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INNOVATION ACTIVITY IN A MIXED OLIGOPOLY: THE ROLE OF CO-OPERATIVES 
 
Abstract: This paper develops a sequential game theoretic model of heterogeneous producers to 

examine the effect of co-operative involvement on innovation activity in the agricultural input-

supplying sector. Analytical results show that the co-operative involvement in R&D can be 

welfare enhancing and, thus, socially desirable. The presence of the co-op can increase the 

arrival rate of innovations and productivity growth while reducing the prices of agricultural 

inputs. The effectiveness of the co-op is determined by the size of R&D costs.  

 
 
Innovation activity is a critical element of business conduct affecting the competitiveness of firms, 

the arrival rate of innovations in the economy, productivity growth and social welfare. The 

strategic interactions among innovating firms and their effect on innovating behavior have 

received considerable attention. In particular, the focus has been on R&D competition in a pure 

oligopoly (i.e., a small number of profit-maximizing, investor-owned firms (IOFs)), and the 

consequence of this competition for the structure of the market and the arrival rate of innovations. 

A key finding of studies on patent-races among IOFs is the so-called ε-preemption; an IOF that 

starts its innovation activity prior to its rivals (or an IOF that has been luckier in making an 

innovation) eventually becomes a monopolist (see Fudenberg et al; Grossman and Shapiro; Sutton; 

Delbono; Aoki; and Malueg and Tsutsui. For Schumpeterian models of innovation competition see 

Aghion and Howitt (1992, 1998); and Segerstrom, Avant, and Dinopoulos).  

Despite the prevalence of mixed markets where co-operatives (co-ops) compete alongside 

IOFs, the effect of co-operative organizations on R&D activity has not been considered 

previously. Part of the reason for this lack of research is that co-ops have not traditionally played 

a major role in R&D activity. Indeed, the standard view has been that co-ops are largely 

concentrated in the vertical stages just before and just after the farm enterprise (Rogers and 

Marion). While co-ops are still largely concentrated near the farm gate, a number of them are 
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taking steps to position themselves via their R&D activities. Important examples include 

Limagrain (Joly), Cebeco (Bijman and Joly), and Cosun (which owns 50% of Advanta; see 

Bijman) in Europe, while co-ops in the U.S. such as Ocean Spray have long been known for their 

R&D activity. 

The objective of this paper is to examine the role of co-ops in innovation activity and 

determine the consequences of co-operative involvement for the arrival rate of innovations, the 

pricing behavior of oligopolists, and social welfare. Specifically, this paper examines the 

outcome of innovation competition in the context of a mixed duopoly where a co-op and an IOF 

compete in supplying an input (seed) to agricultural producers. 

The strategic interaction between the co-op and the IOF is modeled as a three-period 

sequential game. In period 1, the two organizations make their R&D investment decisions that 

allow them to make process innovations and reduce their (marginal) cost of production. In period 

2, the production costs are fixed and the two rivals engage in an intense price competition. 

Finally, in period 3, the agricultural producers make their purchasing decisions observing the 

prices of the two products. The case of a pure oligopoly is also analyzed and is used as a 

benchmark for determining the consequences of co-operative involvement in R&D. 

To avoid Nash equilibria involving non-credible strategies, the different formulations of 

the game are solved using backward induction (Gibbons) – the problem of the farmers is 

considered first, the pricing behavior of the two input suppliers is analyzed next, and the solution 

to the R&D investment problem determines the subgame perfect equilibrium amount of R&D, 

pricing of agricultural inputs, and farmers’ purchasing decisions and welfare.  

In addition to analyzing the role of co-ops in innovation activity, a distinct feature of this 

paper is that it relaxes the conventional assumption of producer homogeneity. Instead, farmers 
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are postulated to differ in such things as the location and quality of land, education, experience, 

management skills, technology adopted etc. Farmer heterogeneity in terms of production factors 

is a key component in our model capturing the differences in the relative returns received by 

farmers from the use of the inputs supplied by the co-op and the IOF.   

The rest of the paper is organized as follows. The next section presents a simple model of 

horizontal product differentiation where agricultural producers differ in the returns they receive 

from the use of inputs (e.g., seeds) sold by different agricultural input suppliers. The paper then 

analyzes price and innovation competition between two profit-maximizing input-supplying IOFs. 

The effect of co-operative involvement on innovation activity, the pricing of agricultural inputs 

and the welfare of the interest groups is examined before the concluding section of the paper. 

