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Abstract  
This paper assesses the linkages between the most important U.S. 
financial asset classes (stocks, bonds, T-bills and gold) during periods 
of financial turmoil. Our results have potentially important implications 
for strategic asset allocation and pension fund management. 
We use multivariate extreme value theory to estimate the exposure of 
one asset class to extreme movements in the other asset classes. By 
applying structural break tests to those measures we study to what 
extent linkages in extreme asset returns and volatilities are changing 
over time. Univariate results andch bivariate comovement results exhibit 
significant breaks in the 1970s and 1980s corresponding to the 
turbulent times of e.g. the oil shocks, Volcker’s presidency of the Fed 
or the stock market crash of 1987. 
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1 Introduction

Joint crashes in different asset markets can have severely destabilizing ef-

fects on countries and the international financial architecture. Strong finan-

cial market linkages during crisis periods can severely increase the risk of

bank failures through a joint deterioration of their assets possibly leading to

domino effects in countries’ financial systems even when their banks’ assets

are well diversified. In general, extreme comovements of financial markets

on a national and international level crucially determine the systemic risk

of these markets. The amount and size of jointly affected markets together

with potential difficulties and bottlenecks in the financial system and pay-

ment process determines the severeness of any real effects that may follow.

There have been periods with financial and political instability like the oil

crises in 70s and 80s, the Asian Flu and Russian Cold (1997 and 1998, re-

spectively) or more recently the subprime mortgage crises in 2007, where

such effects have been witnessed. Thus, the study of extreme (co)movements

in asset markets is not only important to investors but also to policy mak-

ers and financial regulators that care about overall economic and financial

stability.

Possibly the first systematic study of cross-country financial crisis spillovers

is Morgenstern (1956, Chapter X). He explicitly refers to “statistical ex-

tremes” of the 23 stock markets and their effects on foreign stock markets.

More recently, the econometric literature utilizes correlation analysis based,

for example, on ARCH and GARCH-type models. Such contributions usu-

ally examine if stock market comovements differ between crisis and non-crisis

episodes and typically also try to determine the direction of possible spill-over

effects. Contributions like King and Wadhwani (1990), Hamao et al. (1990),

Mallaris and Urrutia (1992), Lin et al. (1994) and Engle and Susmel (1993)

belong to this strand of the literature. Papers focussing on foreign exchange

markets and currency crises include Eichengreen et al. (1996), Sachs et al.

(1996), Kaminski and Reinhart (2000). However, little work has been done

on linkages across asset classes. Hartmann et al. (2004) constitutes a notable

exception.
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This paper extends the literature by increasing the amount of asset classes

considered. This allows us to study and compare phenomena like “flight

to quality”, and “flight to liquidity”. We define flight to quality as the

simultaneous event of a stock market crash and a boom in either government

bond or gold markets; whereas flight to liquidity stands for a stock market

crash coinciding with a boom in the market for T-bills. Compared to the

scant existing literature on cross-asset linkages, we use more assets and longer

time series. This allows us to implement extreme value techniques and to

apply tests for structural change on our linkage measures.

The used methodology combines extreme value theory (EVT) with a

structural stability test developed by Quintos et al. (2001). Contributions

using similar approaches include Hartmann et al. (2004; 2005), and Straet-

mans et al. (2006). Bivariate extreme value theory captures the dependence

structure in the tails of multivariate distributions by means of the so-called

tail dependence parameter. This parameter is able to capture both linear

and nonlinear dependence in the tails whereas traditional correlation analysis

only measures linear dependence and is predisposed toward the multivariate

normal distribution. Another advantage constitutes the nonparametric char-

acter of the used methodology, i.e., we leave the joint asset return process

unspecified and thereby limit the scope for miss-specification (model risk).

Anticipating on our results, we find relatively small tail indexes for gold

and T-bills as compared to stocks and bonds. Bivariate results indicate

that the likelihood of co-crashes dominates flight to quality and flight to

liquidity phenomena. As concerns structural change, both univariate and

bivariate tails are found to be nonstable over time for certain asset pairs.

The breaks suggest a mean reverting pattern in the amount of tail thickness

and tail dependence: initially the probability mass has risen (oil shocks) to

decline later on towards the end of the 80s. Tail asymmetries as well as cross

sectional differences in tail estimates are found to be statistically insignificant

from zero.

The paper is organized as follows. Section 2 introduces the theoretical

basis for the extreme value analysis. Section 3 explains the tail-dependence

measure for extreme financial market comovements in more detail. In Section
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4 we introduce the stability test that we perform in order to check for struc-

tural breaks in the univariate and multivariate series. Section 5 presents

the results obtained by applying those techniques to the data. Section 6

concludes.

2 Asset linkages: Theory

We measure the dependencies between returns of different asset classes for

extreme price movements, i.e. in the bivariate tail of the asset pairs. They are

constructed either as conditional tail probabilities or conditionally expected

extreme co-events. We will argue that the two indicators are perfectly corre-

lated and are two alternative ways to presenting the same empirical outcomes.

The techniques used are not new and have partly been used in, for example,

Poon et al. (2004) and Hartmann et al. (2004; 2005).

In this section and Section 3 we assume constancy/stationarity of the tail

behavior of assets over time. We also focus on the unconditional marginal

return distributions and do not condition any statistic on time. Therefore,

we refrain from using time subscripts even though the reader should bear in

mind that the assumed asset return series evolve over time. In Section 4 we

introduce time subscripts t because we relax the assumption of constancy of

the tail behavior and allow (test) for structural breaks.

2.1 Conditional tail probabilities

Consider a pair of different asset types, i.e., stocks and bonds. Denote the

return of stocks and bonds by the random variables Xi (i = 1, 2), respectively.

Each series Xi is assumed to have n observations. For sake of convenience

and when necessary, we take the negative of returns, so that we can define

all used formulae in terms of upper tail returns. Crisis levels or extreme

percentiles Qi (i = 1, 2) are chosen such that the tail probabilities are equal

across assets, i.e., P {X1 > Q1} = P {X2 > Q2} = p.

With common marginal exceedance probabilities, crisis levels Qi (Value-

at-Risk/VaR) will generally not be the same across assets, because the marginal
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distribution functions P {Xi > Qi} = 1−Fi(Qi) are nonidentical. Crisis lev-

els can be interpreted as ‘barriers’ that will on average only be broken once

in 1/p time periods, i.e., p−1 days in case of daily data frequency. Suppose

now that we want to measure the dependence between two assets beyond the

crisis levels (Q1, Q2) . A natural measure is the conditional tail probability

βτ : = P {X1 > Q1 (p) |X2 > Q2 (p)}

=
P {X1 > Q1 (p) , X2 > Q2 (p)}

P {X2 > Q2 (p)}

=
P {X1 > Q1 (p) , X2 > Q2 (p)}

p
, (1)

which measures the likelihood that an asset’s value (in this case X1) falls

sharply, if there is an extreme negative shock to a second asset. In case

of independence the conditional tail probability reduces to p2/p = p, which

constitutes a lower bound that helps to judge the strength of assets’ tail

dependence.

2.2 Conditionally expected extreme events

Alternatively, suppose we would like to find the expected number of assets’

extremes (booms or busts) given that one observes a boom or bust in at least

one asset class. Using the same notation as before, we represent random

asset returns by X1 and X2. Q1 and Q2 are the corresponding percentiles

(or ‘thresholds’) above which we speak of a market boom or crash (in case

of a loss) and that will only be exceeded with probability p. Let κ stand

for the number of assets with extreme returns, i.e. κ equals one or two.

