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APPROACH TO ANALYSIS OF SELF-SELECTED INTERVAL DATA1

Yuri Belyaeva and Bengt Kriströmb

We analyze an approach to quantitative information elicitation in surveys that

includes many currently popular variants as special cases. Rather than asking

the individual to state a point estimate or select between given brackets, the

individual can self-select any interval of choice. We propose a new estimator

for such interval censored data. It can be viewed as an extension of Turnbull’s

estimator (Turnbull (1976)) for interval censored data. A detailed empirical ex-

ample is provided, using a survey on the valuation of a public good. We estimate

survival functions based on a Weibull and a mixed Weibull/exponential distribu-

tion and prove that a consistent maximum likelihood estimator exists and that

its accuracy can be consistently estimated by re-sampling methods in these two

families of distributions.

Keywords: Interval data, Maximum Likelihood, Turnbull estimator, willing-
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ness-to-pay, quantitative elicitation.

1. BACKGROUND

Surveys make up the life-blood of empirical research in the social sciences

in general and in economics in particular. Employment surveys, investment

surveys, inflation surveys are traditional examples, to which we can add

the growing recent literature on the valuation of public goods. A key is-

sue in any survey is the elicitation architecture, i.e. the way of elicitating

information from the respondent.1 The choice is essentially between two

types of survey questions, the open-ended and the closed-ended.2 We an-

alyze an interval type of question in surveys that includes many currently

popular variants as special cases. Rather than asking the individual to state

a point estimate or select between given brackets, the individual can self-

select any interval of choice. This paper is a part of our research program on

self-selected interval questions, H̊akansson (2008), Belyaev, H̊akansson and

Kriström (2008), present background empirical analysis. This paper takes

the next step, by proposing statistical (and economic) theory to support

1Perhaps the closest literature to our general approach is significant body of literature

in psychology, statistics and survey research that provides approaches to elicit probability

distributions, for a survey, see e.g. Garthwaite, Kadane and O’Hagan (2004). A compact

survey of many issues in survey research, in particular regarding response errors and

biases across formats is given in McFadden et al. (2005).
2Each of these can be further sub-divided into several categories. For example, closed-

ended questions can be based on a Likert-scale (e.g. from ”strongly disagree” to ”strongly

agree”), a multiple choice (e.g. ’circle one of the following alternatives’), an ordinal ques-

tion (e.g. ’rank the following items from 1 to 5’), and a binary question (” are you willing

to pay x USD for this public good” (yes, no)). There are also several variants of the open-

ended questions, such as ”How much are you willing to pay for this public good?” or

”How did you make that choice?”. The choice between the open and closed-ended ques-

tions is not straightforward, because they have advantages and disadvantages in different

situations, see Fink (1985).
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the use of such interval questions.

As argued below, this version could reduce a number of biases, provides

a richer picture of response uncertainty, potentially increase response-rates

and maintains a link to recent ideas on coherent arbitrariness. These argu-

ments are necessarily heuristical, because the empirical evidence is scant, a

point we will return to below.

Potential applications include, but are not limited to: recall situations

(”How many days were you unemployed the first quarter of last year?”,

”What was your net income the previous year of taxation”?), projections

(”What is your best forecast of the next year’s interest rate?”) or contin-

gent valuation studies (”How much are you maximally willing to pay for the

suggested change?”). As Manski and Molinari (2010) points out intervals

are more common in daily communication than we ordinarily think. Thus,

weather reports and pilot communications include a form of implicit inter-

val, e.g. when meteorologists report that the wind blows from the ”north

means that the wind direction lies in the interval [337.5., 22.5.].” This kind

of rounding is also prevalent in many types of surveys; it is well-documented

that individuals often round their answers to open-ended survey questions,

see Rosch (1975), Schaeffer and Bradburn (1989), Huttenlocher, Hedges and

Bradburn (2008), Hurd et al. (1998), Hobbs (2004), and van Exel et al.

(2006). Manski and Molinari (2010) claims the The University of Michigan

Health and Retirement Study (HRS) surveys will, in the 2008 and 2009

rounds, add an interval option to the current point-type question about a

certain probability. The basic problem is that when a respondent is to re-

port a point, he sometimes round it to describe a sentiment that really is

an interval. Manski and Molinari (2010) present an approach to deal with

such intervals, which is different from the one suggested here. The differ-

ence arises partly because we ask the respondent to state a point or an

interval, not both. In addition, we take the view that the individual chooses
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a particular interval (from unobserved personal set of admissible intervals)

and state it. We try also to find out more probable individuals’ behavior in

selection of stated intervals and the corresponding WTP-distribution.

Consider, as an example of the standard interval type approach (”brack-

eting”) the Quarterly Survey of Professional Forecasters (SPF) used by the

European Central Bank (http://www.ecb.int/stats/pdf/spfquestionnaire.

pdf). The 2007 version of the questionnaire asks designated experts for es-

timates of the future inflation, Gross Domestic Product growth and un-

employment rates, coupled with probabilities for different outcomes. Thus,

for example, intervals for inflation are given as (< 0%, 0.0 − 0.4%, 0.5 −
0.9%, 1.0 − 1.4%, 1.5 − 1.9%, 2.0 − 2.4%, 2.5 − 2.9%, 3.0 − 3.4%,≥ 3.5%)

and the respondents have to state their expectations for 2008 and 2009, by

assigning probabilities for each outcome. A disadvantage with this type of

bracketing approach is the possibility of starting point bias, or ”bracketing

effect”, a phenomena that has been extensively studied and documented

(see McFadden et al. (2005)). Briefly, in split-samples one often finds signif-

icant differences between responses depending on the chosen bracket struc-

ture.3 An advantage with the interval approach suggested here is that we

avoid such effects. In addition, we avoid the tendency of choosing a bracket

”somewhere in the middle”.4

Another advantage with the self-selected intervals is that they arguably

3For a recent example in an economic context, see Winter (2004)
4There is a similar method in the related literature referred to above. Garthwaite,

