Impact of the Global Crisis on the Financial Linkages between the Stock Market and the Foreign Exchange Market from Romania

Razvan STEFANESCU <u>rzvn_stefanescu@yahoo.com</u> Ramona DUMITRIU <u>rdumitriu@ugal.ro</u> "Dunarea de Jos University" Galati

Abstract

This paper explores the financial linkages between the Romanian stock market and the exchange market in the context of the global crisis. We investigate such relations for two periods of time: one from January 2006 to February 2008, when the Romanian financial markets were quite tranquil and the other from March 2008 to September 2009, while the global crisis effects were considerable for Romania. For the first period of time we could not prove significant relations between the foreign exchange market and the stock market. Instead, for the second period of time we found a unidirectional causality from the exchange rates to the stock prices.

Keywords: Romanian financial markets, Vector Autoregression, GARCH, Granger causality, financial linkages

JEL Code: G 19, C 01

1. Introduction

In Romania in the last decade the linkages between the stock market and the foreign exchange (FOREX) market strengthen. The restrictions to the foreign capitals were step by step abolished and many investors from abroad were able to fructify the opportunities of a dynamic stock market which became very attractive since the economic recovery. For many years the substantial investment from abroad caused an increase of the national currency demand. However, in the last months, in the context of the global crisis, the stock prices decreased while the national currency depreciated (Fig. 1 and Fig. 2).

In the actual context it is important to evaluate the changes induced by the global crisis to the linkage between the stock market and the FOREX market. The results of such an investigation could be useful in anticipating the future evolutions of the two markets. However, despite the importance of the subject, the changes provoked by the global crisis on the linkages between the Romanian financial markets were not, at least to our knowledge, approached until now in the specialized literature.

This situation is somehow justified since the actual global crisis is still far from the end. In this paper we attempt to make a preliminary investigation about the effects of the crisis on the stock market and FOREX market from Romania. For this purpose we use a sample of data from January 2006 to September 2009, consisting in daily values of the representative index on

the Romanian Stock Market and the nominal exchange rate of the nominal currency against the euro. We study the eventual cointegration between the two time series and we analyze their interactions in a Vector Autoregression (VAR) framework. We also use ARCH – GARCH models to investigate how volatility from a market could be transferred from another market.

Figure 1. Evolution of BET index from January 2006 to September 2009

Figure 2. Evolution of the exchange rate of euro against the Romanian National Currency from January 2006 to September 2009

The rest of this paper is organized as follows. In the second part we approach the specialized literature, in the third part we describe the data and the methodology used in our investigation, in the fourth part we present the empirical results and in the fifth part we conclude.

2. Literature Review

In the specialized literature could be found two major approaches on the relationship between the stocks prices and exchange rates: the traditional approach and the portfolio balance model. The traditional approach explained the causalities between the exchange rates mainly through the competitiveness of the firms. When the local currency is appreciated the competitiveness of a firm is reduced, so its profit declined and so did its stock price. On the contrary, the depreciation of the national currency could raise the firm profit, increasing its stock price (see, for example, Dornbusch and Fischer, 1980). In conclusion, the stocks prices are determined by the exchange rates evolution.

The portfolio balance model appeared in the context of the financial markets integration. A decrease in the stocks prices led to a reduced demand for money. This ensures low interest rate which determines the depreciation of the national currency by encouraging the outflow of capital. By contrary, the increase of the stocks prices could lead to the appreciation of the national currency. In that case the exchange rates are determined by the stock prices (for example Frankel, 1983).

The empirical researches on the relationship between the exchange rates and the stock prices provided mixed results. Bahmani – Oskooee and Sohrabian (1992) found bidirectional causality between the S & P index and the effective exchange rates. Hatemi – J and Irandoust (2002) analyzed the financial markets from Sweden and they concluded that stocks prices caused the exchange rates, but the opposite situation was not true.

Some papers approached the relationship between the stocks prices and the exchange rates in the emerging markets. Abdalla and Murinde (1997) studied it based on the data from four Asian countries and they found evidence in favor of the traditional approach. Aydemir and Demirhan (2009) investigated the exchange rates and several indices of the stock market from Turkey and their results indicate bidirectional causal relationships.

