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Abstract

A functional law for an I(1) sample data version of the continuous-path block bootstrap
of Paparoditis and Politis (2001) is given. The results provide an alternative demonstra-
tion that continuous-path block bootstrap unit root tests are consistent under the null.

JEL Classi�cation: C22
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1. Introduction

Of the many professional contributions Phoebus Dhrymes has made to econometrics his im-
pact on the teaching of econometrics has been particularly notable. Commencing with his
advanced textbook (Dhrymes, 1970) and his treatise on distributed lags (Dhyrmes, 1971),
there have been a steady �ow of texts and monographs covering topics like advanced prob-
ability and statistical methods (Dhrymes, 1989), mathematical methods (Dhrymes, 1978),
simultaneous equations (Dhrymes, 1994), and unit roots and cointegration (Dhyrmes, 1998).
Through these texts Dhrymes has helped to transport probability foundations, advanced sta-
tistics, standard econometric methods, and new developments in econometrics to students,
professionals, and practitioners. A de�ning goal in all of his monographs is to present ad-
vanced methods in a readable form that does not compromise rigor. Given the increasing
technical demands placed on students and professionals seeking to keep abreast of develop-
ments in econometrics, this goal is especially admirable and it motivates the present work,
which seeks to provide an alternative analysis of a fundamental result on bootstrapping I(1)
series.

In time series applications the bootstrap must accurately capture the temporal depen-
dence properties of the original time series if it is to be a useful aid to inference. Two

�Dedicated to Phoebus Dhrymes whose advanced textbooks in econometrics have trained and educated
generations of econometricians and applied researchers. Research was supported by the NSF under Grant No.
SES 06-47086.
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approaches are now in common use to deal with temporal dependence: the sieve bootstrap
(Kreiss, 1992, and Buhlmann, 1997, 1998, among others), where a sequence of �nite dimen-
sional parametric models (like autoregressions) is used to remove temporal dependence; and
block bootstrap methods (Carlstein, 1986, and Künsch, 1989), where blocking techniques are
used to deal with dependence. If temporal dependence is poorly captured or ignored, then
the bootstrap will perform badly (Horowitz, 2001) and may well produce inconsistent esti-
mates (Basawa et al., 1991). A dramatic example of inconsistency is that raw bootstrapping
converts spurious regressions into cointegrating regressions (Phillips, 2001).

For unit root testing, the sieve and block bootstraps have been extensively analyzed in a
series of papers that include Park (2002, 2003), Chang and Park (2002, 2003), Paparoditis
and Politis (2003,2005), and Parker, Paparoditis and Politis (2006). A detailed comparison
of these various bootstrap unit root tests has recently been conducted by Palm, Smeekes
and Urbain (2007), giving some recommendations for practical work. While di¤erences occur
in the construction of the tests in terms of the use of residuals or di¤erences in parameter
estimation, all of these bootstrap tests have in common the fact that they use a partial sum
process to generate the bootstrap data under the null thereby ensuring that the test conforms
to a unit root limit distribution. This is appropriate when replicating properties of statistical
distributions under the null of a unit root.

Paparoditis and Politis (2001a) developed a new bootstrap procedure for reproducing unit
root data using a continuous-path block bootstrap. The continuous path block bootstrap
works by adjusting the beginning of each new block to match up with the end of the last
block in the random sequence of blocks. In subsequent work, the same authors (2001b, 2003)
showed how to construct unit root data in a bootstrap algorithm based on partial sums
of residuals from a �rst order autoregression of the sample data. Their approach produces
consistent bootstrap estimates of the null unit root distribution under both the null and the
alternative. This feature of the algorithm is important as it enables the generation of unit
root pseudo-data with the correct residual dependence structure (and hence the correct unit
root limit distribution) even when the original series are stationary.

The present note provides an alternative proof of the asymptotic behavior of the contin-
uous path block bootstrap when the algorithm is applied to the original sample data rather
than partial sums of residuals. This form of directly bootstrapping a nonstationary series is
valid even when the initial condition is itself nonstationary. Further, unit root tests boot-
strapped in this way are consistent under the null hypothesis of a unit root, but are not
consistent for unit root distributions under the alternative, in contrast to the partial sum
approach of Paparoditis and Politis (2001b, 2003). The results are proved with some of the
embedding methods used in Phillips (2001).

