
THE ANNALS OF "DUNÃREA DE JOS" UNIVERSITY OF GALAŢI
FASCICLE I - 2006, Economics and Applied Informatics, Year XII, ISSN 1584-0409

This paper was recommended for publication by Assoc. Prof. Vasile MAZILESCU, PhD

ARE COMPONENTS THE FUTURE OF
WEB–APPLICATION DEVELOPMENT?

Adrian LUPAŞC
Ioana LUPAŞC

University "Dunărea de Jos", Galaţi

alupasc@ugal.ro,
ioanalupasc22@yahoo.com

The software industry is still creating much of its product in a “monolithic”
fashion. The products may be more modular and configurable than they used to
be, but most projects cannot be said to be truly component based. Even some
projects being built with component-enabled technologies are not taking full
advantage of the component model. It is quite possible to misuse component
capabilities and as a result, to forfeit many of their benefits. Many organizations
are becoming aware of the advantages and are getting their developers trained
in the new technologies and the proper way to use them. It takes time for an
organization to adopt such a significant change in their current practices. Some
of the trade magazines would have us believe that the industry is years ahead of
where it truly is – those of us in the trenches know that the reaction time is a
little longer in the real world. The change to component-based development has
begun, however.

Keywords: component-based development, frameworks, language, market,
technology.

1. Introduction
In this paper I discuss the why of components
and frameworks and the rationale behind
their use. I also talk about the current state of
Web–application development and where the
industry perceives it is going to establish a
firm foundation and justification for the use
and development of components and
frameworks. Also, I look briefly at Java’s
suitability for component-based development
and for the development of application
frameworks, as well as for the specialized
features of the extended Java platform and
associated API’s that make them ideal to this
task, including JavaBeans, Enterprise
JavaBeans and Reflection.

2. The Market
We are living in an era of unprecedented
change in the software industry. From the
great boom in the late 1990s to the slump in
today, two factors that have remained
constant in the software industry are change
and growth. Even as some software

companies fall on hard times, others prosper
– the difference is usually in the way they
perceive the software marketplace. Software
is no longer entirely an art form or a process
of creating one unique masterpiece at a time.
It has evolved into more of an engineering
discipline, one driven by the real–world
economics of what works and what does not.
Simply stated, components and component-
based development are one of the things that
work.

The signals from the software market are
clear: products that exhibit poor quality,
inflexibility, and significant schedule
overruns are increasingly being rejected in
favor of the new breed of component–based
systems. As the infrastructure to support
components becomes more mature and
standardized, and as cross–architecture
integration tools such as SOAP (Simple
Object Access Protocol) become widely
available, the component marketplace will
likely grow even more rapidly.

THE ANNALS OF "DUNÃREA DE JOS" UNIVERSITY OF GALAŢI
FASCICLE I - 2006, Economics and Applied Informatics, Year XII, ISSN 1584-0409

 50

Components provide a known quantity, a
building block of established functionality
and quality that can be used to assemble
applications in a way more akin to assembly
of a television than traditional development
of an application. This is not to say that the
assembly is necessarily simple, by any
means. After all, can you put together a
television from a collection of parts?

Component–based development is still an
exacting process, but it is a more rapid,
reliable, and predictable process. It is easier
to say how long it will take, what will be
needed, and how the finished product will
work – all very desirable attributes in any
engineering discipline, including software
engineering.

The history of software engineering has been,
by and large, the history of a battle against
ever-increasing complexity. Object–oriented
design and development was one of the big
guns in this battle, and components and
frameworks, correctly applied, are the biggest
yet. Components provide one of the most
potent tools to overcome this crisis,
addressing the underlying concerns of
productivity, reuse, reliability, and quality.

3. Why Projects Fail
The reasons for software project failures are
varied, but they often fall into one of a few
categories:

 Schedule: One of the key reasons for
project failure is the inability to achieve
scheduled milestones. Companies often
simply cannot continue spending time on a
project. Sometimes it is a matter of
unrealistic goals having been imposed on a
development team – this is not a software
problem, this is a management problem. No
manager should ever set a schedule without
consulting in detail with the people who will
actually make it happen – the developers
themselves – but they do. Because
component–based development timeframes
are much more predictable, the developer can
give better defined estimates to management,
and management can rely on them with more
confidence. Even tasks that are common to
component–based and non-component–based
developments, such as capturing user
requirements, analysis, and design, can

benefit from pre-built structures in which
such capture and analysis can be made.