The Asian financial crisis from 1997 to 1998 provided evidences about the relations between the FOREX markets and the stock markets in the circumstances of high instability. Granger et al. (1998) studied the behavior of the financial markets from eight South – East Asian countries and they found that for most of them the stock markets led the FOREX markets. Hussain and Liew (2005) found unidirectional causality from the exchange rates to the stocks prices in the case of Thailand and a bidirectional causality in the case of Malaysia.

3. Data and Methodology

In our investigation we employ daily values of BET, one of main indices from the Bucharest Stock Exchange, and of the nominal exchange rates of euro against the Romanian national currency. The data are provided by the Bucharest Stock Exchange, for BET, and by NBR, for exchange rates. We use the two variables in logarithmic forms with the following symbols:

- l_BET as the natural logarithm of BET;
- l_NEER as the natural logarithm of the nominal exchange rates for euro against the Romanian national currency.

We use also the first differences of the two variables:

- d_l_BET as the first difference of l_BET;
- d_l_NEER as the first difference of l_NEER.

In order to capture the bull and bear market circumstances we define two dummy variables:

- $d_1BET^+ = 1$ if d_1BET is positive and 0 otherwise;
- $d_1 \text{NEER}^+ = 1$ if $d_1 \text{NEER}$ is positive and 0 otherwise.

In our analysis we use a sample of data from January 2006 to September 2009. We split this period of time in two sub-samples:

- first sample, from January 2006 to February 2008, a period of time when the effects of the actual global financial crisis were not very significant for Romania;
- a second sample, from March 2008 to September 2009, a period of time when Romania was considerable affected by the global crisis.

The descriptive statistics of l_BET and l_NEER, presented in the Table 1, indicate significant changes from the first to the second period of time. The mean of l_BET decreased from 9.03 to 8.29, indicating the bear market conditions. The mean of l_NEER increased from 1.24, reflecting the depreciation of the national currency. For both variables the values of standard deviations and of the coefficient of variation raised significantly, indicating a plus of volatility. Skewness and excess kurtosis of l_BET and l_NEER changed considerably, indicating different conditions of the markets. The Jarque-Bera test rejected, for both variables, the null hypothesis of the non normality.

	1	BET	1_N	EER
Indicator	Jan 2006 –	Mar 2008 –	Jan 2006 –	Mar 2008 –
	Feb 2008	Sept 2009	Feb 2008	Sept 2009
Mean	9.02991	8.29132	1.23854	1.36954
Median	9.02884	8.21592	1.25099	1.36962
Minimum	8.76996	7.54282	1.13501	1.24470
Maximum	9.28856	8.98045	1.32694	1.46156
Std. Dev.	0.114954	0.404086	0.0423556	0.0739576
C.V.	0.0127304	0.0487360	0.0341979	0.0540017
Skewness	0.216075	0.0855410	-0.416357	-0.131152
Ex. kurtosis	-0.764314	-1.14440	-0.292687	-1.72485
Jarque - Bera				
test for	17.6671***	21.5342***	17.8539***	48.956***
normality				

Tahla	1	Descri	ntive	statistics	of 1	RET	and 1	NEER	for t	the two	sub.	.camn	lec
I abic	1.	Desch	puve	statistics	011	DEI	anu i	NEER	101 1	ine two	suo-	-samp	162

The analysis of the two time series has to begin by testing their stationarity for levels and for their first differences. For this purpose we employ the classical unit root test Augmented Dickey-Fuller (Dickey and Fuller, 1979). If this test proves that both time series are integrated at order 1 (are non stationary in levels but stationary in their first differences) we may continue by analyzing their cointegration. We use the Engle-Granger procedure (Engle-Granger, 1987), the more powerful Johansen cointegration test (Johansen, 1995) and the Breitung non parametric test of cointegration (Breitung, 2002). If both time series are stationary, at least in their first differences, we analyze their interactions in a VAR framework proposed by Lütkepohl and Kratzig (2004). We may also test the Granger causality between the two variables (Granger, 1969). In our investigation we intend to estimate the impact of a variable variation to the volatility of other variable. For this purpose we use ARCH and GARCH models (Engle, 1982 and Bollerslev, 1986).