2. Preliminaries

Suppose xt is a unit root process generated by

xt = xt�1 + ut; t = 1; :::; n (1)

where ut a linear process satisfying condition LP below:We allow for random initializations in
which x0 = Oa:s(1) or where there may be a distant past initialization in which x0 =

P[n�]
j=1 u�j
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for some �nite1 � > 0 (so that x0 and xt have similar stochastic properties) and where u�j
also satis�es assumption LP.

Assumption LP ut has the Wold representation

ut = C (L) "t =
1X
j=0

cj"t�j ;
1X
j=0

jsjcj j <1; s � 1; C(1) 6= 0; (2)

with "t = iid
�
0; �2"

�
and with E(j"tjq) <1; for some q > 4:

The summability condition in (2) is satis�ed by a wide class of parametric and nonpara-
metric models for ut and, in conjunction with the moment condition, enables the use of
almost sure invariance principles (IP) for the partial sums of ut: To perform the latter, which
are especially useful here, we expand the probability space as needed so that the partial sum
process Sk =

Pk
t=1 ut of ut can be represented up to a negligible error in terms of a Brownian

motion de�ned on the same space. An IP of this type for partial sums of linear processes
was given in Phillips (2007, lemma 3.1) and a version of that lemma is repeated here for
convenience.

2.1 Lemma Let Sk =
Pk
j=1 uj for k � 1; and S0 = 0; for k = 0; where uj satis�es

Assumption L: Then, the probability space on which the uj and Sk are de�ned can be expanded
in such a way that there is a process distributionally equivalent to Sk and a Brownian motion
B(�) with variance !2 = �2"C (1)

2 on the new space for which

sup
0�k�n

�������� Skpn�B(kn)
�������� = oa:s( 1

n
1
2
� 1
p

): (3)

provided Ejjutjjq <1 for some q > 2p > 4:

When x0 = Oa:s(1) we have xt = St + Oa:s:(1); and it follows from (3) that, after changing
the probability space as required,

sup
0�t�n

�������� xtpn�B( tn)
�������� = oa:s( 1

n
1
2
� 1
p

): (4)

Similarly, when there is a distant past initialization, an almost sure IP applies to n�
1
2x0 =P[n�]

j=1 u�j and we have, after appropriate enrichment of the probability space,���� x0pn�B0
�
[n�]

n

����� = oa:s( 1

n
1
2
� 1
p

): (5)

We shall proceed as if these changes have been made without adding the quali�cation and
noting that in the original space these convergences translate into weak convergence of mea-
sures.

1Phillips and Magdalinos (2008) explore the e¤ects of distant past initializations on unit root limit theory
when � = �n may pass to in�nity as n!1.
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3. The Continuous Moving Block Bootstrap

Let the bootstrap block size be given by the positive integer m; and let N1; :::; NM be iid
uniform draws from f0; 1; :::; n�mg withM = [n=m]; where [�] denotes integer part. A typical
moving block (Künsch, 1989) bootstrap observation is xmb�(j�1)m+k = xNj+k for 1 � j �M and
1 � k � m: Here, Nj are the block division points and M is the number of blocks. Using the
construction of Paparoditis and Politis (2001), we can create continuous path moving block
bootstrap observations by re-initializing at the division points as follows:

CB1. First Block (s = 0; say): xcb�k = x1 + (xN1+k� xN1 ) for k = 1; ::;m

CB2. Succeeding Blocks (s = 1; ::;M � 1; say):

xcb�sm+k = xcb�sm + (xNs+k � xNs )

= x1 +

sX
a=1

(xNa�1+m � xNa�1 ) + (xNs+k � xNs )

for k = 1; ::;m:

