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Abstract

Consider the problem of information disclosure for a planner who faces two
agents interacting in a state-dependent multi-action prisoners�dilemma. We �nd
conditions under which the planner can make use of his superior information by
disclosing some of it to the agents, and conditions under which such information
leakage is not possible. Although the problem is entirely symmetric, the planner�s
only way to reveal part of the information is based on creating asymmetries
between the two agents by giving them di¤erent pieces of information. We also
�nd conditions under which such partially informative equilibria are the planner�s
best equilibria.

JEL classi�cation numbers: C72, D82, D83
Keywords: Information Disclosure; Generalized Prisoners�Dilemma; Unin-

formative Equilibria; Partially or Fully Informative Equilibria.

1 Introduction

There are many situations in which an informed party (e.g., a government agency, a

manager, a mentor or a parent) would like to pass its knowledge on to others for whom

this information is instrumental. This is especially true if given the information, there

are actions that can be taken, which would bene�t everyone, the party possessing the

information as well as the recepients of the information. However, if the informed party

cannot enforce coordination between the uninformed, then strategic externalities may

lead agents who become informed to take actions that would make everyone worse o¤

(relative to when the information was not given).
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Several questions arise. Should the information be disclosed and if so, how? Is

it better to pass only imprecise information? Should the informed party discriminate

between the agents with regards to how much information is revealed? Even if the

situation described is completely symmetric among the agents, if the informed party

�nds he wants to reveal some information, whatever that might be, will he be telling

each of them the same thing? Or will he be creating asymmetries through di¤erent

pieces of information being revealed? How is the information revelation process a¤ected

by the fact that there are several receivers of the information, who are involved in a

strategic interaction?

These questions are relevant in a variety of circumstances. A central bank or a

government may have information about an upcoming crisis, but is concerned that if

this information became known, an even bigger crisis may result if individuals rush to

draw money or sell assets. The police may have information about a speci�c threat -

say, the whereabouts of a suspect or a possible bomb threat - but may be concerned

that the public reaction may undermine its ability to deal with the threat (e.g., if the

threat of a bomb is announced in a closed place, people might all try to rush to the

same exit). A more mundane example is that of a concerned manager or a mentor who

knows which tasks/projects would yield greater rewards in the long run, and which

ones would yield short term gains. If he is interested in reaping the large long-term

rewards, he may be concerned that if he revealed his information, competition between

his underlings or advisees would lead them to choose the smaller short term gains.

A related example concerns situations in which there are several ways to contribute

towards a public good. If the gains and costs associated with each of these ways is

known to some party, who would bene�t from the public good, it may be concerned

that releasing this information would lead to severe free-riding problems.

In this paper we focus on a particular environment, which to some extent illustrates

all these stories, but that is motivated by the last two examples described above. In

this environment, for simplicity, only two agents play a symmetric, generalized - multi-

action - prisoners�dilemma, the payo¤s of which depend on the state of nature. That is,

the agents have �nitely many actions they can coordinate on, and in each state, these

actions can be ordered by the payo¤s they would generate if the agents coordinated.

In each state, the lowest ranked action is a dominant strategy, while the pair of highest

ranked actions generate the maximal sum of payo¤s. The state of nature is unknown

to the agents but known to a third party, which we refer to as the planner. The planner

can disclose information about the state by announcing a set of states, which include

the true state. We interpret this as a requirement that only hard, veri�able evidence
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may be disclosed, and only its precision (captured by the cardinality of the reported

set) can be manipulated. Also for simplicity in the analysis, we assume that the planner

can only send private messages to the agents. In each state, the maximal payo¤ to the

planner is attained when the players coordinate on the highest action.

Restricting attention throughout to pure-strategy Bayesian equilibria, we present

a series of results that provide answers to the questions posed above, as a function of

the degree of strength of our assumptions on the payo¤s for agents and planner. While

all of them are consistent with a prisoners� dilemma scenario, when one considers

an arbitrary number of actions, di¤erent results obtain with di¤erent versions of the

assumptions employed.

To begin with, suppose that the agents�payo¤s in each state are weakly decreasing

in actions (assumption A1), and that the planner prefers coordination on any action to

any pair of lower actions (assumption B1). Under (A1) and (B1), Proposition 1 identi-

�es a necessary and su¢ cient condition for the existence of a completely uninformative

equilibrium, in which the planner does not reveal any information in any state. The

condition boils down to saying that the sum of an agent�s payo¤s along the main diag-

onal of the generalized prisoners�dilemma matrix exceeds the sum of his payo¤s along

any other diagonal. We take this condition as the basis for the subsequent analysis,

as we wish to understand whether and how much the planner can improve his ex-ante

payo¤ with respect to this uninformative paradigm.

Our next two results (Propositions 2 and 3) are negative. The �rst one says that,

if one restricts attention to symmetric equilibria, there is no way for the planner to

improve upon the uninformative payo¤. That is, under (A1) and (B1), there is no

symmetric partially �or fully�informative equilibrium. Furthermore, if one strenthens

(B1) to (B2), which says that the planner�s payo¤ is increasing in actions, Proposition

3 says that there is no equilibrium �symmetric or not�that is partially or fully infor-

mative. These results point out the di¢ culties for the planner to make any use of his

superior information in these generalized prisoners�dilemma or public good provision

problems.