4. Empirical Results

4.1. Analysis of the stationarity for the variables employed

Based on the graphical representations of the variables employed (Figure 3) we chose as deterministic terms constant and trend for the level values and only constant for their first differences.

In the Table 2 there are presented the results of the Augmented Dickey-Fuller Test for the observations from the first sub-sample. It shows that both 1_BET and 1_NEER are non stationary in levels but stationary in their first differences.

Variable	Deterministic terms	Lagged	Test	Asymptotic p-
		differences	statistics	value
l_BET	Constant and no trend	27	-1.19183	0.6804
	Constant and trend	27	-0.853024	0.9594
d_l_BET	No constant and no trend	26	-5.08609	4.935e-007
	Constant and no trend	26	-5.08947	1.335e-005
1_NEER	Constant and no trend	31	-1.2529	0.6535
	Constant and trend	31	-0.642751	0.9761
d_l_	No constant and no trend	30	-3.53998	0.0003946
NEER	Constant and no trend	30	-3.5485	0.006856

Table 2. Augmented Dickey-Fuller Test for the observations from the first sub-sample(from January 2006 to February 2008)

Note: The number of the lagged differences was chosen based on Akaike Information Criteria.

Figure 3. Evolutions of 1_BET, d_1_BET, 1_NEER and d_1_NEER from January 2006 to September 2009

The results of the Augmented Dickey-Fuller Test for the observations from the second subsample are presented in the Table 3. It shows again that the two time series are non stationary in level values but stationary in their first differences.

Variable	Deterministic terms	Lagged differences	Test statistics	Asymptotic
				p-value
l_BET	Constant and no trend	29	-1.66984	0.4467
	Constant and trend	29	-0.861427	0.9586
d_l_BET	No constant and no trend	32	-4.71173	2.9e-006
	Constant and no trend	32	-4.71386	7.572e-005
l_NEER	Constant and no trend	28	-0.964379	0.7679
	Constant and trend	28	-2.14209	0.5216
d_l_NEER	No constant and no trend	27	-3.0586	0.002171
	Constant and no trend	27	-3.14916	0.02315

 Table 3. Augmented Dickey-Fuller Test for the observations from the second sub-sample (from March 2008 to September 2009)

Note: The number of the lagged differences was chosen based on Akaike Information Criteria.

4.2. Analysis of the cointegration between the variables

Since the Augmented Dickey-Fuller Test proved that both l_BET and l_NEER were integrated at order 1, we investigate if they are cointegrated. First we employ the Engle-Granger method for both sub – samples. The results for the first sample are presented in the Table 4. Since the residuals of the cointegration equation are not stationary we accepted the null hypothesis of no cointegration between l_BET and l_NEER.

Table 4. Results of the Engle-Granger method to test the cointegration between l_BET and l_NEER for the observations from the first sub-sample (from January 2006 to February 2008)

Variable	Coefficient	Std. Error	t-ratio	p-value	
const	11.4759	0.0985533	0.0000***		
l_NEER	-1.97490	0.0795255	8.97e-092***		
R-squared	R-squared 0.529494 Durbin-Watson Test				
Augmented Dicke	ey-Fuller Test on the	he residuals of the	test statistic	-2.30997	
cointegration regr deterministic term	asymptotic p-value	0.368			

Note: The number of the lagged differences for the Augmented Dickey-Fuller Test was chosen based on the Akaike Information Criteria.

In the Table 5 there are presented the results of the Engle-Granger method for the second subsample. Again, the residuals of the cointegration equation are not stationary so we can conclude that 1_BET and 1_NEER are not cointegrated.

Table 5. Results of Engle-Granger method to test the cointegration between 1_BET and 1_NEER for the observations from the second sub-sample (from March 2008 to September 2009)

Variable	Coefficient Std. Error		t-ratio	p-value
const	13.8669	0.256043	54.16	3.67e-182 ***
1_NEER -4.07040 0.186704		-21.80	3.30e-069 ***	
R-squared 0.552480 Durbin-W			atson Test	0.016163
Augmented Dick	ey-Fuller Test on th	e residuals of the	test statistic	-1.14675
cointegration reg	ression (with 29 lag	asymptotic	0.8714	
	deterministic term)	p-value		

Note: The number of the lagged differences for the Augmented Dickey-Fuller Test was chosen based on the Akaike Information Criteria.