This algorithm produces bootstrap data directly from the sample observations xt and
does not use residuals from a preliminary regression or partial sum processes to construct the
series. Note that there are m observations in each block. The �rst block ends at the point
xcb�m = x1+(xN1+m� xN1 ) and the second block starts at x

cb�
m+1 = x

cb�
m +(xN2+1�xN2 ); thereby

di¤ering from the end of the �rst block by the Op�(1) random element xN2+1 � xN2 after re-
initializing by removing xN2 : There are ` = mM observations in total and n = m[M +O(1)]:

In what follows, it is assumed that 1
M + M

n1=2�1=p
! 0 as n!1:

The bootstrapped series is initialized at the �rst sample observation x1 plus the Op�(1)
random element xN1+1� xN1 , and so is asymptotically equivalent to the sample initialization
x1: (The algorithm of Paparoditis and Politis, 2001, initializes directly on x1). This common
initialization is important, particularly if x1 is random and has an implicit distant past
initialization which �gures in the limit theory. Thus, if x1 =

P[n�]
j=0 u�j for some �nite � > 0

and where the u�j satisfy LP then from (5) n�
1
2x1 !d B0(�); where B0 is a Brownian motion

with variance !2, independent of B: In this event, the standardized sample observations
n�

1
2x[nr] !d B0(�) +B(r), and B0(�) �gures in the limit theory. Step CB1 of the bootstrap

construction above ensures that this feature is reproduced in the bootstrap limit theory.
Now consider the limit of a standardized bootstrap sample constructed in this manner.

As earlier, there exists a probability space in which we can write for t = (j � 1)m+ k

xcb�tp
n

=
xcb�(j�1)m+kp

n
=
x1p
n
+

j�1X
a=1

�
xNa�1+mp

n
�
xNa�1p
n

�
+

�xNj�1+mp
n

�
xNj�1p
n

�

=
x1p
n
+

j�1X
a=1

�
B
�
RNa�1 +

m

n

�
�B

�
RNa�1

��
+

�
B

�
RNj�1 +

k

n

�
�B

�
RNj�1

��
+ oa.s.

�
M

n
1
2
� 1
p

�
; (6)
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where RNa =
Na
n is uniformly distributed over f0; 1n ; ::;

n�m
n g for each j: The error order given

in (6) holds uniformly in j �M: The sequence of Brownian incrementsn
B
�
RNa�1 +

m

n

�
�B

�
RNa�1

�
: a = 1; ::; j � 1

o
� iid N

�
0; !2

m

n

�
;

and these are independent of B(RNj�1+
k
n)�B(RNj�1): There exists a new Brownian motion

V = BM
�
!2
�
for which we can write

B
�
RNa�1 +

m

n

�
�B

�
RNa�1

�
=d

Z a�1
M
+m
n

a�1
M

dV;

and then using the a:s.(P ) continuity of the sample paths of V we have the representation

j�1X
a=1

�
B
�
RNa�1 +

m

n

�
�B

�
RNa�1

��
=d

j�1X
a=1

Z a�1
M
+m
n

a�1
M

dV = V

�
j � 2
M

+
m

n

�
+ oa.s. (1) : (7)

Next, suppose that t = (j � 1)m+ k = [nr] for some r > 0: Then,

j � 1
M

=
[nr]� k
mM

= r +O

�
1

M

�
;

uniformly for k = 1; :::;m: Since V has continuous sample paths almost surely, it follows from
(6) and (7) that we can write

xcb�tp
n
� x1p

n
= d V

�
j � 2
M

+
m

n

�
+

�
V

�
j � 1
M

+
k

n

�
� V

�
j � 1
M

��
+ oa.s.

