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Abstract

This paper studies the phenomenon of early hiring in entry-level labor markets
(e.g. the market for gastroenterology fellowships and the market for judicial clerks)
in the presence of social networks. We o¤er a two-stage model in which workers in
training institutions reveal information on their own ability over time. In the early
stage, workers receive a noisy signal about their own ability. The early information
is �soft�and non-veri�able, and workers can convey the information credibly only to
�rms that are connected to them (potentially via their mentors). At the second stage,
�hard� veri�able (and accurate) information is revealed to the workers and can be
credibly transmitted to all �rms. We characterize the e¤ects of changes to the network
structure on the unraveling of the market towards early hiring. Moreover, we show
that an e¢ cient design of the matching procedure can prevent unraveling. (JEL: A14,
D85, C78, L14)

Keywords: Networks, market design, unraveling, entry-level labor markets, early
hiring.

1 Introduction

The timing of transactions is an important part of a market�s activity. In entry-level labor

markets, such as the market for judicial clerks or for medical interns, hiring a worker before

su¢ cient information is revealed on her quality can lead to ine¢ cient placement of workers.

Nevertheless, law clerks in the US are often hired by judges as early as the fall of their �rst
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year in law school, medical interns were in some years hired as early as two years prior to

their graduation, and NBA teams recently draft high school seniors, skipping the college

stage entirely.

Roth and Xing (1994), document several markets that exhibited a process of unraveling

towards earlier and earlier contracting dates when market participants repeatedly �jump the

gun�. Unraveling is found to a¤ect the outcomes of markets with respect to both distribution

and welfare.1 Recently, Niederle and Roth (2003) document that workers�mobility decreased

during the unraveling in the gastroenterology fellowships market that was triggered by the

collapse of the central match. The observation that early hiring is �more local� than late

hiring suggests that locality is not merely driven by the preferences of the workers to stay in

the same location as their training institutions, but rather that there is an inherent di¤erence

in the way hiring is conducted in di¤erent stages in the workers�training.

The local nature of the hiring process is not surprising. Sociologists and economists have

long recognized that many workers �nd their jobs through friends and relatives.2 It is only

natural that social networks a¤ect an inherently connection-based phenomenon such as early

hiring. Nevertheless, none of the earlier models of unraveling accounted for the underlying

topology of markets that motivate the study of unraveling, whether it is based on geography

or on personal connections.3

In this paper, we propose a model in which some �rms and workers are connected - e.g.

via personal connections of workers�mentors. Our model consists of two stages in which

workers are in training institutions and reveal information on their own ability over time.

In the early stage, workers get a noisy signal about their own ability. The early information

is �soft�and non-veri�able. Thus, workers can convey the information credibly only to �rms

that are connected to them, potentially by learning the mentors�impressions of the workers.

At the second stage, �hard�veri�able (and accurate) information is revealed to the workers

and can be credibly transmitted to all of the �rms. Firms that use their connections (and

hire promising candidates early) dilute the pool of high quality workers in the second stage.

1For direct evidence, see Niederle and Roth (2003 and 2005) and Fréchette, Roth, and Ünver (2007).
2See also Granovetter (1974), Montgomery (1991), Bewley (1999), Calvo-Armengol and Jackson (2004),

and Calvo-Armengol and Zenou (2005).
3For previous theoretical work on unraveling see also Li and Rosen (1998), Li and Suen (2000), Suen

(2000), Damiano, Li, and Suen (2005), Halaburda (2010), and Ostrovsky and Schwarz (2010).
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The externality imposed on other �rms triggers a process of unraveling towards more and

more �rms using their connections and hiring early.

We model the pattern of connections between workers and �rms as a two-sided (bipartite)

network. A connection links a worker with a �rm to which she is able to convey private

information credibly at an early stage of her training.4 Two-sided networks are especially

adept to describing market interactions in which the roles are well de�ned as in many labor

markets. By studying the e¤ect of changes in the network structure on unraveling we provide

a rigorous analysis of changes in information asymmetries in the market and their impact on

unraveling. We �nd that di¤erences in the patterns of connections can account for di¤erences

in market outcomes, including unraveling. In our comparative statics, we focus on two types

of changes to the network structure: [1] changes that correspond to adding or deleting

connections from the network; and [2] changes that correspond to changing the distributions

of connections across workers and �rms.

There are several ways of adding links to a network. One way is by increasing the span

of the network - i.e. by increasing the number of workers and �rms that have at least

one connection. Another way is by increasing the network�s density - i.e. by increasing

the number of connections of workers and �rms that have at least one connection (without

changing the network�s span). We �nd that increasing the network�s density has a non

monotonic e¤ect on unraveling. In particular, if a network is su¢ ciently dense then any

increase in density leads to lesser unraveling. An immediate implication is that a complete

market in an early stage of the workers�training does not generate more unraveling than a

networked market. Increasing the span of the network always generates greater unraveling.

We further characterize the e¤ects of redistributing connections across workers and �rms.

If the distribution of the number of connections across �rms is more polarized unraveling

is greater (a distribution is more polarized if there is higher density at the tails of the

distribution). This is consistent with suggestive evidence from the market for judicial clerks.5

4Di¤erent mechanisms can allow to convey private information credibly over personal connections, e.g.
teachers or other recommenders may have personal connections with the hiring entity. Such are the connec-
tions between internal medicine departments and gastroenterology departments in the same hospital that
potentially allow for transmission of information about interns graduating from internal medicine internships
and looking for a gastroenterology fellowship. See also Fainmesser (2010), Fainmesser and Goldberg (2010),
and Karlan et. al. (2009) for a theoretical analysis of credible information transmission in a network.

5In the market for judicial clerks, attempts to set the date of the hiring of clerks failed repeatedly. The
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The opposite is true for the case that the distribution of the number of connections across

workers is more polarized.

We are also interested to answer the following questions: what is the scope of market

design in this networked environment? Can a better design of the post-graduation market

prevent unraveling? Consistent with much of the evidence from the market design literature,

we show that improving the underlying mechanism for matching workers and �rms in labor

markets leads to lesser unraveling. To this end, we o¤er a simple parameterization of the

e¢ ciency of a market procedure in our setup. We prove that in large markets in which high

productivity workers are scarce, our parameterization is supported by a family of matching

procedures that follow from activity rules in both centralized and decentralized markets. In

particular, this family of matching procedures incorporates most algorithms that are studied

in the market design literature (e.g. deferred acceptance, random dictator, top trading cycles,

etc.).

This paper is also related to the literature on networks in economics. Calvo-Armengol

and Jackson (2004), and Calvo-Armengol and Zenou (2005) study models of job search

via personal connections and derive implications to inequality and unemployment. More

broadly, there is a growing related literature on network games (e.g. Bramoulle, D�Amours,

and Kranton 2010, Ballester, Calvo-Armengol, and Zenou 2006). In networks games each

player cares only about the actions taken by her neighbors. Galeotti et. al. (2010) suggest

that in network games the analysis is simpli�ed if players are assumed to hold incomplete

knowledge of the network structure.

This simpli�cation cannot be directly applied to our setup because a �rm cares not only

about the actions taken by its neighbors, but also about the aggregate outcome in the market

which depends on the actions of all of the �rms and workers in the market as well as on

the entire network structure. Nevertheless, we show that if there are many workers and

many �rms and if the network is formed with a su¢ ciently salient random component, the

assumption that workers and �rms have incomplete knowledge of the network structure can

9th Circuit (California) is often claimed to be the one to unravel �rst. The reasons for this are under debate:
the 9th Circuit judges point out that the East Coast judges have a geographical advantage as they are close
to more top-ranked law schools, suggesting that a close connection to candidates matters, and that it is
di¢ cult to prevent unraveling in the presence of a skewed distribution of the �rms�degrees. See also Avery
et. al. (2001) and (2007).
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simplify the analysis signi�cantly. This is possible due to recent graph theoretic results by

Fainmesser and Goldberg (2010) who study repeated games in large two-sided networks.

The large network approach leads to an analysis that has the �avor of a mean-�eld

approximation that is often assumed to approximate discrete and stochastic processes by a

continuous and deterministic process (see Jackson and Rogers 2007 for an example used in

the analysis of network formation). In particular, we approximate the number of workers

hired early via the network. However, as we are interested in equilibrium behavior, we take a

more explicit approach that provides bounds on the quality of the approximation and allows

us to derive the �rms�and workers�best response correspondences.

Finally, our model is di¤erent both in approach and in predictions from earlier models

of unraveling. In particular, previous contributions focus on the heterogeneity of �rms and

candidates with respect to quality (Li and Rosen 1998, Li and Suen 2000) and preferences

(Halaburda 2010), and on the size of the applicant pool (Li and Rosen 1998). We share with

previous models the insurance element driving the unraveling process, and an agreement

that unraveling lowers the e¢ ciency in markets.6

In the following three sections we lay out the model and de�ne the best response corre-

spondences for workers and �rms. In section 5, we characterize the structure of the equilibria

in our model and de�ne a notion of equilibrium stability that captures the dynamic nature

of unraveling. In particular, our equilibrium analysis relies on an important approximation

result that is reviewed in section 5. In sections 6 and 7 we derive comparative statics on

unraveling with respect to the network structure and the matching procedure and discuss

the impact of unraveling on market outcomes. Section 8 o¤ers concluding remarks.

2 A simple model of employment

There is a �nite set of �rms, F � f1; 2; :::; nfg, and a �nite set of workers,W � f1; 2; :::; nwg.

Each worker w 2 W can work for at most one �rm and each �rm f 2 F can employ at most

one worker. A worker w is characterized by a productivity level qw 2 fL;Hg. We assume
6Li and Suen (2000) suggest that �rms that do not unravel su¤er a welfare loss. We extend this claim to

all �rms in an ex-ante sense.
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that production depends only on the workers�productivities and normalize wages to zero

(assuming a �xed wage is consistent with the markets motivating this paper and can also be

substituted, with some technical burden, with milder restrictions).7 ;8

The payo¤of �rm f from employing worker w is captured by (1). In the following section

we introduce heterogeneity to �rms�payo¤s.

�f (qw) = � (qw) =

8<: �H if qw = H

�L if qw = L
(where �H > �L) (1)

Workers have idiosyncratic preferences over �rms. Speci�cally, let worker w�s utility be:

uw (f) = 1 + �wf (2)

where for every w and f , �wf 2 [��; �] for some � 2 (0; 1). A �rm that does not employ

any worker, and a worker that is unemployed have a payo¤ of 0.

3 The hiring process

In this section, we describe the process of hiring in the market. We start by an overview of

the two stages of the workers�training during which they can be hired. Later, we review

separately the details of the hiring process within each stage.

There are two stages in the workers�training, S = �1 and S = 0. At stage S = �1

workers are in training institutions (i.e. law school, medical school, internship programs,

etc.) and cannot yet be employed. At S = 0, workers graduate from their studies and are

ready to be employed.

Before stage S = �1 nature assigns each worker with a productivity level qw = H or

7Judicial clerks�wages are determined by federal law. Medical residents�wages are limited to a small num-
ber of wage steps. In particular, in the gastroenterology fellowships market, Niederle and Roth (2003,2005)
do not �nd any e¤ect of unraveling on wages.

8The discussion of the role of wages in the analysis of unraveling is not new. Models of matching markets
can be analyzed using the assignment model (Koopmans and Beckmann 1957, Shapley and Shubik 1971)
where wages are a part of the clearing mechanism, or using the marriage model (Gale and Shapley 1962)
where wages are assumed out. Li and Suen (2000), who analyze unraveling using the assignment model in
the context of college admissions, admit that "our [assignment model] analysis applies with a greater force
to assignment markets in which payments transfers are explicitly negotiated�.
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qw = L with equal probability, and preferences f�wfgf2F that are drawn from a distribution

H with mean 0 and positive density in every point in the support [��; �] where � 2 (0; 1).