The Johansen cointegration test (results are presented in the Table 6) indicates, for both subsamples, a null cointegration rank. In these circumstances we can not reject the null hypothesis of no cointegration between 1_BET and 1_NEER.

Period of	Deterministic	Lag	Rank	Figenvalue	Trace	n-value	Lmax	n-value
time	term	order	Runk	Elgenvalue	test	p value	test	p value
January	Unrestricted	2	0	0.019438	13.082	0.1119	10.757	0.1693
2006 to	constant							
February								
2008			1	0.0042330	2.3246	0.1273	2.3246	0.1273
March	Restricted	2	0	0.015668	8.9047	0.7462	6.0956	0.7749
2008 to	constant							
September					• • • • •		• • • • •	
2009			1	0.0072509	2.8090	0.6239	2.8090	0.6227

Table 6. Results of the Johansen cointegration test

Note: The number of the lagged differences was chosen based on the Akaike Information Criteria.

The results of the Breitung nonparametric cointegration test, presented in the Table 7, suggest again, for both sub-samples, a null cointegration rank. We may conclude that 1_BET and 1_NEER are not cointegrated.

Period of time	Deterministic term	H ₀	H_1	Test statistic	10% Critical value	5% Critical value
	no drift	r = 0	r > 0	95.58	261.00	329.90
Jan 2006 to		r = 1	r > 1	20.24	67.89	95.60
Feb 2008	drift	r = 0	r > 0	348.71	596.20	713.30
		r = 1	r > 1	69.20	222.40	281.10
	no drift	r = 0	r > 0	57.70	261.00	329.90
Mar 2008		r = 1	r > 1	11.95	67.89	95.60
to Sept	drift	r = 0	r > 0	157.48	596.20	713.30
2009		r = 1	r > 1	44.38	222.40	281.10

Table 7. Results of the Breitung nonparametric cointegration test

4.3. Analysis of the interactions between **l_BET** and **l_NEER** in a VAR framework

For the first sample we didn't find a suitable VAR model to reflect the relationship between l_BET and l_NEER. For the second sample we obtained the VAR model presented in the Table 8.

Table 8. VAR model for the second sample with 1_BET and 1_NEER as dependent variables

_				
Variables	Coefficient	Std. Error	t-ratio	p-value
const	-0.00110495	0.0013843	-0.7982	0.42525
d_l_BET_1	0.140383	0.0744808	1.8848	0.06021*
d_l_BET_2	-0.0588214	0.0698585	-0.8420	0.40031

0.358502

0.375922

1.1036

-2.0186

0.27045

0.04423**

0.395655

-0.758827

d 1 NEER 1

d 1 NEER 2

Equation 1: d 1 BET - Heteroskedasticity-robust standard errors

Mean dependent var	-0.001334	S.D. dependent var	0.028298
Sum squared resid	0.296480	S.E. of regression	0.027859
R-squared	0.040817	Adjusted R-squared	0.030773
F(4, 382)	2.333875	P-value(F)	0.055206
rho	-0.009346	Durbin-Watson	2.018536

Equation 2: d 1 NEER - Heteroskedasticity-robust standard errors

Variables	Coefficient	Std. Error	t-ratio	p-value
const	0.000286284	0.000287032	0.9974	0.31921
d_1_BET_1	-0.00108423	0.0149959	-0.0723	0.94240
d_1_BET_2	0.0210115	0.0147027	1.4291	0.15379
d_l_NEER_1	0.24461	0.0750812	3.2579	0.00122***
d_1_NEER_2	-0.0808835	0.0678716	-1.1917	0.23411

Mean dependent var	0.000315	S.D. dependent var	0.005999
Sum squared resid	0.012930	S.E. of regression	0.005818
R-squared	0.069090	Adjusted R-squared	0.059342
F(4, 382)	3.981587	P-value(F)	0.003536

Note: The number of the lagged differences was chosen based on Schwartz Information Criteria

For the two equations the t-ratio values indicate there are coefficients which individually are not statistically significant. However, the p-value associated to the F test suggests that collectively all the coefficients are statistically significant. The low values of the Adjusted Rsquared indicate a relative weak relationship between the two variables.