 

Producer Decisions and Welfare 

Consider a producer that is determining the input (seed) that will be used in his production 

process. As mentioned previously, farmers are assumed to differ in the returns they receive from 

using different inputs. Let a∈[0, 1] denote the attribute that differentiates producers. A producer 

with attribute a has the following net returns function: 

 
( )app s

I
FF

I λ+−=Π  If a unit of Supplier 1’s seed is purchased  
(1) 

( )[ ]app s
C

FF
C −+−=Π 1µ  If a unit of Supplier 2’s seed is purchased 

 

where F
IΠ  and F

CΠ  are the net returns associated with unit output production using seed 

supplied by Supplier 1 and Supplier 2, respectively. The parameter Fp  is the farm price (net of 

all production costs except for seed) for the output produced; s
Ip  and s

Cp  are the costs of the 
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seeds supplied by Supplier 1 and Supplier 2, respectively; and λ and µ are non-negative 

agronomic factors associated with the use of seed supplied by Supplier 1 and Supplier 2, 

respectively. Ceteris paribus, the seed of Supplier 2 is more suitable to the production process of 

farmers with large values of the differentiating attribute a while producers with low values of a 

prefer utilizing seed of Supplier 1. 

To allow for positive market shares of the two seeds, it is assumed that s
I

s
C pp −≥λ  and 

s
C

s
I pp −≥µ  (see equations (3) and (4) below), while, to retain tractability of the model, the 

analysis assumes that producers are uniformly distributed between the polar values of a. The 

implications of relaxing this assumption to allow a concentration of producers at the ends of the 

spectrum (i.e., zero and one) are straightforward and are discussed throughout the text.  

 Each farmer produces one unit of the farm output and his input (seed) choice is 

determined by the relationship between F
IΠ  and F

CΠ . Figure 1 illustrates the decisions and 

welfare of producers. The downward sloping curve graphs net returns when seed from Supplier 1 

is used, while the upward sloping line shows the net returns when Supplier 2’s seed is used for 

different levels of the differentiating attribute a. The intersection of the two net return curves 

determines the level of the differentiating attribute that corresponds to the indifferent producer. 

The producer with differentiating characteristic s
Ia  given by:  

 

(2) ( ) ( )[ ]
µλ

µµλ
+
−+

=⇒−+−=+−⇒Π=Π
s
I

s
Cs

I
s
I

s
C

Fs
I

s
I

FF
C

F
I

s
I

ppaappappa 1:  

 

is indifferent between buying from Supplier 1 and buying from Supplier 2 – the net returns from 

using these two seeds are the same. Producers “located” to the left of s
Ia  (i.e., producers with 



 5

a∈[0, s
Ia )) purchase from Supplier 1 while those located to the right of s

Ia  (i.e., producers with 

a∈( s
Ia , 1]) buy from Supplier 2. Aggregate producer welfare is given by the area underneath the 

effective net returns curve shown as the (bold dashed) kinked curve in Figure 1. 

 When producers are uniformly distributed with respect to their differentiating attribute a, 

the level of a corresponding to the indifferent producer, s
Ia , also determines the share of farm 

output produced with seed from Supplier 1. The share of farm output produced with seed from 

Supplier 2 is given by 1- s
Ia . Assuming fixed proportions between seed and farm output, s

Ia  and 

1- s
Ia  give the market shares of the two input suppliers. By normalizing the mass of producers at 

unity, the market shares give the producer demands faced by Supplier 1, s
Ix , and Supplier 2, s

Cx , 

respectively (Mussa and Rosen). In what follows, the terms “market share” and “demand” will 

be used interchangeably to denote s
Ix  or/and s

Cx . Formally, s
Ix  and s

Cx  can be written as: 

 

(3) 
µλ

µ
+
−+

=
s
I

s
Cs

I
ppx   

(4) 
µλ

λ
+
−+

=
s
C

s
Is

C
ppx  

 

When the two input suppliers charge the same price to consumers (i.e., when s
Ip  = s

Cp ), 

s
Ix  and s

Cx  depend on the relative magnitude of the agronomic factors λ and µ. When λ is greater 

(smaller) than µ the demand faced by Supplier 1 is smaller (greater) than the demand faced by 

Supplier 2. Obviously, when λ equals µ, the two competitors split the market equally (i.e., 

s
Ix = s

Cx =
2
1 ).  
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 Comparative statics results can be shown graphically. A reduction in s
Cp  shifts the F

CΠ  

curve upwards and increases s
Cx , while a reduction in s

Ip  causes an upward shift of the F
IΠ  

curve and a reduction in s
Cx  (i.e., 0<

∂
∂

s
C

s
C

p
x  and 0>

∂
∂

s
I

s
C

p
x ). A decrease in the agronomic factor λ 

causes a rightward rotation of the F
IΠ  curve through the intercept at s

I
F pp − , which in turn 

increases the demand faced by Supplier 2 (i.e., 0>
∂
∂
λ

s
Cx ). Obviously, when λ is relatively low 

(i.e., s
I

s
C pp −<λ ), the F

CΠ  curve lies underneath F
IΠ  for all values of a and all producers buy 

from Supplier 1 (i.e., s
Cx  = 0). 