 Specification changes during
development: another common reason for
failure is that a project’s goals change so
radically while it is under development that
the current project can no longer be adapted
to serve the newly defined purpose. The
greater flexibility of component–based
systems can help avoid this in the first place,
and the shorter development time gives less
opportunity for significant “spec creep” to
occur. When specification changes occur
during a project, despite the faster
development, the fact that components are
usually, by their nature, more configurable
and flexible than custom–created system
elements gives a further advantage: they can
simply be reorganized and reconfigured in
many instances to adapt to the change in
specification. If the change is substantial,
then new components to provide the
additional functionality can be added to the
existing set more easily than in traditional
development.

 Project management failure: Perhaps the
most common reason of all is a failure in the
project management. It may be that the
specification did not change, but that the
project team understands of it was never
complete, and they did not have access to the
customer for clarification. Also, it may be
that the schedule was being adhered to by the
project team, but the customer was under a
different impression as to what that schedule
was. These are not technical problems; they
are again management issues – primarily
communication issues, in fact. A closer
connection between the project leadership
and management and the development team,
of course, is the first step toward avoiding
such problems. The ability of component–
based development to shorten project life
cycles, to make elements of the project more
predictable, and to provide prototypes very
early in the process helps avoid the
communication gaps that result from
management problems. Component–based
development cannot do anything to solve bad
project management, of course, and
component–based projects can fail through
bad management just like any other project.
However, the component–based process
encourages good practices that facilitate
management of the project, making

THE ANNALS OF "DUNÃREA DE JOS" UNIVERSITY OF GALAŢI
FASCICLE I - 2006, Economics and Applied Informatics, Year XII, ISSN 1584-0409

 51

component–based projects a little easier to
handle than projects that do not use the
technique.

In the software market, fear of failure of a
project is very real and well justified. An
embarrassingly large percentage of major
software projects fail completely or fail to
meet their overall goals, schedule, and
budget. Information technology (IT) spending
is no longer driven by the technology, if it
ever was; it is now almost exclusively driven
by the need to fulfill business requirements.
Companies are seeing component–based
technologies as the most cost–effective way
to meet these requirements, with the lowest
risk of failure. Where the market demand
goes, development follows. Projects
happening on “Internet time” simply are not
allowed the luxury of time to develop entirely
new architectures and low–level capabilities
from scratch – the schedules simply demand
reuse, and components fill this demand. The
unit of purchase used to be the application –
an entire solution providing full capability in
a particular area of business, say purchasing
or Customer Relationship Management
(CRM) – but the unit of purchase is shifting
to the component or the service, providing a
single unit of service that is then combined
with others to provide full capability.

Components bring advantages to the entire
process of development. During design,
finding components with the right kind of
interface is an essential part of the process. If
components need to be developed, the
external interface can be defined, and then
development can proceed in parallel. This is
the “black box” approach to components. We
do not look inside; we simply deal with the
component as a unit that performs its
contracted function without concern for how
it does it. By assembling components, we are
able to deal with larger programs than in a
monolithic one-piece design. Components are
insulated from one another, and the
development of one component team is
independent of the developments of any
other, reducing bugs and unexpected
interactions. The design process becomes
mostly concerned with decomposing the
application into components, as opposed to
being oriented around either procuring or
creating these components.

In the development process of the
components themselves, quality is aided by
defining the interface and the contract the
component will fulfill early in the process.
Then the component can be tested during
development to ensure correctness by
checking whether it fulfills this contract.
Indeed, some methodologies advocate
creating the unit test that verifies the contract
as the first step, before the component itself
is procured or created.

Once the components are assembled into the
application and we determine that each
component and the container and interactions
are bug-free, then we can be confident that
the overall application is of high quality.

Advantages of Components and
Frameworks:

 Time to market – most of us is in the
software business to make money. The
industry moves quickly and often the first to
market has opportunities that others do not.
Sometimes it is the opportunity to be the first
to go belly–up, if applications are built
quickly and without regard to quality – but if
the job is done right, the first to market can
establish them as a leader early on, and this
advantage often lasts. Components help with
this; they let the job of building applications
precede much more quickly, without
sacrificing quality.

Building with components goes much faster
because the detailed logic to perform each
individual service is already complete – it is
just a matter of wiring up the pieces. The
time saved by not having to design and create
sophisticated infrastructure is also important.
Even when custom logic is required, creating
it is faster when we start with existing
component architecture.