But, in the search of plausible circumstances to sustain equilibria with some rev-

elation of information, we are able to o¤er some good news to the planner. To do

this, we add a stronger assumption on agents�payo¤s (A2) and we replace (B2) with a

di¤erent strengthening of (B1), which we shall call (B2�). Assumption (A2) says that

an agent�s gains from lowering his action are always higher when the other agent is

not choosing the dominant action than when he is. That is, the gains from free-riding

are very small when the other agent is free-riding as well. On the other hand, (B2�)
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states that, whenever there is no cooperation on the highest action, the higher the

di¤erence in actions, the higher the gains from free-riding to the free-rider with respect

to the losses to the other agent. Thus, the planner, barring coordination on the e¢ -

cient action, has an interest in inducing the maaximum amount of distance between

the agents�actions. Under (A2) and (B2�), we show in Propositions 4 and 5 how par-

tially informative equilibria can be constructed. Interestingly, such constructions are

sensitive to the number of available actions being even or odd, which justi�es the writ-

ing of two separate propositions. It is also noteworthy that the information partitions

generated in equilibrium are overlapping, resembling those found in the global games

literature. Finally, we show in Proposition 6 that, under (B2�) and if the planner�s

payo¤ is higher under maximum separation than a suitably de�ned average of payo¤s

along the main diagonal, the equilibria constructed in Propositions 4 and 5 are actually

the best equilibria for the planner.

Our paper is closely related to the cheap-talk literature that studies games between

an informed �sender�and uninformed �receivers.�The feature common to our model

and to cheap-talk is the absence of commitment on the part of the sender. However,

there are two salient distinctions. First, we make an important assumption: the planner

cannot lie. That is, sooner or later he will be pressed to provide �hard facts� or

evidence about the true state of nature, and punishments to lying would be prohibitive.

Thus, his typical message will be of the form: �here�s the set of possible states,�and

such a message will always contain the true state of nature as one of the possibilities.

Second, we consider two strategic receivers of the message, while most of the cheap-talk

literature is concerned with only one receiver. Two well-known exceptions are Farrell

and Gibbons (1989) and Stein (1989). However, the �rst paper assumes that the payo¤

of each receiver is independent of the actions of the other receiver, while the second

paper models the set of receivers as a single representative agent. Hence, both papers

do not examine the e¤ect of externalities across the receivers�actions on the sender�s

incentives.

The current paper is concerned with the e¤ect of varying forms of information on the

strategic interactions of the recipients. As such, it is also related to a recent strand of

the literature, which explores the social value of information (most notably, Morris and

Shin (2002) and Angeletos and Pavan (2007)). The aim of these papers is to examine

the equilibrium and welfare e¤ects of changes in the precision and form of information

(private versus public) on certain classes of economies or games. A central feature of

these models is that the information structure is exogenously given, whereas our main

interest is in understanding what information structures would arise endogenously in
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equilibrium.

Since we model the interaction between the receivers as a generalized prisoners�

dilemma, our paper is naturally related to the literature on public goods games. When

there is no threshold or provision point, voluntary contribution games typically reduce

to a prisoners�dilemma in which no contribution is a dominant strategy. In particular,

our paper is closely related to Teoh (1997), which examines a public goods game in

which the payo¤s depend on a state of nature. The paper compares the equilibrium

outcomes under two extreme regimes, one in which the players are perfectly informed

of the state and one in which they are completely uninformed. Teoh (1997) shows that

under certain conditions, the equilibrium with uninformed players is Pareto superior

to the equilibrium with informed players. However, in contrast to us, Teoh (1997) does

not examine what information structures would arise in equilibrium when the informed

party is a player.

2 An Illustrative Example

To illustrate our model and some of our results, consider the following simple example.

Suppose there are three equally likely states of nature, !1; !2 and !3. In each state, a

two-player game will be played. The true game in each state is known to the planner,

but unknown to the agents. In each state, the game being played has the features of the

prisoners�dilemma, i.e., a dominant action that, when chosen by both agents, leads to

an ine¢ cient outcome. However, the dominant action in question is state-dependent.

Speci�cally, consider the following tables of payo¤s, one for each state (in each state,

each agent�s action set consists of three actions):

a1 a2 a3

a1 0; 0 2;�1 5;�1
a2 �1; 2 1; 1 2;�1
a3 �1; 5 �1; 2 3; 3

State !1

a1 a2 a3

a1 3; 3 �1; 5 �1; 2
a2 5;�1 0; 0 2;�1
a3 2;�1 �1; 2 1; 1

State !2

a1 a2 a3

a1 1; 1 2;�1 �1; 2
a2 �1; 2 3; 3 �1; 5
a3 2;�1 5;�1 0; 0

State !3

Thus, in state !i; i = 1; 2; 3; action ai is dominant for each agent. However, the e¢ cient

outcome corresponds to the action pro�le (ai�1; ai�1)[mod 3] with payo¤s (3; 3):

The planner, who is fully informed about the true state of nature, moves �rst. He

communicates to each agent what states of nature are possible by sending a private

message, which consists of a set of states that includes the true state. That is, the

planner can control the precision of his message, but he cannot lie. The planner�s
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payo¤ equals the sum of the agents�payo¤s.