 Panels a and b of Figure 2 graph the inverse demand curves faced by Supplier 1, D( s
Ix ), 

and Supplier 2, D( s
Cx ), respectively, and further demonstrate the strategic interdependence 

between the two suppliers of the input – the price of Supplier 1 is a direct argument in the 

demand faced by Supplier 2 and vice versa.  

 Note that the analysis can be easily modified to examine cases where farmers are not 

uniformly distributed with respect to their value of a but, rather, are concentrated at either end of 

the continuum. Specifically, when the distribution of producers is continuous (but not uniform), 

the market shares of the two input suppliers depend on its skewness, i.e., the more skewed is the 

distribution towards 1, the greater is the market share of (and the demand for) seed supplied by 

Supplier 2. 
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Benchmark Case: Innovation and Pricing Decisions in a Pure Oligopoly 

Price Competition (2nd Stage of the Game)  

Consider now the optimizing decisions of the two profit-maximizing input suppliers that are 

involved in a Bertrand price competition (i.e., they choose their prices simultaneously). The 

problem of each supplier is to determine the price of seed that maximizes its profits given the 

price of the other supplier and the producer demand for its product (seed). Specifically, Supplier 

1’s problem can be written as:  

 

(5) 

( ) ( )

µλ
µ
+
−+

=

−=Π

s
I

s
Cs

I

s
II

s
I

s
C

s
II

p

ppxts

xcppp
s
I

..

,max

 

 
where Ic  represents the constant marginal cost of seed production of Supplier 1. Supplier 2’s 

problem is: 

 

(6) 

( ) ( )

µλ
λ
+
−+

=

−=Π

s
C

s
Is

C

s
CC

s
C

s
I

s
CC

p

ppxts

xcppp
s
I

..

,max

 

 
where Cc  represents the constant marginal cost of seed production of Supplier 2. Recall that Ic  

and Cc  are determined by the innovation decisions of the two suppliers at the first stage of the 

game and are fixed when the two IOFs choose their prices.  

 Solving the input suppliers’ problems shows the standard result that profits are 

maximized at the price-quantity combination determined by the equality of the marginal revenue 

and the marginal cost of production. Specifically, for any s
Cp , the best-response function of 
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Supplier 1 (i.e., the profit-maximizing price of Supplier 1) is given by 
2

I
s
Cs

I
cp

p
++

=
µ

. 

Similarly, for any s
Ip , the best-response function of Supplier 2 is 

2
C

s
Is

C
cp

p
++

=
λ

. Solving the 

best response functions of the two suppliers simultaneously and substituting s
Ip  and s

Cp  into 

equations (3) and (4) gives the Nash equilibrium prices and quantities for the two competitors as 

a function of marginal costs of seed production, Ic  and Cc , and the agronomic parameters λ and 

µ, i.e., 

 

(7) 
( )

3
2* ICs

I
cc

p
+++

=
µλ

  

(8) ( )µλ
µλ

+
−++

=
3

2* ICs
I

cc
x  

(9) 
( )

3
2* CIs

C
cc

p
+++

=
λµ

  

(10) ( )µλ
µλ

+
++−

=
3

2* ICs
C

cc
x  

 

The equilibrium profits of the two input suppliers from selling their seeds are then equal to: 

 

(11) 
( )

( )µλ
µλ
+

−++
=Π

9
2 2

* IC
I

cc
 

 (12)  
( )

( )µλ
µλ
+

++−
=Π

9
2 2

* IC
C

cc
 

 

The best-response functions of the two suppliers and the determination of the Nash equilibrium 

prices are graphed in Figure 3. Figure 4 depicts the equilibrium prices, quantities and profits of 

the two suppliers. 