The realizations of qw and f�wfgf2F are independent of each other and across workers.

Workers and �rms do not observe qw and f�wfgf2F but will learn about them over time as

described below.

We now describe intuitively the two stages of the training and hiring. In stage S = �1,

each worker w learns her own preferences
�
f�wfgf2F

�
.9 In addition, worker w and her

mentors receive a noisy signal of her productivity (sw). The noisy signal sw consists of �soft�

information (in-class exam grades, reinforcements from teachers, etc.). In particular, there

is no o¢ cial document or public track record that allows worker w to prove that she received

a given signal. However, the worker�s mentors have pre-existing connections with a subset

of the �rms that allow for the credible transmission of workers�signals to these �rms. If �rm

f and at least one of the mentors of worker w are connected, f learns sw accurately at stage

S = �1. Since mentors do not have a strategic role in our model, we say that a worker w

and a �rm f are connected if one of the mentors of worker w is connected with �rm f . Firm

f is not able to learn �wf for any worker w.10

At the end of stage S = �1, each �rm f can make an o¤er to at most one worker, and a

worker that receives at least one o¤er can accept one of the o¤ers or reject all. If a worker

w accepts an o¤er from a �rm f , both w and f leave the market and w works for f starting

at stage S = 0.

In stage S = 0, worker w and her mentors receive veri�able information that indicates

accurately the worker�s productivity (qw) (transcripts, publications, etc.). Thus, qw can be

credibly transmitted to all �rms. We explore a family of matching procedures governing the

labor market in stage S = 0. If a worker w and a �rm f are matched, w works for f starting

9Assuming that a worker learns her preferences for a �rm only upon receiving an o¤er from that �rm
does not change the analysis.
10There may be several reasons why �rm f is not able to learn �wf for worker w. First, a worker may

strategically transmit her preferences to her mentor. Second, mentors are likely to be able to misrepresent
workers�preferences without being penalized by �rms in the future. The reason for the latter is unmodelled
in this paper. Informally, mentors are less likely to be held accountable by �rms for misrepresenting workers�
preferences for several reasons: [1] mentors are not expected to be able to elicit workers�preferences; [2]

information on preference is rich
�
f�wfgf2F

�
and cannot be transmitted easily; and [3] the relation between

�wf and outcomes that are observable by the �rm (acceptance or rejection of an o¤er) depend on several
unobserved variables, e.g. which other o¤ers the worker received.
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at stage S = 0.

3.1 Stage S = �1: early hiring

We now describe formally stage S = �1 of the workers training, including the information

available to workers, the network between �rms and workers, and the process of early hiring.

At stage S = �1, information about own productivity and preferences is revealed to the

workers in the following way: worker w observes a signal
�
sw; f�wfgf2F

�
where f�wfgf2F

are the worker�s preferences and sw 2 fh; lg is a noisy signal of the worker�s productivity. If

worker w has productivity qw = H she receives a signal sw = h with probability � 2
�
1
2
; 1
�

and a signal sw = l with probability (1� �). For ease of notation assume that if worker w has

productivity qw = L she has the reversed probabilities over her signal sw. The realizations

of the signals are independent across workers.

For each worker w there exists a set of �rms Nw � F that can learn sw. Denote by

Nf � W the set of workers such that �rm f can learn fswgw2Nf . Firms cannot learn �wf for

any worker w.

After learning fswgw2Nf , each �rm can make at most one o¤er. Firm f can make an

o¤er to worker w independent of whether w 2 Nf or not. Each worker w can then choose to

accept one o¤er or none. If �rm f makes an o¤er to worker w and worker w accepts, both

commit that after graduation (at stage S = 0) w will be employed by f . The commitment

is binding and both w and f exit the labor market.

We assume further that �rm f incurs a cost cf for hiring at stage S = �1, and let cf
be drawn from a distribution with a continuous cumulative distribution function D (c; c),

independently across �rms. There are two potential (unmodelled) sources for the cost: [1]

early commitment of funding that leads to a reduction in the �rm�s liquidity,11 and [2]

repugnance - in some entry level labor markets, such as the gastroenterology fellowship

market and the market for judicial clerkships, �rms are publicly objecting to early hiring.

11During the economic downturn of 2008-2010, employment contracts of freshly minted MBA�s were can-
celed at a (potentially reputational) cost to the hiring �rms. In the absence of a global �nancial crisis a
�rm that su¤ers from �nancial di¢ culties might incur even a greater cost because the cancellation cannot
be attributed to market-wide economic recession.
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Thus, hiring early might lead to loss of goodwill.12

Finally, we assume that

�L < 0; and � �L � �H (3)

Given that a worker�s ex-ante probability of having high productivity is 1
2
, condition (3)

guarantees that a �rm f does not hire a worker w if f has no (or negative) information

about the productivity of w.

To summarize, the timeline of the early labor market in stage S = �1 is as follows:

1. Each worker w observes a noisy signal sw. Each �rm f 2 Nw learns sw.

2. Each �rm f makes an o¤er to at most one worker w 2 W [ fw0g. We say that a �rm

makes an o¤er to worker w0 if the �rm does not make any o¤er.

3. Each worker w who received at least one o¤er decides whether to accept an o¤er or

not. Worker w can accept at most one o¤er.

4. If �rm f makes an o¤er to worker w and worker w accepts, both exit the labor market

and worker w is employed by �rm f starting at stage S = 0:

Remark 1 Two assumptions deserve additional discussion. First, the assumption that each

�rm can make at most one o¤er is a simpli�cation of the idea that the number of o¤ers that

each �rm can make early is limited. In many markets, this results from the hiring norms

and technology prior to graduation. The market for Gastroenterology fellowships provides an

example. During the period before the match, departments try to hide from each other the fact

that they are making early o¤ers.13 Making many early o¤ers might expose a department�s

early hiring attempts before the department is able to hire. As a result, departments might try

12The discussion against practices of early hiring and exploding o¤ers in the judicial clerkships market were
especially �erce. For a controversial defense of the common practice of early exploding o¤ers, see Kozinski
(1991).
13This is demonstrated in the following E-mail sent by Debbie Proctor, the gastroenterologist who took the

lead in reorganizing the match, to the economists assisting in redesigning the Gastroenterology fellowships
market:
�I�m answering 3-4 emails per day especially on this issue. �I want to make sure MY competition is in

the match and that they don�t cheat.� Well, this is another way of saying that if they cheat, then I will
too!...Have you ever seen this before? The distrust amongst program directors? I �nd it hard to believe that
we are unique. Maybe this is [a] social science phenomenon?�. See also Niederle and Roth (2009).
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to make few o¤ers that are likely to be accepted. An additional example of a di¤erent �avor

is provided by the market for new MBA graduates. At Harvard Business School, periods

in which students are available for interviews are dictated by the school and �rms are not

allowed to invite students for interview during the semester. This puts a bound on the number

of interviews a �rm can make at every stage. Since an interview is required prior to making

an o¤er, this restricts the number of early o¤ers.

A second assumption is that an early agreement between a �rm and a worker is binding

and that an early o¤er expires if it is not accepted at stage S = �1. Early o¤ers that are

open only for a short period of time are often called �exploding o¤ers�in the market design

literature. In many markets that unravel exploding o¤ers are prevalent (see Niederle and

Roth 2009) and their acceptance is binding. For example, in the market for judicial clerks

o¤ers are sometimes open for less than 30 minutes,14 and there is little evidence of law

students that renege on an early acceptance of a judge�s o¤er.

3.1.1 Networks and information

If �rm f is able to learn sw (f 2 Nw and w 2 Nf) we say that f and w are connected.

We note that the sets of �rms, workers, and connections (links) induce a network. We now

describe the network structure, as well as �rms�and workers�knowledge and beliefs with

respect to the network structure.

We are mainly interested in large markets. It is by now widely accepted that in large

networks: [1] the underlying process of network formation has a strong stochastic element,

and [2] some aggregate characteristics of the network structure, such as the distribution

of the numbers of connections, are usually consistent across networks and time. Thus, we

assume that before stage S = �1, fNwgw2W and fNfgf2F are determined by a random

process that is described below. Firms and workers know the random process of network

formation, but do not have complete knowledge of the network. Instead, a worker w (�rm f)

observes only Nw (Nf ). Both assumptions �t well the labor markets motivating this paper

14Avery et. al. (2007) cite a 2005 applicant for federal judicial clerkships: "I received the o¤er via voicemail
while I was in �ight to my second interview. The judge actually left three messages. First, to make the o¤er.
Second, to tell me that I should respond soon. Third, to rescind the o¤er. It was a 35 minute �ight."
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and can be relaxed at the cost of added technical burden.15 ;16

We now describe formally workers� and �rms� knowledge of the network: we capture

the network of connections between workers and �rms with a graph G � hF;W;Ei, where

E � F � W is the set of connections (edges) between �rms and workers. The degree of

worker w (�rm f) is the number of connections of worker w (�rm f):

rw = jNwj (rf = jNf j)

Let �W (r) (�F (r)) be the fraction of workers (�rms) in the market with degree r for

r = 0; 1; 2; :::1. Note that specifying nw, �W (r), and �F (r) implies a unique nf that is

consistent with a graph G. Thus, we omit nf and let G (nw; �W ; �F ) be the set of networks

consistent with (nw; �W ; �F ).17

We assume that before stage S = �1 the network is chosen from G (nw; �W ; �F ) uniformly

at random (u.a.r.) and that worker w (�rm f) knows: [1] the number of workers and �rms

in the market nw and nf ; [2] the set Nw (Nf ); and [3] �W and �F . We also note that

the Bayesian posterior of worker w (�rm f) with degree r puts identical probability on all

networks in G (nw; �W ; �F jrw = r) (G (nw; �W ; �F jrf = r)). We denote by G (nw; �W ; �F j�) a

member of G (nw; �W ; �F j�) that is chosen u.a.r.

Some �rms and workers might have no connections (r = 0). To describe changes to the

network structure that do not involve such buyers and sellers we use a modi�ed degree

distribution P . Formally, let P (r; �W ) be the fraction of workers with degree r as a fraction

of the workers that have positive degrees and note that

P (r; �W ) =
�W (r)

1� �W (0)

15In section 5.1 we o¤er a dynamic model in which the hiring process is repeated with subsequent gradu-
ating cohorts in subsequent hiring cycles and discuss further the motivation for the random process of the
formation of the network.
16The idea that workers and �rms have incomplete knowledge of the network �ts well the labor markets

motivating this paper. For example, a �rm might know several mentors, but might not know the students of
these mentors and their other mentors as these change across graduating cohorts and hiring cycles. Similarly
worker w might have several mentors and know which �rms they are connected to, but may not know how
well connected each of these �rms are.
17For any �xed nw, �W , and �F there exists an in�nite strictly increasing sequence of integers fnwg s.t.

G (nw; �W ; �F ) 6= ; (see Greenhill et. al. 2006). All statements should be read as holding only for nw s.t.
the aforementioned set is non-empty.
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The de�nition immediately extend to P (r; �F ).

3.1.2 Scarcity of high productivity workers

Many of the labor markets that motivate this paper are markets for highly skilled workers

(e.g. lawyers, physicians, psychologists). In such markets, the number of high quality workers

is usually smaller than the market saturation level.

De�nition 1 We say that h�W ; �F ; �i exhibits scarcity of high productivity workers if

for every hG;�i such that G 2 G (nw; �W ; �F ) there exists � > 1 such that, nf > ��
�
1� �

2

�
�nw.