What information should the planner send the agents? Put di¤erently, what mes-

sages does the planner send in the equilibrium with the highest expected payo¤ to

the planner? 1 There exists a pure-strategy Bayesian Nash equilibrium in which the

planner discloses no information by sending each agent the message f!1; !2; !3g: In
this uninformative equilibrium, the agents coordinate on the same action in all states

and the planner�s ex-ante expected payo¤ is 8
3
.

However, the planner can do better than this by discriminating between the two

agents. That is, even though the game is totally symmetric, there exists an equilibrium

in which the planner earns an expected payo¤ of 3 by sending some information to one

player and no information to the other player. Speci�cally, in this equilibrium there

exists one player, say the row player, and one state, say !3, such that in state !3 the

planner sends the message f!3g to the row player and the message f!1; !2; !3g to the
column player, while in each of the other two states, the planner sends the message

f!1; !2g to the row player and the message f!1; !2; !3g to the column player. The row
player responds to the message f!3g by playing the dominant action for that state,
and he responds to the message f!1; !2g by playing the action a2. The column player,
on the other hand, plays a2 in response to the uninformative message.

It can be shown that this asymmetric equilibrium is the best equilibrium for the

planner. In fact, there is no other equilibrium in which the planner sends some infor-

mation to at least one of the players, and where at least one of the players responds to

information by choosing di¤erent actions in at least two states.

In what follows we present a model that generalizes the above example. Our objec-

tive is to understand the nature of the best equilibrium for the planner, i.e., how much

information does the planner disclose and does he treat the two agents symmetrically?

3 The Basic Model

Let 
 = f1; 2; : : : ; Kg; with K > 2; be the set of (equally likely) states of nature.2 In

each state, a two-player game is played in which the payo¤s are known to the planner,

but unknown to the agents. In every state the set of actions available to each player

is A = f1; 2; : : : ; Kg. Each state ! de�nes a linear ordering B! over the actions, such
1The equilibria that we describe here do not rely on allowing any out-of-equilibrium beliefs. The

particular restriction that we imposed will be described in Section 4.
2We shall discuss the case ofK = 2 in our concluding section. The uniform distribution assumption

is made for convenience; obviously, the statemens and conditions would need to be adjusted accordingly
were one to use a di¤erent distribution.
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that

1 C1 2 C1 : : : C1 K � 1 C1 K
2 C2 3 C2 : : : C2 K C2 1
...

K CK 1 CK : : : CK K � 2 CK K � 1

If a C! b for some actions a; b 2 A; we say that action �b is higher than a at !�.
We interpret C! as a state-dependent ranking of the �intensity�or �strength�of the
actions. A �high� action in one state may be considered a �low� action in another

state. The player�s payo¤ would therefore depend on the �intensity/strength�of the

players� actions. I.e., the outcome of the action pair (1; 2) in state 1 is equivalent

to the outcome of the action pair (2; 3) in state 2: Furthermore, actions are ex-ante

symmetric, in the sense that for any given action there exists a state in which it is the

highest, another state in which it is the lowest, and states in which it occupies any

intermediate position.

To express all this formally, for any a 2 A and ! 2 
; de�ne s(a; !) as the number
of elements in A that are ranked below a according to C!. I.e.,

s(a; !) = #fb 2 A : b C! ag

For any a 2 A and ! 2 
; we de�ne

x(a; !) � fa� 2 A : s(a; !) = s(a�; 1)g

Note that for every ! 2 
, ! is the lowest ranked action according to C!. Since
the "intensity/strength" of actions varies with the state, we interpret x(a; !) as the

"strength/intensity" of a at !, normalized to state 1 terms. Player i�s payo¤ in state

! from the action pair (a1; a2) is denoted ui(a1; a2 j !). Given our normalization to
actions in state 1, denote ui(a1; a2 j 1) by ui(a1; a2), and we assume that for i = 1; 2
and for all a1, a2 and !, ui(a1; a2 j !) = ui[x(a1; !); x(a2; !)]. We assume the game

is symmetric: for any x; y 2 f1; : : : ; Kg; ui(x; y) = uj(y; x). Hence, to simplify the

exposition we write u(x; y) to denote the payo¤ to a player who chooses x; while the

other player chooses y:

The payo¤ to the planner is given by the sum of the players�payo¤s. That is, the

planner who knows that the true state is !, when the agents choose actions a1 and a2
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receives a payo¤ of V (x(a1; !); x(a2; !)):

V (x(a1; !); x(a2; !)) = u[x(a1; !); x(a2; !)] + u[x(a2; !); x(a1; !)]

With the assumptions made so far, V is symmetric so that V (x; y) = V (y; x):

The game played in each state is interpreted as a generalized multi-action Prisoners�

Dilemma. To capture this interpretation we make a number of assumptions on payo¤s.