 9

Innovation Competition (1st Stage of the Game)  

At this stage, Supplier 1 and Supplier 2 determine the optimal amount of R&D, It  and Ct  

respectively. R&D at the beginning (1st stage) of the game enables the two firms to reduce their 

marginal cost of production ( Ic  and Cc ) which might result in increased competitiveness (and 

profits) when they determine their prices at the 2nd stage of the game. The relationship between 

the amount of R&D and the marginal costs of producing the seeds is given by: 

 
(13) ( ) iiii tctc β−= 0  (i = I, C) 

 
where 0

ic is the marginal cost of seed production of Supplier i prior to (and in the absence of)  

R&D activity, and β represents the effectiveness of R&D effort (i.e., the rate at which R&D 

effort is translated into process innovations for the two rivals).1 To close the model, we assume 

that R&D effort is costly for the two input suppliers with the R&D costs being an increasing 

function of the amount of R&D (see Shy), i.e., 

 

(14) ( ) 2

2
1

iii ttI ψ=   (i = I, C) 

 
where ψ is a strictly positive scalar reflecting the size of R&D costs.  

The problem of Supplier 1 at this stage of the game is the determination of R&D effort 

that maximizes its total profits (i.e., profits from selling the seed, *
IΠ , minus the R&D costs, II ) 

and can be written as: 

                                                 
1 While the assumption of deterministic process innovations is adopted in this paper, the model can be 
easily modified to examine the case of stochastic innovations (when R&D effort affects the probability 
that certain production cost reductions will be realized). While consideration of stochastic innovations 
changes the results quantitatively, the qualitative nature of our results regarding the effect of co-operative 
involvement in R&D activity remains unaffected.    
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(15) 
( ) ( )

( )

( )
β

ψ
µλ

βµλ

0

2
20

*

0..

2
1

9
2

max

I
III

I
IIc

III
T
I

t

c
ttcts

t
tcc

tI
I

≤⇒≥

−
+

+−++
=−Π=Π

 

 
Similarly, the problem of Supplier 2 can be expressed as: 

 

(16) 
( ) ( )

( )

( )
β

ψ
µλ
µβλ

0

2
20

*

0..

2
1

9
2

max

C
CCC

C
ICC

CCC
T
C

t

c
ttcts

t
ctc

tI
C

≤⇒≥

−
+

+++−
=−Π=Π

 

 

Solving the Kuhn-Tucker conditions for the two suppliers shows that their optimal R&D 

effort depends on the size of R&D costs, ψ. Specifically, for Supplier 1, if 

( )
( ) 0

2

9
22

I

C
I c

c
µλ
λµβ

ψψ
+

++
=≤ + , then this supplier exerts maximum R&D effort, i.e., 

 

(17) 
β

0
I

I
c

t =  

 

Note that when R&D costs are low, the optimal R&D strategy of Supplier 1 is not function of the 

R&D effort exerted by Supplier 2. If, on the other hand, +≥ Iψψ , the optimal It  is function of 

Ct  and equals:  

 

(18)  
( )

( ) 2

00

29
22

βψµλ
βλµβ

−+

−+−+
= CCI

I
tcc

t  

 

Figure 5 graphs the determination of optimal It  for the different R&D cost structures. 
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Similarly, for Supplier 2, when 
( )
( ) 0

2

9
22

C

I
C c

c
µλ
λµβ

ψψ
+

++
=≤ + , the optimal R&D effort is 

 (19) 
β

0
C

C
c

t =  

 
while when +≥ Cψψ , the optimal Ct  is: 

 

(20)  
( )

( ) 2

00

29
22

βψµλ
βλµβ

−+

−−++
= CII

C
ctc

t  

 

Thus, when R&D costs are relatively low (i.e., +≤ Iψψ  and +≤ Cψψ ) the Nash 

equilibrium total amount of R&D, Tt , equals: 

 

(21) 
β

00
CI

CI
T cc

ttt
+

=+=  

 
In this case, the marginal costs of production of the two suppliers are zero ( 0== CI cc ). 

Substituting zero for Ic  and Cc  in equations (7)-(10) gives the subgame perfect Nash 

equilibrium prices of seeds and market shares of the two suppliers. 

On the other hand, when R&D costs are relatively high, the Nash equilibrium levels of 

R&D are derived by solving simultaneously the best response functions of the two suppliers 

shown in equations (18) and (20). Specifically, when +≥ Iψψ  and +≥ Cψψ ,  

 

(22) 
( )[ ]

( )[ ]2

200
*

493

2232

βµλψψ

βλµψβ

−+

−+−+
= CI

I
cc

t  

(23) 
( )[ ]

( )[ ]2

200
*

493

2232

βµλψψ

βλµψβ

−+

−−++
= CI

C
cc

t  
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(24)  
ψ
β

3
2** =+= CI

T ttt  

 
The best-response functions of the two suppliers and the determination of the Nash equilibrium 

amounts of R&D when innovation costs are relatively high are graphed in Figure 6.  