Our extreme linkage indicator is the conditional expectation E[κ|κ ≥ 1].

From elementary probability theory (starting from the standard definition of
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conditional probability) we can state that

E[κ|κ ≥ 1] :=
E[κ]

P {κ ≥ 1}

=
P{X1 > Q1, X2 ≤ Q2} + P{X1 ≤ Q1, X2 > Q2}

P{X1 ≥ Q1or X2 ≥ Q2}

+
2P{X1 > Q1, X2 > Q2}

P{X1 ≥ Q1or X2 ≥ Q2}

=
2p

P{X1 ≥ Q1or X2 ≥ Q2}
(2)

with P{X1 ≥ Q1or X2 ≥ Q2} = 1 − P{X1 ≤ Q1, X2 ≤ Q2}. Notice that

the conditional expectation reduces to 2/(2 − p) under the benchmark of

independence. It is also easily observed that E[κ|κ ≥ 1] = P {κ = 2|κ ≥ 1}+

1, so that an alternative interpretation of our extreme linkage indicator is in

terms of (1 plus) the conditional probability that both assets simultaneously

boom or bust given that at least one asset exhibits extreme behavior. For

higher dimensions than two E[κ|κ ≥ 1] is still equal to the ratio of the sum

of the marginal excess probabilities divided by the joint failure probability.

The relation between both extreme linkage measures (1) and (2) easily follows

from the following chain of equalities:

E[κ|κ ≥ 1] =
2p

P{X1 ≥ Q1or X2 ≥ Q2}

=
2p

2p − P{X1 ≥ Q1, X2 ≥ Q2}

=
2

2 − βτ

.

Clearly, 1≤ E ≤ 2 corresponds with 0 ≤ βτ ≤ 1.

3 Estimation of the linkage indicators

The estimation of (1) and (2) reduces to the estimation of the joint proba-

bility P{X1 ≥ Q1, X2 ≥ Q2}. Within the framework of a parametric proba-

bility law, the calculation of the proposed multivariate probability measures
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is straightforward, because one can estimate the distributional parameters

by, e.g., maximum likelihood techniques. However, if one makes the wrong

distributional assumptions, the linkage estimates may be severely biased due

to misspecification. As there is no clear evidence that all asset returns follow

the same distribution − even less so for the crisis situations we are interested

in here − we want to avoid very specific assumptions for assets’ returns.

Therefore, we implement the semi-parametric EVT approach proposed by

Ledford and Tawn (1996); see also Draisma et al. (2001), and Poon et al.

(2004) for recent applications). Loosely speaking, their approach consists of

generalizing some ‘best practice’ in univariate extreme value analysis.

Before proceeding with the modeling of the extreme dependence struc-

ture, however, it is worthwhile to eliminate any possible influence of marginal

aspects on the joint tail probabilities by transforming the original variables

to a common marginal distribution. After such a transformation, differences

in joint tail probabilities can be solely attributed to differences in the tail

dependence structure of the extremes. Thus our dependence measures, un-

like e.g. correlation, are no longer influenced by the differences in marginal

distribution shapes. To this aim we transform asset returns (X1, X2) to unit

Pareto marginals:

X̃i =
1

1 − Fi (Xi)
, i = 1, 2, (3)

with Fi (·) representing the marginal cumulative distribution function (cdf)

for Xi.
1 This variable transform leaves the joint tail probability in the nu-

merator of (1) invariant because

P {X1 > Q1 (p) , X2 > Q2 (p)} = P
{
X̃1 > s, X̃2 > s

}
,

with s = 1/p.2 The estimation problem can now be simplified toward esti-

1Since F1,2 are unknown, we replace them with their empirical counterparts. For each
Xi this leads (with a small modification to prevent division by 0) to:

X̃i =
1

1 − RXi
/(n + 1)

, i = 1, 2,

where RXi
= rank(Xij,j = 1, · · · , n).

2The joint probability stays invariant under any monotonically increasing transforma-
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mating a univariate exceedance probability for the cross-sectional minimum

of the two return series, i.e., it is always true that:

P
{
X̃1 > s, X̃2 > s

}
= P

{
min

(
X̃1, X̃2

)
> s
}

= P {Zmin > s} (4)

The marginal tail probability at the right-hand side can now be easily calcu-

lated by making an additional assumption on the univariate tail behavior of

Zmin. Ledford and Tawn (1996) argue that the bivariate dependence struc-

ture is a regularly varying function under fairly general conditions. Draisma

et al. (2001) give sufficient conditions and further motivation. Therefore, we

assume that the auxiliary variable Zmin has a regularly varying tail. An in-

tuitive justification of the regular variation assumption for the bivariate tail

lies in the generally observed regular variation (heavy tails or non-normality)

of the original return series X1 and X2. Thus, it is reasonable to assume that

the transformed series X̃i and hence the series of the cross-sectional min-

imum in (4) should also inherit this property. Upon assuming that Zmin

exhibits a fat tail, the regular variation assumption means that the marginal

excess probability for the tail of the auxiliary variable in (4) has a Pareto

tail decline:

P {Zmin > s} ≈ L (s) s−α, α ≥ 1 (5)

with s large (p small) and where L (s) is a slowly varying function.3 Distri-

butions with a Pareto-type tail decline have bounded moments only up to

α, where α is the ‘tail index’ of Zmin. In contrast, distributions with expo-

nentially decaying tails (e.g. the normal df) or with finite endpoints have all

moments bounded. So, the larger α the thinner is the tail of a distribution.4

We can now distinguish two cases in which the X̃i (i = 1, 2) are either tail

dependent or independent. In the former case, α = 1 and

lim
s→∞

P
{
X̃1 > s

∣∣∣X̃2 > s
}

> 0.

tion of the marginals.
3i.e., lims→∞L (ts) /L (s) = 1 for all fixed t > 0.
4Such an interpretation holds for the univariate and for the multivariate case.
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Stated otherwise, the tail probability defined on the pair of random variables

(X1, X2) does not vanish in the bivariate tail. Examples of asymptotically

dependent random variables include the multivariate student-t distribution

and the multivariate logistic distribution, see e.g. Longin and Solnik (2001),

Poon et al. (2004). For asymptotic independence of the random variables

α > 1, and we have that

lim
s→∞

P
{
X̃1 > s

∣∣∣X̃1 > s
}

= 0.

Examples of this class of distributions include the bivariate standard normal

distribution or the bivariate Morgenstern distribution. For the bivariate nor-

mal with nonzero correlation coefficient ρ, the auxiliary variable’s tail descent

in (4) will be governed by α = 2/ (1 + ρ) whereas the bivariate Morgenstern

corresponds with α = 2. Notice that we only reach α = 2 for the bivariate

standard normal when ρ = 0. In general, whenever the X̃i (i = 1, 2) are

fully independent, α = 2 and P {Zmin > s} = p2. But the reverse is not

true, i.e., there are joint distributions with nonzero pairwise correlation that

nevertheless have α = 2. The above-mentioned Morgenstern model provides

an example. When the normal random variables are independent (ρ = 0),

the joint excess probability is also governed by α = 2.

The steps (3), (4) and (5) show that the estimation of joint probabilities

like in (4) can be reduced to a univariate estimation problem. Univariate ex-

cess probabilities can be estimated by using the semi-parametric probability

estimator from De Haan et al. (1994):

p̂s =
m

n
(Zn−m,n)α s−α, (6)

where the ‘tail cut-off point’Zn−m,n is the (n−m)-th ascending order statistic

(or loosely speaking the m-th smallest return with m being the amount of

returns belonging to the tail of the distribution) of the auxiliary variable

Zmin.5 Below we explain how we chose m.