In the VAR framework we evaluate, for the second sample, the interactions between exchange rates and stocks prices using impulses – responses functions. In the Figure 4 there are presented the responses of d_1 _NEER to an impulse from d_1 _BET. It shows that after a short decrease d_1 _NEER began to rise abruptly to a maximum, from there beginning to decrease arriving to come back at the initial level.

Figure 4. Responses of d_1_NEER to an impulse from d_1_BET

The responses of d_l BET to an impulse from d_l NEER are presented in the Figure 5. Initially d_l BET rose but after a while fell sharply under the initial level and then it rose again to the initial value.

Figure 5. Responses of d_l_BET to an impulse from d_l_NEER

4.4. Evaluation of volatility by ARCH-GARCH models

We quantify the volatilities of the two variables by conditional variances provided by ARCH and GARCH models. Since the variables in levels are not stationary we use their first differences.

4.4.1. ARCH and GARCH models for d_l_BET

For the observations from the first sub-sample, the most adequate model for the volatility of d_1 BET proved to be a GARCH (1,1) with d_1 BET⁺ as independent variable (see Table 9).

Variables	Coeffic	cient	ient Std. Er		z-stat	p-value	
const	-0.0091	-0.00918041		000725683	-12.6507	<0.00001***	
d_lBET^+	0.0192	0.0192794		.00107664	17.9070	<0.00001***	
alpha(0)	1.85496e-05		5.12726e-06		3.6178	0.00030***	
alpha(1)	0.302636		0.118265		2.5590	0.01050**	
beta(1)	0.544	806	(0.0816058	6.6761	<0.00001***	
Mean dependent var 0.000		162 S.D. depen		dent var	0.015087		
Log-likelih	lood	1779.	628 Akaike cr		iterion	-3547.256	

Table 9. GARCH model for the first sub-sample with d_l_BET as
dependent variable and d 1 BET ⁺ as independent variable

Figure 6 presents the conditional variance obtained from this model. It shows that periods of high volatility alternate with more tranquil periods of time.

Hannan-Quinn

-3537.154

-3521.407

Schwarz criterion

For the second sub-sample the best fitted model for d_1 _BET volatility is an ARCH(2) with d_1 _BET⁺ as independent variable (Table 10). The conditional variance of d_1 _BET, presented in the Figure 5, reveals a high volatility from the end of 2008 to the beginning of 2009 (Figure 7).

Figure 6. Conditional variance of d_1_BET obtained from a GARCH (1, 1) model using observations from the first sample

Table 10. ARCH model for the second sub-sample, model with d_1 _BETas dependent variable and d_1 _BET⁺ as independent variable

Variables	Coefficient	Std. Error	t-ratio	p-value
const	-0.0199843	0.00125767	-15.8899	<0.00001***
d_1BET^+	0.0390134	0.0018115	21.5365	<0.00001***
alpha(0)	0.000248652	5.5006e-05	4.5205	<0.00001***
alpha(1)	0.146318	0.0503343	2.9069	0.00386***
alpha(2)	0.185568	0.0503308	3.6870	0.00026***

Statistics based on the weighted data					
Sum squared resid	374.2449	S.E. of regression	0.989797		
R-squared	0.548368	Adjusted R-squared	0.547186		
F(1, 382)	463.8213	P-value(F)	6.37e-68		
Log-likelihood	-539.9318	Akaike criterion	1083.864		
Schwarz criterion	1091.765	Hannan-Quinn	1086.998		
rho	-0.009338	Durbin-Watson	2.015460		

Statistics based on the weighted data

Figure 7. Conditional variance of d_1_BET obtained from an ARCH (2) model using observations from the second sub-sample

4.4.2. GARCH models for d_l_NEER

For the first sub-sample, the most adequate model for the volatility of d_1 _NEER proved to be a GARCH(1,1) with no independent variable (Table 11). The conditional variance of d_1 _NEER provided by this model has highest values at the end of 2008 and at the beginning of 2009 (Figure 8).