 

Innovation and Pricing Decisions in a Mixed Oligopoly: The Role of Co-operatives 

In this scenario Supplier 2 is a co-operative that competes with an investor-owned, profit-

maximizing firm (Supplier 1). In what follows, we will often refer to Supplier 1 as the IOF and 

to Supplier 2 as the co-op. 

 
Price Competition in the Mixed Oligopoly (2nd Stage of the Game)  

Similar to the pure oligopoly case, the problem of Supplier 1 in the 2nd stage of the game is to 

determine the price of seed that maximizes its profits given the price of the other supplier (here 

the co-op) and the producer demand for its product. In fact, Supplier 1’s problem is the same as 

the one specified in equation (5) and the price that maximizes its profits is still given by the 

equality of marginal revenues with marginal costs of production. Thus, for any s
Cp , the best-

response function of Supplier 1 (i.e., the profit-maximizing price of the IOF) is given by 

2
I

s
Cs

I
cp

p
++

=
µ

. 

Unlike Supplier 2 in the pure oligopoly case however, the objective of the input-

supplying co-op is to maximize the welfare of its members. Specifically, the problem of the co-

op is to determine the price s
Cp  that maximizes the welfare of producers that patronize the co-op 

(shown by the shadowed area MW in Figure 1) subject to a non-negative profit constraint. Given 

the price of the IOF, s
Ip , and producer demand schedule, s

Cx , the co-op’s problem is:  
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(25) 

( ) ( )

C
s
CC

s
C

s
Is

C

s
C

s
C

s
C

Fs
I

s
C

p

cp

pp
xts

xxppppMW
s
c

≥⇒≥Π

+
−+

=

−−=

0

..

2
1,max

2

µλ
λ

µ

 

 
where all variables are as previously defined.  

 Solving the co-op’s problem specified above shows that the optimality (Kuhn-Tucker) 

conditions for a maximum are satisfied when the co-op prices its product at marginal cost, i.e., 

MW is maximized when C
s
C cp = .  

 Solving the best response functions of the IOF and the co-op simultaneously we derive 

the Nash equilibrium prices of the seeds, 's
Ip  and 's

Cp . Figure 7 graphs the best response 

functions and the determination of the Nash equilibrium prices in this mixed oligopoly case. 

Substituting 's
Ip  and 's

Cp  into equations (3) and (4) gives the Nash equilibrium quantities for the 

two competitors as a function of the marginal seed production costs, Ic  and Cc , and the 

agronomic parameters λ and µ. Mathematically, the Nash equilibrium prices and quantities in the 

price competition subgame are: 

 

(26) 
2

' CIs
I

cc
p

++
=
µ

  

(27) ( )µλ
µ

+
+−

=
2

' CIs
I

cc
x  

(28) C
s
C cp =

'
  

(29) ( )µλ
λµ

+
−++

=
2
2' CIs

C
cc

x  
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The profits of the two rivals from selling their seeds and the welfare of producers patronizing the  

co-op are then equal to: 

 

(30) 
( )

( )µλ
µ

+
+−

=Π
4

2
' CI
I

cc
 

(31)  0' =ΠC  

(32) ( ) ( )
( )

( )2
2

'

4

2
2
1

2
2

µλ

λµ
µ

µλ
λµ

+

−++
−

+
−++

−= CICI
C

F cccc
cpMW  

 

The determination of the equilibrium prices and quantities is shown graphically in panels a and b 

of Figure 8. Substituting the equilibrium prices for s
Ip  and s

Cp  in Figure 1 determines the 

equilibrium )(
's

I
s
I xa =  and welfare of agricultural producers.  

The equilibrium conditions presented above hold for µ+≤ CI cc . Obviously, if 

µ+> CI cc , the intercept of ( )s
IxD  lies underneath Ic  and the supply of the seed is not 

profitable for the IOF, i.e., s
Ix  = 0. In this case, the net returns curve F

IΠ  becomes irrelevant 

(i.e., producers have no choice of buying the seed from the IOF) and producer welfare is given 

by the area underneath curve F
CΠ  in Figure 1. 