The time to respond to changes in the market
is often shortened by components as well,
allowing a company to not only be the first
out of the gate, but also faster and more
nimble in the twists and turns involved in
changing their product to keep up with
changes in the market demands and in
technology over time.

 Quality – what do we mean by
“quality”? Why is it important? Quality
describes the abilities of a product to meet

THE ANNALS OF "DUNÃREA DE JOS" UNIVERSITY OF GALAŢI
FASCICLE I - 2006, Economics and Applied Informatics, Year XII, ISSN 1584-0409

 52

stated or implied needs - in other words, to
get the job done. It is more than this bare
definition, however; quality affects the entire
life cycle of a software product, from design
to long–term maintenance.
The old view that some defects are
inevitable, and that to maximize profitability
a certain percentage of defects must still
reach the customer, is being seriously
challenged today. Particularly by using
components and frameworks, we have the
ability to build quality from the outset, rather
than correcting defects later in the develop–
test–debug cycle.

Why quality? Simply put, quality software
makes good business sense. The true cost of
creating, selling, and supporting high-quality
software is overall far lower than the cost of
low–quality software. One of the least
expensive ways to improve software
development productivity is to improve
software quality. Quality, therefore, is cost
effective – it retains customers, and has
become a key competitive issue in software
development.

As the practice of application development
continues to mature, becoming less of an
“art” and more of an engineering discipline,
the lessons of quality learned in the
manufacturing and engineering world can be
applied to it more readily.

To increase software quality, the people
involved and the processes they work with
are even more important than the tools they
use. Frameworks and component technology
provide more than tools; they provide a
philosophy of development that is quality
oriented.

One of the advantages of a reusable
component is that it has been, well, reused.
This means that it has been tried and tested in
other applications and is known to perform
its particular function correctly. All other
things being equal, a known quantity is better
than an unknown one when you are building
an application.

Components themselves demand higher
quality: in once–off software development, a
particular function of an application may be
rarely used, or rarely used in a certain way. A

defect in the rarely used area might never be
noticed, or might not be perceived as a
significant problem even if it is. With
components, however, the component
developer does not necessarily know how the
finished component will be used when it is
assembled into an entire application. A
function he thought was of little importance
might be the cornerstone of an application,
and defects in that function would be
completely unacceptable. As a result, it is
essential that every part of a component be of
as high quality as possible. Because of the
reuse of components, any defect is likely to
be replicated into many applications, creating
a bigger problem. On the other hand, the
benefits of extra effort in developing quality
software in the first place are also replicated.
This makes the effort all the more
worthwhile, the more the component is
reused.

Because the components in a framework do
not have any knowledge of our specific
application, they are more independent of a
particular application – this usually makes
them more reliable overall. After all, if we
are building something to be used once,
quality is not as essential as if you are
building something to be used again and
again. As software life spans very often far
exceed their initial estimates, it is always
better to assume a long life than a short one,
and build accordingly.
 Quality environment – the first step in

achieving a quality application is the
environment in which it is developed. By this
we mean all of the factors around the
application, including the corporate
infrastructure, the physical environment, the
corporate culture, and more.

In a corporate environment where
development is thought of as a necessary
evil, it will be difficult to achieve quality. If
management is only concerned about getting
it done, and spending as little time and
money as possible, quality is hard to achieve.
If the corporate culture is such that
developers are an afterthought in the IT
infrastructure, and are not given the tools to
do a job well, chances are that the job will
not get done properly. This includes
everything from a quiet, isolated workspace
to proper software tools, and sufficient time

THE ANNALS OF "DUNÃREA DE JOS" UNIVERSITY OF GALAŢI
FASCICLE I - 2006, Economics and Applied Informatics, Year XII, ISSN 1584-0409

 53

to do the job right. Unrealistic schedules do
not inspire faster work – quality software
development, like quality in any engineering
discipline, takes careful planning and
sufficient time.
Proper tools for a job are essential. This starts
from the hardware up all the way to the
Integrated Development Environment (IDE)
and the documentation tools. Some IT
managers have, for instance, the absurd
notion that developers should have the
slowest machines, and are under the
impression that this will somehow make sure
they develop faster code. The same managers
then skimp on a test environment, denying
the opportunity to test in a realistic
deployment scenario. Such misconceptions
do not permit quality development.