We group them in assumptions on the players�payo¤s (denoted by the letter A) and

on the planner�s payo¤s (denoted by the letter B):

The �rst assumption on players� payo¤s one could start with is that the lowest

action in each state is strictly dominant: for any x > 1 and for any y;

u(1; y) > u(x; y)

However, because of the multi-action framework, this will not su¢ ce to obtain most of

our results. Hence, we strenghthen it as follows:

(A1) Each player has a weak incentive to lower his action: for all x > x0 � 1 and y;

u(x0; y) � u(x; y)

with a strict inequality for x0 = 1:

Assumption (A1) captures the basic intuition in a generalized prisoners�dilemma

logic, that each player has a preference for lowering his action/e¤ort, ceteris paribus.

For some of our last results, we shall add another assumption in addition to (A1),

which we introduce as follows.

First, consider the change in an agent�s payo¤ when he lowers his action to the

dominant one, in a state where his opponent chooses any action other than the domi-

nant:For any k > 1,

�k(a) � u(1; k)� u(a; k)

Consider next the change in the player�s payo¤ when he lowers his action from the

highest action in a state where his opponent chooses the dominant action:

�1(a) � u(a; 1)� u(K; 1)

By (A1), while �k(a) is increasing in a; �1(a) is decreasing. Consider the following

condition,
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(A2) For any k > 1, mina>1�k(a) > maxa�1(a) or given (A1): �k(2) > �1(1).

To interpret condition (A2), one should think of the gains associated with lowering

one�s action. The assumption says that any such gain when the opponent is not playing

the dominant action exceeds any such gain when he is. The individual gains from

exerting less e¤ort are very small if the other agent is already exerting the smallest

amount of e¤ort.

Next, we move to assumptions on the planner�s payo¤s. Two basic features, consis-

tent with a prisoners�dilemma scenario, that we would like to capture are the following:

On the one hand, coordination on the lowest action is the worst outcome for the

planner: for any x � 1; y � 1 with at least one strict inequality,

V (1; 1) < V (x; y)

On the other hand, coordination on the highest action is the best outcome for the

planner: for any x � K; y � K with at least one strict inequality,

V (K;K) > V (x; y)

As before, we shall need to strenghthen these basic features in order to obtain

results in our multi-action model. That is, to capture a sense in which coordination

on an intermediate action - i.e., coordination on some a < K - is also bene�cial for the

planner, we begin by considering the following:

(B1). The planner prefers coordination on any action 1 < x � K to any pair of

lower actions: for any y � z � x;

V (x; x) � V (y; z)

A stronger version of (B1), which we shall use in one of the results, o¤ers a complete

con�ict of interest between planner and players. That is, while (A1) stipulates that

players�payo¤s are decreasing in the player�s action, assumption (B2) poses that the

planner�s payo¤s are increasing in actions:

(B2) the planner�s payo¤ increases with the players�actions: if x > x0, then for

every y, V (x; y) > V (x0; y):

Assumptions (A1) and (B2) may be interpreted as a public good problem in which

the agents face uncertainty regarding the cost of investing in the public good. As-

sumption (A1) can be viewed as saying that the more an action contributes to the

optimal public good, the more costly it is, so that agents have a strict incentive to
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free-ride. Assumption (B2) means that the planner is interested in the highest amount

of contribution.

In contrast to Assumption (B2), Assumption (B2�), presented next, implies that

the planner�s payo¤ increases when players�di¤erence in actions rises. Namely, we

assume that if for some reason the planner knows that the agents will not cooperate

in the highest action, then he prefers that one agent undercuts the other with the

highest margin (note that while this is a departure from (B2), it is still compatible

with (B1)). As will be seen, whether one assumes (B2) or (B2�), the information

disclosure happening in equilibrium will be signi�cantly di¤erent. Assumption (B2�)

follows:

(B2�) For any x < y < z;

V (x; z) > maxfV (x; y); V (y; z); V (y; y)g: (1)

Note in particular how the example in Section 2 satis�es Assumptions (A1), (A2)

(this is satis�ed with a weak inequality that could be made strict without altering the

conclusions), (B1) and (B2�). However, it violates Assumption (B2).

4 Analysis and Results

The planner�s information disclosure strategy can be described as follows: in each state

! he sends a pair of private messages (m1;m2); where ! 2 mi � 
: That is, the planner
announces a list of possible states, but one of the states he announces must be the true

state. The idea is that the planner cannot lie, perhaps because there are prohibitive

penalties to doing so when the state is eventually revealed.

We focus on pure-strategy Bayesian Nash equilibria (BNE) using the following

restrictions on out-of-equilibrium beliefs:

(�1) Consistent with the idea of independent trembles, a player who �nds himself

o¤ the equilibrium path believes that only he received an out-of-equilibrium message

(i.e., he believes the other player received a message according to equilibrium).

(�2) Consistent with the logic of some re�nements (e.g., the intuitive criterion), a

player assigns a positive probability to the event that a planner of type ! deviated

from equilibrium only if this planner type has an incentive to deviate in this state.