Note that, when compared to the pure oligopoly case, the co-op involvement reduces s
Cp , 

s
Ip  and s

Ix , while increasing s
Cx  and producer welfare. This result holds for given costs of 

production Ic  and Cc , however. If the co-operative involvement affects the optimal amount of 

R&D undertaken by the two suppliers, it will also affect their cost structures. The next section 

examines whether the co-op involvement affects Ic  and Cc  through the process innovation 

activity of the two suppliers. 
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Innovation Competition in the Mixed Oligopoly (1st Stage of the Game)  

At this stage the two suppliers determine the amount of R&D to reduce their cost of production. 

Maintaining the same assumptions regarding the structure of R&D costs (equation (14)) and the 

relationship between the amount of R&D and the marginal costs of producing the seeds 

(equation (13)), we can determine the effect of co-operative involvement on innovation activity 

in the market under concern. 

Similar to the pure oligopoly case, the problem of Supplier 1 (IOF) is to determine the 

amount of R&D that maximizes its total profits, i.e.,  

 

(33) 
( ) ( )

( )

( )
β

ψ
µλ

βµ

0

2
20

'

0..

2
1

4
max

I
III

I
CII

III
T
I

t

c
ttcts

t
ctc

tI
I

≤⇒≥

−
+

++−
=−Π=Π

 

 

On the other hand, the problem of Supplier 2 (co-op) is to determine the R&D effort that 

maximizes total member surplus, i.e., 2 

 

(34) 

( )

( ) ( )
( )

( )
( )

( )
β

ψ
µλ

βλµµ
µλ

βλµ
β

0

2
2
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'

0..

2
1

8

2
2

2
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C
CCC

C
CCICCI

CC
F

CC
T

t

c
ttcts

t
tcctcc

tcp

tIMWMW
C
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−
+

+−++
−

+
+−++

+−=

=−=

 

                                                 
2 Implicit in this formulation of the co-op’s problem is the assumption that the co-op funds its R&D 
activity through some sort of membership fee. An alternative formulation could be the one where the co-
op incorporates its R&D expenses into the price of the input. In such a case, the price charged by the co-
op in the 2nd stage of the game equals the average cost of seed production (Ramsey pricing). While this 
pricing strategy of the co-op changes the results quantitatively (i.e., increases the price of the co-op’s seed 
reducing, this way, both the market share of the co-op and the welfare of co-op members), the qualitative 
nature of the results concerning the effect of co-op involvement on innovation activity remains 
unaffected. 
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The Kuhn-Tucker conditions for the problems specified in equations (33) and (34) show 

that, similar to the case of pure oligopoly, the optimal amounts of R&D of the two input suppliers 

depend on the size of R&D costs, ψ. Specifically, for Supplier 1, if 
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2
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this supplier exerts maximum R&D effort, i.e., 
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If, on the other hand, '+≥ Iψψ , the optimal R&D effort of Supplier 1 is given by:  
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Figure 9 graphs the determination of optimal It  for different R&D costs structures. 

Similarly, for the co-op, when 
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while, when '+≥ Cψψ , the co-op’s optimal R&D effort is: 
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Thus, when R&D costs are relatively low (i.e., '+≤ Iψψ  and '+≤ Cψψ ), the Nash 

equilibrium total amount of R&D, Tt , equals: 

 

(39) 
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00
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T cc

ttt
+

=+=  

 
In this case, the marginal costs of production of the IOF and the co-op are zero ( 0== CI cc ). 

Substituting zero for Ic  and Cc  in equations (26)-(29) we derive the subgame perfect Nash 

equilibrium prices of seeds and market shares of the two input suppliers.  

On the other hand, when R&D costs are relatively high, the Nash equilibrium levels of 

R&D are derived by solving simultaneously the best response functions of the two suppliers 

shown in equations (36) and (38). Specifically, when '+≥ Iψψ  and '+≥ Cψψ :  
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The best-response functions of the two suppliers and the determination of the Nash equilibrium 

amounts of R&D when innovation costs are relatively high are graphed in Figure 10.  
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The Effect of Co-operative Involvement on Innovation Activity 

After having determined the subgame perfect equilibrium conditions in the pure and mixed 

oligopolies, we can now examine the effect of co-operative involvement on R&D activity and 

the welfare of the groups involved (i.e., agricultural producers and input suppliers). The 

consequences of co-operative involvement can be summarized in the two propositions below. 

 
PROPOSITION 1: When innovation costs are relatively low, co-operative involvement does not 

affect the total amount of R&D in the market. The pricing strategy of the co-op, 

however, reduces the prices of the agricultural input faced by producers and the 

profits of the IOF, while increasing the market share of the co-op, and the 

welfare of all producers - members and non-members of the co-op. 