The probability estimator (6) still needs a tail index estimate α as an

5Such a procedure can also be used for more than two return series as is done in, for
example, Hartmann et al. (2005).
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input. We estimate the tail index of the Zmin series by means of the popular

Hill (1975) statistic:

α̂ =

(
1

m

m−1∑

j=0

ln

(
Zn−j,n

Zn−m,n

))−1

, (7)

where m has the same value and interpretation as in (6). Further details

on the Hill estimator and related procedures to estimate the tail index are

provided in Jansen and de Vries (1991) or the monograph by Embrechts et al.

(1997).6

The above discussion demonstrates that the pair of estimators in (6)-(7)

both characterizes univariate and multivariate tail behavior. This is because

the estimation of a joint exceedance probability can be reduced to estimating

a univariate exceedance probability. In the latter case, the tail index α not

only signals the tail thickness of the auxiliary variable Zmin but it also reflects

the strength of the dependence in the tails of the original return pair (X1, X2)

in the tail area [Q1,∞〉× [Q2,∞〉. The smaller the value of α the higher the

probability mass in the tail of Zmin and thus also the higher the value of

the joint probability in (1). One therefore often calls the inverse parameter

η = 1/α the tail dependence coefficient. An estimator of the bivariate tail

probability measure in (1) now easily follows by combining (6) and (7):

β̂τ =
p̂s

p

=
m

n
(Zn−m,n)

1/bη s1−1/bη (8)

for large but finite s = 1/p. When the original pair of returns exhibit asymp-

totic independence (η < 1), the tail probability is a declining function of the

threshold s and converges to zero if s → ∞. On the other hand, in the

polar case of asymptotic or tail dependence (η = 1), the tail probability will

always be above zero (regardless of the value of the conditioning percentile).

6Hill (1975) derived asymptotic consistency and normality of the Hill estimator under
an i.i.d. assumption. Hsing (1991) and Resnick and Stărică (1998) derive similar results
for the case of dependent data. For technical details we refer to the respective papers.
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However, in this paper we will not focus on the asymptotic dependence vs. in-

dependence debate and will leave the tail dependence coefficient unrestricted.

Moreover, Poon et al. (2004) already noticed that wrongly imposing asymp-

totic dependence (η = 1), if the returns are actually independent in the

limit, might lead to severe overestimation of extreme linkage measures like

(1). Thus, our approach is more flexible and we avoid the risk of overestima-

tion.

Notice that the Hill statistic (7) still requires the choice of a nuisance

parameter m, i.e., where do we let the tail start? Goldie and Smith (1987)

suggest to select m such as to minimize the asymptotic mean-squared error

(AMSE) of the Hill statistic in (7). Such a minimum should exist because of

the bias-variance trade-off that is characteristic for the Hill estimator. This

idea of balancing the bias and variance has become the cornerstone for most

empirical techniques to determine m. We opted for the Beirlant et al. (1999)

algorithm who proposed to use an exponential regression model (ERM) on

the basis of scaled log-spacings between subsequent extreme order statistics

from a Pareto-type distribution. Running Least Squares regressions on this

exponential regression model allows one to estimate the AMSE for different

m-values and to choose the optimal m that minimizes the AMSE. For more

details on the algorithm we refer to the cited reference.

4 Hypothesis testing

In this section we introduce tests that can be used to assess various hy-

potheses regarding the temporal stability and cross sectional equality of the

considered asset linkage indicators. The first one allows to test for the struc-

tural stability of the two indicators whereas the second test compares linkage

indicators both across asset pairs and across time.

4.1 Time variation

The theory up to now assumed stationarity of tail behavior over time. From

e.g. a strategic asset allocation perspective, however, it is important to know
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whether these interdependencies stay constant over time. As the discussion

of the Ledford and Tawn (1996) approach toward estimating (1) has shown,

the structural (in)stability of the indicators will critically depend on whether

the tail dependence parameter η is constant or not. We therefore study

possible temporal shifts in η with a recently developed structural stability

test for the Hill statistic (7).

Quintos et al. (2001) present a number of tests for identifying a single

unknown break in the estimated tail index α̂. As our estimation approach

allows to map the multivariate dependence problem into a univariate esti-

mation problem, we can choose from them the best test procedures for our

tail dependence parameter η. Balancing the prevention of type I and type II

errors we opt for their recursive test.

Let t denote the endpoint of a sub-sample of size wt < n. The recursive

estimator for the tail dependence parameter η is calculated from (7) for sub-

samples [1; t] ⊂ [1; n]7:

η̂t =
1

mt

mt−1∑

j=0

ln

(
Zt−j,t

Zt−mt,t

)
, (9)

with mt = κt2/3.8

The value of the recursive test statistic equals the supremum of the fol-

lowing series:

Y 2
n (t) =

(
tmt

n

)(
η̂n

η̂t
− 1

)2

. (10)

Expression (10) compares the recursive value of the estimated tail parameter

(7) with its full sample counterpart η̂n. The null hypothesis of interest is

that the tail dependence parameter does not exhibit any temporal changes.

7Subscripts t now indicate that we relaxed the assumption of stationary tail behavior.
All variables with t as subscript now refer to a subsample of the full sample 1, ..., n.

8Full sample values of m are determined by means of the Beirlant et al. (1999) ex-
ponential regression algorithm. In accordance with the minimization criterion of Goldie
and Smith (1987), the theoretical value of m should be related to the sample size in a
nonlinear way, i.e., m = κnγ . Setting γ = 2/3 and having obtained an estimate of m from
the Beirlant algorithm we can solve for the scaling factor κ = m/n2/3. Finally, subsample
values for the recursive test can be determined using the scaling variable κ, i.e., mt = κt2/3

with t the recursive subsample size.
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More specifically, let ηt be the dependence in the left tail of Z.9 The null

hypothesis of constancy then takes the form

H0 : η[nr] = η, ∀r ∈ Rε = [ε; 1 − ε] ⊂ [0; 1] , (11)

where [·] is the integer part operator. Without prior knowledge about the

direction of a break, one is interested in testing the null against the two-sided

alternative hypothesis HA : η[nr] 6= η. For practical reasons the above test is

calculated over compact subsets of [0; 1], i.e., t equals the integer part of nr

for r ∈ Rε = [ε; 1 − ε] and for small ε > 0. Sets like Rε are often used in

the construction of parameter constancy tests (see, e.g., Andrews (1993)).10

In line with Quandt’s (1960) pioneering work on endogenous breakpoint de-

termination in linear time series models, the candidate break date r can be

selected as the maximum value of the test statistic (10), because at this point

in time the constancy hypothesis is most likely to be violated.

Quintos et al. (2001) derived asymptotic critical values for the sup-value

of (10) but these are not applicable in our framework. First, Quintos et al.

(2001) assume that m is selected in such a way that the Hill estimator, sta-

bility test and resulting critical values are not marred by asymptotic bias. In

practice, however, nearly all algorithms (including the Beirlant et al. (1999)

algorithm that we implement) based on Asymptotic Mean Squared Error

(AMSE) minimization induce an asymptotic bias term in the critical values.

Also, the critical values can be further biased by nonlinear dependencies like,

e.g., ARCH effects (volatility clustering).