We shall use the above restrictions for the construction of the equilibria in Propo-

sitions 1, 4 and 5. All other results do not rely on these restrictions.
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We proceed to our results. We begin by stating an auxiliary lemma:

Lemma 1 If (A1) holds, then any BNE has the following property. If an agent be-
lieves, both on or o¤ the equilibrium path, that a set of states S is possible, he must

choose an action, which is dominant in one of these states.

Proof. Consider a BNE, a player, say 1; and a planner type !: Let S � 
 be the
message that the planner sends to player 1 in state !: If S = 
 then the Lemma is

trivially true. Suppose therefore that S � 
 and player 1 responds by choosing an

action a, which is not dominant in any of the states in S: Then, there exists a state

!0 2 S satisfying x(a; !0) < x(a; !00) for all !00 2 S: Since a is not dominant in !0,
x(a; !0) > 1: By our assumption on how the ranking of actions changes across states

and by our choice of !0, any action b with x(b; !0) < x(a; !0) satis�es x(b; !00) < x(a; !00)

for all !00 2 S. Let b� be the dominant action in state !0, i.e., x(b�; !0) = 1:By (A1), if
player 1 deviated to b� his expected payo¤ would strictly increase as his payo¤ would

increase in every state in S, a contradiction. �

4.1 Completely Uninformative Equilibria

We can now present our �rst main result, which states a necessary and su¢ cient con-

dition for the existence of a completely uninformative equilibrium. First, we present

the following de�nition:

We shall say that a BNE is symmetric when: (i) for all !; the type ! planner sends

the same message S(!) to player 1 and player 2, and (ii) both players 1 and 2 use the

same strategy a(S(!)) for all messages S(!).

Proposition 1 Assume (A1) and (B1) hold. Then there exists a symmetric BNE in
which the planner sends the uninformative message 
 in every state if and only if

KX
k=1

u(k; k) �
KX
k=1

u((k + �)modK ; k) (2)

for any integer �.

Remark: We can term this condition �dominant main diagonal.�Indeed, if one writes
the matrix of payo¤s for player 1 and one copies the �rst K�1 rows below that matrix,
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the condition states that the sum of elements along the main diagonal exceeds the sum

of all diagonals (of the expanded matrix) placed below it. Given that it is necessary

for the existence of the uninformative equilibrium, this is the condition we shall focus

on in the general model, if we wish to study when a planner can improve his payo¤ by

revealing some information.

Proof of Proposition 1. Consider the following pro�le of strategies. Every

planner type sends the message 
 to each of the players, and each player responds to


 by choosing the same action. Assume, without loss of generality, that this action is

K: For any message S 6= 
, call ! 2 S the state such that !0 < ! for all !0 2 S n f!g;
let a player assign probability 1 to state ! and choose the dominant action in state !:

Note that this covers the case of singleton messages and also the case of any message

containing state K, to which the player would respond by continuing to choose action

K: We now show that this strategy pro�le is a BNE under inequality (2).

Consider each player �rst. By (2), no player has an incentive to play a < K in

response to the message 
; given that the other player responds with K: In addition,

in every state ! > 1 the planner has an incentive to try and change the players�

actions. Hence, in particular, the players�out-of-equilibrium beliefs are consistent with

(�1)-(�2).

Consider the planner next. In each state ! the proposed strategy pro�le generates

a payo¤ of V (1 + K � !; 1 + K � !). The planner has no incentive to send both
players the same message because they will respond to it by coordinating on a lower

action in that state: indeed, if the type ! planner sent the message S 6= 
 to both

players with k0 being the maximal state in S, the planner�s resulting payo¤ would be

V (1 + k0 � !; 1 + k0 � !) � V (1 +K � !; 1 +K � !) by (B1).
Suppose now the planner deviates by sending di¤erent messages to either player:

S1 with maximal element k1 to player 1, and S2 with maximal element k2 to player 2.

Given the players�beliefs, the type ! planner�s payo¤would be V (1+k1�!; 1+k2�!).
Note that, since the planner cannot lie, k1 � ! and k2 � !: Hence, by (B1), the planner
weakly prefers that the players coordinate on 1 +K � !:
Conversely, if there exists a symmetric uninformative BNE, then there exists some

action a that both players choose in every state. Since no player has an incentive to

deviate, inequality (2) must hold. �

If the uninformative equilibrium exists, it generates the following ex-ante expected
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payo¤ to the planner:

�V � 1

K

KX
k=1

V (k; k)

We shall call this "the uninformative payo¤".

4.2 When Partially Informative Equilibria Are Impossible

Next, we turn to the investigation of equilibria in which the planner gives out some

information. A BNE is said to be partially informative if for some player, at least two

types choose di¤erent actions in equilibrium. The next result o¤ers an impossibility,

i.e., for the planner to give out some information, asymmetries in the equilibrium will

be required.

Proposition 2 Assume (A1) and (B1) hold. Then there is no symmetric BNE with
partial information.

Proof of Proposition 2. Assume, by contradiction, that there exists a symmetric
BNE with this property. Let a be an action that is played in equilibrium. By Lemma

1; there must be some state ! such that a is played by both players in ! and a is

dominant in !: Suppose b 6= a is the players�response to the uninformative message

: Then by (B1), a type ! planner can pro�tably deviate by sending both players the

message 
. It follows that a must be the players�response to the message 
.