Proof:  It has been shown that, when innovation costs are relatively low, both suppliers will 

undertake the maximum amount of R&D and reduce their production costs to zero. This 

is true in both the pure and the mixed oligopoly cases. However, even though the level of 

innovation activity in the mixed oligopoly is the same as in the pure oligopoly, the 

involvement of the co-operative that maximizes member welfare reduces the prices of the 

seeds ( s
Ip  and s

Cp ), the market share of Supplier 1 ( s
Ix ), and the profits of the two 

suppliers ( IΠ  and CΠ ), while increasing the market share of Supplier 2 (co-op), s
Cx , 

and the welfare of all agricultural producers – members and non-members of the co-op 

(compare equations (17), (19) and (21) with equations (35), (37) and (39) respectively, 

summarized in Table 1).  

 
The situation regarding innovation activity is different when R&D costs are relatively high. 

Specifically, 

 
PROPOSITION 2: When innovation costs are relatively high, co-operative involvement can 

increase the arrival rate of innovations in the economy and social welfare. 

Specifically, the presence of the co-op can increase the total amount of R&D in 

the market - the agricultural co-op invests more than the IOF in the pure 
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oligopoly does and this increase in R&D can outweigh the reduced R&D 

investment by the IOF that competes with a co-op. Coupled with the pricing 

strategy of the (member) welfare maximizing co-op, the increased innovation 

activity results in reduced input prices faced by farmers, and increased welfare 

of all agricultural producers (members and non-members of the co-op). This 

increase in producer welfare under a mixed oligopoly exceeds the reduction in 

suppliers’ profits making the co-operative involvement in the production of the 

agricultural input social welfare enhancing. 

Proof: The effect of co-op involvement on the equilibrium amounts of R&D undertaken by the 

two agricultural input suppliers is shown graphically in Figures 11 and 12. Figure 11 

depicts the R&D reaction functions (best response functions) of the two input suppliers in 

the pure and mixed oligopoly cases. It is shown that, when compared to the reaction 

function of the profit-maximizing Supplier 2 in the pure oligopoly, the reaction function 

of the co-op is shifted outwards while rotating rightwards. The incentives to innovate are 

greater for the co-op because it internalizes the effect of reduced costs and prices (due to 

process innovation) on member welfare.  

On the other hand, the co-op involvement reduces the marginal profitability of 

R&D investment for Supplier 1 – the reaction function of Supplier 1 is shifted inwards 

while rotating leftwards relative to the reaction function of this same supplier when it 

competes with another profit-maximizing IOF. These changes in the reaction functions 

due to the co-op involvement result in increased R&D investment by Supplier 2 (the co-

op in the mixed oligopoly) and reduced investment by Supplier 1 (IOF in both the pure 

and the mixed oligopolies), i.e., *'
II tt <  and *'

CC tt > . The effect of co-operative 

involvement on the incentives of the IOF (Supplier 1) to undertake R&D is also depicted 

in Figure 12. As it is clearly shown in this Figure, the co-op involvement reduces the 

marginal benefits from R&D investment of the IOF, which, for given R&D costs, results 

in reduced R&D effort.  

Regarding the effect of co-operative involvement on total R&D activity, the 

analysis shows that it depends on the size of the R&D costs. In particular, it can be shown  
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that if 
( )
( )2

2

2
32

µλ

λµβ
ψ

+

+
≤ , the increase in ( )*'

CCC ttt −=  due to co-op involvement exceeds  

the reduction in ( )'*
III ttt −=  resulting in increased total R&D investment activity in the 

market (i.e., *'
TT tt > ).  

Note that while the co-op involvement can increase the amount of R&D 

undertaken by the input suppliers, it is not necessary that total R&D increases for farmers 

to benefit from the presence of the co-operative – even if the total amount of R&D falls 

in the mixed oligopoly, producer welfare can still increase in the presence of the co-op. In 

particular, as long as 
β

λµ
3

2 p
C

p
I

CI
cc

tt
−++

<∆−∆ (where p
Ic  and p

Cc  are the equilibrium 

costs of production of the two suppliers in the pure oligopoly case), the price charged by 

Supplier 1 falls in the mixed oligopoly (i.e., *' s
I

s
I pp < ) and, given that s

Cp  is also 

reduced, all producers (members and non-members of the co-op) realize an increase in 

their welfare.  