We decided to determine the critical values by means of a parametric

bootstrap of the recursive test while m and it subsample counterpart mt are

chosen by means of the Beirlant algorithm. In order to take account of the

9In case one uses this for the univariate return series one just has to replace Z by X .
10The restricted choice of r implies that εn ≤ t ≤ (1 − ε)n. When the lower bound

would be violated the recursive estimates might become too unstable and inefficient be-
cause of too small sub-sample sizes. On the other hand, the test will never find a break
for t equal or very close to n, because the test value (10) is close to zero in that latter
case. Thus, for computational efficiency one might stop calculating the tests beyond the
upper bound of (1 − ε)n < n. We search for breaks in the [0.15n; 0.85n] subset of the
total sample, as Andrews does.
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temporal dependence in the data and the possibility of volatility spillovers

from one series to another, we use bivariate GARCH models as the basis for

our parametric bootstrap. In order to keep the amount of parameters to be

estimated as low as possible we chose for a diagonal BEKK(1,1,1) model first

described by Engle and Kroner (1995). In general the BEKK(1,1,K) model

can be defined as:

Ht = C ′C +

K∑

k=1

A′

kǫt−1ǫ
′

t−1Ak +

K∑

k=1

G′

kHt−1Gk, (12)

where C, Ak, and Gk are N × N matrices, C is upper triangular and Ht is

the conditional covariance matrix at time t. Thereby, the full model is being

characterized by the following equation:

Yt = Γ + σt, (13)

where σt ∼ N(0, Ht) and Yt represents the a 2×1 vector of the assets’ returns

at time t and Γ gives the average daily return. After estimating this model

for all possible asset combinations we use the estimated coefficients and saved

residuals for the parametric bootstrap of (10).

Quintos et al. (2001) report a Monte Carlo study that indicates good

small sample power, size and bias properties of the recursive break test. Only

in the case of a decrease of extreme tail dependence under the alternative

hypothesis (η1 > η2) they detect less acceptable power properties. We solve

this problem by executing the recursive test both in a “forward” version

and a “backward” version. The forward version calculates the sub-sample

ηs in calendar time, and the backward version in reverse calendar time. If a

downward break in η occurs and the forward test does not pick it up, then

the backward test corrects for this.

4.2 Cross-sectional variation

We would also like to know whether cross-sectional differences in linkage in-

dicators for various asset pairs are statistically and economically significant.
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The asymptotic normality of η̂ enables some straightforward hypothesis test-

ing.11 However, equality tests based on the full sample values of the tail

dependence parameter η are expected to be distorted if η values exhibit

structural breaks. A test for the cross sectional equality of tail dependence

parameters (null hypothesis) over time seems therefore more appropriate and

can be based on the following statistic:

Qt =
η̂1,t − η̂2,t

s.e. (η̂1,t − η̂2,t)
, (14)

with η̂1,t and η̂2,t standing for recursive estimates of the tail dependence of

asset pairs to be compared. The test statistic should be close to normality

provided t is sufficiently large.12 Accordingly, the asymptotic critical values

are 1.65, 1.96 and 2.58 for the 10%, 5% and 1% significance levels, respec-

tively. In the empirical applications below the asymptotic standard error

in the test’s denominator (14) is estimated using a nonparametric asymp-

totic variance estimator proposed by Drees (2003) that is robust for general

nonlinear temporal dependence in the data.

5 Extreme asset linkage results: Stocks, bonds,

T-bills, gold

In this section we assess the likelihood of extreme return exceedances and co-

exceedances for different asset classes in the U.S. financial markets. The data

consist of 11,327 daily observations for stocks, bonds, and T-bills and 8,480

daily observations for gold. Time series for stocks, bonds and T-bills roughly

span the period 1962-2005. We take the Dow Jones Industrials Index, ten

year constant maturity government bonds, and three month constant matu-

rity US government T-bills, respectively. Gold price series are significantly

shorter and only start after the demise of the Bretton Woods system and the

11Asymptotic normality of the estimator has been established in, for example, Hsing
(1991), Quintos et al. (2001) and Drees (2003).

12One can safely assume that Q comes sufficiently close to normality for empirical sample
sizes as the one used in this paper (see, e.g., Hall (1982), or Embrechts et al. (1997).
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related abolishment of gold-US$ convertibility in the beginning of the 1970s.

A more detailed description of the data is given in the appendix. The series

are plotted in Figure 1.

Figure 1: Returns of stocks, bonds, T-bills, and gold

(a) Stocks (b) Bonds

(c) T-bills (d) Gold

Note: Returns have been calculated as explained in the appendix.

5.1 Univariate results

In this section we analyze the tail behavior of univariate distributions of a

sample of asset returns as a preliminary step for detecting possible extreme

co-exceedances across asset classes. We also analyze the squared return tails

and interpret it as a proxy of “extreme” volatility.

Descriptive statistics for all daily asset returns and squared returns are

reported in Table 1. Only stock returns clearly exhibit negative skewness.
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Stocks and gold show the largest spread in their return distribution, which

might be concluded from the maximum, minimum, and standard deviation

measures. All series have excess kurtosis which indicates deviations from

normality (fat tails).

Table 1: Descriptive statistics for daily US asset returns
Panel A: Returns
Asset Mean Median Max Min Std.Dev. Skewness Kurtosis Obs.
Stocks 0.0237 0.0000 9.67 -25.63 0.9578 -1.73 53.33 11327
Bonds 0.0261 0.0227 4.63 -3.59 0.4285 0.18 10.03 11327
T-bills 0.0213 0.0186 0.32 -0.23 0.0244 1.49 21.81 11327
Gold 0.0221 0.0000 12.50 -14.20 1.3016 0.30 16.02 8480

Panel B: Squared Returns
Asset Mean Median Max Min Std.Dev. Skewness Kurtosis Obs.
Stocks 0.00918 0.002260 6.570 0.0 0.06630 86.44 8497.66 11327
Bonds 0.00184 0.000290 0.210 0.0 0.00550 13.06 325.76 11327
T-bills 0.00001 0.000004 0.001 0.0 0.00003 12.17 240.79 11327
Gold 0.01690 0.002460 2.010 0.0 0.06570 13.40 268.82 8480

Note: The data are daily from the beginning of 1962 until the end of 2005. The observations for gold
start in 1973.

5.1.1 Univariate extreme value analysis

Table 2 summarizes the magnitude and timing of the two most extreme in-

sample events together with the tail index and the percentile estimates based

on equations (6) and (7), respectively. Panel A contains the results for the

returns whereas the squared return results are reported in Panel B. Within

Panel A we further distinguish between the left and right tail of the uncon-

ditional return distributions in order to account for possible asymmetries.