Figure 8. Conditional variance of d_1_NEER obtained from a GARCH (1, 1) model using observations from the first sub-sample

In the case of the second sub – sample the best fitted model is a GARCH(1,1) with d_l _NEER⁺ as independent variable. The conditional variance provided by this model is highest in the fourth quarter of 2008 (Figure 9).

Table 11. GARCH model for the first sub -	sample with d_1_N	NEER as dependent variable
---	-------------------	----------------------------

Variables	Coefficient	Std. Error	z-stat	p-value
const	-0.000228071	0.000136497	-1.6709	0.09474*
alpha(0)	3.38331e-07	2.64551e-07	1.2789	0.20094
alpha(1)	0.0578618	0.021375	2.7070	0.00679***
beta(1)	0.928646	0.0288128	32.2303	<0.00001***

Mean dependent var	0.000017	S.D. dependent var	0.004411
Log-likelihood	2245.824	Akaike criterion	-4481.648
Schwarz criterion	-4460.108	Hannan-Quinn	-4473.230

Figure 9. Conditional variance of d_1_NEER obtained from a GARCH (1, 1) model using observations from the second sub-sample

Table 12. GARCH model, for the second sub-sample with d_l _NEERas dependent variable and d_l _NEER⁺ as independent variable

Variables	Coefficient	Std. Error	z-stat	p-value
const	-0.00201783	0.000327298	-6.1651	<0.00001***
$d_l_NEER^+$	0.00465787	0.000551805	8.4412	<0.00001***
alpha(0)	2.71953e-08	5.21455e-08	0.5215	0.60200
alpha(1)	0.0830708	0.0361925	2.2953	0.02172**
beta(1)	0.916929	0.0330954	27.7056	< 0.00001***

Mean dependent var	0.000320	S.D. dependent var	0.006006
Log-likelihood	1609.333	Akaike criterion	-3206.667
Schwarz criterion	-3182.932	Hannan-Quinn	-3197.255

4.4.3. Evaluation of the interactions between the volatilities of exchange rates and stock prices using GARCH models

We introduced, for the first sub-sample, d_l _NEER as independent variable in ARCH and GARCH models with d_l _BET as dependent variable. The best fitted was proved to be the GARCH (1, 1) model presented in the Table 13. Based on the value of z-stat we may conclude the coefficient of d_l _NEER is statistically significant and the exchange rates variation has a considerable effect on the stock prices volatility.

Variables	Coefficient	Std. Error	z-stat	p-value
const	-0.00914798	0.000643468	-14.2167	< 0.00001***
d_l_NEER	-0.531937	0.126888	-4.1922	0.00003***
d_1BET^+	0.0190936	0.000947756	20.1462	< 0.00001***
alpha(0)	1.79442e-05	5.02455e-06	3.5713	0.00036***
alpha(1)	0.23699	0.0851413	2.7835	0.00538***
beta(1)	0.583377	0.0740369	7.8796	< 0.00001***

Table 13. GARCH model for the first sub-sample with d_1 BET as dependent variable and with d_1 NEER and d_1 BET⁺ as independent variables

Mean dependent var	0.000162	S.D. dependent var	0.015087
Log-likelihood	1796.033	Akaike criterion	-3578.065
Schwarz criterion	-3547.909	Hannan-Quinn	-3566.280

We found also for the first sub-sample a GARCH (1, 1) model with d_l_NEER as dependent variable and with d_l_BET and d_l_NEER⁺ as independent variables (Table 14). The coefficient d_l_BET is statistically significant, so we may conclude the variation of stock prices has a considerable effect on the exchange rates volatility.

Table 14. GARCH model for the first sub-sample with d_l_NEER as dependent variable and with d_l_BET and d_l_NEER⁺ as independent variables

Variables	Co	oefficient	Ste	d. Error	z-stat	p-value
const	-0	.0023877	0.00	00168048	-14.2084	<0.00001***
$d_l_NEER^+$	0.0	0.00498263		00313391	15.8991	<0.00001***
d_l_BET	-0	-0.0466497		013389	-3.4842	0.00049***
alpha(0)	1.0	1.08425e-07		7942e-08	1.1438	0.25271
alpha(1)	0	0.043323)197817	2.1901	0.02852**
beta(1)	0.950385		0.0)186357	50.9980	<0.00001***
Mean dependent v	/ar	0.00001	7	S.D. de	ependent var	0.004411

Mean dependent var	0.000017	S.D. dependent var	0.004411
Log-likelihood	2436.336	Akaike criterion	-4858.673
Schwarz criterion	-4828.516	Hannan - Quinn	-4846.887

For the second sub-sample we didn't find any ARCH or GARCH model which allows combinations of d_1 BET and d_1 NEER.