Kadane and O’Hagan (2004) distinguishes between the fixed interval method and the

variable interval method. In the first case, the respondent is asked to assess the probability

that X is within a set of intervals proposed by the investigator (the constraint that

probabilities sum to one is imposed). In the second, the respondent is asked to state the

upper and lower quartiles for X (the maximum amount of tomorrow’s precipitation, for

example). The interval has a specified probability (e.g. 50% chance that the interval will

cover the true value).
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provide a richer picture of any underlying response uncertainty, compared

to bracketing and some recent approaches to cater for respondent uncer-

tainty in contingent valuation.5 The currently most popular approach in

contingent valuation is a payment card containing several different costs

for a public good, combined with a question about how certain the respon-

dent feels about paying a certain cost (e.g. ”definite yes”, ”probably yes”,

”probably no” and ”definite no”). Recent analysis shows that including such

uncertainty-assessments in the survey instrument may affect the estimate

of valuations. For a review of this literature in this area see Broberg and

Brännlund (2008). The intervals do not burden the respondent with the task

of categorizing his uncertainty about a certain quantity and no issues arise

as to how such categories should be represented in an econometric model.6

Furthermore, there is an interesting connection to recent ideas in eco-

nomic psychology on coherent arbitrariness. In Ariely, Loewenstein and Pr-

elec (2003), individual’s valuations of private goods are shown in a set of

experiments to be anchored on some arbitrary initial price, but the values

change coherently with conditions. In our application, we do not suggest a

price for the public good under consideration, so in this sense there is no

direct connection to the coherent arbitrariness hypothesis. Still, a person

might have difficulty stating a precise value for a public good and prefer to

state, as in Ariely, Loewenstein and Prelec (2003), a ”range of acceptable

values”. As the provision of the public good increases, we might see the

interval ”shifted to the right”, which arguably is a behavior consistent with

5As noted, the SPF-survey does include a way for the respondent to submit his un-

certainty about certain outcomes in a more direct manner compared to the self-selected

interval approach. The fixed and variable interval methods are similar in this regard.
6Each category of uncertainty can be considered in terms of a threshold-parameter in

an ordered logit(probit) model. Assumptions are usually imposed on those parameters,

an issue avoided here.
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the coherent arbitrariness hypothesis.7

As a final point not directly related to our statistical modelling, we note

that a standard open-ended question tend to give lower response rates Mc-

Fadden et al. (2005). The question then arises if the self-selected intervals

give higher response rates. There is scant evidence on this issue, but some

encouraging results are provided in H̊akansson (2008). Further research on

the issue of response rates across elicitation methods is needed.

A number of disadvantages have been demonstrated with the standard

elicitation methods. For example, open-ended questions tend to depress re-

sponse rates, while the close-ended question necessarily gives much more

limited information. In addition, when an individual is offered a price to

reject or accept (as in contingent valuation), there is a tendency for anchor-

ing around the price; while there is no intended information content the

individual may well anchor his valuation around the suggested price. In the

psychological literature, this phenomena was documented in the beginning

of the 1970s8. A useful overview on psychologists’ research about ”How the

question shapes the answers”, is given by Schwartz (1999). We do concede

the point that our arguments in favor of the self-selected interval question

are partially heuristical. There simply is not enough empirical evidence that

allows any definite statement about the ”best” elicitation approach. Even

so, all existing elicitation methods are special cases of the self-selected in-

tervals, and we think the approach merit further analysis.

Turning now to the specific statistical problem analyzed in this paper, we

need to develop an estimator that allows us to estimate the distribution of

7Using a different type of valuation question, a payment ladder, Hanley, Kriström and

Shogren (2008) empirically explores the concept in the context of a public good.
8 Slovic (1972) and Tversky and Kahnemann (1974). See, however, Kynn (2007) for

a candid review of these early, and very influential, papers. In particular, Kyle’s review

suggests that the extent to which individual’s use heuristics for substantive decisions is

unclear.
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the variable of interest, given that the data are censored in a non-standard

manner. Thus, in our data, we either observe a (potentially rounded) data-

point exactly, or that the data is coarsened and the point is ”hidden” by a

self-selected interval. At first glance, such interval censored data would seem

to be easily handled by standard methods developed in the statistical litera-

ture. A general solution to the problem of (non-parametric) maximum like-

lihood (ML-)estimation for censored data was obtained by Turnbull (1976),

in a well-known paper. See also Jammalamadaka and Mangalam (2003).

Because the censoring mechanism is not random in the standard sense, we

need to take into account the coarsening mechanism in a novel manner. In-

tuitively, if bracketing is used, the censoring mechanism is random from the

individual’s point of view. In our case, the individual selects his preferred

interval from a subset of intervals that are unknown to the investigator. Our

solution to the estimation problem therefore involves two different probabil-

ities, the first being related to the choice of interval, the second to the condi-

tional probability that the unknown value belongs to a given interval. This

solution is a natural consequence of the way information is elicited when

using the self-selected interval approach. The comparison with the usual ap-

proach to maximum likelihood estimation with interval data is therefore not

straightforward. Nevertheless, we provide an illustrative example invoking

the Turnbull estimator as if the data had been generated by the standard

bracketing approach, in which the brackets are chosen by the investigator,

not the individual. It should be noted that our comparison does not cater

for the fact that a suggested sequence of brackets may be unsuitable from

the individual’s point of view. Proper comparison of our approach with the

bracketing approach will be a focus of our continued research.

The rest of the paper is structured as follows. In Section 2 we introduce

a very simple economic model that pins down what we want to measure

and detail our basic assumptions. We re-interpret a model suggested in
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Hanemann, Kriström and Li (1996) to handle preference uncertainty in

valuation studies. The empirical data is introduced in Section 3 and serve

as a bridge to the statistical model introduced in Section 4. In Section 5

we apply the proposed ML-estimator and compare it with Turnbull’s. The

final Section 6 has concluding remarks. The Appendix sketches proofs of

existence and consistency of the ML-estimators and consistent estimation

of accuracy using resampling methods.

2. BEHAVIORAL ASSUMPTIONS AND THE ECONOMIC MODEL

We offer the following simple model to pin down what we want to mea-

sure, i.e. a measure of the public’s willingness-to-pay (WTP) for a public

good. Because the respondent’s WTP is an interval, the welfare economic

interpretation is subtle. Our line of attack is based on Hanemann, Kriström

and Li (1996). We assume that each individual has an underlying concave

smooth utility function U(c, q), increasing in both its arguments, where c

is money income and q is an index of environmental quality. The Hicksian

compensating variation (WTP) x for an environmental improvement from

q0 to q1(q1 > q0) is then defined by the relation

(2.1) U(c0, q0) = U(c0 − x, q1),

where c0 denotes income in the status quo.