Panel A shows that extreme losses and gains for stocks and gold are generally

much higher than for bonds and T-bills. Even excluding the most extreme

stock returns in October 1987 would not change this result. Moreover, for

stocks and gold the historical extremes point toward tail asymmetries. The

extreme negative returns are much larger in absolute value that the respec-

tive positive returns. For bonds and T-bills this is not so clear cut and tends

to be the other way around.
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Table 2: Minima, maxima, tail index, and univariate tail estimates for daily US asset returns
Panel A: Returns

Left Tail Right Tail
percentile percentile

Asset Min 1 (%) Min 2 (%) opt. m α̂ 1

10.000
1

1.000 Max 1 (%) Max 2 (%) opt. m α̂ 1

10.000
1

1.000
Stocks -25.63 -8.38 287 3.42 -9.24 -4.71 9.67 6.15 189 3.69 8.76 4.69

10/19/87 10/26/87 10/21/87 07/24/02
Bonds -3.59 -2.74 158 3.84 -4.01 -2.20 4.63 3.90 145 3.68 4.37 2.34

02/19/80 04/04/94 10/20/87 04/16/80
T-bills -0.23 -0.20 51 2.64 -0.27 -0.11 0.32 0.29 781 2.64 0.61 0.25

05/04/81 10/09/79 12/19/80 01/05/81
Gold -14.20 -12.89 103 3.12 -16.22 -7.76 12.50 11.21 191 2.73 20.92 9.00

01/22/80 02/28/83 01/03/80 11/03/76

Panel B: Squared Returns Panel C: Test for tail index equality
percentile

Asset Max 1 (%) Max 2 (%) opt. m α̂ 1

10.000
1

1.000 Test st. P-value in %
Stocks 6.57 0.93 579 1.74 1.26 0.34 -0.27 39.36

10/19/87 10/21/87
Bonds 0.2143 0.1525 92 2.42 0.1621 0.063 0.10 45.84

10/20/87 04/16/80
T-bills 0.0010 0.0008 56 2.67 0.0009 0.0004 -0.00 50.07

12/19/80 01/05/81
Gold 2.0156 1.66 60 2.02 2.72 0.87 0.31 37.81

01/22/80 02/28/83

Note: α̂ is the reciprocal of the Hill estimator in equation (7). The columns “percentiles” are the percentiles with marginal probabilities of p = 1/10.000
and p = 1/1.000, respectively. Max and Min 1 and 2 are the two most extreme positive and negative return observations in the sample, respectively. Panel
A shows estimation results for the left and right tail. Panel B those for the squared returns as a proxy for volatility. Panel C gives test statistics and
p-values for the test for equality of the left and right tail indexes as shown in (14).
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A somewhat different picture emerges when we consider the estimated

tail indices α̂. Stock returns seem to be asymmetric but the left tail index

α̂ = 3.42 only slightly falls below its right tail counterpart (α̂ = 3.69). Bond

and gold tail behavior suggest a fatter right tail. T-bills seem to exhibit

symmetric tails. The left-tail index estimates are highest in the case of bond

returns. Otherwise stated, long-term government-bond investments exhibit

more limited downside risk than stocks. These results seem to confirm earlier

research by e.g. Longin and Solnik (2001).

In Panel B we show the results for squared returns. Squared returns can

be interpreted as a measure for assets’ volatility. Engle (1982) pointed out

that asset return volatility is likely to change over time but in a persistent

manner. He developed a test for the so-called ARCH effect by choosing

squared returns as a volatility proxy and regressing squared returns on lagged

squared returns. It has been theoretically shown that there is a relation

between volatility clustering and fat tails, see Koedijk and Schafgans (1973).

Moreover, it can be shown that the squared returns should also be heavy

tailed and that the probability mass in the tails of the return squares is even

higher. Panel B reveals that the estimated tail indices for the squared returns

are below the Panel A tail indices indeed.

The table also provide some casual evidence for cross asset linkages during

crisis periods. The calendar dates of the extreme events, as recorded below

the minima and maxima, suggest the presence of a ‘flight-to-quality’effect

from stocks to bonds after Black-Monday. Stocks crashed on 10/19/1987

and bonds boomed on 10/20/1987. Notice also that the US stock market

showed a strong technical upward correction on 10/21/1987 partly offsetting

the exaggerated slump from two days before. Another interesting observation

is that from the twelve most extreme events in the case of bonds, T-bills, and

gold eight fall in the years between 1979 and 1981 which probably reflects

that extreme volatility was at its highest around the second oil crisis. Similar

results hold for the squared returns (volatilities). The most volatile period

for stocks and bonds was in 1987. As for bonds, T-bills, and gold four out of

the six most volatile days were in the period between 1979 and 1981.

The economic issue of interest, both for the general assessment of finan-
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cial market stability and for financial investors’ and institutions’ risk man-

agement, is the likelihood and size of extreme returns as reflected by the tail

probabilities and corresponding percentiles. The percentiles reflect possible

extreme events or scenarios whose expected waiting time to occur equals the

inverse of the corresponding marginal excess probabilities p. For example,

a daily meltdown in the Dow Jones Industrial Average of -4.70% or more is

expected to happen only once every 1,000 days or 3.9 years. So, the reported

values can be interpreted as value-at-risk (VaR) estimates for given marginal

significance levels p.

The question remains whether the observed differences in tail index point

estimates are statistically significant across tails. In order to test the null

hypothesis of equal tail indices, we report corresponding test statistics for the

tail asymmetry test and p-values (Panel C of the same Table 2). Additionally

we show the recursive test version over the sample in Figure 2 for all four

assets. Both the (full sample) test statistics in the table and the recursive

statistics in the figure show that none of the assets exhibits significant tail

asymmetry.

5.1.2 Stability of EVT estimates

In order to check for structural breaks in the tail behavior of the unconditional

return distribution we utilize a test developed by Quintos et al. (2001) as

described in Section 4. Results of the test are summarized in Table 3. The

table is again split into left and right tail results (except for the squared

returns). In the most right part of the table we report the results for our

volatility measure. Panel A states the results for the recursive test which

checks for an increase in the thickness of the respective tail so a decrease in the

tail index α. In Panel B one can see the results for the reverse recursive test

testing for the opposite. For every asset and tail13 we report the test statistic,

the bootstrap simulated critical value and the date of the break if the test is

significant at least at the 5% level. Asterisks indicate the significance level

of the test statistic. The only cases where the null hypothesis of tail index

13In the case of squared returns obviously only the right tail is being considered.

19



Figure 2: Recursive cross-section test: Univariate

(a) Stocks (b) Bonds

(c) T-bills (d) Gold

Note: Test statistics have been calculated using Eq. 14 in a recursive way. Horizontal lines
indicate the 2.5% and 97.5% significance levels.
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stability can be rejected at the 1% level involve the right tail of bonds and T-

bills and the squared returns of bonds. Other identified breaks are significant

at the 5% but not at the 1% level. Therefore, evidence for a structural break

in the cases of the left tail for stocks and T-bills, the right tail for gold and

the squared returns for T-bills and gold is much less convincing. In the case

of bonds and T-bills one can clearly see that there appears to be a break in

both series in the beginning of the 80s in the recursive test for the right tail.

Later, in the mid and end 80s both right tails of the return distributions

are detected to show again a break but now in the reverse recursive test.

An obvious interpretation could be that Paul Volcker’s structural change in

the Fed’s monetary policy and the second oil crisis had a major impact on

the return behavior of bonds and T-bills but much less on stocks and gold.

Volcker’s shift from targeting the interest rates to rather limiting the growth

rate of money supply had a strong influence on obligations’ returns but also

on their volatility. Thus, the turbulent times from the beginning of the 80s

until black Monday in October 1987 are more strongly reflected in the return

behavior of T-bills and bonds than in stocks and gold. Already a visual

inspection of the return series in Figure 1 supports this result. As one can

see, in the case of bonds the period starting in the early 80s until the end of

the 80s shows stronger variability than the rest of the sample. For T-bills this

unusual period is shorter, which is also reflected in the statistical test results.