By assumption, the players in equilibrium also coordinate on another action a0 6= a:
Again, by Lemma 1, both players coordinate on a� in a state !0 in which a0 is the

dominant action. But then by (B1), a type !0 can pro�tably deviate by sending both

players the message 
: Since it cannot be the case that the players respond to 
 with

both a and a0; it follows that there cannot be a BNE with the stated properties. �

Proposition 2 implies the following:

Corollary 1 Assume (A1) and (B1) hold. There exists no BNE with full information.

Proof. This follows since the full information outcome would obtain from a sym-

metric pro�le, in which each player is told the true state by the planner in each state

!. �
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We proceed now to explore the consequence of our �rst strenghthening of the as-

sumption on the planners�s payo¤, i.e., Assumption (B2):

Proposition 3 Assume (A1) and (B2) hold. There is no BNE with partial informa-
tion.

Proof of Proposition 3. Suppose there exists a BNE with partial information.
By assumption, there exist two states in which one of the players, say player 1; chooses

di¤erent actions, say a and a0; in equilibrium. By Lemma 1 there exist a pair of

states, call them (!; !0); such that a is dominant in ! and a0 is dominant in !0: Hence,

x(b; !) > x(a; !) for all b 6= a and x(b0; !0) > x(a0; !0) for all b0 6= a0.
Let b� denote player 1�s equilibrium response to the uninformative message 
. If

b� 6= a; then (B2) implies that in state ! the planner can pro�t by sending the message

 only to player 1, regardless of player 2�s action in that state. If b� = a; then again

by (B2), in state !0 the planner can pro�t by sending 
 only to player 1. This means

that at least in one state, the planner has a pro�table deviation, a contradiction. �

Proposition 3 then implies that in the types of public good problems �tting As-

sumptions (A1) and (B2), there is no pure-strategy equilibrium that is better for the

planner than the uninformative equilibrium.

4.3 When Partially Informative Equilibria Are Possible

We explore next some of the circumstances under which it is in the interest of the

planner to disclose some information in equilibrium. In doing so, consider instead a

di¤erent strenghthening of (B1): we shall assume (B2�) instead of (B2). We shall

also strenghthen (A1) into (A2). We note that these are su¢ cient conditions, but not

necessary (we know we can prove the next results under weaker conditions).

Recall that the planner is assumed to care about the sum of the agents�payo¤s.

Condition (A2) does not relate the gain of agent i from undercutting j to the loss of

j from being undercut by i: It just states that the shirking gains to "doing nothing"

are uniformly higher when the other colleague is exerting high e¤ort than when he is

exerting the lowest �perhaps through the positive externalities that the colleague�s

high e¤ort brings to the agent. Condition (A2) therefore is not concerned with the

planner�s payo¤. In other words, conditional on the event that the agents do not

cooperate, it does not capture the e¤ect of undercutting on "social surplus". Such a
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concern is captured in (B2�), in which we assume that if for some reason the planner

knows that the agents will not cooperate e¢ ciently, then he prefers that one agent

undercuts the other with the highest margin. Extreme di¤erences are preferred to

average di¤erences in e¤orts, a strong form of �non-convexity.�

The following lemma gives a hint about a basic feature of the equilibria we are

seeking:

Lemma 2 Assume (B2�). Any BNE with partial information has the property that in
every state where players mis-coordinate, some player chooses the dominant action.

Proof.Let ! be a state in which the two agents choose di¤erent actions a and b
with x(a; !) < x(b; !). We argue by contradiction. Then x(a; !) > 1: By (B2�), the

planner can pro�tably deviate by sending the message f!g to the agent choosing a; a
contradiction. �

We turn to our results that construct partially informative equilibria.

Proposition 4 Assume (A2) and (B2�) hold. Let K be even. Then there exists a

partially informative equilibrium, which has the following structure. The planner gives

out information so as to create the following partitions: ff1; 2g; f3; 4g; : : : ; fK�1; Kgg
for player 1, and ff2; 3g; f4; 5g; : : : ; fK; 1gg for player 2. Then, on the equilibrium
path, players 1 and 2 choose action k following the information fk; k + 1g (note that
this implies that, in each state, one player chooses the dominant action and the other

chooses the highest action).

Proof of Proposition 4. Suppose K is even. The planner�s strategy is implicit

in the statement of the proposition. As for the players�strategies, they are as follows.

On the equilibrium path, they are also described in the statement. O¤ the equilibrium

path, given any singleton message fkg; they choose the dominant action in that state.
For any other message, player 1 assigns probability one to the lowest odd state, while

player 2 assigns probability one to the highest even state, and their response is to play

the corresponding dominant action. If a message contains only even states, player 1

assigns probability one to the lowest even state and chooses the dominant action for

that state. Similarly, if a message contains only odd states, then player 2 chooses the

dominant action for the highest odd state.
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To check that this is a BNE of this game, we de�ne a player�s type space to be the

set of messages he receives in the proposed equilibrium. The planner�s type is naturally

de�ned to be the state of nature. We begin by verifying that no player type has any

incentive to deviate. Consider type fk; k + 1g of player 1. By playing a = k, this type
obtains an expected payo¤ of

1

2
u(1; K) +

1

2
u(K; 1) =

1

2
V (1; K): (3)

Playing any a0 > 1 would yield an expected payo¤ of

1

2
u(a0; K) +

1

2
u(a0 � 1; 1): (4)

By (A2) applied to k = K, �K(a
0) > �1(a

0�1), i.e., u(1; K)�u(a0; K) > u(a0�1; 1)�
u(K; 1), which implies that no deviation to taking action a0 is pro�table. Of course,

the argument for player 2 is identical.