4.5. Tests of the Granger causality between exchange rates and stock prices

We tested the Granger causality between d_l_NEER and d_l_BET. For the first sub-sample we found no causality. Instead, for the second sub-sample the results indicate a unidirectional causality from exchange rates to stock prices (Table 15).

Period of	Null hypothesis	F-statistic	P-value	Causal inference
time				
Jan 2006 to Feb 2008	H0: d_1_NEER do not	0.0212	0.8597	d_1_NEER do not
	Granger-cause d_l_BET	0.0313		Granger-cause
				d_1_BET
	H0: d_1_BET do not	0.0002	0.7528	d_l_BET do not
	Granger-cause d_l_NEER	0.0993		Granger-cause
				d_1_NEER
Mar 2008 to Sept 2009	H0: d_1_NEER do not	1 6697	0.0097***	d_l_NEER Granger-
	Granger-cause d_l_BET	4.0082		cause d_1_BET
	H0: d_l_BET do not	2 0822	0.1254	d_l_BET do not
	Granger-cause d_l_NEER	2.0022		Granger-cause
				d_l_NEER

Fable 15. Tests of Gra	nger causality	between the variables
-------------------------------	----------------	-----------------------

5. Conclusions

In this paper we investigated the financial linkages between the exchange rates and the stock prices. We used a sample of daily values divided in two sub-samples: one from the relative tranquil period of time between January 2006 and February 2008 and the more volatile period between March 2008 and September 2009. We found that for the two sub-samples both variables are integrated at the order 1. However all the tests applied indicated that we cannot reject the hypothesis of no cointegration between the exchange rates and the stock prices.

We analysed the interactions between the two variables in a VAR framework. For the first subsample we did not find any suitable VAR model. From a VAR model for the second subsample it resulted that the stock prices react to the exchange rates variation much more substantial than the exchange rates to the stock prices variation. We tested for the both subsamples the Granger causality between the two variables.

For the first sub-sample we could not reject the hypothesis of no causality. Instead, for the second sub-sample, we found a unidirectional Granger causality from the exchange rates to the stock prices. We evaluated the volatilities of the two variables using ARCH – GARCH models. From the first to the second sub-sample we identified significant changes in the conditional variances, especially for the stock prices. We found that very often the conditional variances of the two variables have similar patterns.

We investigated the correlations between their volatilities by GARCH models with independent variables. For the first sub-sample we found that the variation of a variable could influence the volatility of the other variable. Our finding confirmed for the second sub-sample the traditional approach of the financial links between the FOREX market and the stock market. It could be an effect of some Romanian financial markets particularities.

Firstly, on the FOREX market the NBR interventions are still determinant, annihilating partially the effects of the stock market evolutions. Secondly, The Romanian stock market is very sensitive to the foreign stock markets, so the influence of the FOREX market is significant only for abrupt variations of the exchange rates. In the first sub-sample such changes were quite seldom, but in the second sub-sample they occurred pretty often. This investigation could be completed by the analysis of the interactions between the conditional variances of the exchange rates and the stock prices.