Let the set of individuals’ incomes in a population be described by a

probability distribution. Then for the ith individual the unobserved value of

compensating variation x = xi in (2.1) is a value of a random variable (r.v.)

Xi with distribution function (d.f.) F [x] = P [Xi ≤ x], x ≥ 0. We assume

that the ith individual does have a true point of valuation for the change of

q but cannot state it with certainty. Thus, let the uncertainty of particular

individual’s valuation y be described by a random variable Y . Its conditional

d.f. given the compensating variation x is denoted G[y | x] = P [Y ≤ y | x].
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Let yi = (yLi, yRi] be an interval stated by the ith individual, then yi

is a value of a r.v. Yi = (YLi, YRi]. The conditional d.f. of Yi given the

compensating variation is denoted G[y | x] = P [YLi ≤ yL, YRi ≤ yR |
x], y = (yl, yR].

Our empirical data suggest that individuals prefer to state rounded values

or intervals, selected from a finite set. To handle this possibility, we proceed

as follows. If the ith individual has stated a point value yi then yi belongs

to a finite set Up , yi ∈ Up = {u1, ..., ump}. All stated intervals are elements

of a set UI = {u1, ...,umI} with a finite number of intervals having rounded

left and right ends. Therefore we assume that the conditional d.f.s G[y | x]

or G[y | x] are discrete. The element uh ∈ Up and the interval uh ∈ UI is

selected with conditional probability wph[x] = P [Yi = uh | x] and wIh[x] =

P [Yi = uh | x], respectively.

The probability to state the point value yi = uh or interval yi = uh can

be written as

wph = P [Yi = uh] =
∫ ∞

0
wph[x]dF [x],

or

(2.2) wIh = P [Yi = uh] =
∫ ∞

0
wIh[x]dF [x],

respectively. The functions wph[x], wIh[x], and F [x] are unknown.

This model can be interpreted in several ways. Under preference uncer-

tainty, the uncertainty arises because the individuals do not know their

utility function exactly. As noted, this is a re-interpretation of the model in

Hanemann, Kriström and Li (1996), which focuses on integrating valuation

uncertainty into a microeconomic model. In their model, the individuals are

uncertain about their WTP, but know that it is within a given interval (as-

sumed symmetric and with the same length for all households). But it is

possible to give this a more general interpretation; the individuals are un-

certain about their valuation because of generic uncertainty about many
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factors (suppressed here). These uncertainties are summarized by F [x] and

G[y | x] or G[y | x]. Alternatively, we can use the same set-up as in the

industrial organization literature, in which the individual is uncertain about

the quality of the good he buys. The uncertainty is not resolved until after

the individual has experienced the good. Hence, for each given value of the

quality-level, one obtains a particular value of WTP. This gives an interval of

possible values. Thirdly, we can expand upon the traditional RUM-approach

(see e.g. McFadden et al. (2005)) and add a state-dependent error term that

summarizes response uncertainty. The intervals are then simply describing

the support of these error terms (the standard error term is usually inter-

preted as the researcher’s ignorance about the utility function). We do not

develop these models here, because our focus is on the statistical approach,

to which we now turn.

2.1. Assumptions

In order to estimate the distribution of WTP, we need to make a number

of assumptions related to how individuals respond to the valuation question.

We first introduce the following notion of admissibility:

Definition 1 Let the compensating variation x be a true point of valua-

tion and let C(x) = {u : u ∈ UI , x ∈ u}. Then any interval u ∈ C(x) is

said to be admissible.

We collect assumptions in the following.

Assumption 1 Each individual has one true point of compensating varia-

tion, but might not be aware of the exact location of this point. Rrespondents

may freely round and state these points or admissible (potentially rounded)

intervals.
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Assumption 2 The true points of compensating variation are independent

of question mode (open-ended, a self-selected interval or a choice between

the two) and the question mode does not change the true points.

Assumption 3 The true points, the stated points and the intervals of

compensating variation corresponding to different respondents in a sample

are values of independent identically distributed (i.i.d.) random variables.

Assumption 1 is supported by a shift in the contingent valuation literature

towards catering for preference uncertainty, as noted above. The question

of incentive-compatibility is beyond the scope of this paper, so we simply

assume that the individual tells the truth. Assumption 2 limits the set of

elicitation methods to open-ended and will be used below in a comparison of

the open-ended and the self-selected intervals. Assumption 3 is acceptable if

the number of sampled respondents is negligible relative to the population

of individuals.

Let Pu be a group of persons in a population of interest P and suppose

that all persons in Pu, if being asked, would state the same interval u. Let

U = {u} be the set of all stated intervals. The size M of the set U is not

known. Suppose that a random sample of n respondent was taken from P

and m different intervals Um = {u1, ...,um} were stated. In what sense can

we then say that m is sufficiently large for inference? If Assumptions 1 - 3

hold we can restate this question as follows. How large fraction qs can be

excluded from P such that m does not increase as n→∞?

If Assumptions 1 - 3 hold then we can consider the sampling process

of stated intervals as a multinomial process with independent events. This

process is reduced to a binomial process if we collect ”often stated” intervals

in the first group and the rest of the stated intervals and all not yet observed

intervals in the second group. We estimate the probability qo to select an

interval from the first group by the empirical frequency q̂o and qs = 1− qo
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by q̂s = 1− q̂o. After that we find γ−confident interval (0, q̂sγ] containing qs.

If q̂sγ is “small” then our inferences with fixed m will be valid for a slightly

reduced P.

To fix ideas and further motivate the self-selected intervals, we reveal

salient features of our application in the next section.

3. EMPIRICAL DATA

A contingent valuation study with interval questions was carried out to

shed light on the costs and benefits of changing in stream flow at the Stornor-

rfors hydropower plant on the Vindel River, in northern Sweden. The sce-

nario entails reducing production of electricity, which would increase the

number of wild salmon in the river, as more water would be allocated to

salmon passage areas. The survey was carried out in the autumn of 2004.9

Respondents were asked about their WTP for increasing the number of

salmon that reach their spawning grounds in the river each year. Here we

consider a part of the sampled data from a general register of the Swedish

population (SPAR).10 Our analysis is based on three subsets of the sampled

data. In the first sample S1, we used a standard open-ended question. In

the second sample S2 we asked only about intervals and in the third sample

S3 individuals were free to select either a point or an interval of choice. See

Table I for a summary of the data.