Somewhat surprisingly the test results only identify significant breaks for the

right but not the left tail of the bonds and T-bills return distributions. One

might attribute this to a relatively low power of the stability test.
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Table 3: Univariate results for stability test for daily US asset returns and squared returns
Panel A: Recursive Test

Left Tail Right Tail Squared Returns
Asset Test stat. BT cr.val. Break date Test stat. BT cr.val. Break date Test stat. BT cr.val. Break date
Stocks 6.12* 4.59 04/14/1986 1.39 3.58 - 1.74 5.15 -
Bonds 2.44 2.93 - 4.79** 2.11 02/18/81 4.08** 2.14 06/05/80
T-bills 1.20 2.24 - 24.83** 19.36 09/22/82 2.93* 2.87 05/19/80
Gold 0.53 3.68 - 0.27 2.12 - 0.21 2.77 -

Panel B: Reverse Recursive Test
Left Tail Right Tail Squared Returns

Asset Test stat. BT cr.val. Break date Test stat. BT cr.val. Break date Test stat. BT cr.val. Break date
Stocks 1.42 3.90 - 1.49 3.90 - 1.89 5.13 -
Bonds 1.63 3.02 - 3.43** 1.93 06/05/89 1.17 2.12 -
T-bills 3.43* 2.62 09/29/80 102.40** 19.36 07/08/85 4.18* 2.79 01/27/82
Gold 1.92 4.83 - 2.87* 2.35 06/14/00 3.24* 2.33 12/27/79

Note: Test statistics are based on equation (10). The bootstrap (BT) critical values were simulated as described in section 4 in the text. * and **
indicate rejection of the null hypothesis of tail index constancy at the 5% and 1% significance levels, respectively.
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5.2 Bivariate results

In this section we examine the propensity for co-exceedances across US asset

classes. We start with standard correlation analysis followed by an identi-

fication of asset linkages during crisis periods using bivariate extreme value

analysis. The extreme linkages allow us to assess the potential for cross asset

substitution effects during market stress (the likelihood of flight to quality,

flight to liquidity etc.).

5.2.1 Correlation analysis

The results of the correlation analysis are summarized in Figures 3 to Fig-

ure 8. For each of the six possible bivariate asset combinations we calculate

rolling and recursive correlations. The rolling correlation is a yearly corre-

lation in the sense that it is calculated using a time window of 260 trading

days, which corresponds to one trading year. The recursive measure gives

the correlation between the returns from the beginning of the sample period

until point t. The correlation plots can be used to get some preliminary ev-

idence for possible substitution effects between asset classes during periods

of market stress.

Correlations between stocks and bonds (Figure 3) or stocks and T-bills

(Figure 4) are slightly more often positive than negative which does not seem

to provide much evidence for substitution effects like flight to quality or flight

to liquidity. However, the rolling correlations become negative around some

crisis periods. For example, stock-bond (rolling) correlations turn negative

after the Asian crisis and the negativity aggravates after the dotcom bubble

burst. Stock-T-bill (rolling) correlations have similar signs around the same

periods and also turn negative in the aftermath of the 1987 stock market

crash. Thus, the rolling correlations provide some evidence of substitution

from stocks into bonds or T-bills during crisis periods.

Correlations between stocks, bonds and gold more strongly point towards

gold as a safe haven during times of market stress. First, the stock-gold

(Figure 5) and bond-gold (Figure 7) rolling correlations tend to be more

often negative than positive (both over crisis and noncrisis periods). Second,
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Figure 3: Stocks and bonds: Rolling and recursive correlation

(a) Rolling (b) Recursive

Note: Rolling correlations have been calculated with a window length of 260 trading days.

Figure 4: Stocks and T-bills: Rolling and recursive correlation

(a) Rolling (b) Recursive

Note: Rolling correlations have been calculated with a window length of 260 trading days.
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Figure 5: Stocks and gold: Rolling and recursive correlation

(a) Rolling (b) Recursive

Note: Rolling correlations have been calculated with a window length of 260 trading days.

Figure 6: Bonds and T-bills: Rolling and recursive correlation

(a) Rolling (b) Recursive

Note: Rolling correlations have been calculated with a window length of 260 trading days.
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Figure 7: Bonds and gold: Rolling and recursive correlation

(a) Rolling (b) Recursive

Note: Rolling correlations have been calculated with a window length of 260 trading days.

Figure 8: T-bills and gold: Rolling and recursive correlation

(a) Rolling (b) Recursive

Note: Rolling correlations have been calculated with a window length of 260 trading days.
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the negative correlations seem particularly present during the oil shocks in

the 70s, the stock market crash of 1987, the 1997 Asian crisis and the 2000-

2001 dotcom bubble burst.

Unsurprisingly, the correlations between bond and T-bill returns (Figure

6) are positive due to their linkage via the term structure. What the plots

show is that this linkage can become weaker or stronger over time but it

never becomes negative.

Finally, the correlations between T-bills and gold are not indicative of

any substitution effects. This should not surprise given that both assets are

considered as interesting investment objects in times of distress.

There are numerous problems, however, with the use of correlations as

dependence measures. First, they typically measure linear dependencies

whereas it is often suggested that linkages during stress periods might be

nonlinear phenomena. Otherwise stated, correlation figures not necessarily

give a good indication for co-dependence of the extremes of the marginal

return distributions. We therefore decided to apply a alternative framework

that only exploits information for the bivariate tail.

5.2.2 Bivariate extreme value analysis

Table 4 reports estimates for the conditional probability measure (1) and

the conditional expectation measure (2) for all possible asset pairs in our

sample assuming stationarity. The extreme measures are conditioned on

different marginal excess probabilities p allowing us to evaluate the extreme

dependence measures for different crisis levels.14 Bivariate measures also

allow us to compare the propensity towards co-crashes across assets with

that towards substituting for a potentially safer asset (flight to quality or

flight to liquidity effects).

The table reports the values for the tail index calculated in Equation (7),

optimal amount of extremes m, conditional probabilities and expected values

for occurrence of the mentioned co-exceedances corresponding to equation (1)

and (2), respectively.15

14The lower the value of p the further we look into the bivariate tail.
15The optimal m is determined by means of the Beirlant et al. (1999) algorithm.
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Interpretation of the conditional probabilities is straightforward. For ex-

ample the entry 2.33 for stock-bond co-crashes means that there is a 2.33%

chance of a sharp joint drop in stock and bond values. “Sharp” in this con-

text means that the crash levels correspond to 0.1% VaR for stock and bond

tails. In Table 2 we saw that the univariate percentiles, on which we condi-

tion for calculating the stock-bond cocrash probability, correspond to -4.71%

for stocks and -2.20% for bonds. The reader might be tempted to interpret

the potential for stock and bond co-crashes as small. However, if the ex-

treme events were independent, we would expect a conditional probability of

around 0.1%. So, conditioning on a crash in one market, increases the prob-

ability that the other one also collapses by a factor 23. The co-exceedance

probabilities in Table 4 all exceed the benchmark level of 0.1% implying that

there is significant tail dependence. Stated otherwise, the probability of hav-

ing an extreme gain or loss in one asset category suddenly becomes much

higher once another “domino stone” has fallen.

By further inspecting the table one can see that on average gold is less

linked to the other assets during extreme events. The conditional probabil-

ities are on average lower than in the other asset co-event cases. As such,

gold looks as a reasonable hedge against all other asset classes considered.

When we have a look at the estimates for stocks and bonds, a co-crash

is more likely than flight to quality from stocks into bonds. For stocks and

T-bills we have lower estimates for the conditional probabilities and expected

values, with flight to liquidity being close to the independence case. As for

stock-T-bill co-crashes the probabilities are higher but still lower than for

stock-bond co-crashes. So, capital leaving the stock market does not seem

to cause a run on T-bills, i.e., the flight to liquidity hypothesis. Bonds and

T-bills strongly co-move in the lower tails.

The bivariate results show that multivariate return distributions are not

symmetric.