�
1

n
1
2
� 1
p

�
= V

�
j � 1
M

+
k

n

�
+ oa.s. (1) (8)

= V (r) + oa.s. (1) ;

uniformly in t = [nr] with r 2 [0; 1] : Noting the distributional equivalence V (r) =d B (r) ;
we deduce that in the original probability space we have the weak convergence

xcb�[nr]p
n
� x1p

n
!d� B (r) ; a:s: (P ) ; (9)

and hence
xcb�[nr]p
n
!d� B0(�) +B (r) ; a:s: (P ) ;

where � > 0 when there is distant past initialization. Thus, the CMB bootstrap provides
a consistent mechanism for reproducing integrated time series from a random and possibly
distant initialization.
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4. Unit Root Testing

Now consider the limit distribution of serial correlation coe¢ cients obtained from the boot-
strap sample. Take the �rst order serial correlation b�cb� = n�2Pn

t=1 x
cb�
t xcb�t�1=n

�2Pn
t=1 x

cb�2
t�1

and for simplicity let the initialization be such that � = 0 in what follows. Using (9) and
standard limit theory, the denominator of b�cb� can be shown to have the following limit

1

n2
Pn
1 x

cb�2
t�1 !d�

Z 1

0
B(r)2dr a:s: (P ) : (10)

Using (8), the numerator can be written as

1

n

Pn
1

�
xcb�tp
n

� 
xcb�t�1p
n

!

=
1

mM

M�1X
j=0

mX
k=1

�
V

�
j � 1
M

+
k

n

�
+ oa.s. (1)

� �
V

�
j � 1
M

+
k � 1
n

�
+ oa.s. (1)

�

=
1

M

M�1X
j=0

Z j
M
+m
n

j
M
+ 1
n

V (r)2 dr + oa.s. (1) =

Z M�1
M

+m
n

1
n

V (r)2 dr + oa.s. (1)

! d�

Z 1

0
B (r)2 dr a:s:(P ): (11)

It follows that b�cb� !p� 1 a:s:(P ):
Next, for the limit distribution of b�cb�; write

n(b�cb� � 1) = 1

n

nX
t=1

�xcb�t x�t�1=
1

n2

nX
t=1

xcb�2t�1 : (12)

The limit of the denominator is given in (10). For the numerator, �rst observe that for
t = sm+ k we have xcb�sm+k = x

cb�
sm + (xNs+k � xNj ) and so

�xcb�t = �x
Ns+k

= u
Ns+k

; for all k � 1: (13)

The identity

�
nX
t=1

xcb�2t =
nX
t=1

�xcb�t xcb�t +
nX
t=1

xcb�t�1�x
cb�
t = 2

nX
t=1

xcb�t�1�x
cb�
t +

nX
t=1

�
�xcb�t

�2
leads to

1

n

nX
t=1

xcb�t�1�x
cb�
t =

1

2

(�
xcb�np
n

�2
� 1

n

nX
t=1

�
�xcb�t

�2)

=
1

2

8<:
�
xcb�np
n

�2
� 1

n

MX
j=1

mX
k=1

�
�x

Nj�1+k

�29=; =
1

2

8<:
�
xcb�np
n

�2
� 1

n

MX
j=1

mX
k=1

u2
Nj�1+k

9=; :
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Now
xcb�np
n
!d� B (1) a:s: (P ) ;

and for all j
1

m

mX
k=1

u2
Nj�1+k

!p� �
2
u a:s: (P ) ;

where �2u = E(u
2
t ); and then

1

n

MX
j=1

mX
k=1

u2
Nj�1+k

=
1

M +O (1)

MX
j=1

1

m

mX
k=1

u2
Nj�1+k

!p� �
2
u a:s: (P ) :

We deduce that

1

n

nX
t=1

xcb�t�1�x
cb�
t !d�

1

2

h
B (1)2 � �2u

i
=

Z 1

0
BdB + �;

with � = !2 � �2u =
P1
k=1E(u0uk): Thus,

n(b�cb� � 1)!d�

R 1
0 BdB + �R 1
0 B

2dr
a:s: (P ) ; (14)

and the bootstrap distribution is consistent for that of n(b�� 1):
Adjustments to remove the serial dependence manifested in � in (14) can be made in the

usual way, by semiparametric corrections as in Phillips (1987) or augmented regression (Said
and Dickey, 1984; Xiao and Phillips, 1999). If such corrected bootstrap statistics are to have
the same limit theory as the statistics in the sample data (and therefore be pivotal) we need
the corresponding estimate �cb� of � to be consistent, so that �cb� !p� � a:s: (P ) ; or the
e¤ects of � to be consistently removed through augmented regression. In what follows, we
concentrate on the semiparametric correction approach to testing.