De�nition 1 includes all markets in which there are not many more workers than open

positions. In particular, we show later that De�nition 1 guarantees that in markets that

exhibit scarcity of high productivity workers, the number of high productivity workers that

are still looking for employment at stage S = 0 is always smaller than the number of �rms

that are looking for a worker at stage S = 0.

3.2 Stage S = 0: graduation

We now describe formally stage S = 0, which we also call the post-graduation market. We

de�ne and parameterize a family of market mechanisms on which we focus.

At stage S = 0 workers graduate from their training and obtain a diploma and a track

record that contain veri�able information that reveals their true qualities fqwgw2W . At this

stage, fqwgw2W are common knowledge, but the preferences of any worker w
�
f�wfgf2F

�
are still her private information. In this environment, the network is obsolete and we are in

a familiar setup of a one-to-one matching market.18

The market design literature shows that the outcome in a matching market depends

heavily on the underlying market rules.19 Since we are also interested in how changes in the

post-graduation market a¤ect early hiring, we consider a class of matching procedures that

includes many of the matching procedures studied in the market design literature.

18Roth and Sotomayor (1990) provide a good introduction to matching theory.
19See also Roth (2002, 2008).
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Intuitively, a matching procedure is a function from sets of workers and �rms to a prob-

ability distribution over a set of matchings. We focus on matching procedures that are

anonymous - i.e. take into considerations the workers�and �rms preferences but not their

identities; and that put positive probability only on stable matchings - i.e. matchings that

guarantee that no �rm and worker that are matched prefer to stay unmatched and no worker

and �rm that would like to be matched to each other remain unmatched.20 The requirement

that a matching procedure be anonymous excludes matching procedures in which there is

an ad-hoc reason that some �rms and workers are matched at stage S = 0.

The formal de�nition of an anonymous matching procedure that guarantees stable match-

ings builds on de�nitions from matching theory and is deferred to the Appendix. Instead,

we present now the main result of this section and discuss its implications for the modeling

of stage S = 0.

Let W 0
q be the set of workers with productivity q that reach S = 0 unmatched and

let F 0 be the set of �rms that reach S = 0 unmatched. Given G and �, and given a

matching procedure M denote by EG;M;� [uwjq] the expected utility of worker w 2 W 0
q and

denote by EG;M;� [�f ] the expected payo¤ of �rm f 2 F 0. For given W 0
q (q 2 fH;Lg)

and F 0, denote by EG;M;� [uwjq;W 0
H ;W

0
L; F

0] and EG;M;� [�f jW 0
H ;W

0
L; F

0] the corresponding

conditional expectations.

Lemma 1 shows that the requirement that a matching procedure is anonymous and

guarantees a stable matching pins down a unique expected payo¤for all �rms that participate

in the post-graduation market. Moreover, the expected utility of high productivity workers

who reach stage S = 0 unmatched is asymptotically independent of the hiring at stage S =

�1. Therefore, the expected utility of high productivity workers can be varied exogenously

by the choice of the particular matching procedure without a¤ecting the expected payo¤s of

�rms.

Lemma 1 Let h�W ; �F ; �i exhibit scarcity of high productivity workers, and let bG (�W ; �F ; nw)
be any network that is consistent with �W ; �F and nw. Assume further that no worker who

20In the matching literature, stability of a matching also requires that no �rm-worker pair prefers to be
matched to each other rather than to the partner that they are assigned with. However, in our model, this
requirement is obsolete because �rms have identical preferences over workers.
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receives a low signal in stage S = �1 is hired early (in stage S = �1 ) and let cW 0
H ;
cW 0
L;
bF 0

be any W 0
H ;W

0
L; F

0 that are possible under these assumptions. Then,

1. Given any anonymous matching procedure M that guarantees a stable matching:

(a) for any �rm f 2 bF 0, E bG(�W ;�F ;nw);M;�
h
�f jcW 0

H ;
cW 0
L;
bF 0i = jcW 0

Hj
j bF 0j � �H .

(b) for any worker w 2 cW 0
L, E bG(�W ;�F ;nw);M;�

h
uwjL;cW 0

H ;
cW 0
L;
bF 0i = 0.

2. For every � 2 [0; 1] and for every � > 0 there exists an anonymous matching procedure

M that guarantees a stable matching such that

limnw!1 supw

���E bG(�W ;�F ;nw);M;�
h
uwjH;cW 0

H ;cW 0
L; bF 0i� (1 + � � �)��� < �

We show later that it is always true that no worker who receives a low signal in stage S =

�1 is hired early (in stage S = �1). Thus, Lemma 1 applies throughout our analysis. While

the result is of interest on its own, we only use Lemma 1 to motivate exogenous variations

in �, and to establish that all of the market procedures that we focus on lead to identical

EG;M;� [uwjL] and EG;M;� [�f jW 0
H ;W

0
L; F

0]. The following de�nition o¤ers a parameterization

for the family of market procedures that our analysis covers.

De�nition 2 A matching procedure M is parameterized by �M 2 R if:

[1] M is anonymous and guarantees a stable matching, and

[2] for all G 2 G (nw; �W ; �F ) and for any W 0
H , W

0
L, and F

0 that are possible under the

assumption that no worker who receives a low signal in stage S = �1 is hired (in stage

S = �1), the expected utility of a high productivity worker in the post-graduation market is

asymptotically 1 + �M � �. Namely,

limnw!1 supw
��EG;M;� �uwjH;W 0

H ;W
0
L; F

0
�
� (1 + �M � �)

�� = 0
We interpret �M as a continuous measure of the e¢ ciency of the market rules.
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4 Bayesian equilibrium and "-equilibrium

We now de�ne the notions of Bayesian equilibrium and "-equilibrium in our setup. Note that

non trivial strategic decisions are made only at stage S = �1: �rms decide who to make

o¤ers to, and workers decide which o¤ers to accept.

A strategy of a �rm f is a mapping �f : R+ � P (W ) � P (W ) ! �(W [ fw0g) where

P (W ) is the set of all subsets of workers and �(W [ fw0g) is the set of all probability

distributions on W [ fw0g. Thus, �f
�
c;Nf ;fWh

�
is a mixed strategy of �rm f with a cost

of hiring early cf = c, set of workers connected to it Nf , and that learned that every worker

w 2 fWh � Nf received a signal sw = h (and that every worker w 2 NfnfWh received a signal

sw = l). The �rm�s mixed strategy is over the workers to which the �rm makes an o¤er at

stage S = �1 (�f (�) = w0 implies that �rm f does not make an o¤er at stage S = �1). For

brevity, when it is clear from the context we let �f
�fWh

�
= �f

�
cf ; Nf ;fWh

�
:

A family of �rms�strategies that is especially natural in our context includes strategies

in which �rms ignore the names (or labels) of the workers and make their o¤ers based only

on the economically meaningful attributes of the workers. Formally,

De�nition 3 Consider a �rm f with
�
c;Nf ;fWh

�
. We say that �f is a label-free strategy

if �f
�
c;Nf ;fWh

�
assigns identical probabilities to any w and w0 for whom at least ONE of

the following holds: [1] w;w0 2 fWh; [2] w;w0 2 NfnfWh; [3] w;w0 2 WnNf .

A strategy for worker w is a mapping �w : fh; lg � [��; �]nf � P (F ) � P (F ) !

�(F [ ff0g). Thus, �w
�
sw; f�wfgf2F ; Nw; eFw� is a mixed strategy of worker w that re-

ceives a signal sw, has preferences that are captured by f�wfgf2F , a set of �rms connected

to her Nw, and o¤ers from every �rm f 2 eFw at stage S = �1. For brevity, when it is clear
from the context we let �w

� eFw� = �w

�
sw; f�wfgf2F ; Nw; eFw�.

For given network G, market procedure M , and signal accuracy �, let �G;M;� (f) =

�G;M;�

�
f; �f ; cf ; Nf ; f�f 0gf 02Fnffg ; f�w0gw02W

�
be the expected payo¤of �rm f that employs

strategy �f . Similarly, Let UG;M;� (w) = UG;M;�

�
w; �w; f�wfgf2F ; f�w0gw02Wnfwg ; f�f 0gf 02F

�
be the expected utility of worker w who employs strategy �w. We are now ready to de�ne

equilibrium and "-eqilibrium in our setup.
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De�nition 4 The vectors of strategies f�fgf2F and f�wgw2W are an "-equilibrium if for alle�f 2 supp (�f ), f 2 F :
�G(nw;�W ;�F );M;�

�
f; �f ; cf ; Nf ; f�f 0gf 02Fnffg ; f�w0gw02W ;

�
�

�G(nw;�W ;�F );M;�

�
f; e�f ; cf ; Nf ; f�f 0gf 02Fnffg ; f�w0gw02W ;

�
� "

and for all e�w 2 supp (�w), w 2 W :
UG(nw;�W ;�F );M;�

�
w; �w; f�wfgf2F ; f�w0gw02Wnfwg ; f�f 0gf 02F

�
�

UG(nw;�W ;�F );M;�

�
w; e�w; f�wfgf2F ; f�w0gw02Wnfwg ; f�f 0gf 02F

�
� "

If " = 0 the de�nition amounts to a Bayesian equilibrium in our setup. We now analyze

�rms and workers best response functions separately and show that they can be summarized

using two random variables.

If a �rm f makes an o¤er at stage S = �1 to a worker w that receives a signal sw = h:

�G;M;�

�
f jfWh; �f

�fWh

�
= w for some w 2 W

�
=

Pr fw acceptsg �
n
Pr
h
qw = HjNf ;fWh

i
� �H + Pr

h
qw = LjNf ;fWh

i
� �L � cf

o
+

+ Pr fw rejectsg � EG;M;� [�f ]
(4)

and if �rm f does not make an o¤er at stage S = �1:

�G;M;�

�
�f jfWh; �f

�fWh

�
= w0

�
= EG;M;� [�f ]

Note that Pr fw acceptsg, Pr fw rejectsg, and EG;M;� [�f ] depend on f�f 0gf 02Fnffg and

f�w0gw02W . On the other hand, Pr
h
qw = HjNf ;fWh

i
, and Pr

h
qw = LjNf ;fWh

i
are inde-

pendent of the strategies employed by all �rms and workers.

Now consider a worker w that receives early job o¤ers (stage S = �1) from a set of �rmseFw � F . If w accepts the o¤er of �rm f 2 eFw then
UG;M;�

�
�j eFw; �w ��; eFw� = f

�
= 1 + �wf

and otherwise

UG;M;�

�
�j eFw; �w ��; eFw� = f0

�
= Pr [qw = Hjsw]�EG;M;� [uwjH]+Pr [qw = Ljsw]�EG;M;� [uwjL]
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Note that: [1] conditional onfWh

� eFw� the best response of �rm f (worker w) depends on

the network structure and on the strategies of all other �rms and workers only via EG;M;� [�f ]

(EG;M;� [uwjL]); and [2] conditional on the number of �rms and of high productivity workers

that arrive stage S = 0 unmatched, EG;M;� [�f ] and EG;M;� [uwjL] are independent of the

network structure. Combining observations [1] and [2] we conclude that equilibrium behavior

depends on the network structure only through its e¤ect on the number of �rms and of high

productivity workers that arrive at stage S = 0 unmatched.