Notice that extreme event linkages can strongly differ from traditional

dependence measures like correlation which is based on the full distributional

support. Otherwise stated, conclusions drawn from a simple full sample

correlation or even a rolling correlation analysis can be misleading for the
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Table 4: Bivariate results: Full sample
Panel A1: Stocks and Bonds, Stocks and T-bills, Stocks and Gold

Stocks and Bonds Stocks and T-bills Stocks and Gold
Co-crash FtQ S/B Co-crash FtL S/TB Co-crash FtQ S/G

Tail Index 1.45 1.622 1.52 1.84 1.82 1.79
Optimal m 290 404 397 424 371 437
Con.Pro. in %
p = 0.1 2.33 0.68 1.54 0.23 0.29 0.37
p = 0.05 1.68 0.44 1.07 0.13 0.16 0.22
p = 0.01 0.79 0.16 0.47 0.03 0.04 0.06

E-Values
p = 0.1 1.0118 1.0034 1.0082 1.0011 1.0014 1.0019
p = 0.05 1.0085 1.0022 1.0051 1.0009 1.0008 1.0011
p = 0.01 1.004 1.0008 1.0022 1.0004 1.0002 1.0003

Panel A2: Bonds and T-bills, Bonds and Gold, Gold and T-bills

Bonds and T-bills Bonds and Gold Gold and T-bills
Co-crash FtL B/TB Co-crash FtQ B/G Co-crash FtL G/TB

Tail Index 1.18 1.97 1.58 1.33 1.59 1.48
Optimal m 397 477 296 121 420 499
Con.Pro. in %
p = 0.1 14.61 0.07 0.89 2.89 0.92 2.08
p = 0.05 12.83 0.03 0.61 2.31 0.61 1.51
p = 0.01 9.60 0.00 0.24 1.35 0.23 0.72

E-Values
p = 0.1 1.0792 1.0003 1.0045 1.0146 1.0046 1.0105
p = 0.05 1.0691 1.0002 1.0031 1.0116 1.0031 1.0075
p = 0.01 1.0523 1.0000 1.0012 1.0068 1.0012 1.0035

Note: FtQ S/B stands for “flight to quality” from stocks into bonds, for example, as defined in the text.
So, S stands for stocks, B for bonds, TB for T-bills and G for gold. E-values stands for the expected
amount of co-events conditioned on an extreme percentile given by p.
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occurrence probability of extreme co-events. In order to show this, we can

again refer to the correlation Figures 3 to 8. The full sample correlation

is equal to the last observation of the recursive correlation. In the case of

bonds and T-bills the full sample correlation is equal to 43.02%. One can

interpret such a correlation as a strong linkage, but this can be rather illusory.

If one uses the bivariate normal distribution in order to asses the extreme

bonds-T-bills market linkage applying the sample variances and correlation,

one would find a conditional co-crash probability of around 0.000125% for

the marginal distribution percentile p = 1/1000. Using the more accurate

EVT estimation of tail behavior we find for the same marginal percentile a

conditional co-crash probability of 14.61%. Hence, correlations together with

the multivariate normality assumption strongly understate extreme financial

market linkages and thereby should not be used for extreme dependence

estimation.

5.2.3 Stability of EVT estimates

Here we relax the stationarity assumption of the dependency measures pre-

sented in the section before. Results are summarized in Table 5. Panel

A1 and B1 show the results for the recursive test (alternative hypothesis

= increase in tail dependence) and Panel A2 and B2 give the results for

the backward recursive test (alternative hypothesis = decrease in tail depen-

dence).

In Table 5 a clear picture emerges. The recursive test tends to find breaks

in the early part of the sample ranging from 1968 until 1980 depending on

the asset combination. The only exceptions are the asset combinations stocks

with gold and gold with T-bills. A likely explanation is that the gold time

series only starts in 1973 so that the break testing procedure only starts in

the year 1976. But at that point the break might already have occurred such

that the test is unable to pick it up.

Another interesting observation is that in all but one asset combination

(stocks and bonds) we find significant breaks for the reverse recursive test all

happening after the respective breakpoints for the recursive test. The breaks
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Table 5: Bivariate results: Stability test
Panel A1: Recursive test

Stocks and Bonds Stocks and T-bills Stocks and Gold
Co-crash FtQ S/B Co-crash FtL S/TB Co-crash FtQ S/G

1969 22.3** 28.4**
09/25 06/10

1973 25.35**
01/26

1979 46.0**
02/22

Panel A2: Backward recursive test
Stocks and Bonds Stocks and T-bills Stocks and Gold

Co-crash FtQ S/B Co-crash FtL S/TB Co-crash FtQ S/G
1983 8.5*

03/11
1988 13.3** 10.0**

05/24/88 02/04/88
1989 42.7**

04/13/89

Panel B1: Recursive test
Bonds and T-bills Bonds and Gold Gold and T-bills

Co-crash FtL B/TB Co-crash FtQ B/G Co-crash FtL G/TB
1968 38.97**

11/29
1973 55.5**

12/05
1979 8.8**

09/28
1980 17.1**

01/16

Panel B2: Backward recursive test
Bonds and T-bills Bonds and Gold Gold and T-bills

Co-crash FtL B/TB Co-crash FtQ B/G Co-crash FtL G/TB
1983 54.6** 50.2**

10/12 11/24
1986 42.9**

10/15
1987 46.0**

12/29
1991 45.8** 408.8**

06/07 05/30
Note: FtQ S/B stands for “flight to quality” from stocks into bonds, for example, as defined
in the text. So, S stands for stocks, B for bonds, TB for T-bills and G for gold. * and **
indicate rejection of the null hypothesis of tail index constancy at the 5% and 1% significance
levels, respectively.
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in the reverse recursive procedure range from 1983 until 1991 and most of

them cluster between 1983 and 1988. So, considered market comovements

tend to become stronger in the seventies and again weaker in the eighties.

In most of the cases where the recursive test detects a break, the tail index

becomes smaller either shortly before the first oil shock in the beginning of

the 70s or before the second oil shock and the beginning of Volcker’s term

at the end of the 70s. In sum, the economically and politically turbulent

times surrounding the oil shocks, the Volcker presidency of the FED and

extreme market volatility around Black Monday in October 1987 seem to

coincide with breaks in the degree of tail dependence. Moreover, most of

the asset co-event cases show a tail index behavior that might be described

as a U-shape or mean-reverting. As such, the full sample results in Table 4

represent an average across time. Nevertheless, those calculated conditional

probabilities provide a good approximation of the true co-dependencies of

assets because of the observed mean reverting behavior of the tail indices. A

further interesting step could be to split the sample at the observed break

points and estimate co-dependencies within every sub-sample. A problem

of such an approach, though, constitutes the exact location of the break in

the bivariate distributions, because the breaks across co-boom, co-crash, and

flight to quality co-events do not always occur at the same point in time. In

order to account for this, some kind of common break point estimation is

needed but this is beyond the aim of this paper.

Table 6 shows that the results for the squared returns are pretty similar to

those of the ordinary returns. Stocks and bonds and especially bonds and T-

bills show the highest conditional probability of common extreme volatilities.

In the case of stocks and bonds, for example, we estimate a conditional

probability of 5.64% that bonds show a volatility among their 0.1% largest

ones, given that also stocks’ volatility was among their 0.1% largest daily

observed volatilities. This constitutes a probability increase by a factor 56

compared to the independence case. For the asset combination bonds and T-

bills the same estimated conditional probability even increases with a factor

232. For the other four possible bivariate asset combinations, estimated

conditional probabilities for pairs of squared returns are much lower also
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supporting the results obtained before.