In that case, we use the regression

xcb�t = b�cb�xcb�t�1 + u��t ;
to form the kernel estimate �cb� from the residuals u��t

�cb� =
HX
h=1

k

�
h

H

�
1

n

nX
t=h+1

u��t u
��
t�h; (15)

using some lag kernel function k(�): Since

u��t = �xcb�t �
�b�cb� � 1�xcb�t�1;
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and b�cb� !p� 1 a:s:(P ) and b�cb� � 1 = Op�( 1n) a:s:(P ); we obtain

1

n

nX
t=h+1

u��t u
��
t�h =

1

n

nX
t=h+1

h
�xcb�t �

�b�cb� � 1�xcb�t�1i h�xcb�t�h � �b�cb� � 1�xcb�t�1�hi
=

1

n

nX
t=h+1

�xcb�t �xcb�t�h �
�b�cb� � 1� 1

n

nX
t=h+1

xcb�t�1�x
cb�
t�h

�
�b�cb� � 1� 1

n

nX
t=h+1

xcb�t�1�h�x
cb�
t + n

�b�cb� � 1�2 1
n2

nX
t=h+1

xcb�t�1x
cb�
t�1�h

=
1

n

nX
t=h+1

�xcb�t �xcb�t�h +Op�

�
1

n

�
a:s:(P ):

For t = sm+ k and t� h = sm+ k � h with k > h we have

�xcb�t �xcb�t�h = uNs+kuNs+k�h :

When k � h we have t� h = (s� 1)m+ (m� h+ k) and then

�xcb�t �xcb�t�h = uNs+kuNs�1+m+k�h :

The sample covariances are therefore

1

n

nX
t=h+1

�xcb�t �xcb�t�h =
1

n

M�1X
s=0

"
mX

k=h+1

u
Ns+k

u
Ns+k�h +

hX
k=1

u
Ns+k

u
Ns�1+m+k�h

#

=
1

M +O (1)

M�1X
s=0

"
1

m

mX
k=h+1

u
Ns+k

u
Ns+k�h +

1

m

hX
k=1

u
Ns+k

u
Ns�1+m+k�h

#
:

Now, as m!1
1

m

mX
k=h+1

u
Ns+k

u
Ns+k�h !p� E (utut�h) a:s: (P ) ;

whereas for all �nite h

1

m

hX
k=1

u
Ns+k

u
Ns�1+m+k�h

!p� 0 a:s: (P ) :

It follows by conventional arguments that the kernel estimate (15) has the following limit

�cb� !p� � =

1X
h=1

E (utut�h) a:s: (P ) :

We deduce that the unit root test statistic

Z
�b�cb�� = n(b�cb� � 1)� �cb�

n�2
Pn
t=1 x

cb�2
t�1

!d�

R 1
0 BdBR 1
0 B

2dr
a:s: (P ) ;
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and so Z(b�cb�) is consistent for the limit distribution of the usual Z� test (Phillips, 1987;
Phillips and Perron, 1988))

Z (b�) = n(b�� 1)� b�
n�2

Pn
t=1 x

2
t�1
;

where b� = PH
h=1 k

�
h
H

�
1
n

Pn
t=h+1 ûtût�h; b� = n�2

Pn
t=1 xtxt�1=n

�2Pn
t=1 x

2
t�1; ût = xt �b�xt�1; and H is the lag truncation parameter.

Similar results apply to the Zt test, the ADF test and tests in models with �tted drift or
in tests against trend breaks (Perron, 1989).

4. Conclusion

The continuous moving block bootstrap of Paparoditis and Politis (2001) is consistent under
the null hypothesis that the sample data is I(1). In particular, it can be used to construct
estimates of the �nite sample distribution of unit root tests that involve semiparametric cor-
rections for serial correlation. However, this approach does not produce consistent estimates
of the null unit root distribution under the alternative, as in the procedures of Paparoditis
and Politis (2001b, 2003) or some other procedures that use residual-based partial summation
methods in constructing the bootstrap sample.
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