Formally, let  be the fraction of workers hired at stage S = �1. Then both of the

following hold:

1. Consider a �rm f . Conditional on fWh 6= ; and on the expectation that  = 1, the

probability that f makes an o¤er at stage S = �1depends on cf and is captured by

��W ;�F ;M;� (1) = �G(�W ;�F ;nw);M;�

�
r;fWh; 1

�
= (5)

= D
�
� � �H + (1� �) � �L �

1
2
� � � 1
1� 1

�
P1

r=0 �F (r) � rP1
r=0 �W (r) � r

� �H
�

2. Consider a worker w. Conditional on  = 1 and on w receiving exactly one job o¤er

at stage S � 1, the probability that w accepts the o¤er depends on f�wfgf2F and is

captured by

�G;M;� () = �G(nw;�W ;�F );M;�

�
rw; eFw; � = 1�H �� � EG(nw;�W ;�F );M;� [uwjH; 1]� 1�

(6)

Similarly, a worker that received exactly m o¤ers at stage S = �1 accepts an o¤er

with probability 1 �
�
1� �G;M;� ()

�m
, and conditional on accepting an o¤er, worker

w picks the o¤er that maximizes f1 + �wfgf2 eFw .
Expression 5 is surprising because it establishes that in any equilibrium, for any given

�rm f , conditional on 1 and as long as fWh 6= ;, �G(�W ;�F ;nw);M;�
�
r;fWh; 1

�
is independent

of r;fWh, and nw and depends on the network structure only via �W ; �F . Condition 5 also

captures the observation that the incentives of �rms to make o¤ers at stage S = �1 increase

in the fraction of workers hired at stage S = �1. A complete derivation of (5) and (6) is
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deferred to the Appendix.

5 Equilibrium existence and structure

In this section we show that equilibrium in our setup corresponds to a �xed point of a

mapping from the fraction of workers hired at stage S = �1 to itself, and �nd that in

large networks, "-equilibria exist for arbitrary low ". Moreover, when �rms employ label-free

strategies, the set of equilibria is fully characterized as the set of �xed points of a simple

function.

Let b0 be a random variable that describes the (common and rational) expectations of

workers and �rms with respect to the fraction of workers hired at stage S = �1. Consider

a mapping

0 =  G;M;� (b0) =  G;M;�
�
�G;M;� (b0) ; �G;M;� (b0)�

that maps from the expectations of workers and �rms with respect to hiring at stage S = �1

to the random variable that captures the same outcome in stage S = �1. Any 00 such that

00 =  G(nw;�W ;�F );M;� (
0
0) captures an equilibrium level of hiring at stage S = �1, and any

equilibrium with �0 corresponds to a �xed point 
�
0 =  G(nw;�W ;�F );M;� (

�
0). However, for

any network G,  G;M;� () is complicated as it depends on the entire network structure and

its outcome is stochastic even conditional on the network structure. In particular, for any

network with more than a few workers and �rms, a closed form expression for  G;M;� () is

prohibitively complicated.

Instead of trying to characterize  G;M;� () directly, we establish that in (asymptotically)

large networks and for every h�W ; �F ;M; �i,  G(nw;�W ;�F );M;� (0) converges to a well behaved

function with a deterministic output. As a result, we are able to characterize "-equilibria for

arbitrarily small ".

We now illustrate our analysis using a simple exercise: suppose that there was no cor-

relation between the degrees of �rms and workers that are connected - i.e. if we choose a

worker w 2 W u.a.r. and then choose a �rm f 2 Nw u.a.r., then the probability that rf = r
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is independent of rw and captured by

eP (r; �F ) = P (r; �F ) � r
rf

where rf = EP [rf jrf � 1] =
P

r2f1;2;:::1g P (r; �F ) � r. Now consider a worker w chosen u.a.r.

The probability that worker w receives a job o¤er from a �rm f that is chosen u.a.r. from

Nw is

e� �W ;�F ;M;� () =

1X
rf=1

ePF (rf ; �F ) �
24��W ;�F ;M;� () � X

m=0;:::;rf�1

�
rf � 1
m

�
0:5m0:5rf�m�1 � 1

m+ 1

35
=

1X
rf=1

eP (rf ; �F ) � [��W ;�F ;M;� () � (1� 0:5rf ) = (0:5 � rf )]
To see why, note that

�
r�1
m

�
0:5m0:5r�m�1 is the probability that there are m other sw = h

workers in Nf conditional on jNf j = r. Finally, 1
m+1

is the conditional probability that

f makes the o¤er to w. Given that the realizations of the signals, the o¤ers received and

the acceptance of o¤ers are independent across workers, if the matching procedure M is

parameterized by �M , the expected number of workers hired in stage S = �1 is captured by

e �W ;�F ;M;� () =
1
2
� (1� �W (0)) �

P1
rw=1

P (rw; �W ) �
�
1�

�
1� e� �W ;�F ;M;� () + e� �W ;�F ;M;� () � �1� e��W ;�F ;M;���rw�

(7)

where

e��W ;�F ;M;� = 1�H [� � (1 + �M � �)� 1]
The calculation of e �W ;�F ;M;� () above follows a naive counting exercise. Namely, it is

equivalent to going over all of the workers, one by one, and evaluating their probabilities of

receiving at least one acceptable early o¤er. Note that e �W ;�F ;M;� () is deterministic and
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well behaved. Thus, establishing more generally that for any  2 [0; 1] and � > 0,

limnw!1 Pr
���� G(nw;�W ;�F );M;� (b)� e �W ;�F ;M;� (b)��� < �

�
= 1 (8)

allows us to characterize the equilibrium structure in large networks. Formally,

De�nition 5 we say that � 2 [0; 1] is a 0-equilibrium in large networks (or sim-

ply 0-equilibrium) with h�W ; �F ;M; �i if for every " > 0 there exists nw 2 Z+ such

that for every n0w > nw there exists an "-equilibrium with G (nw; �W ; �F ) ;M; � in which

Pr
�
 G(nw;�W ;�F );M;� (

�) 2 [� � "; � + "]
�
> 1� ".

Theorem 1 characterizes the set of 0-equilibria as the set of solutions for a �xed point

problem in e �W ;�F ;M;� ().
Theorem 1 Let �W ; �F have �nite support and h�W ; �F ; �i exhibit scarcity of high produc-

tivity workers. Consider a market procedure M that is parameterized by �M 2 [0; 1]. Then,

there exists  2 [0; 1] such that  is a 0-equilibrium with h�W ; �F ;M; �i.

Assume further that �rms employ label-free strategies. Then, � = e �W ;�F ;M;� (�) if and
only if � is a 0-equilibrium with h�W ; �F ;M; �i.

In Lemma 4, which is deferred to the Appendix, we derive a limit closed form expression

for  G;M;� (b) without formally expressing  G;M;� (b) for any �nite network G. To this end,
we rely on a recent graph theoretic result by Fainmesser and Goldberg (2010) that implies

that in a network that is chosen u.a.r. conditional on a degree distribution, as the network

grows, the degree correlation goes to zero. We then apply the law of large numbers to

conclude that the fraction of worker hired at stage S = �1 converges to the mean and that

(8) holds.

For the remainder of the paper, we focus on the analysis of 0-equilibria in regular envi-

ronments in which Theorem 1 and Lemma 4 apply.

De�nition 6 An environment h�W ; �F ;M; �i is regular if: [1] �W ; �F have �nite support;

[2] h�W ; �F ; �i exhibit scarcity of high productivity workers; and [3] M is parameterized by

some �M 2 [0; 1].
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Multiplicity. Theorem 1 does not rule out multiplicity of 0-equlibria. In particular,

multiplicity is determined by the properties of e �W ;�F ;M;� () which in turn correspond to
the properties of �W , �F , M , �, and ��W ;�F ;M;� (). For example, if ��W ;�F ;M;� () is concave

for every  2 [0; 1], then there are at most three equilibria, one at � = 0 and one or two

additional equilibria.

5.1 Unraveling

In this section we de�ne unraveling as a dynamic process in which �rms and workers that

hire early (at stage S = �1) trigger a response from other �rms and workers, and the fraction

of workers hired early increases. We also provide a de�nition of greater unraveling that is

adept for environments with multiple equilibria.

Consider an entry level labor market in which new cohorts of workers graduate in di¤erent

hiring cycles (e.g. years) and �rms hire new workers in every hiring cycle. For simplicity,

assume that all cohorts of workers are of the same size nw. The hiring process in each

hiring cycle follows stages S = �1; 0 that are described above. The network of connection

is re-drawn in each period u.a.r. from all of the possible networks with the same �W and

�F . To motivate the changes to the network structure, recall that the network is de�ned

by the connections of the di¤erent subsets of mentors that each worker has. As the set of

workers varies across periods, so does the network. However, as we are motivated by large

markets, we follow the observation that large networks tend to maintain some aggregate

characteristics constant even as the network undergo local changes. The assumptions that

the network is selected u.a.r. and that �W and �F stay exactly the same can be relaxed.

In this dynamic environment, consider an unraveling process governed by myopic best

responses. At hiring cycle t = 0, an arbitrary fraction 0 of the workers (all with sw = h) is

hired at stage S = �1. At each hiring cycle t > 0, each agent best responds to the outcome

of the play in hiring cycle t� 1. Let t denote the fraction of the workers (all with sw = h)

that are hired at stage S = �1 in hiring cycle t, then

t =  G(nw;�W ;�F );M;�
�
t�1

�
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and any rest point of of the system correspond to a static Bayesian equilibrium. Following (8)

and Theorem 1, the limiting dynamic process (when nw is arbitrary large) is approximated

by

t = e �W ;�F ;M;� �t�1�
and any rest point of the system correspond to a static 0-equilibrium. Note that e �W ;�F ;M;�
has a positive slope for every  2 [0; 1]. Hence, from any starting point, the convergence of

the limiting dynamic process is monotone, either upwards or downwards.

A dynamic process of unraveling, in which the market participants modify their strategies

based on the previous hiring cycle�s outcomes, captures the dynamics in some well studied

labor markets (see Roth and Xing 1994 and references therein) and suggestive evidence

from the experimental market design literature (see also Kagel and Roth 2000). Moreover,

considering the process of unraveling as dynamic lends itself to a natural way of capturing

the notion that some markets generate greater unraveling then other markets.

De�nition 7 Let t (nw; h�W ; �F ;M; �i ; 0) =  G(nw�W ;�F );M;� �  
t�1
G(nw�W ;�F );M;�

(0). We

say that an environment h�i1 =


�1W ; �

1
F ;M

1; �1
�
, generates greater unraveling than

another environment h�i2 =


�2W ; �

2
F ;M

2; �2
�
, if for any 0 2 [0; 1]

limnw!1 limt!1
�
t
�
nw; h�i1 ; 0

�
� t

�
nw; h�i2 ; 0

��
� 0 (9)

De�nition 7 captures the idea that an environment h�i1 generates greater unraveling then

h�i2 if from every starting point environment h�i1 leads to a 0-equilibrium with more hiring

at stage S = �1 then environment h�i2. The following Corollary is implied by Lemma 4

and establishes a useful connection between e �W ;�F ;M;� and the unraveling generated by an
environment h�W ; �F ;M; �i.

Corollary 1 Consider two regular environments h�i1 =


�1W ; �

1
F ;M

1; �1
�
and h�i2 =



�2W ; �

2
F ;M

2; �2
�
,

and assume that all �rms employ label-free strategies. Then, if e �1W ;�1F ;M1;�1 () � e �2W ;�2F ;M2;�2 ()

for every  2 [0; 1], then h�i1 generates greater unraveling than h�i2.
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6 Comparative statics

6.1 The network structure

We now investigate how changes to the network structure a¤ect unraveling. We consider

changes that correspond to addition/deletion of links or to redistribution of links.

Addition of links. There are several ways in which links can be added to a network.

Let W 1 � W (F 1 � F ) be the set of workers (�rms) that have a degree of at least 1. One

way of adding links is by increasing the degrees of workers in W 1 (�rms in F 1) so that

the number of workers (�rms) that have a degree of at least 1 does not change. We call

such an addition of links an increase in the network�s density. A di¤erent way for adding

links involves changes to W 1 (F 1). In particular, one can add links that connect workers

(�rms) that were not connected before and had a degree of zero. We call such an addition

of links an increase in the network�s span. It turns out that increasing a network�s density

and increasing a network�s span have signi�cantly di¤erent e¤ects on unraveling.