There is considerable heaping on a certain set of intervals. Thus, 142 out

of 241 respondents , in the samples S2 and S3, stated the following four

WTP-intervals: (20, 50], (50, 100], (100, 150], (100, 200]. The numbers of

these stated intervals are 39, 11, 69 and 23, so that four ”popular” intervals

make up an important part of the data. In Figure 1 we display the stated

intervals, ordering them by their left endpoints.

9For details about the study, see H̊akansson (2008).
10All individuals less than 18 years of age were excluded from the register prior to

sampling.
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TABLE I

Sample # not # of stated 0 # of stated # of stated total #

answered intervals points

S1 97 76 0 72 245

S2 97 88 58 0 243

S3 527 334 183 148 1192

Consider now the difference between the points and the intervals. We

compare the empirical survival functions (s.f.s) sf1[x] based on WTP-points

in sample S1 and sf2[x] on the values of right ends of intervals in sample

S2. The s.f.s are defined in the following manner:

(3.1) sf1[x] =
mP∑
h=1

tph
tp·
I[uph > x], sf2[x] =

mI∑
h=1

tIh
tI·
I[uRh > x],

where tph and tIh denote the number of statements of the point uh and

the right points uRh of intervals uh in S1 and S2, and tp· =
∑mp
h=1 tph, tI· =∑mI

h=1 tIh. I[·] is the indicator function. These empirical s.f.s are displayed in

Figure 2.

The two survival functions for the sample S1 (thin stepwise line) and for

the sample S2 (thick stepwise line) have jumps proportional to the number

of statements points and intervals. The figure suggests that the stated points

are rounded up to the right-hand ends of the intervals.

To gain further insight, we plotted the empirical s.f.s of the right intervals’

ends and intervals’ lengths in S2 and S3, see Figure 3. It suggests there is no

”treatment effect”, i.e. whether or not the individual must state an interval

in S2 or may choose an interval in S3 makes little difference. A similar

comparison between the distributions of stated points in S1 and S3 shows

a slight disparity. We find by calculating the area under the s.f.s that the

estimated mean values are 139.236 and 177.135, respectively, with p−value

for their difference (37.899) being 0.101.11

11We use resampling methods for estimation accuracy of statistical inferences in this
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Unfortunately, the number of observations in samples S1 and S3 are rather

small and it is not possible with confidence to reject the hypothesis that the

distribution of the points in the sample S1 is the same as in S3. If we

reject the hypothesis then Assumption 2 does not hold. If we accept the

hypothesis and stated points and right-hand ends of intervals are close to

WTP, then this either contradicts Assumption 2, or S1 respondents rounded

their true WTP-points upwards. The last possibility is consistent with our

assumptions. Therefore, by Assumption 2, we are forced to conclude that

the interval question is, given our assumptions, to prefer.

To sum up: the two intervals-samples are very similar, even though the

numbers are based on two different ”treatments”. The WTP-point responses

suggest a rounding upward towards the right-hand endpoints of the stated

WTP-intervals.

Let us now return to the question about the size of m. We split the

241 intervals into two groups, the first having the intervals that are stated

more than once, the second group then contains the single-stated intervals.

In our data, the sizes of the first and the second groups are 220 and 21,

respectively. Using the normal approximation for the distribution of q̂o =

220/241 we obtain a γ−confident interval (0, q̂sγ] ' (0, 0.14] containing

qs with probability γ ≥ 0.975. Hence, we obtain statistical inferences for

distributions of large majority of WTP-points based on the observed value

m of all different stated intervals. For samples taken from not less than

86% = (1− 0.14)100% part of the population P, m will be constant for all

n > 241. Now we turn to our statistical model for interval data.

4. DEFINITION OF THE STATISTICAL MODEL WITH ROUNDED INTERVALS

Suppose that the collected statistical data consist of n stated rounded

intervals yi = (yLi, yRi] containing unobserved true WTP-points of com-

paper, see the Appendix and Belyaev (2003, 2007).
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pensating variation xi ∈ yi, i = 1, .., n. Let Um = {u1, ...,uh, ...,um} be

the list with all different intervals uh = (uLh, uRh], uLh < uRh, uh1 6= uh2 ,

h1 6= h2, and for each i ∈ {1, ..., n} there is at least one yi = uhi , i.e. the

stated WTP-intervals {y1, ...,yn} = {uh1 , ...,uhn}. As above, let th be the

number of cases when yi = uh. The collected statistical data can be written

as the list datm = {{u1, t1}, ..., {uh, th}, ..., {um, tm}},
∑m
h=1 th = n.

Suppose that Assumptions 1 - 3 stated in Section 2 are valid. By As-

sumption 3 we consider {x1,y1}, ..., {xn,yn} as values of i.i.d. pairs of r.v.s

{Xi,Yi}, Yi = (YLi, YRi], and let {Yi ≤ y} = {YLi ≤ yL, YRi ≤ yR}.
Their d.f.s F [x] = P [Xi ≤ x] and G[y | x] = P [Yi ≤ y | Xi = xi]

are unknown. By Assumption 1 Xi ∈ Yi. The stated rounded intervals

uh = (uLh, uRh], h = 1, ..., n, can overlap and their union is contained in the

support of the distribution of the r.v.s Xi, i = 1, ..., n. The ith respondent

states that the true point of compensating variation xi belongs to an inter-

val uh, e.g. ”xi ∈ uh”, uLh < xi ≤ uRh. The rounded interval uh has covered

the true point xi.

Let Vk = {v1, ...,vk} be the division generated by the set of intervals

Um, i.e. Vk is the collection of disjoint intervals vj = (vLj, vRj] and each

uh = ∪j∈Chvj, where Ch = {j : vj ⊆ uh} is the set of all indices of division

intervals which are subsets of uh, h = 1, ...,m. For each j = 1, ..., k we define

the set Dj = {h : vj ⊆ uh}, i.e. h belongs to Dj if and only if vj ⊆ uh. By

dj we denote the number of h ∈ Dj, i.e. dj is the size of Dj. The division

Vk = {v1, ...,vk} may be considered as a kind of bracketing generated by

respondents due to roundings.