Although a framework does not necessarily
influence any of these things directly, its use
does imply certain attitudes about
development. Using a framework represents
a commitment to a training cycle. It
represents a decision on the part of the
organization to produce an application that is
better equipped than something that could be
developed independently, and this in itself
gives an indication of the attitude of the
organization toward development – that it
should be done right, and with the right tools.

1. Design quality: as I have said
before, a framework is not just a collection of
components and abstract classes. It is also a
set of design patterns, and defined ways for
these patterns to interact. In the process of
developing a framework, these abstractions
are created, usually from existing
applications in the problem domain. A well–
designed framework represents the
distillation of many different application
design principals into a cohesive and usable
whole, and therefore provides a substantial
jump start on the design process for the
application overall.

2. Meeting of stated and implied
requirements: by definition, quality includes
the ability of the finished application to meet
the stated and implied requirements. Stated
requirements are not too bad – generally
there is some consensus between the
developer and the user on what these are at
least. Implied requirements are bit harder. If
operate with a somewhat clouded crystal ball,
may discover that the user or customer was

under the impression that much more was
implied than we were led to believe. A
framework assists substantially in this area as
well, as it supports the need for the
application to change or even expand during
the development process by providing pre-
built functionality, even if this functionality
was not seen as part of the requirements for
the project initially.

3. Prevention of defects – proper
planning: an important part of preventing
defects early in the development process is to
have a proper project plan for the
development. Correct and realistic scheduling
is an essential part of this process. Nothing
creates the opportunity for defects better than
late specification changes – they cause new
functionality to be “shoe–horned” into a
design that was not intended for it. A
framework-based project has the advantage
here as well. Rather than leaving the
development process open to “surprises” later
on, a framework gives you an almost “paint–
by–numbers” level of control over the
development. You know what the capabilities
of the framework are, and what is provided.
You are assembling parts, rather than
embarking on journeys of discovery. We will
not have a “surprise” half–way through the
development when you discover that a
feature planned for development takes much
longer time than anticipated, or that a driver
does not work with the database you have
been planning to use. An existing framework
with functioning examples takes the mystery
out – you know applications in the same
problem domain as yours have been
developed using this tool–set. You can plan
better by working with the known
components, and this makes for a better
overall project plan, and enhanced quality.

4. Avoid coding defects: the best way
to avoid coding errors is to write less code.
By using a framework, the total number of
lines of code that need to be developed for
any given application is an order of
magnitude less than it would otherwise be,
and the preexisting code of the framework is
likely far better tested than any single
application’s code. This leads to much lower
incidence of coding errors, and at the same
time provides more time for the code that
does need to be written, increasing its quality
as well. Real–world experience has indicated
that use and reuse of components can reduce

THE ANNALS OF "DUNÃREA DE JOS" UNIVERSITY OF GALAŢI
FASCICLE I - 2006, Economics and Applied Informatics, Year XII, ISSN 1584-0409

 54

the occurrence of defects from five to ten
times compare to once-off code.

5. Coding standards: by establishing
coding standards and sticking with them,
coding defects can be reduced further, and
existing problems can be more readily
discovered. Coding standards also make it
much easier for teams of developers to read
and understand each other’s code, thereby
promoting team development.

6. Detection of defects and testing: if
we have a hundred identical parts lying on
the table in front of you, it is easy to scan
them all for defects: you look for what stands
out, what is different and not in conformance
with the rest. It is much harder if you have
got a hundred different parts – you cannot
scan for patterns, you must examine each one
individually.

7. Support quality: quality of support
and training for an application is also an
important factor. The best application is not
meeting its stated and implied requirements,
after all, if no one can understand how to use
it. This is another area where the consistency
of development created by the use of a
framework comes into play.

8. Maintainability: to continue
providing a quality solution to its users, any
application must be maintained over time.
New features will be added, integration with
other applications will be made, user-
interfaces may be enhanced, and so forth.
Using components and frameworks makes a
significant difference here, because by their
very nature, reusable components are
intended for many different purposes.
Therefore, as the purpose of the application is
extended and changes over time, we are more
likely to be able to adapt components to these
changes than to adapt custom–built code. In
addition, the clean encapsulation of
components means that individual
components can have their implementations
replaced easily – without disrupting the
remainder of the application. For example, an
application may originally be written to use
flat files for its data storage. A later upgrade
then requires a relational database – the
component relating to data storage can be
upgraded to one that is database-capable,
whereas the remainder of the application
remains unchanged. If, instead, custom file
access code was used throughout the

application, it may not have been viable to
upgrade at all.