Consider degree distributions �W ; �F . We denote by �
�
W ; �

�
F the degree distributions such

that for every r, ��W (� � r) = �W (r), and �
�
F (� � r) = �F (r). We say that � is the density

multiplier of �W ; �F .21 Proposition 1 implies that increasing the networks�density leads to

greater unraveling when the initial network is sparse and the increase is small. When the

initial network is dense, increasing the network�s density leads to lesser unraveling.

Proposition 1 Let h�W ; �F ;M; �i be a regular environment and let all �rms employ label-

free strategies. Consider �H > �L � 1. Then, there exists r (M;�) ; r (M;�) 2 Z+ such

that

1. if max
�
�H � rj�F (r) > 0

	
< r then

D
��

H

W ; ��
H

F ;M; �
E
generates greater unraveling thanD

��
L

W ; �
�L

F ;M; �
E
, and

2. if min
�
�L � rjr � 1; �F (r) > 0

	
> r, then

D
��

L

W ; �
�L

F ;M; �
E
generates greater unravel-

ing than
D
��

H

W ; ��
H

F ;M; �
E
.

21Our claims apply to � such that � � r 2 Z+ for every r in the support of �F and �W .
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Proposition 1 is surprising as it establishes that unraveling is not maximized when the

network is very dense or in the well studied complete market. In particular, Proposition

1 highlights the role of the network in the unraveling process. In markets in which early

information di¤usion is not based on personal connections we would expect lower levels of

unraveling than in some markets in which connections are important.

The forces that generate the non monotonicity suggested by Proposition 1 are demon-

strated in �gure 1.

�gure 1a

Firms

Workers

�gure 1b

Firms

Workers

Figure 1: Consider two markets with two �rms and two workers as depicted in �gure 1a and
1b. Assume that one of the �rms has a very low cost of hiring early and that the other �rm has
a very high cost of hiring early. Assume further that only one of the workers receives a signal
sw = h. Then, in the network in �gure 1b the �rm with the low costs of hiring will make an
early o¤er to the high signal worker, whereas in �gure 1a there is a positive probability that the
high signal worker is not connected to the �rm with the low early hiring costs, and therefore
no early o¤ers will be made. Now assume that both �rms have very low costs of hiring early,
and that both workers receive a signal sw = h. Then the network in �gure 1a guarantees that
both workers will receive early o¤ers, whereas in the network in �gure 1b there is a positive
probability that both �rms make an early o¤er to the same worker.

More generally, increasing the network�s density increases the probability that a worker

w with sw = h and a �rm with low enough cf are connected. This leads to an increase in the

number of o¤ers made in stage S = �1, as captured by the increase in e �W ;�F ;M;� () for anye� �W ;�F ;M;� (). On the other hand, increasing the network�s density increases the probability
that fewer workers receive a larger portion of the o¤ers, as a worker cannot accept more

than one o¤er, this leads to a lower level of unraveling. This is captured by a decrease ine� �W ;�F ;M;� () for any ��W ;�F ;M;� (). Since e �W ;�F ;M;� () is increasing in e� �W ;�F ;M;� (), this
implies a decrease in e �W ;�F ;M;� () for any ��W ;�F ;M;� ().
In contrast, adding connections by increasing the span of the network has a monotone

e¤ect on unraveling.
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Proposition 2 Consider two regular environments


�1W ; �

1
F ;M; �

�
and



�2W ; �

2
F ;M; �

�
such

that �1W (0) < �2W (0), �
1
F (0) < �2F (0), and for all r � 1, P

�
r; �1W

�
= P

�
r; �2W

�
and

P
�
r; �1F

�
= P

�
r; �2F

�
. Assume that all �rms employ label-free strategies. Then,



�1W ; �

1
F ;M; �

�
generates greater unraveling than



�2W ; �

2
F ;M; �

�
.

The intuition for Proposition 2 is straightforward. Increasing the number of connected

workers and �rms increases the number of o¤ers at stage S = �1 without the adverse e¤ect

of an increase in density.

Redistribution of links. To capture redistribution of links in the network we use

the standard notion of Mean Preserving Spread (MPS). We focus on redistribution of links

among the workers (�rms) that have a degree of at least 1, i.e. with no a¤ect on the span of

the network.22 Proposition 3 predicts greater unraveling in markets in which some �rms have

many connections and others have few, relative to markets in which all �rms have similar

degrees. On the other hand, lesser unraveling is predicted in markets in which some workers

have many connections and others have few, relative to markets in which all workers have

similar degrees.

Proposition 3 Consider two regular environments


�1W ; �

1
F ;M; �

�
and



�2W ; �

2
F ;M; �

�
such

that �1W (0) = �2W (0), �
1
F (0) = �2F (0), and assume that all �rms employ label-free strategies.

If P
�
�; �2W

�
is a MPS of P

�
�; �1W

�
and P

�
�; �1F

�
is a MPS of P

�
�; �2F

�
, then



�1W ; �

1
F ;M; �

�
generates greater unraveling than



�2W ; �

2
F ;M; �

�
.

If P
�
�; �2W

�
is a MPS of P

�
�; �1W

�
then in



�2W ; �

2
F ;M; �

�
there are more workers with

high and low degrees and less workers with intermediate degrees compared to


�1W ; �

1
F ;M; �

�
.

The probability that a worker receives at least one o¤er at stage S = �1 is increasing and

concave in rw and so is the probability that a worker receives at least one acceptable o¤er�
1�

�
1� e� �W ;�F ;M;� () + e� �W ;�F ;M;� () � �1� e��W ;�F ;M;���rw�. Therefore, e �2W ;�2F ;M;� () �e �1W ;�1F ;M;� (). If P

�
�; �1F

�
is a MPS of P

�
�; �2F

�
then in



�1W ; �

1
F ;M; �

�
there are more

�rms with high and low degrees and less �rms with intermediate degrees compared to

22A redistribution of links in a way that changes the span of the network is dominated by the e¤ect of the
change to the span. In particular, an increase W 1 and/or F 1 leads to greater unraveling.
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�2W ; �

2
F ;M; �

�
. The probability that a �rm f makes an o¤er to a worker w that is con-

nected to it ��W ;�F ;M;� () � (1� 0:5rf ) = (0:5 � rf ) is decreasing and convex in rf . Therefore,e �2W ;�2F ;M;� () � e �1W ;�1F ;M;� ().
The observation that greater unraveling is expected in markets in which some �rms have

many connections and others have few sheds light on some of the di¢ culties that market

designers face when trying to prevent unraveling. In the market for judicial clerks, attempts

to set the date of the hiring of clerks failed repeatedly. The 9th Circuit (California) is often

claimed to be the one to unravel �rst. The reasons for this are under debate: the 9th Circuit

judges point out that the East Coast judges have a geographical advantage as they are close

to more top-ranked law schools. The East Coast circuits claim that the 9th Circuit unravels

as it is less attractive to clerks, due to lower quality of its positions. While not resolving the

debate, Proposition 3 suggests that asymmetry across �rms with respect to their connections

leads to greater unraveling.

6.2 Market rules and the accuracy of early information

In this section we study the e¤ect of changing the post-graduation matching procedure via

changes to �M and the e¤ect of changing the accuracy of early signals available to the workers

at stage S = �1 via changes to �.

The post-graduation matching procedure�s quality (�M). The following result

shows that increasing �M leads to lesser unraveling, providing yet an additional motivation

for the design of more statically-e¢ cient markets.

Proposition 4 Consider two regular environments h�W ; �F ;M1; �i and h�W ; �F ;M2; �i such

that �M1 � �M2, and assume that all �rms employ label-free strategies. Then h�W ; �F ;M1; �i

generates greater unraveling than h�W ; �F ;M2; �i.

It is also interesting to note that if � � 1��
1+�

then h�W ; �F ;M1; �i generates strictly greater

unraveling than h�W ; �F ;M2; �i whereas otherwise h�W ; �F ;M1; �i and h�W ; �F ;M2; �i gen-

erate the same level of unraveling. To see why, note that if � < 1��
1+�

workers that receive at

least one o¤er at stage S = �1 always accept one of the o¤ers that they receive (independent
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of �M), and e��W ;�F ;M1;� = e��W ;�F ;M2;� = 1. On the other hand, if � � 1��
1+�

then for some

�M , workers reject early o¤ers from some �rms, therefore e��W ;�F ;M1;� � e��W ;�F ;M2;�.

The connection between the matching procedure in the post-graduation market and the

level of unraveling in a market were recognized in empirical and experimental work in market

design. For example, Kagel and Roth (2000) examine the e¤ect of the mechanism used in

the post graduation market on the ability of the market to recover from unraveling. Kagel

and Roth �nd that "when the centralized mechanisms are introduced, there is only a small

rollback of the unraveling that developed when the market was decentralized. But because

of the congestion and competition in the market, some �rms and workers who intend to

make early matches �nd themselves unable to do so, and these participate in the centralized

mechanism." As a result, Kagel and Roth conclude, �rms and workers �nd out that the

matching procedure improved and that they can do better by not hiring early.

The accuracy of the early signal (�). If � is higher a worker w with sw = h has a

higher probability of being qw = H. Thus w is more likely to reject o¤ers at stage S = �1.

For the same reason, a �rm f 2 Nw is more likely to make an o¤er to w at stage S = �1.

These two forces result in a non monotonic relationship between � and the unraveling level

in the market.

Proposition 5 Consider two regular environments h�W ; �F ;M; �1i and h�W ; �F ;M; �2i such

that �1 � �2, and assume that all �rms employ label-free strategies. Then,

1. If �2 � 1��
1+�M ��

then h�W ; �F ;M; �2i generates greater unraveling than h�W ; �F ;M; �1i,

and

2. If �1 �
c+ 1

2
�
P1
r=0 �F (r)�rP1
r=0 �W (r)�r ��H��L
�H��L then h�W ; �F ;M; �1i generates greater unraveling than

h�W ; �F ;M; �2i.

If � is very small, a worker w that receives at least one early o¤er accepts one of the o¤ers

with probability 1. Thus, a small increase in � only increases the probability that a �rm

makes an early o¤er to a worker w with sw = h, and for every  2 [0; 1], ��W ;�F ;M;�2 () �

��W ;�F ;M;�1 (). On the other hand, if � is large, a �rm that is connected to at least one

27



worker w such that sw = h makes an early o¤er with probability 1. Thus, a further increase

in � only decreases the probability that worker w accepts, and e��W ;�F ;M;�2 � e��W ;�F ;M;�1.
Remark 2 Worker- and �rm-driven unraveling.23

In many entry-level labor markets, information about workers becomes more accurate over

time. Propositions 4 and 5 suggest that the time that workers spend in the training in-

stitutions can be divided into two time segments: early on, � is small and workers would

accept any job o¤er in order to insure themselves against unemployment. As a result,

��W ;�F ;M;� () 2 [0; 1] whereas e��W ;�F ;M;� = 1. This worker-driven unraveling can be more

easily in�uenced by changes to �rms� incentives, as the incentives of workers to contract

early are too strong to be a¤ected. Closer to graduation, � is large, and the balance of power

shifts; �rms try to hire any high potential worker, whereas workers decline less desirable job

o¤ers (for all  2 [0; 1], ��W ;�F ;M;� () = 1 whereas e��W ;�F ;M;� 2 [0; 1]). This �rm-driven
unraveling can be more easily in�uenced by policies that a¤ect workers� incentives. Deter-

mining whether stage S = �1 is dominated by worker- or �rm-driven unraveling depends on

the market of interest.

7 Unraveling and market outcomes

Welfare analysis for two-sided matching markets is subtle as there is an inherent trade-o¤

between the gain of one agent and the loss of other agents on the same side of the market.