Let Xi = xi ∈ vj and suppose that the ith-respondent has stated an

admissible interval uhi , hi ∈ Dj. The event {Xi ∈ vj} is not observed. We

introduce the conditional probability whij to state uhi , hi ∈ Dj

(4.1) whij = P [”Xi ∈ uhi” | Xi = xi ∈ vj],
∑
hi∈Dj

whij = 1, whij > 0.
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We use the following notations F [uh] = F [uRh]−F [uLh], F [vj] = F [vRj]−
F [vLj] and note that F [uh] =

∑
j∈Ch F [vj]. W = {whj, h ∈ Dj, j = 1, ..., k}

and Fk = {F [vj], j = 1, ..., k} are the parameters of the statistical model

with the list of collected data datm. From (2.2), Assumption 1 and the

formula of total probability it follows that the ith respondent states an

interval uhi with probability

(4.2) whi = P [”Xi ∈ uhi”] =
∑
j∈Chi

whijF [vj], i = 1, ..., n.

Therefore, the probability to obtain a particular data datm is

n∏
i=1

P [”Xi ∈ uhi”] =
m∏
h=1

wthh =
m∏
h=1

∑
j∈Ch

whjF [vj]

th .
The right hand side is the likelihood if we consider it as a function of the

parameters in W and Fk. We obtain

(4.3) likelihood [W,Fk | datm] =
m∏
h=1

∑
j∈Ch

whjF [vj]

th .
It is more convenient consider the average log likelihood (llik). From (4.2)

and (4.3) we have

(4.4) llik [W,Fk | datm] =
1

n

m∑
h=1

thLog[wh] =
m∑
h=1

th
n

Log

∑
j∈Ch

whjF [vj]

 ,
n =

∑m
h=1 th. It is possible to rewrite (4.4) as follows

(4.5) llik[W,Fk | datm] = llikA[W,Fk | datm] + llikB[Fk | datm],

where

(4.6) llikA[W,Fk | datm] =
m∑
h=1

th
n

Log

∑
j∈Ch

whjF [vj]/F [uh]

 ,

(4.7) llikB[Fk | datm] =
m∑
h=1

th
n

Log[F [uh]] =
m∑
h=1

th
n

Log

∑
j∈Ch

F [vj]

 .
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The loglikelihood (4.4) contains many unknown parameters: W = {whj,
h ∈ Dj, j = 1, ..., k} and Fk = {F [v1], ..., F [vk]}. The unknown probabil-

ities in W depend on the respondent’s choice of interval from the set of

admissible intervals uh, h ∈ Dj, if xi ∈ vj. In our approach it is possible

to consider different conditional probabilities whj ∈ W, depending on the

behavior of respondents. For example, if the respondents are indifferent,

i.e. the respondents state any uh, h ∈ Dj, with the same probability, then

whj = 1/dj, j = 1, ..., k. Note that we may also vary whj depending on the

position of vj inside uh ⊃ vj. It is essential know whether respondents pre-

fer to state uh ⊃ vj if vj 3 xi is closer to the left(right)-hand end uLh (uLh)

or not.

If there is no truncation, then (4.7) formally corresponds to the likelihood

suggested by Turnbull (1976) under the (very restrictive) assumption that

the selection of intervals uh, h = 1, ...,m, is independent of the respondents.

We can reduce the number of unknown parameters. Let us introduce a

quasi-linear ordering in the set Um = {u1, ...,um} of all different stated

intervals. We say that uh1 is more likely to be stated than uh2 if wh1 > wh2 .

If wh1 = wh2 then we say that both wh1 and wh2 are equally likely to be

stated.

Let us define the selection probabilities whj, h ∈ Dj, by the relations

(4.8) w̃hj =
whI[h ∈ Dj]∑

h′∈Dj
wh′

, j = 1, ..., k.

The probabilities in (4.8) satisfy the quasi-linear ordering. The set of un-

known parameters W is thus reduced to the list of probabilities wm =

{w1, ..., wm} to state intervals u1, ...,um.

From (4.8) we thus obtain the average loglikelihood (4.4) as a function of

unknown parameters wm = {w1, ..., wm} and Fk = {F [v1], ..., F [vk]}. We
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rewrite (4.4) as follows

(4.9) llik[wm,Fk | datm] =
m∑
h=1

th
n

Log

∑
j∈Ch

w̃hjF [vj]


where all w̃hj are defined by relations (4.8). We consider w̃hj as nuisance

parameters because our aim is to estimate Fk.

llik, in (4.9) implies that when respondents are selecting uh ∈ Um, they

state the most ”attractive” rounded interval uh containing their WTP.

We consider two extensions of conditional probabilities whj, j ∈ Ch, to

select uh ∈ Um. Suppose that there are two independent causes affecting

the probability whj : the anchoring of the rounded interval uh and the

position of the interval vj ⊆ uh that contains WTP-point. Let uh = vj1 ∪
... ∪ vjdh , vRjs = vLjs+1 We say that vj has h−local rank rhj = s if vj ⊂ uh

and j = js. In the first extension we suppose that whj is a linear function

of the h−local rank rhj if the interval vjr contains the WTP-point. Let

r̃hj = rhj/rh·, rh· =
∑
j∈Ch rhj. Then we have

(4.10) whj[c] =
(1 + cr̃hj)whI[h ∈ Dj]∑

h′∈Dj(1 + cr̃h′j)wh′
, h ∈ Dj, j = 1, ..., k,

where c is a real number. If c > 0 (c < 0) then the probability to select uh

increases (decreases) if the h−local rank of vjs grows (descends). If c = 0

then (4.10) coincides with (4.8). The related llik can be written as follows

(4.11) llik[c,wm,Fk | datm] =
m∑
h=1

whLog[
∑

whj[c]F [vj]].

Another extension is based on the assumption that the second cause con-

tributes to the factor ghj proportional to the probabilities (4.8),vj ⊂ uh.

Here, we use Beta distributions ghj = B[vhj, α, β] = 1
B[α,β]

∫ vRhj
vLhj

zα−1(1 −
z)β−1dz, vLhj = (vLj − uLh)/(uRh − uLh), vRhj = (vRj − uLh)/(uRh − uLh).
We have

(4.12) whj[α, β] = ghj
whI[h ∈ Dj]∑
h′∈Dj wh′gh′j

.
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Then the corresponding llik can be written as follows

(4.13) llik[α, β,wm,Fk | datm] =
m∑
h=1

whLog

∑
j∈Ch

whj[α, β]F [vj]

 .
From Assumption 3 and (4.4) the ML-estimators of probabilities wh, h =

1, ...,m, are ŵh = th
n
, ŵh−wh

P→ 0, as n→∞. Here,
P→ denotes convergence

in probability.