Although it is hard to measure the ability to
maintain software, most experts agree that
component–based systems are much easier to
maintain than their monolithic counterparts.
Therefore, as we have seen, component–
based development can make a significant
difference in the most serious problem with
software development in today’s industry:
quality. Not only can components address
this issue, but they can do it while at the same
time increasing developer productivity,
decreasing the time to market, and with
greater adaptability than any other approach.

 Cost – partly as a result of the issues
discussed earlier, the overall cost of building
with components, despite the extra work of
achieving reuse and the other qualities
required by a good component, is lower than
once-off development. This becomes even
more the case when the components can
simply be assembled, rather than created.
Time is literally money in the software
business, so the time saved in development
by assembling components contributes to the
cost savings.

Even commercial components that have a
direct cost associated with their use can still
sometimes make the overall project cost
lower. Not only is the cost often lower for
components than for single-purpose-built
software, but, almost more importantly, it is
predictable. We know the cost of using a
component ahead of time; this means one less
variable in the complex equation for
forecasting a project’s overall budget.

Decisions that make overall architectural
changes to a project are often those that incur
the maximum cost, and the most risk.
Designing a new infrastructure is not easy or
quick, and a mistake at this level can be
disastrous to a project. Standardizing on a
tried and true component model eliminates
this risk, further contributing to control of
cost.

 Adaptability – change by
reconfiguring, not rewriting – components,
by their nature as reusable pieces, tend to be
more configurable and adaptable than code
that is written as a one–of–a–kind. This
flexibility is then available when the

THE ANNALS OF "DUNÃREA DE JOS" UNIVERSITY OF GALAŢI
FASCICLE I - 2006, Economics and Applied Informatics, Year XII, ISSN 1584-0409

 55

specifications of the original development
change. It is usually possible to change the
components by simply reconfiguring them, as
opposed to having to open the black box and
start tinkering inside. This means the
adaptability is gained without a loss of
quality. This has a direct impact on the
maintainability of the overall project.

Like most techniques, however, use of
configurable components can have its down-
side if applied incorrectly. Some components
are not good candidates for being made
highly configurable – performance can
suffer, and the component complexity can
increase substantially. Sometimes separate
implementations are a better approach than a
component with a huge number of
configurable options. Finding a balance in
this trade–off is part of the skill of an expert
component developer, and when it is done
well, it becomes another reason to prefer
well-built components over single–use
software elements.

As most projects have over 80 percent of the
development effort they absorb spent on
maintenance, this adaptability is a major
benefit in terms of cost.

 Scalability – components, if built
correctly in the first place, can often provide
a basis for better scalability than custom
code. Because the scope of the component is
known ahead of time, its place in the
architecture is better understood in advance,
giving an opportunity for the component to
be made distributed and clusterable, opening
the door to enhanced scalability.

 Integration – by design, components
are intended to plug into other things – they
are not a complete application on their own,
so integration is expected. This tends to make
components easier to integrate with just
about any other code elements, and raises the
integration capabilities of the whole
application.

This means components and component-
based systems are ideal for connection to
legacy systems – indeed, components are
often created to “wrap” legacy applications,
allowing them to be used just like any other
component.

The increasing interest in components, due to
the advantages they offer, has in turn
spawned an urgent interest in the
technologies that connect them together and
support them. The two major leaders in the
race to provide such connections and
infrastructure are Java, and in particular the
J2EE platform, and Microsoft, who arrived
late to the game, but are aiming their .NET
platform at the same space. Interestingly, the
business requirements becoming the driving
force in the market has pushed vendor
preferences lower on the importance scale
than it used to be: people are less interested
in whom they are doing business with than
the quality of the results to their business.
This drives the requirement for multi-vendor
solutions to integrate more frequently, as IT
departments become “multi–vendor” shops.
One of the emerging technologies in this area
that has great promise is Web services, and in
particular the SOAP protocol.

Beyond E–Commerce: components at work
The newer the sector of the IT industry, the
more you will find components there. When
something works, organizations tend to leave
it alone – many legacy systems that predate
component technology are still out there,
ticking away, performing their functions.
New developments, however, have a better
chance of being created with component
development, and e-commerce is one such
development.