Nevertheless, we are able to make the following observations.

Corollary 2 :

(1) Greater unraveling leads to higher aggregate utility of connected workers
�P

w2fw2W jrw�1g uw

�
.

(2) Greater unraveling leads to lower aggregate payo¤s of �rms
�P

f2F �f

�
.

The �rst claim captures the insurance that unraveling provides to connected workers.

The second claim points out that unraveling leads to the hiring of low productivity workers

23The division to �rm vs. worker driven unraveling was suggested by Li and Suen (2000) who focus on
the di¤erent qualities of the �rms that trigger the unraveling process in each of the types of unraveling.
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and reduces aggregate �rms�pro�ts. Evaluating aggregate welfare changes in the economy

as a whole requires further assumptions about the outside options of workers and �rms.

The idea that unraveling makes some workers better o¤, and that a centralized match

can hinder unraveling (Proposition 4) helps to account for observed resistance to a match by

groups of individual workers. For example, the match for medical interns to internships was

under scrutiny when an anti-trust suit against the National Residency Matching Program

(NRMP) and numerous other defendants was brought in 2002 by 16 law �rms on behalf

of 3 former residents seeking to represent the class of all former residents (and naming as

defendants a class including all hospitals that employ residents). It was dismissed on August

12, 2004 in an Opinion, Order & Judgment by Judge Paul L. Friedman.24

8 Conclusion

This paper is a �rst attempt to tackle the phenomenon of early hiring in entry-level labor

markets in the presence of social networks connecting employers and potential workers. To

this end, we propose a model of local interaction in which information �ows via connections in

a network. While the idea that social networks are used as a mean of transferring information,

and in particular information related to job search, is widely accepted in the economic

literature, it has not yet been incorporated into the analysis of the timing of hiring in labor

markets. Our model provides a �rst step in this direction.

In our model, the incentives of �rms to make early o¤ers depend on the aggregate level of

early hiring which in turn depends on the entire network structure in complex ways. Thus, a

�rm�s best response depend on the �rm�s beliefs with respect to the entire network structure.

To overcome that we provide formal analysis of �rms beliefs in large networks that are chosen

at random and combine tools from graph theory, matching theory, and market design.

We �nd that the structure of the network a¤ects unraveling in systematic ways. Moreover,

we show that improving the design of the post-graduation market by improving the quality

of the match between workers and �rms leads to lesser unraveling.

24Much of the discussion surrounding the lawsuit revolved around the e¤ect of the match on salaries. See
also Bulow and Levin (2006), Niederle and Roth (2003), and Kojima (2007). Nevertheless, Niederle and
Roth �nd no such e¤ect.
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9 Appendix

9.1 Matching procedures - de�nitions

In the absence of a meaningful network, the analysis of stage S = 0 lends itself to the more
familiar analysis of one-to-one matching markets. Formally, let w0 and f0 be the null worker
and �rm.

De�nition 8 (Roth and Sotomayor 1990) For a set of workers W 0 and a set of �rms F 0, a
one-to-one matching is a functionM : W 0[F 0 ! W 0[F 0[fw0; f0g such that w =M (f)
if and only ifM (w) = f and for all w 2 W 0 and f 2 F 0:

� eitherM (w) 2 F 0 orM (w) = f0, and

� eitherM (f) 2 W 0 orM (f) = w0

Much of the matching literature focuses on �xed exogenous sets of workers and �rms
with perfect information. In our environment, the sets of workers and �rms that reach stage
S = 0 unmatched (W 0

H ;W
0
L, and F

0) are determined endogenously in stage S = �1 and we
are required to de�ne a notion of a matching procedure. Intuitively, a matching procedure
captures the rules of the market which in turn determine the mapping from sets of workers
and �rms to a probability distribution over matchings.
Denote the set of all subsets of a set A (the power set of set A) by P (A).

De�nition 9 Let M (W 0; F 0) be the set of all one-to-one matchings over W 0 and F 0, and
let �

�
M (W 0; F 0)

�
be the set of all probability distributions on elements of M (W 0; F 0). A

matching procedure is a function M : P (W 0)� P (F 0)! �
�
M (W 0; F 0)

�
.

We now de�ne the notions of anonymous matching procedures and of matching proce-
dures that guarantee a stable matching.

De�nition 10 Let U �
�
uw1 ; uw2 ; :::; uwjW 0j

�
and U 0 �

�
u0w1 ; u

0
w2
; :::; u0wjW 0j

�
be two pro�les

of workers�utility functions such that for some i 6= j, uwi = u0wj and uwj = u0wi and for any

k =2 fi; jg, uwk = u0wk . Let U
00 �

�
u00w1 ; u

00
w2
; :::; u00wjW 0j

�
be a pro�le of workers�utility functions

such that there exist two �rms f 0 and f 00 such that: (1) for every j, uwj (f
0) = u00wj (f

00) and
uwj (f

00) = u00wj (f
0); and (2) for every f 2 Fn ff 0; f 00g and for every j, uwj (f) = u00wj (f). A

matching procedure is anonymous if for every W 0 � W and F 0 � F and in every matching
M that has a positive probability given the matching procedure the following holds:25

1. for any f 2 F 0, Pr [M (wi) = f jU ] = Pr [M (wj) = f jU 0] and for any k =2 fi; jg,
Pr [M (wk) = f jU ] = Pr [M (wk) = f jU 0].

25A matching procedure is anonymous if it depends only on the preferences of workers�and �rms�and
not on their labels or position in the network. As �rms�payo¤ functions are identical at stage S = 0, an
anonymous matching procedure will depend only on the workers�preferences as captured by the de�nition.
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2. for any w 2 W , Pr [M (w) = f 0jU ] = Pr [M (w) = f 00jU 00] and for every f 2 F 0n ff 0; f 00g,
Pr [M (w) = f jU ] = Pr [M (w) = f jU 00].

De�nition 11 A matching procedure guarantees a stable matching if for every W 0 and
F 0 and in every matchingM that has a positive probability given the matching procedure the
following holds: [1] for any w 2 W 0 and f 2 F 0 such that M (w) = f , uw (�jM (w) = f) �
uw (�jM (w) = f0) and �f (�jM (f) = w) � �f (�jM (f) = w0) (for any matched worker and
�rm, both prefer to be matched to the other than be unmatched); and [2] for any w 2 W 0

and f 2 F 0 such that M (w) = f0 andM (f) = w0, uw (�jM (w) = f0) > uw (�jM (w) = f)
or �f (�jM (f) = w0) > �f (�jM (f) = w) (for any unmatched worker and �rm, at least one
of them prefers not to be matched to the other).

9.2 Best response correspondence: �rms

In any equilibrium, �rm f makes a job o¤er at stage S = �1 if there exists at least one
worker w 2 W such that

�G(nw;�W ;�F );M;�

�
f j�f

�fWh

�
= w

�
> EG(nw;�W ;�F );M;� [�f ] (10)

and does not make an o¤er if the inequality is reversed for all w 2 W . Since by de�nition
Pr fw acceptsg = 1� Pr fw rejectsg, condition (10) can be restated.

Pr
h
qw = HjNf ;fWh

i
� �H + Pr

h
qw = LjNf ;fWh

i
� �L � cf > EG(nw;�W ;�F );M;� [�f ] (11)

Recall that W 0
q is the set of workers of productivity q that reach stage S = 0 unmatched,

and F 0 is the set of �rms that reach stage S = 0 unmatched. By Lemma 1, if high produc-
tivity workers are scarce and if no worker who receives a low signal in stage S = �1 is hired
early (in stage S = �1 ), EG(nw;�W ;�F );M;� [�f ] =

jW 0
Hj

jF 0j � �H . Moreover, following condition
(3), condition (11) never holds for any worker w such that sw = l, or for any worker w =2 Nf
(because the �rm did not receive credible information regarding sw). Consequently, scarcity
of high productivity workers implies that �rm f is better o¤ making a job o¤er at stage
S = �1 if and only if fWh 6= ; and

� � �H + (1� �) � �L � cf > E

�
jW 0

H j
jF 0j

�
� �H (12)

Let  be the fraction of workers hired at stage S = �1. Conditional on ,

E

�
jW 0

H j
jF 0j j

�
=

�
1
2
� � � 

�
� nw

(1� ) � nf
=

1
2
� � � 
1� 

�
P1

r=0 �F (r) � rP1
r=0 �W (r) � r

To see why the second equality holds, note that for nw; nf ; �W (r) ; �F (r) to be consistent
with a network structure, it must hold that nw

nf
=

P1
r=0 �F (r)�rP1
r=0 �W (r)�r

.
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Therefore, condition (12) can be rewritten as

� � �H + (1� �) � �L � cf >
1
2
� � � 
1� 

�
P1

r=0 �F (r) � rP1
r=0 �W (r) � r

� �H (13)

and the ex-ante probability that a randomly chosen �rm with degree r makes an o¤er at
stage S = �1 , conditional on fWh 6= ; and the expectation that  = 1, is

��W ;�F ;M;� (1) = �G(nw;�W ;�F );M;�

�
r;fWh; 1

�
(14)

= Pr

�
� � �H + (1� �) � �L � cf >

1
2
� � � 1
1� 1

�
P1

r=0 �F (r) � rP1
r=0 �W (r) � r

� �H
�

= D
�
� � �H + (1� �) � �L �

1
2
� � � 1
1� 1

�
P1

r=0 �F (r) � rP1
r=0 �W (r) � r

� �H
�

9.3 Best response correspondence: workers

In any equilibrium, worker w accepts a job o¤er at stage S = �1 if there exists at least one
�rm f 2 eFw such that

1 + �wf > UG(nw;�W ;�F );M;�

�
�j�w

�
�; eFw� = f0

�
(15)

and does not accept any job o¤er if the inequality is reversed.
Combining Lemma 1 and the observation that a worker w does not receive an early o¤er

unless sw = h, condition (15) can be simpli�ed to

1 + �wf > � � EG(nw;�W ;�F );M;� [uwjH] (16)

Pick an edge (f; w) 2 E u.a.r. If all workers expect  = 1, then the ex-ante probability
that condition (16) holds for (f; w) is

�G;M;� () = �G(nw;�W ;�F );M;�

�
rw; eFw; � (17)

= Pr
�
1 + �wf > � � EG(nw;�W ;�F );M;� [uwjH; 1]

	
(18)

= 1�H
�
� � EG(nw;�W ;�F );M;� [uwjH; 1]� 1

�
(19)

Recall that H is continuous. Thus, �G;M;� () is the induced probability that a worker that
received exactly one job o¤er at stage �1 accepts the o¤er. Similarly, a worker that received
exactly m o¤ers at stage S = �1 accepts an o¤er with probability 1�

�
1� �G;M;� ()

�m
.