References

- 1. Abdalla, I. and Murinde, V. (1997), "Exchange rate and stock price interactions in emerging financial markets: evidence on India, Korea, Pakistan, and Philippines", Applied Financial Economics, vol. 7, pp. 25-35
- 2. Aggarwal, R. (1981), "Exchange Rates and Stock Prices: A Study of the US Capital Markets under Floating Exchange Rates", Akron Business and Economic Review, 12: 7–12
- 3. Aydemir O., Demirhan E. (2009), "The Relationship between Stock Prices and Exchange Rates Evidence from Turkey", International Research Journal of Finance and Economics, Issue 23
- 4. Bahmani-Oskooee, M. and Sohrabian, A. (1992), "Stock Prices and the Effective Exchange Rate of the Dollar", Applied Economics, 24: 459–464
- 5. Bollerslev, T. (1986), "Generalized autoregressive conditional heteroskedasticity", Journal of Econometrics 31: 307-327
- 6. Breitung, J. (2002), "Nonparametric Tests for Unit Roots and Cointegration", Journal of Econometrics 108, 343-364
- 7. Brüggemann, R. and Lütkepohl, H. (2001), "Lag selection in subset VAR models with an application to a U.S. monetary system", in R. Friedmann, L. Knüppel and H. Lütkepohl (eds), Econometric Studies: A Festschrift in Honour of Joachim Frohn, LIT Verlag, Münster, pp. 107-128
- 8. Dickey, D. A. and Fuller, W. A. (1979), Estimators for autoregressive time series with a unit root, Journal of the American Statistical Association 74: 427-431
- 9. Dornbusch, R. (1976), "Expectation and Exchange Rate Dynamic", Journal of Political Economy, reprinted in Dornbusch, R. (1988 ed.) "Open Economy Macroeconomics" NY: Basic Books Publisher
- 10. Dornbusch, R. Fisher, S. (1980), "Exchange Rates and the Current Account. American Economic Review", vol. 70, 1980, pp. 960–971
- 11. Engle, R. F. (1982), "Autoregressive conditional heteroskedasticity, with estimates of the variance of United Kingdoms inflations", Econometrica 50: 987-1007
- 12. Engle, R.F. and Granger, C.W.J. (1987), "Cointegration and error correction: representation, estimation and testing", Econometrica, 55, 251-276
- Frankel, J. (1983), "Monetary and Portfolio Balance Models of Exchange Rate Determination", In: Bhandari, J. – Putnam, B. (eds.): Economic Interdependence and Flexible Exchange Rates, Cambridge (MA), MIT Press, pp. 84–114
- 14. Frenkel, J. (1976), "A Monetary Approach to the Exchange Rate: Doctrinal Aspects and Empirical Evidence", Scandinavian Journal of Economics, vol. 78, 1976, pp. 200–224
- 15. Giovannini, A. Jorion, P. (1987): Interest Rates and Risk Premia in the Stock Market and in the Foreign Exchange Market. Journal of International Money and Finance, vol. 6, 1987, pp. 107–124
- 16. Granger, C. W. J. (1969), "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods", Econometrica, 37, 424-39
- 17. Granger, C. W. J., Huang, B. N. and Yang, C. W. (2000), "A bivariate causality between stock prices and exchange rates: evidence from recent Asian flu", Quarterly Review of Economics and Finance, 40: 337–54.
- 18. Hatemi J, A. and Irandoust, M. (2002), "On the causality between exchanges rates and stock prices: a note", Bulletin of Economic Research, vol. 54(2), pp. 197-203
- 19. Hussain H., Liew V. K. (2005), "Causal Relationships between Exchange Rates and Stock Prices in Malaysia and Thailand during the 1997 Currency Crisis Turmoil", Economic Bulletin, 7, 1-13
- 20. Johansen, S. (1995), "Likelihood-based Inference in Cointegrated Vector Autoregressive Models", Oxford University Press, Oxford
- 21. Lütkepohl, H. and Kratzig, M. (2004), "Applied Time Series Econometrics", Cambridge University Press;

- 22. Muhammad, N. and Rasheed A. (2002), "Stock Prices ad Exchange Rates: Are they Related? Evidence from South Asian Countries", Karachi University
- 23. Nadha, M. and Smyth, R. (2003), "Bivariate causality between exchange rates and stock prices in South Asia", Applied Economic Letters, 10: 699-704
- 24. Soenen, L.A. and Hennigar, E.S. (1988), "An Analysis of Exchange Rates and Stock Prices: The US Experience between 1980 and 1986", Akron Business and Economic Review, 19(4): 71–76
- 25. Tabak, B., (2006), "The Dynamic Relationship between Stock Prices and Exchange Rates: Evidence for Brazil", International Journal of Theoretical and Applied Finance, 9: 1377-1396