Before the Internet, there was no such
animal: e-commerce has come about with the
rise of the Internet – or more specifically, the
WWW. E–commerce is generally thought of
as the process of offering products or services
for sale via the Web. The condensed time
frame of trends on the Internet has prompted
companies trying to get on the rapidly
moving bandwagon to try out components
and other rapid development technologies,
such as scripting languages.

The scripting route, using technologies such
as Javascript, ASP, CGI, and so forth, was
faster, at least initially. But many such
solutions were all scenery with little
substance. They looked good, but did not
have the back-end power to connect to
essential business systems, as necessary
when weaving e–commerce into a cohesive

THE ANNALS OF "DUNÃREA DE JOS" UNIVERSITY OF GALAŢI
FASCICLE I - 2006, Economics and Applied Informatics, Year XII, ISSN 1584-0409

 56

part of an overall company strategy. The
solutions built with components tend to fare a
little better – although some of these were all
flash and no bang.
E-commerce, however, was only the
beginning – the first ripple of a much larger
wave. The second phase was e–business.
This is where not just a company’s
interaction with customers and potential
customers is carried out in part over the Web,
but where a company also interacts with its
peers and business partners via the medium
of the Internet. Suppliers, distributors, and
wholesalers – the volume and critical nature
of the Web interactions was suddenly much
higher than when the Web was just one more
means of reaching customers.

Now the Web was essential to business, and
significant competitive advantages could be
gained by leveraging it correctly.
Component–based development became the
technology of choice for creating these new
business–to–business Internet applications.
Its standard and easily connected attributes,
and its ability to adapt quickly, became
essential facilities.

Business–to–Business has already become a
more important form of e-business than
Business–to–Consumer, and the growth is
still rapid. As more organizations begin to
take advantage of these new opportunities,
they will increasingly find component and
framework development an essential tool.

Conclusion
We have seen why all of the interest in
components and the frameworks that support
and foster them, has come about. To entirely
mangle a famous saying, however, a rose by
any other name is just a red flower with sharp
thorns. Calling something a component does
not make it so, and definitely does not
magically convey the advantages we have
discussed on the product so named.
Marketing and hype being what they are in
the software industry, it is easy to make a
product buzzword compliant, but not as easy
to actually do the engineering necessary to
make it worthy of the name component.
Searching the net, it is easy to believe that the
whole software world has jumped on the
bandwagon of components, and that virtually
any product is built of these wonderful,

configurable, and reusable pieces. In reality,
the battle for components has only just gotten
underway, and the big guns have just started
firing recently. So beware of any solution
that promises to be the end-all and be-all of
component development. Ask the questions
that can determine just which of the many
advantages of components the solution is
providing, and how.

The great wave of component-based
development is so far just a ripple. It is a
great concept, but the groundwork that had to
be laid is only just propagating to companies
IT departments. Once the enablers are in
place though, dramatic strides forward in
quality, productivity, and interoperability will
be seen. This is not theory – many companies
are there already, and are showing the way to
the future.

References:
 Fernandes, C., Web Application

Development - A Guide to Success,
Upper Saddle River, 2003.

 Korotkiy, M., Top, J.L.: On the Effect of
Ontologies on Quality of Web
Applications, (under review), 2005.

 Reifer, D.J., Estimating Web
Development Costs: There Are
Differences. The Journal of Defense
Software Engineering, 2004.

 Trauring, A., Python: Language of
choice for EAI, EAI Journal, p. 43–45,
2004.

 Vinoski, S., Dark matter revisited. IEEE
Internet Computing 8,2004, p 81–84.

 http://se.ethz.ch/~meyer/publications/co
mputer/component_development.pdf.

 http://www.artificia.co.uk/.
 http://www.cs.ucl.ac.uk/staff/A.Finkelstei

n/papers/uwa.pdf.
 http://www.dig64.org/specifications/IA64

_Java2.pdf.
 http://www.elet.polimi.it/conferences/wq

04/final/paper02.pdf.
 http://www.iist.unu.edu/newrh/III/1/docs/

techreports/report284/paper8.pdf.
 http://www.lcc.uma.es/~av/mdwe2005/ca

mera-ready/8-MDWE2005-portlets.pdf.
 http://www.mrtc.mdh.se/publications/095

3.pdf.
 http://www.sybase.com/content/1048029/

Sybase_WADWS_L02894-111606-wp.pdf

THE ANNALS OF "DUNÃREA DE JOS" UNIVERSITY OF GALAŢI
FASCICLE I - 2006, Economics and Applied Informatics, Year XII, ISSN 1584-0409

 57