Conditional on accepting an o¤er, worker w solves the following maximization problem
to decide which o¤er to accept:

Maxf2 eFw1 + �wf
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9.4 Proofs

Lemma 2 Let h�W ; �F ; �i exhibit scarcity of high productivity workers, and let bG (�W ; �F ; nw)
be any network that is consistent with �W ; �F and nw. Assume further that no worker who re-

ceive a low signal in stage S = �1 is hired early (in stage S = �1). Let n bG(�W ;�F ;nw)w (H; 0; �)
be a random variable (r.v.) that captures the number of workers of high productivity that are

not hired in stage S = �1 and let n bG(�W ;�F ;nw)f (0; �) be a r.v. that captures the number of
�rms that did not hire in stage S = �1. Then, there exist � > 0 such that

Pr

0@limnw!1
n
bG(�W ;�F ;nw)
f (0; �)� n

bG(�W ;�F ;nw)
w (H; 0; �)

nw
> �

1A = 1

Proof. Let p�1;nww (sw) be a r.v. that captures the proportion of workers that receive a signal
sw in stage S = �1, and let p0;nww (sw; H) be a r.v. that captures the proportion of workers
that receive a signal sw in stage S = �1 AND are of high productivity in stage S = 0.
Let  bG(�W ;�F ;nw) (�) be a r.v. that captures the number of workers hired in stage S = �1.
Let p0;

bG(�W ;�F ;nw)
w (H; 0) be a r.v. that captures the proportion of workers that are of high

productivity and are not hired at stage S = �1 (as a proportion of nw). Finally, note that

p
bG(�W ;�F ;nw)
f (�) = n

bG(�W ;�F ;nw)
f (0;�)� bG(�W ;�F ;nw)(�)

n
bG(�W ;�F ;nw)
f (0;�)

is a r.v. that captures the proportion of �rms

that are not matched before stage S = 0. Then,

p0;
bG(�W ;�F ;nw)

w (H; 0) � p0;nww (l; H) + p�1;nww (h)� 
bG(�W ;�F ;nw) (�)

nw
(20)

where the inequality holds because p�1;nww (h) � 
bG(�W ;�F ;nw)(�)

nw
is the proportion of workers

who receive high signal and are not hired at stage S = �1. This equals the proportion of
workers that receive high signal, are of high productivity, and are not hired at stage S = �1
only if all of the high signal workers who are not hired at stage S = �1 are also of high
productivity.
By the strong law of large numbers

Pr

�
limnw!1p

�1;nw
w (h) =

1

2

�
= 1; Pr

�
limnw!1p

0;nw
w (l; H) =

1� �

2

�
= 1

Thus, inequality (20) implies that,

Pr

 
limnw!1

 
p0;

bG(�W ;�F ;nw)
w (H; 0)�

"
1� �

2
+
1

2
� 0;

bG(�W ;�F ;nw)
nw

#!
� 0
!
= 1 (21)

By the assumption of scarcity of high productivity workers for every
D bG (nw; �W ; �F ) ; �E
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there exists � > 1 such that nf > � �
�
1� �

2

�
� nw. Consequently,

nf � p
bG(�W ;�F ;nw)
f (�) = nf � 

bG(�W ;�F ;nw) > � �
�
1� �

2

�
� nw � 

bG(�W ;�F ;nw) (22)

Combining (21) and (22) and some algebra yields that there exists � > 1 such that,

Pr

0@limi!1
nf � p

bG(�W ;�F ;nw)
f (�)� nw � p0;

bG(�W ;�F ;nw)
w (H; 0)

nw
> (� � 1) �

�
1� �

2

�1A = 1

since by de�nition n
bG(�W ;�F ;nw)
f (0; �) = nf � p

bG(�W ;�F ;nw)
f (�), n bG(�W ;�F ;nw)w (H; 0; �) = nw �

p
0; bG(�W ;�F ;nw)
w (H; 0), and since (� � 1) �

�
1� �

2

�
> 0, the proof is complete.

Lemma 1 - Proof. The proof of part 1 of the Lemma is immediate from the de�nitions
above. The proof for part 2 is as follows:
Let z (w;F 0; �; �) � ff 2 F 0j j1 + �wf � (1 + � � �)j < �g and denote the empty set by

?. For given � 2 [0; 1], and � > 0 consider the following algorithm:

Let W = cW 0
H and F = bF 0

While W 6= ? and F 6= ?
Select w 2 W uniformly at random

If z (w;F ; �; �) 6= ?
Pick a �rm f 2 z (w;F ; �; �) uniformly at random
Match w to f
Let W =Wnw and F = Fnf

Otherwise
Pick a �rm f 2 F uniformly at random
Match w to f
Let W =Wnw and F = Fnf

The algorithm matches a �rm and a worker at every iteration and therefore always stops
when either W 6= ? or F 6= ? and provides a stable matching. The probability distribution
over the outcomes of the algorithm is a matching procedure M (W 0; F 0). The anonymity of
the procedure is directly implied by the randomness in the selection of the worker and the
�rm out of the relevant sets.
It is left to show that for every w 2 W that is selected by the algorithm and any F that

is reached by the algorithm given a network bG (�W ; �F ; nw),
limnw!1Pr [z (w;F ; �; �) 6= ?] = 1

Let n
bG(�W ;�F ;nw)
w (H; 0) be a r.v. that captures the number of workers of high productivity

that are not hired at stage S = �1 and let n bG(�W ;�F ;nw)f (0) be a r.v. that captures the number
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of �rms that did not hire at stage S = �1. Then, by Lemma 2 there exists � > 0 such that

Pr

0@limnw!1
n
bG(�W ;�F ;nw)
f (0; �)� n

bG(�W ;�F ;nw)
w (H; 0; �)

nw
> �

1A = 1

Let jAj be the number of elements in a set A. For any nw and at every iteration of the
algorithm, jFj � n

bG(�W ;�F ;nw)
f (0; �)�n bG(�W ;�F ;nw)w (H; 0; �), and this holds with equality only

when the last worker ew 2 W is chosen by the algorithm. As a result, there exists � > 0 such
that when a random worker w 2 W is chosen by the algorithm

Pr

�
limnw!1

jFj
nw

> �

�
= 1

or
Pr (limnw!1 jFj > � � nw) = 1

To complete the proof, �x � > 0 and � > 0, and consider a randomly selected worker ew
and a set eF (nw) of � �nw �rms that is chosen independently of the worker�s preferences. Let
B (nw) be the event that there is no �rm ef 2 eF (nw) such that ���1 + � ew ef � (1 + � � �)��� < �.

Recall that � ew ef is distributed H with positive density in every point in the support [��; �].
Then,

Pr (B (nw)) = (1� [H (� � � + �)�H (� � � � �)])��nw

and
limnw!1Pr (B (nw)) = 0

It is only left to recall that when there is no �rm ef 2 eF (nw) such that ���1 + � ew ef � (1 + � � �)��� <
�, � ewf is bounded.
De�nition 12 For two random variables (r.v.) X;Y with support on some countably in-
�nite set X , the total variational distance between X and Y , TV D(X; Y ), is de�ned asP

x2X jPr(X = x)� Pr(Y = x)j.

For a distribution over networks �G let b
F
(r;�G) be the random vector of length r

chosen as follows: [1] choose a network G according to �G, [2] choose a worker with degree
r u.a.r. from all workers with degree r in G, and [3] let b

F
(r;�G) be the vector of the

degrees of all �rms in Nw ordered randomly (with equal probability given to each ordering).
Let b

0F
(r; �F ) be a vector of length r such that for every i 2 f1; 2; :::; rg, b

0F

i equals r0 with

probability eP F (r0; �F ) and such that nb0Fi o
i2f1;2;:::;rg

are determined independently of each

other.

Lemma 3 (Fainmesser and Goldberg 2010) For all r and �nite support �W ; �F ,

lim
nw!1

TV D
���bF (r;G (nw; �W ; �F )) ; b0F (r; �F )��� = 0
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Lemma 4 Let �W ; �F have �nite support and h�W ; �F ; �i exhibit scarcity of high productivity
workers. Consider a market procedure M that is parameterized by �M 2 [0; 1]. Assume that
all �rms employ label-free strategies. Finally, let  G(nw;�W ;�F );M;� (b) be the r.v. that captures
the fraction of workers hired at stage S = �1 if all �rms and workers best respond to the
belief that  = b. Then, for every � > 0 and b 2 [0; 1]

limnw!1 Pr
���� G(nw;�W ;�F );M;� (b)� e �W ;�F ;M;� (b)��� < �

�
= 1

Proof. Following condition (3) and the discussion in sections 9.2 and 9.3, a worker w has a
positive probability to be hired at stage S = �1 only if sw = h and rw � 1.
Consider a network G. Select worker w u.a.r. and then select a �rm f 2 Nw u.a.r. Let

�G;M;� () be the probability that f makes an early o¤er to w if sw = h. Recall that the
realization (qw; sw) is independent of anything else, then by Lemma 3,

limnw!1�G(nw;�W ;�F );M;� () = e� �W ;�F ;M;� ()
Note also that by Lemma 1 and De�nition 2, for any W 0

H ;W
0
L; F

0 that are possible under
the assumptions above and for any � > 0

limnw!1 supw
��EG(nw;�W ;�F );M;� �uwjH;W 0

H ;W
0
L; F

0
�
� (1 + �M � �)

�� < �

and therefore
limnw!1�G(nw;�W ;�F );M;� () = e��W ;�F ;M;�

which in turn, together with the independence of f�wfgf2F and Lemma 3 imply that as
nw !1 the probability that w receives at least one early o¤er (at S = �1) that she would
like to accept, conditional on sw = h, converges to

1�
�
(1� e� �W ;�F ;M;� ()) + e� �W ;�F ;M;� () � �1� e��W ;�F ;M;���rw

For a given graph G let bwh (G) be a r.v. that captures the number of workers in the
set cWh (G) = fw 2 W jrw � 1 and sw = hg and let xW (G) = bwh(G)

nw
. Let PcW (�jG) be the

degree distribution of workers in cWh (G). The probability that a randomly chosen worker
w 2 cWh (G) is hired is

1X
rw=1

P
cW (rwjG) �1� �(1� e� �W ;�F ;M;� ()) + e� �W ;�F ;M;� () � �1� e��W ;�F ;M;���rw�

The proof is then completed by applying the strong law of large numbers twice to establish
that
(1) Pr

�
limnw!1xW (G) =

1
2
� �W

�
= 1 and

(2) for any r, Pr
�
limnw!1P

cW (rjG (nw; �W ; �F )) = P (r; �W )
�
= 1.

Theorem 1 - Proof. By the convexity of the support for  and the continuity ofe �W ;�F ;M;� () a �xed point exists.
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We now show that if � = e �W ;�F ;M;� (�) then � is a 0-equilibrium with h�W ; �F ;M; �i.
The proof goes in two steps. First, Lemma 4 implies that for any � > 0 there exists nw such
that for any n0w > nw, Pr

�
 G(nw;�W ;�F );M;� (

�) 2 [� � �; � + �]
�
> 1� �.

Second, we are required to show that for any " > 0 there exists � such that for any � 0 < �,
workers�and �rms�best responses for � satisfy the conditions for an "-equilibrium for any
 2 [� � � 0; � + � 0]. The latter follows from the continuity (and independence of nw) of the
conditions on �rms�and workers�decisions (equations 13 and 16).
Since the payo¤s of workers and �rms are bounded, Step 2 completes the proof that if

� = e �W ;�F ;M;� (�) then � is a 0-equilibrium with h�W ; �F ;M; �i.
We are left to show that if � is a 0-equilibriumwith h�W ; �F ;M; �i then � = e �W ;�F ;M;� (�).

Assume by contradiction that � = e �W ;�F ;M;� (�) + { for some { 6= 0. Then by Lemma 4
and following the argument from step 1 above, for any � > 0 there exists nw such that for
any n0w > nw, Pr

�
 G(nw;�W ;�F );M;� (

�) 2 [� + { � �; � + { + �]
�
> 1� �.

As a result, there exist �1 > 0 and nw such that for any n0w > nw,
Pr
�
 G(nw;�W ;�F );M;� (

�) 2 [� � �1; 
� + �1]

�
� �1 < 1 � �1, contradiction to 

� being a
0-equilibrium.

