized Box-Cox; TLOG=Traslog; GL=Generalized Leontief; GSRQ=Generalized 
Square Root Quadratic; and Comp=Composite. 
 
 
 
 
Table 11: Scale Economies 
 

Multi-product     Product Specific 
     Crop  Livestock 
 

GBC           -0.6842          2.3068           -4.5694 
TLOG           0.3007   0.1011           -1.863 
GL     1.0240          0.9911            0.5643 
GSRQ     0.4424   0.5570            0.9133 
Composite    1.4279          1.3371            1.2254 
 
GBC=Generalized Box-Cox; TLOG=Traslog; GL=Generalized Leontief; GSRQ=Generalized 
Square Root Quadratic; and Comp=Composite. 
 
 
 
 
Table 12: Scope Economies 
 
GBC   3.0441 
TLOG   3.1737    
GL   0.2293 
GSRQ       -0.4696    
Composite  0.1057 

 
GBC=Generalized Box-Cox; TLOG=Traslog; GL=Generalized Leontief; GSRQ=Generalized 
Square Root Quadratic; and Comp=Composite. 
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