Consider now the planner, who receives a payo¤ of V (1; K). From (B2�), it follows

that the only way a planner of type k can increase his payo¤s is to induce the players to

coordinate on an action a 6= k. With the strategies written, we show this is impossible.
Indeed, suppose �rst k is odd. To induce the players to coordinate on an action a, the

message that each player receives must contain both k and a: If the message to player

2 also contains an even action, then players would not coordinate as player 2 would

choose an even action while player 1 would choose an odd action. This implies that

a must be odd. This also means that the message sent to player 2 must contain only

odd actions. Since player 1 would choose the lowest odd action in his message, while

player 2 would choose the highest odd action, and since the message to each player

must contain both k and a; the two players would not be able to coordinate on a: By a

similar argument, the planner cannot induce the players to coordinate when k is even.

It follows that in no state can the planner send an admissable message (i.e., a message

containing that state) that will induce both players to coordinate on an action, unless

this is the dominant action in that state. Hence, no planner type has any incentive to

deviate. �

We next address the case of odd K :

Proposition 5 Assume (A2) and (B2�) hold. Let K be odd. There exists a partially

informative equilibrium, which has the following structure. The planner gives out infor-

mation so as to create the following partitions: ff1; 2g; f3; 4g; : : : ; fK�2; K�1g; fKgg
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for player 1, and ff2; 3g; f4; 5g; : : : ; fK � 1; K; 1gg for player 2. Then, on the equilib-
rium path, players 1 and 2 choose action k following the announcements fkg, fk; k+1g
or fk; k+1; k+2g (note that this implies that in all states but one a player chooses the
dominant action and the other chooses the highest action. In state 1, in contrast, one

player chooses the dominant action and the other chooses the second highest action).

Proof of Proposition 5. Suppose K is odd. The planner�s strategy is implicit

in the statement of the proposition. As for the players�strategies, they are as follows.

On the equilibrium path, they are also described in the statement. For any other

message, player 1 assigns probability one to the lowest odd state, while player 2 assigns

probability one to the highest even state, and their response is to play the corresponding

dominant action. If a message contains only even states, player 1 assigns probability

one to the lowest even state and chooses the dominant action for that state. Similarly,

if a message contains only odd states, then player 2 chooses the dominant action for the

highest odd state, except for the case where the message contains both the lowest and

the highest states, in which case player 2 chooses the dominant action for the second

highest state.

To check that these strategies constitute a BNE of this game, we de�ne a player�s

type space to be the set of messages he receives in the proposed equilibrium. The

planner�s type is naturally de�ned to be the state of nature. We begin by verifying

that no player type has any incentive to deviate. First, type fKg of player 1 clearly has
no incentive to deviate as he chooses a dominant action. Next, consider type f1; 2g of
player 1: By playing a = 1 type f1; 2g obtains an expected payo¤ of

1

2
u(1; K � 1) + 1

2
u(K; 1)

while playing any a > 1 would yield an expected payo¤ of

1

2
u(a� 1; K � 1) + 1

2
u(a� 2; 1)

By (A2) applied to k = K � 1,

u(1; K � 1)� u(a� 1; K � 1) > u(a� 2; 1)� u(K; 1)

Finally, consider a type fk; k + 1g of player 1: By playing a = k, this type obtains an
expected payo¤ of

1

2
u(1; K) +

1

2
u(K; 1)
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Playing any a0 6= k would yield an expected payo¤ of

1

2
u(a0; K) +

1

2
u(a0 � 1; 1):

By (A2) applied to k = K, u(1; K) � u(a0; K) > u(a0 � 1; 1) � u(K; 1), which implies
that no deviation to taking action a0 is pro�table.

To see that player 2 has no incentive to deviate, note �rst that any type fk; k+ 1g
of player 2 has no incentive to deviate for the same reason that a type fk; k + 1g of
player 1 has no incentive to deviate. Consider then type fK � 1; K; 1g of player 2: By
playing K � 1; this type obtains an expected payo¤ of

1

3
u(1; K) +

1

3
u(K; 1) +

1

3
u(K � 1; 1)

Playing any a 6= K � 1 would yield an expected payo¤ of

1

3
u(a;K) +

1

3
u(a� 1; 1) + 1

3
u(a� 2; 1)

By (A2) applied to k = K,

u(1; K)� u(a;K) > [u(a� 1; 1)� u(K; 1)] + [u(a� 2; 1)� u(K � 1; 1)]

for all a 6= K � 1:
Consider now the planner, who receives a payo¤ of V (1; K) in every state except

for state 1; where he receives a payo¤ of V (1; K � 1). In every state other than 1, the
planner can increase his payo¤ by inducing the players to coordinate on a high enough

action a. In state 1, the planner can also pro�t by inducing maximum separation (one

player choosing the lowest and the other the highest action).