The estimators ŵh, h = 1, ...,m, can be used to obtain consistent estima-

tors ŵhj for probabilities w̃hj,

(4.14) ŵhj =
thI[h ∈ Dj]∑

h′∈Dj
th′

, j = 1, ..., k.

Relations (4.14) can be also be used as consistent estimators of factors in

the above extensions.

Our main aim is to estimate probabilities F [v1], ..., F [vk] which we con-

sider as k unknown parameters with the constraint
∑k
j=1 F [vj] ≤ 1. All

unknown parameters 0 ≤ w̃hj ≤ 1, 0 ≤ F [vj] ≤ 1, j = 1, ..., k, h ∈ Dj

are contained in a compact set. Maximum likelihood can thus be applied

to finding estimates of F [vj], j = 1, ..., k, if we in (4.9) use the consistent

estimates ŵhj of w̃hj.

We collect an interesting property of our ML-estimators ŵk in a propo-

sition.

Proposition 1 The ML-estimators ŵm = {ŵ1, ..., ŵm}T minimize the

empirical entropy of the distribution wm = {w1, ..., wm}T

(4.15) max
wm

llik[wm,Fk | datm] = −
m∑
h=1

ŵhLog
[

1

ŵh

]
.

Relation (4.15) follows from maximization of
∑m
h=1whLog[wh] with the

linear constraint
∑m
h=1wh = 1.
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We find estimates F̂ [vj] as the solutions to the following optimization

problem

(4.16) max
F [vj ],j=1,...,k

m∑
h=1

thLog

∑
j∈Ch

ŵhjF [vj]

 =
m∑
h=1

thLog

∑
j∈Ch

ŵhjF̂ [vj]

 .
It is not possible to identify F [x] for all x but we can consistently estimate

its increments on any division interval vj as the number n of observations

grows. The solution to the optimization problem in (4.16) is a non-trivial

numerical problem because the number k of parameters F [vj] can be rather

large. We do not try to solve it here, because we have a small data set.

Instead, we suppose that the d.f. of interest F [x] can be approximated by a

parametric function Fθ[x],θ ∈ Θ. Here, we will use mixtures of the Weibull

families.

5. APPLICATION OF THE STATISTICAL MODEL

The pilot analysis in Section 3 suggests that we can combine the in-

terval data collected in the samples S2 and S3 into one sample. We de-

note this fused sample Sf . The corresponding datm = {{{uL1, uR1}, t1}, ...,
{{uLm, uRm}, tm}} has size m = 46. The WTP-intervals are ordered by the

values of their left-hands ends and right-hands ends as shown in Figure 1.

The related division Vk = {v1, ...,vk} has k = 23 intervals. The sample Sf

contains n = 241 stated intervals. The most popular interval u27 = (50, 100]

is, as noted, stated by t27 = 69 respondents.

We denote the Weibull d.f. W (a, b)=Fab[x] as 1− e−(x/a)b , where a is the

scale parameter, and b is the shape parameter. We thus approximate the

d.f. of unobserved true WTP-points values x1, ..., xm by a distribution from

the Weibull family FW of distributions. In addition, we use a mixture of

the Weibull and the Exponential distributions. We denote the correspond-

ing family by FWE. For comparative purposes, we include the Turnbull

approach which is reduced here to parametric WTP-d.f. with no observed
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WTP-points. The properties of the estimators in our model are collected in

Theorem 5.1.

Theorem 5.1 If Assumptions 1 - 3 hold and the d.f. of true WTP-points

is W (a, b) then a consistent ML-estimator θ̂n = {ân, b̂n} exists and its ac-

curacy can be consistently estimated by resampling as n→∞.

A proof is outlined in the Appendix. A similar result also holds if the d.f.

of true WTP-points is a mixture of the Weibull d.f. and the Exponential

d.f.

Let us now turn to estimation results. We use (4.14) to estimate ŵhj the

conditional probability to state an interval (uLh, uRh]. The loglikelihood is

(5.1) llikW [a, b | datm] =
m∑
h=1

th
n

Log

∑
j∈Ch

ŵhj
(
e−(vLh/a)b − e−(vRh/a)b

) .
The contour plot of the loglikelihood (5.1) is shown in the left-hand part

of Figure 4. By comparison, a parametric version of the Turnbull estimator

entails maximizing

(5.2) llikWB[a, b | datm] =
m∑
h=1

th
n

Log
[(
e−(uLh/a)b − e−(uRh/a)b

)]
.

The difference between our proposed statistical model and the Turnbull

approach can be seen from (5.1) and (5.2). The main difference is that (5.1)

includes a sum over the divisions, while (5.2) has a much simpler probability

statement. The expressions encapsulate the key difference between the way

the data are generated. In (5.1) we present a way to cater for the fact that the

individual can freely choose an interval, while (5.2) portrays the likelihood

when the individual is presented with certain brackets by an investigator.

The cost of this freedom from a computational point of view is displayed

in (5.1). To repeat, we will use (5.1) and (5.2) on the same data. Thus, we

plug in the data in (5.2) as if the individuals had been presented with the

intervals actually stated by them.
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The contour plot for the loglikelihood approximation (5.2) is shown in

the right-hand part of Figure 4. Let â, b̂ and ǎ, b̌ be the ML-estimators of

a, b corresponding (5.1) and (5.2), respectively. The corresponding survival

functions are shown in Figure 5. As can be seen, ŝW [x] = Exp[−(x/â)b̂]

and šW [x] = Exp[−(x/ǎ)b̌] are nearly the same. We find estimates for the

mean of the true WTP-points by integrating ŝW [x] and šW [x] over [0,∞).

Distribution consistently imitating deviations of ML-estimators from mean

WTP have been obtained by resamplings with 2000 resampled copies. They

are shown on the right side of Figure 5 in the normal Quantile-Quantile

(Q−Q) plot. X−axis in the Normal Q−Q plot contains values q−quantiles

x(q) of the standard Normal distribution, i.e. 1
2π

∫ x(q)
−∞ e−z

2/2dz = q, 0 <

q < 1. The distributions imitating deviations are shown as lines containing

points {x(q), y(q)}. Here q−quantiles y(q) of these distributions are matched

in pairs with q−quantiles x(q), 0 < q < 1.