The effect of the co-operative involvement on the pricing of the agricultural input, 

is shown graphically in Figure 13. Specifically, when Supplier 2 is a co-op instead of an 

IOF, its best response function is constant at cC (i.e., it is not a function of the price 

charged by Supplier 1). On the other hand, the reduced R&D effort of Supplier 1 in the 

mixed oligopoly increases its production cost and causes a parallel upward shift of its  

best response function in the 2nd stage of the game. When 
β

λµ
3

2 p
C

p
I

CI
cc

tt
−++

<∆−∆ ,  

the outcome is the reduced price of both seeds.  

The reduction in prices of the two seeds increases producer welfare by area ∆MW 

in panel c of Figure 14, while the fact that the reduction in s
Cp  exceeds the reduction in 

s
Ip  results in reduced market share of Supplier 1 (IOF) in the mixed oligopoly case.3 The 

effect of co-operative involvement on the equilibrium prices and quantities of the two 

seeds and the profits of the two input suppliers is shown graphically in panels a and b of  

                                                 
3 When the assumption of a uniform distribution of producers is relaxed, the welfare and market effects of 
co-op involvement depend on the skewness of the distribution. Ceteris paribus, the greater is the number 
of producers with relatively high values of a, the greater is the share of producers patronizing the co-op, 
the greater is s

Cx , and the greater are the producer welfare gains from co-operative involvement. 
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Figure 14. Note that the increase in farmer welfare exceeds the reduction in suppliers’ 

profits, indicating that the presence of the co-op increases total economic welfare in this 

market. 

 

At this point, it should be noted that, while our analysis assumes that input suppliers have 

the same R&D cost structure and R&D effectiveness (parameters ψ and β, respectively), our 

model can be easily modified to allow for differences in R&D costs and/or differences in R&D 

effectiveness between the co-op and the IOF. The implications of introducing differences in ψ 

and/or β are quite straightforward – the greater are the R&D costs for the co-op and/or the lower 

is the co-op’s ability to transform resources into process innovations, the lower are the 

productivity and social welfare gains from the presence of the co-op. In this context, 

strategies/policy initiatives directed towards reducing the costs and/or enhancing the 

effectiveness of co-operative R&D can be welfare enhancing and, thus, socially desirable. 

 

Conclusions 

This paper develops a sequential game theoretic model of heterogeneous producers to examine the 

effect of co-operative involvement on innovation activity in the agricultural input-supplying sector. 

Specifically, the paper analyzes the consequences of co-operative involvement for the arrival rate 

of innovations, the pricing of agricultural inputs, and social welfare in the context of a mixed 

duopoly where a co-op and an IOF compete in supplying an input to agricultural producers.  

Analytical results show that the co-operative involvement in R&D can be welfare 

enhancing and, thus, socially desirable. The presence of the co-op can increase the arrival rate of 

innovations and productivity growth while reducing the prices of agricultural inputs. The 

effectiveness of the co-op is shown to be dependent upon the size of the costs associated with 

process innovations – the size of the R&D costs.  
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Figure 1.   Producer decisions and welfare   
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Figure 2.   Producer demands for seeds  
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Figure 3.   Reaction functions and Nash equilibrium seed prices in the pure oligopoly 
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Figure 4.   Pricing of seeds in a pure oligopoly 
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Figure 5.   Determination of optimal R&D strategy (i.e., best response function) by Supplier 1 in 

the pure oligopoly 
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Figure 6.   Reaction functions and Nash equilibrium amounts of R&D in the pure oligopoly 

(when +≥ Iψψ  and +≥ Cψψ ) 
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Figure 7.   Reaction functions and Nash equilibrium seed prices in the mixed oligopoly 

 

s
Ip

0  

2
Ic+µ

s
Cp







 +

+
= s

C
Is

II pcpRF
2
1

2
µ

( )C
s
CC cpRF =

( )C
s
C cp ='

's
Ip



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.   Pricing of seeds in the mixed oligopoly 
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Figure 9.   Determination of optimal R&D strategy (i.e., best response function) by Supplier 1 in 

the mixed oligopoly 
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Figure 10.   Reaction functions and Nash equilibrium amounts of R&D in the mixed oligopoly 

(when '+≥ Iψψ  and '+≥ Cψψ ) 
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Figure 11.   Effect of co-operative involvement on R&D activity (relatively high R&D costs) 
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Figure 12.  Effect of co-operative involvement on IOF’s R&D incentives 
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Figure 13.   Effect of co-operative involvement on seed pricing (
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Figure 14.    Market and welfare effects of co-operative involvement in R&D 



 

Table 1.     The Effect of co-operatives when R&D costs are low 
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