Consider �rst planners of type ! > 1. The reason this planner cannot achieve coor-

dination follows from essentially the same arguments given in the proof of Proposition

4. The only modi�cation that needs to be made is when player 2 receives a message

with only odd states, and which contains states 1 and K: If the message contains at

least one other state, then the two players would mis-coordinate. If the message is

f1; Kg; then both players would choose action 1: However, for the planner types we
are currently concerned with, this message can only be sent in state K; and then,

by (B2�), the planner prefers the equilibrium actions than coordination on action 1:

V (1; K) > V (2; 2).

Finally, consider the type 1 planner. Note that player 1 will always choose action
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1, for any message sent by the planner. Getting the two players to coordinate is

impossible, unless player 2 is sent the message f1; Kg, but then coordination is on
action 1, which is worse for the planner than the equilibrium. And getting player 2 to

choose action K to induce maximum separation is also impossible, given the strategies

written.

It follows that the planner has no pro�table deviation. �

Propositions 4 and 5 show that under certain conditions there exist partially in-

formative equilibria, which are asymmetric even though the underlying game in each

state is completely symmetric. In addition, the informational structures induced in

these equilibria are similar in nature to the typical information structures in global

games.

4.4 Social Evaluation of the Partially Informative Equilibria

A natural question that arises is under what conditions would these equilibria maximize

the ex-ante expected payo¤ to the planner. One could rephrase this question as follows:

under what conditions would the informational structures that are typically assumed

in global games could be explained as being induced by an informed planner in the

equilibrium that is best for him?

To address this question we introduce the following notation. For any M �
f2; : : : ; K � 1g let

W (M) =
1

jM j+ 2[
X
m2M

V (m;m) + V (1; 1) + V (K;K)]:

Proposition 6 Assume (B2�) holds. If K is even and V (1; K) � W (M) for all M �
f2; : : : ; K � 1g; then there is no BNE with a higher ex-ante payo¤ to the planner than
the equilibrium described in Proposition 4. If K is odd and V (1; K�1) � W (M) for all
M � f2; : : : ; K � 1g; then there is no BNE with a higher ex-ante payo¤ to the planner
than the equilibrium described in Proposition 5.

Proof of Proposition 6. Assume K is even and suppose, by contradiction, that

there is an equilibrium with a higher ex-ante payo¤ to the planner. In that equi-

librium, partition the set of states into two categories, those states in which players

mis-coordinate and those in which they coordinate. In the equilibrium of Proposition
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4, the planner obtains a payo¤ of V (1; K) in each state. Consider some state in the

mis-coordination category and let V (x; y) be the payo¤ to the planner in that state,

where x � 1 and y � K: By (B2�), V (1; K) � V (x; y): Let M be the set of states in

the coordination category. Note that for every state in which the players coordinate on

some action x > 1; there exists a state in which they coordinate on x = 1: To see why,

assume without loss of generality, that in state 1 the players play action k > 1. Obvi-

ously, the planner in state 1 must be sending a message to each player that contains

both state 1 and state k; and hence, for each state in which the planner is receiving

a payo¤ V (k; k), there exists another state in which the planner is receiving V (1; 1).

Furthermore, if there exists a pair of states in which the players coordinate on di¤erent

actions, then there exists a pair of other states where the players play the dominant

action for those states. By assumption, V (1; K) � W (M): Since each state is equally
likely, the ex-ante payo¤ to the planner in the hypothesized equilibrium cannot be

higher than V (1; K): Essentially the same argument applies for the case of odd K: �

5 Concluding Remarks

We have studied the problem of information disclosure for a planner who faces two

agents interacting in a state-dependent generalized prisoners�dilemma. We have found

conditions under which the planner can make use of his superior information by giving

some of it out to the agents, and conditions under which such information leakage is not

possible. We remark that, although the problem is entirely symmetric, the planner�s

only way to reveal part of the information is based on creating asymmetries between

the two agents by giving them di¤erent pieces of information. We have also found

conditions under which such partially informative equilibria are the best equilibria

from the planner�s point of view.

In our study, we have assumed that the number of actions �and states�was at

least three. The two-action case, which depicts the standard prisonners� dilemma,

yields the following. Under the �dominant main diagonal�condition 2 in Proposition

1, the completely uninformative equilibrium exists, but no other equilibrium can be

found to dominate it. If this condition is violated, akin under K = 2 to assuming

(B2�), the partially informative equilibrium of Proposition 4 is found. Unfortunately,

its performance cannot be compared to the completely uninformative paradigm, which

in this case is not an equilibrium. Thus, it appears that the two-action case gives one a

vastly simpli�ed picture of the problem: information disclosure is possible if and only
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if the sum of the o¤-diagonal payo¤s in the prisonners�dilemma dominate the sum

of payo¤s on the main diagonal. In contrast, the multi-action case we study allows

condition 2 and assumption (B2�) to hold simultaneously and provides a more complex

set of results.
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