To approximate the s.f. of the unobserved true WTP-points by mixtures

of the Weibull and the Exponential distributions, we define

(5.3) sWE[x,θ4] = pExp

[
−
(
x

a

)b]
+(1−p)Exp

[
− x

m1

]
, θ4 = {p, a, b,m1}.

The related loglikelihood function (reduced by plugging in ŵhj instead of

whj) is

(5.4)

llikWE[θ4 | datm] =
m∑
h=1

th
n

Log

∑
j∈Ch

ŵhj(sWE[vLj,θ4]− sWE[vRj,θ4])

 .
Similarly the reduced parametric Turnbull model entails maximizing

(5.5) llikWEB[θ4 | datm] =
m∑
h=1

th
n

Log[sWE[uLh,θ4]− sWE[uRh,θ4]].

We collect parameter estimates and model statistics from the above mod-

els in Table II.
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TABLE II

Maximum loglikelihood estimates for the Weibull and the Mixed Weibull

families

Model Our model Turnbull

Family of d.f.s FW FWE FW FWE

Formula for llik (5.1) (5.4) (5.2) (5.5)

p̂ - 0.851 - 0.892

â 95.87 74.10 94.87 75.98

b̂ 1.116 1.764 1.178 1.875

m̂1 - 259.36 - 281.98

Maximum llik -3.0377 -2.9301 -1.5480 -1.4106
ˆMean WTP 92.07 94.74 89.67 90.63

Left 0.025−limit 79.31 80.65 77.67 80.69

Right 0.975−limit 107.52 112.35 104.07 112.50

The maximum of (5.4) is -2.9301 which is much larger than -3.0377 for

(5.1). The maximum of (5.4) is attained at p̂ = 0.851, â = 74.096, b̂ =

1.764, m̂1 = 259.360. The estimated mean is m̂WE = 94.738. Note that if

we approximate the s.f. of the true WTP-points distribution with mixtures

of two Weibull distributions then the maximum of the related loglikelihood

would be nearly the same as the maximum of (5.4). The two extensions of

whj, j ∈ Ch, h = 1, ...,m, in (4.10) and (4.12) gives moderate but visible im-

provements the maxima of llik (4.11) and (4.13), respectively. The maximum

of llik (4.11) and (4.12) as well as the corresponding values of parameters

{a, b,m1, p, c}, and {a, b,m1, p, α, β}, can be found by using the package

of programs for analysis of self-selected interval data, Zhou, Belyaev, and

Kriström (2010). The absolute values of the llik maximum are more close the

empirical entropy stated in Proposition 1 which is 2.8216 for our empirical

data datm.

The empirical mean value for right-ends of rounded intervals is m̂1R =

146.826. The coefficient cf = m̂WE/m̂1R = 0.645 can be used for rescaling.
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The rescaled s.f. sWE[cfx, θ̂4] can be used for approximating the s.f. of right-

ends of rounded intervals in accordance with the analysis in Section 3. The

rescaled s.f. is shown in Figure 6. This approximation is better than the

approximation based on single Weibull s.f.s.

6. CONCLUDING REMARKS

We have analyzed an elicitation approach in social surveys in which a

respondent can select an interval of choice. Because a point is a special case

of an interval, and any suggested bracket is a special case of a self-selected

interval, we believe the approach has merit.

Our statistical model is based on the idea that there are two probabili-

ties involved, one being related to the choice of interval, the other to the

conditional probability that the unknown value of interest belongs to a

given interval. Consequently, our model can be considered as an extension

of Turnbull (1976). Given the paucity of our data, we did not attempt to

solve for the non-parametric maximum likelihood estimator. There are other

interesting statistical problems to be resolved, including, but not limited to

the asymptotic properties of the non-parametric estimator. Furthermore, it

would be possible to include explanatory variables in our parametric model

and this is a natural next step. The mixed Weibull results did suggest a

certain clustering of the data, a property that might go away when we add

explanatory variables.

The key part of the suggested model contains the division intervals gen-

erated by the stated intervals. The division intervals can be understood as

an analog to bracketing and the conditional probabilities to state intervals

given the division intervals can be used to study respondent behavior. This

suggests that an interesting point of departure for future research lies in

the connection to psychology. We believe that this model could be a fruitful

basis for further joint work between economists and psychologists.
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7. APPENDIX

The collected statistical data is the sequence Un = {uh1 , ...,uhn} where

uhi is the interval stated by the ith respondent. Suppose that Assumptions 1

- 5 hold and we can consistently estimate wh and w̃hj as n→∞. To simplify

this presentation we assume that all wh and w̃hj are known exactly. Then

only the true distribution F0[·] of WTP-points of compensating variations

has to be estimated. We consider the parametric case with F0[·] = Fθ0
[·]

belonging to a parametric family FΘ = {Fθ : θ ∈ Θ ⊆ Rs}, Rs is the

Euclidian s−dimensional space with the usual metric ‖ · ‖2, θ0 is the true

parameter. The loglikelihood function (4.4) can be rewritten as follows

(7.1) llik[θ | Un] =
n∑
i=1

li[θ],

(7.2) li[θ] = I[Xi ∈ uhi ]Log

 ∑
j∈Chi

w̃hjFθ[vj ]

 .

Recall that u1, ...,um are different stated intervals and v1, ...,vk are the

corresponding division intervals.

We apply the Maximum Likelihood principle in two steps. In the first step

we find the consistent ML-estimator. The related theory is rather well estab-

lished under some assumptions on li[θ], see e.g. Ferguson (1996), Lehmann

and Casella (1998). In order to obtain existence of consistent ML-estimators

one must check certain properties of the loglikelihood ratio

(7.3) Ri[θ1,θ2] = li[θ1]− li[θ2],

and its infinum in the ball Bρ(θ2) = {θ′ : ‖ θ′ − θ2 ‖2≤ ρ}

(7.4) Ri[θ1,Bρ(θ2)] = inf
θ′∈Bρ(θ2)

Ri[θ1,θ
′].