Proposition 1 - Proof. First, note that
D
��

L

W ; �
�L

F ;M; �
E
and

D
��

H

W ; ��
H

F ;M; �
E
are by

de�nition regular environments, and note that for every h��W ; �
�
F ;M; �i and ,

@�
�
�
W
;�
�
F
;M;�

()

@�
=

0 and
@e�

�
�
W
;�
�
F
;M;�

()

@�
= 0. In regular environments, we can rely on Corollary 1 and prove the

Proposition by showing that there exists r (M;�) ; r (M;�) 2 Z+ such that ifmax
�
�H � rj�F (r) > 0

	
<

r then e 
��
H

W ;��
H

F ;M;�
() � e 

��
L

W ;��
L

F ;M;�
(), and if min

�
�L � rjr � 1; �F (r) > 0

	
> r, thene 

��
H

W ;��
H

F ;M;�
() � e 

��
L

W ;��
L

F ;M;�
().

To reduce the notation that we carry throughout the proof, �x �W ; �F ;M; �, and 
and let e � = e ��W ;��F ;M;� (), e� � = e� ��W ;��F ;M;� (), � = ���W ;�

�
F ;M;�

(), e� = e���W ;��F ;M;�, and
x = � � e�. We can drop the  argument since a claim of greater di¤usion is proved by a shift
in e ��W ;��F ;M;� () for every  2 [0; 1] and since � and e� (and x) are independent of � and
therefore can be treated of as exogenous for a given . Substituting in the de�nitions of e�
and x and some algebra yields,

e � =
1

2
� (1� �W (0)) �

1X
rw=1

P (rw; �W ) � (1� [1� e� � + e� � � (1� e�)]��rw) (23)

=
1

2
� (1� �W (0))�

1

2
� (1� �W (0)) �

1X
rw=1

P (rw; �W ) �

�

241� x �

8<:
1X
rf=1

eP (rf ; �F ) � [(1� 0:5��rf ) = (0:5 � � � rf )]
9=;
35��rw (24)
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and
@e �
@�

= �1
2
� (1� �W (0)) �

1X
rw=1

P (rw; �W ) �
@'� (rw)

@�
(25)

where

'� (rw) =

241� x �

8<:
1X
rf=1

eP (rf ; �F ) � [(1� 0:5��rf ) = (0:5 � � � rf )]
9=;
35��rw (26)

Let '� (rw; rf ) = [1� x � [(1� 0:5��rf ) = (0:5 � � � rf )]]��rw . We note three important facts:

1. '� (rw) and '� (rw; rf ) are twice di¤erentiable.

2. If
@'�(rw;r)

@�
� 0

�
@'�(rw;r)

@�
< 0
�
for every r 2 R+ in the convex hull of frf j�F (rf ) > 0g,

then
@'�(rw)

@�
� 0

�
@'�(rw)

@�
< 0
�
.

3. sign
�
@'�(rw;rf)

@�

�
= sign

�
@ ln('�(rw;rf))

@�

�
.

Thus to prove Proposition 1 it is su¢ cient to show that:

� Step 1: '2 (rw; 1) � '1 (rw; 1).

� Step 2: there exists � (M;�) 2 Z+ such that for all � � � (M;�) and any rw 2 Z+,
@ ln('�(rw;1))

@�
� 0.

The proof of Step 1 follows a direct comparison of '2 (rw; 1) and '1 (rw; 1).

'2 (rw; 1)

'1 (rw; 1)
=
[1� 0:75 � x]2�rw

[1� x]rw
=

 
[1� 0:75 � x]2

1� x

!rw
(27)

To conclude that '2(rw;1)
'1(rw;1)

� 1 as required, we note that given that H has median 0, for
any �M 2 [0; 1], e� � 1

2
and � � 1, so that x � 1

2
. Therefore,

@ [1�0:75�x]
2

1�x
@x

=
�0:5 + 0:75 � x
(1� x)2

� (1� 0:75 � x) < 0 (28)

and �
'2 (rw; 1)

'1 (rw; 1)
jx = 0

�
= 1 (29)

imply that '2(rw;1)
'1(rw;1)

� 1 and '2 (rw; 1) � '1 (rw; 1) which concludes the proof of Step 1.
We now prove Step 2. We start by taking the derivative of

ln
�
'� (rw; 1)

�
= � � rw � ln [1� x � (1� 0:5�) = (0:5 � �)] (30)
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which with some algebra amounts to

@ ln
�
'� (rw; 1)

�
@�

= rw � ln [1� x � (1� 0:5��r) = (0:5 � � � r)] + (31)

+
[x � � � rw � ln (0:5) � 0:5��r � r + x � rw � x � rw � 0:5��r]

0:5 � � � r � x+ x � 0:5��r (32)

Thus, for any rw > 0,
@ ln('�(rw;1))

@�
� 0 whenever

ln [1� x � [(1� 0:5�) = (0:5 � �)]] + [x � � � ln (0:5) � 0:5
� + x� x � 0:5�]

0:5 � �� x+ x � 0:5� � 0 (33)

In Step 2, we are interested in the sign of
@ ln('�(rw;1))

@�
for large �. For any x and for any

� � 2, 0:5 � �� x+ x � 0:5� > 0, so inequality (33) holds if and only if

(0:5 � �� x+ x � 0:5�)�ln [1� x � [(1� 0:5�) = (0:5 � �)]]+x���ln (0:5)�0:5�+x�x�0:5� � 0 (34)

With some additional algebra we get that inequality (33) holds if and only if

2�f(0:5���x) ln[1�x�(1�0:5�)=(0:5��)]+xg
�

� x�ln[1�x�(1�0:5�)=(0:5��)]+x���ln(0:5)�x
�

(35)

where

lim�!1
x � ln [1� x � (1� 0:5�) = (0:5 � �)] + x � � � ln (0:5)� x

�
= x � ln (0:5) > �1 (36)

Consequently, a su¢ cient condition for inequality (33) to hold is

lim�!1
2� f(0:5 � �� x) ln [1� x � [(1� 0:5�) = (0:5 � �)]] + xg

�
=1 (37)

Also,
2�f(0:5���x) ln[1�x�[(1�0:5�)=(0:5��)]]+xg

�
=

= 2�
n�
0:5� x

�

�
ln [1� x � [(1� 0:5�) = (0:5 � �)]] + x

�

o
� 2�

n�
0:5� x

�

�
ln [1� x � [(1) = (0:5 � �)]] + x

�

o
= 2��1

n�
1� 2x

�

�
ln
h
1� 2x

�

i
+ 2x

�

o
= 2��1

�2

n
� (�� 2x) ln

h
1� 2x

�

i
+ 2x�

o
and

lim�!1� (�� 2x) ln
�
1� 2x

�

�
+ 2x� = 2x2

lim�!1
2��1

�2
= 1
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As a result, condition (37) is satis�ed for any x > 0, and inequality (33) holds for any
x � 0 as required.

Proposition 2 - Proof. We rely on Corollary 1 and prove the Proposition by showing
that for every  2 [0; 1], e �1W ;�1F ;M;� () � e �2W ;�2F ;M;� ().
Since for all r � 1, P

�
r; �1W

�
= P

�
r; �2W

�
and P

�
r; �1F

�
= P

�
r; �2F

�
, we have thatP1

r=0 �
1
F (r)�rP1

r=0 �
1
W (r)�r

=
P1
r=0 �

2
F (r)�rP1

r=0 �
2
W (r)�r

and also that for all r � 1, eP �r; �1F � = eP �r; �2F �. Thus, for every
 2 [0; 1],

��1W ;�1F ;M;� () = ��2W ;�2F ;M;� () ; e� �1W ;�1F ;M;� () = e� �2W ;�2F ;M;� () ; and e��1W ;�1F ;M;� = e��2W ;�2F ;M;�
Then, by the de�nition of e �W ;�F ;M;� (expression 7), the di¤erence in �W implies that for

every  2 [0; 1], e �1W ;�1F ;M;� () � e �2W ;�2F ;M;� ()
as required.

Proposition 3 - Proof. We rely on Corollary 1 and prove the Proposition by showing
that for every  2 [0; 1], e �1W ;�1F ;M;� () � e �2W ;�2F ;M;� ().
The proof goes in 3 short steps. First, by the de�nition of MPS,

P1
r=0 �

1
F (r)�rP1

r=0 �
1
W (r)�r

=
P1
r=0 �

2
F (r)�rP1

r=0 �
2
W (r)�r

.
Therefore, for every  2 [0; 1],

��1W ;�1F ;M;� () = ��2W ;�2F ;M;� () and e��1W ;�1F ;M;� = e��2W ;�2F ;M;�
Second, by the convexity and negative monotonicity of (1� 0:5r) = (0:5 � r) in r, for every

 2 [0; 1], e� �1W ;�1F ;M;� () � e� �2W ;�2F ;M;� ()
Finally,

�
1�

�
1� e� �W ;�F ;M;� () + e� �W ;�F ;M;� () � �1� e��W ;�F ;M;���rw� is increasing in e� �W ;�F ;M;�

and increasing and concave in rw. Thus, for every  2 [0; 1],

e �1W ;�1F ;M;� () � e �2W ;�2F ;M;� ()
which completes the proof.

Proposition 4 - Proof. We rely on Corollary 1 and prove the Proposition by showing
that for every  2 [0; 1], e �W ;�F ;M1;� () � e �W ;�F ;M1;� ().
By de�nition, for every  2 [0; 1],

��W ;�F ;M1;� () = ��W ;�F ;M2;� () ; e� �W ;�F ;M1;� () = e� �W ;�F ;M2;� () ; and e��W ;�F ;M1;� � e��W ;�F ;M2;�

Finally,
�
1�

�
1� e� �W ;�F ;M;� () + e� �W ;�F ;M;� () � �1� e��W ;�F ;M;���rw� is decreasing in e��W ;�F ;M;�.

Thus, for every  2 [0; 1],

e �W ;�F ;M1;� () � e �W ;�F ;M1;� ()
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which completes the proof.

Proposition 5 - Proof. We rely on Corollary 1 and prove the Proposition by showing
that: [1] if �2 < � then for every  2 [0; 1], e �W ;�F ;M;�2 () � e �W ;�F ;M;�1 (), and [2] if
�1 > � then for every  2 [0; 1], e �W ;�F ;M;�1 () � e �W ;�F ;M;�2 ().
Part 1: Recall that e��W ;�F ;M;� = 1�H [� � (1 + �M � �)� 1] and that H has the support

[��; �] where � 2 (0; 1). Let �2 � 1��
1+�M ��

, thus �i � (1 + �M � �) � 1 � �� for i = 1; 2, ande��W ;�F ;M;�1 = e��W ;�F ;M;�2 = 1. Recall that by de�nition, for every  2 [0; 1],
��W ;�F ;M;�2 () � ��W ;�F ;M;�1 () and e� �W ;�F ;M;�2 () � e� �W ;�F ;M;�1 ()

implying that for every  2 [0; 1], e �W ;�F ;M;�2 () � e �W ;�F ;M;�1 ().
Part 2: Recall that ��W ;�F ;M;� (1) = D

�
� � �H + (1� �) � �L �

1
2
���1
1�1

�
P1
r=0 �F (r)�rP1
r=0 �W (r)�r

� �H
�

and that D has the support [c; c]. Let

�1 �
c+ 1

2
�
P1
r=0 �F (r)�rP1
r=0 �W (r)�r

� �H � �L

�H � �L

thus for every  2 [0; 1], �i ��H +(1� �i) ��L�
1
2
��i�1
1�1

�
P1
r=0 �F (r)�rP1
r=0 �W (r)�r

��H � c for i = 1; 2, and

��W ;�F ;M;�2 () = ��W ;�F ;M;�1 () = 1 and e� �W ;�F ;M;�2 () = e� �W ;�F ;M;�1 () = 1X
rf=1

eP (rf ; �F )�(1� 0:5rf )
0:5 � rf

Recall that by de�nition e��W ;�F ;M;�2 � e��W ;�F ;M;�1 implying that for every  2 [0; 1],e �W ;�F ;M;�2 () � e �W ;�F ;M;�1 ().
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