The li(θ), i = 1, ..., n are continuous, locally bounded, and the expectations

exist and are positive

(7.5) Eθ1
[Ri[θ1,θ2]] > 0, Eθ1

[Ri[θ1,Bρ(θ2)]] > γ(θ1,θ2) > 0
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for any θ1,θ2 ∈ Θ and sufficiently small ρ and γ(θ1,θ2) > 0. Besides that

one need to check for a g > 2 that the following expectations are finite

(7.6) Eθ1
[| Ri[θ1,θ2] |g] <∞, Eθ2

[| Ri[θ1,Bρ(θ2)] |g] <∞.

It is sufficient to find a compact set K0 ⊂ Θ such that θ0 ∈ K0 r ∂K0, i.e.

θ0 is not on the boundary ∂K0 of K0. If li(θ), i = 1, ..., n are continuous

and (7.5), (7.6) hold then the ML-estimators θ̂n exist and are consistent.

Suppose that Fθ0
[ ] belongs to the Weibull family of distributions FW =

{1 − e−(x/a)b : θ = {a, b}, a > 0, b > 0}. Let θr = {ar, br} and Fθr
[vj ] =

e−(vLj/ar)br − e−(vRj/ar)br
, then

(7.7) li[θr] = I[Xi ∈ uhi
]Log

 ∑
j∈Chi

w̃hjFθr
[vj ]

 ,

and

(7.8) Ri[θ1,θ2] = I[Xi = uhi
]

Log

 ∑
j∈Chi

w̃hjFθ1
[vj ]

− Log

 ∑
j∈Chi

w̃hjFθ2
[vj ]

 .

We can check that inside any rectangular K = [0, a+]× [0, b+], a+ > 0, b+ >

0, li(θ) in (7.7) are continuous and inequalities (7.5) and (7.6) hold. If

θ0 = {a0, b0} are parameters of the true Weibull distribution of WTP-points

then for each uh stated with positive probabilities wh > 0 the following

inequalities have to be hold

(7.9) 0 < wh =
∑
j∈Ch

w̃hjFθ0
[vj ] ≤ Fθ0

[uh],

for all h = 1, ...,m. The analysis of asymptotic behavior of 1 − e−(x/a)b

as a → ∞ (a → 0), b > 0 and b → ∞ (b → 0), a > 0 shows that the

corresponding Weibull distribution either concentrates at a single point or

goes to 0 or to +∞. Hence, there are sufficiently large a+ > 0, b+ > 0, such

that outside the rectangle K0 = [0, a+] × [0, b+] at least one of inequalities

(7.9) does not hold and, therefore, θ0 ∈ K0. Then from inequalities (7.5)
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and (7.6) it follows that the there exists a unique consistent ML-estimator

θ̂n ∈ K. Similar arguments can be used in the case of mixtures the Weibull

and the Exponential distributions. It is possible to check that for family

FWE of mixtures the Weibull and the Exponential distribution inequalities

(7.5) and (7.6) also hold and there exists the consistent ML-estimator θ̂n of

the true parameter θ0 of distribution in FWE.

In the second step we will consistently estimate accuracy of the ML-

estimator θ̂n. If we suppose that a consistent ML-estimator exists and reg-

ularity assumptions hold, see Lehmann and Casella (1998), e.g. the first

and the second order partial derivatives of li(θ), exist, and the Fisher ma-

trix has full rank inside the compact set K0, then the resampling methods

consistently evaluate accuracies of the ML-estimators. These regularity as-

sumptions hold for FW and FWE. We will use resampling copies of the data

U?n = {uh?1 , ...,uh?n} where {h?1, ..., h?n} are numbers independently and ran-

domly sampled from the list {1, 2, ..., n}. The corresponding loglikelihood

function is

(7.10) llik[θ | U?n] =
n∑
i=1

l?i [θ],

l?i [θ] = I[Xi ∈ uh?
i
]Log

 ∑
j∈Ch?

i

w̃h?
i
,jFθ[vj ]

 .

For each copy we find the corresponding ML?-estimator. We need to gener-

ate a rather large number R of such copies of data. Let θ̂
?c

n be ML-estimator

based on the cth resampled copy of data U?cn . Then the empirical distribution

of differences θ̂
?c

n − θ̂n, c = 1, ..., R, will imitate the distribution of devia-

tion θ̂n− θ0. The proof of this fact based on the Central Limit Resampling

Theorem, Belyaev (2003, 2007), Belyaev and Sjöstedt-de Luna (2000). A

detailed theory for consistent estimation deviations of the ML-estimators of

parameters based on resamplings is given in Nilsson (1998).
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Figure 1.— The intervals in the samples S2 and S3 are shown as parallel to

X−axis given in SEK (Swedish krones). The are ordered by their left-ends and if

the left ends are the same then they are ordered by their lengths. Their ordering

numbers are shown in Y−axis.
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Figure 2.— Two empirical s.f.s corresponding to the rounded WTP-points

in the sample S1 (thin stepwise line) and to the right ends of rounded WTP-

intervals in the sample S2 (thick stepwise line).
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Figure 3.— Two empirical s.f.s of the stated right ends intervals in the

samples S2 (thick line) and S3 (thin line) are shown in the left plot. Two empirical

s.f.s of the lengths in the stated intervals in the samples S2 (thick line) and S3

(thin line) are shown in the right plot. Both plots are trimmed at 950 SEK.
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Figure 4.— Two contour plots: left for loglikelihood (5.1), right for loglike-

lihood part (5.2). X−axis shows values of scale a and Y−axis shows values of

shape b parameters of the Weibull distribution W (a, b).
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Figure 5.— Two Weibull s.f.s, with parameters â, b̂ maximizing the loglikeli-

hood (5.1) (smooth line) and the loglikelihood part (5.2) (dashed line), are shown

in the left side. Normal Q−Q plot on the right side shows two distributions im-

itating deviations of ML-estimators from mean WTP corresponding (5.1) and

(5.2).
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Figure 6.— Two survival functions are shown: the empirical s.f. (stepwise

line) of the right ends of declared intervals in the fused sample Sf and the mixed

Weibull s.f. (smooth line) sWE [cfx, θ̂4], where θ̂4 = {p̂, â, b̂, m̂1} is the ML-

estimate of the true parameter θ04 = {p0, a0, b0, m10}. The coefficient cf = 0.6452

is the ratio of the mean of the mixture and the nonparametric estimate of the

mean value of the s.f. based on the right ends of intervals in the sample Sf .
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