Table 6: Bivariate results: Squared returns
S & B S & TB S & G B & TB B & G G & TB

Tail Index 1.29 1.59 1.74 1.04 1.47 1.65
Optimal m 330 498 462 443 426 499
Con.Pro. in %
p = 0.1 5.64 1.10 0.5 23.20 2.16 2.99
p = 0.05 4.61 0.73 0.31 22.52 1.56 2.19
p = 0.01 2.86 0.28 0.11 21.01 0.74 1.05

E-Values
p = 0.1 1.029 1.006 1.003 1.131 1.011 1.015
p = 0.05 1.024 1.004 1.002 1.127 1.008 1.011
p = 0.01 1.015 1.001 1.001 1.117 1.004 1.005

Note: S stands for stocks, B for bonds, TB for T-bills and G for gold. E-values stands
for the expected amount of co-events conditioned on an extreme percentile given by p.

The structural break point analysis for the squared returns in Table 7

is generally in line with the results of the ordinary returns. Probabilities of

common high volatility tend to increase either before the first or the second

oil crises and decrease again at the end of the 80s and the beginning of

the 90s. So, on average volatilities’ tail indexes tend to co-break with the

ordinary returns.

A little word of caution might be appropriate here. In the transformation

to the Pareto distribution we implicitly assume stationarity of the univari-

ate return series’ tail behavior. We know from Section 5.1.2 that this is not

always the case. Nevertheless, we believe that following our approach we

are able to distinguish the cases of having only a break in the marginal re-

turn distributions or having a break in dependence structure of the marginal

distributions. This can also be confirmed by comparing the univariate and

bivariate break dates, which do not coincide. If our approach was not able to

distinguish both cases break dates would have to coincide. Future research

on the theoretical foundations would be very interesting but goes beyond the

scope of this paper.

5.2.4 Cross-sectional results

In this subsection we apply the same cross section test for comparing bivari-

ate tail indices across assets as we did for comparison of the univariate indices
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Table 7: Bivariate results: Stability test squared returns
Panel A1: Recursive test

S & B S & TB S & B & TB B & G G & TB
1969 22.93 41.84

10/08 02/19
1974 76.76

07/19
1978 20.89

08/10

Panel A2: Backward recursive test
S & B S & TB S & B & TB B & G G & TB

1988 11.84 76.52
02/04 02/01

1989 126.12
06/26

1990 28.54
10/12

1991 455.39
02/28

Note: S stands for stocks, B for bonds, TB for T-bills and G for gold. All
breaks are found to be significant at a 5% significance level.

in Table 2 and in Figure 2. Here, we are interested if the co-exceedance tail

indices (tail dependence parameters) differ across asset combinations and be-

tween co-crashes and/or flight to quality/liquidity. Smaller tail indices here

mean that the corresponding co-extreme events are more likely to occur than

one with a bigger tail index. In Figures 9 to 15 we show the recursive test

statistics as in Equation (14). Figures 9 to 11 show all co-crash combina-

tions, Figures 12 to 14 are for all flight to quality/liquidity combinations and

Figure 15 gives the test for all matched cases of co-crashes and flight to qual-

ity/liquidity. The figures also show the upper and lower rejection regions at

-1.96 and 1.96 corresponding the normal distribution 2.5% levels each. Neg-

ative test statistics indicate a smaller tail index for the first pair of assets

compared to the second pair. Two examples make the logic clear. In Figure

9 (a) we have the case of the co-crash combination of stocks and bonds with

stocks and T-bills. So, we actually compare two bivariate time series’ tail

indices. In this specific case there does not appear any significant difference

between both tail indices through the full sample period. As a second ex-
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ample serves Figure 15 (a) which corresponds to the case where we compare

the α of the bivariate series where bonds and T-bills crash together, against

the case where we speak of flight to liquidity from bonds to T-bills. Here

we see that for most of the time series the tail index for bonds and T-bills

co-crashes is significantly smaller (positive test statistics) than the tail index

for the flight to liquidity case from bonds into T-bills.

We can draw a couple of interesting conclusions from those figures. First,

there are only a few significant differences between bivariate tail indices over

the full sample period and all asset combinations. This confirms the general

findings in the EVT literature that tail indices usually cannot be found to

differ significantly.16 Second, those cases where we do clearly find significant

results always include the asset pair bonds and T-bills. Actually, this was

to be expected. The pair bonds and T-bills shows clearly the strongest

comoving behavior. Along with this, the probability that bonds crash and

T-bills boom (flight to liquidity) at the same time is very unlikely. So, asset

combinations including bonds and T-bills will have the tendency towards

significant differences in the tail indices, which is what we find. Third, the

cases involving bonds and T-bills also seem to be the most volatile in terms

of movements of the test statistic. Although results have to be interpreted

with caution, a possible explanation is that the bonds and T-bills returns are

heavily influenced by changes in the monetary regime. Changes in the Fed’s

policy will directly move those securities’ prices and thereby possibly lead to

more changes in their comovement tail indices.

As one good example can serve Figure 10 (a) where we compare the tail

indices for co-crashes between stocks and T-bills and bonds and T-bills. Here

we see in the 1980s a period with a significantly smaller tail index for bonds

and T-bills co-crashes than for stocks and T-bills co-crashes. Again this

might be explained by the fact that Paul Volcker was the Fed’s chairman

and especially bonds markets were characterized by high volatility. In the

year 1987 there is a strong change toward insignificance, probably caused by

the Black Monday stock market crash and following volatility clearly having

16This confirms earlier findings like in Koedijk and Schafgans (1990), Jansen and de Vries
(1991) Quintos et al. (2001).
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Figure 9: Recursive cross-section test: Co-crashes I

(a) SB/STB (b) SB/SG

(c) SB/BTB (d) SB/BG

(e) SB/GTB (f) STB/SG

Note: Test statistics have been calculated using Eq. 14 in a recursive way.
Horizontal lines indicate the 2.5% and 97.5% significance levels. The abbrevi-
ations are: S stands for stocks, B for bonds, TB for T-bills and G for gold.
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Figure 10: Recursive cross-section test: Co-crashes II

(a) STB/BTB (b) STB/BG

(c) STB/GTB (d) SG/BTB

(e) SG/BG (f) SG/GTB

Note: Test statistics have been calculated using Eq. 14 in a recursive way.
Horizontal lines indicate the 2.5% and 97.5% significance levels. The abbrevi-
ations are: S stands for stocks, B for bonds, TB for T-bills and G for gold.
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Figure 11: Recursive cross-section test: Co-crashes III

(a) BTB/BG (b) BTB/GTB

(c) BG/GTB

Note: Test statistics have been calculated using Eq. 14 in a recursive way.
Horizontal lines indicate the 2.5% and 97.5% significance levels. The abbrevi-
ations are: S stands for stocks, B for bonds, TB for T-bills and G for gold.
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Figure 12: Recursive cross-section test: Flight to quality and liquidity I

(a) SB/STB (b) SB/SG

(c) SB/BTB (d) SB/BG

(e) SB/GTB (f) SG/STB

Note: Test statistics have been calculated using Eq. 14 in a recursive way.
Horizontal lines indicate the 2.5% and 97.5% significance levels. The abbrevi-
ations are: S stands for stocks, B for bonds, TB for T-bills and G for gold.

39



Figure 13: Recursive cross-section test: Flight to quality and liquidity II

(a) SG/BTB (b) SG/BG

(c) SG/GTB (d) STB/BTB

(e) STB/BG (f) STB/GTB

Note: Test statistics have been calculated using Eq. 14 in a recursive way.
Horizontal lines indicate the 2.5% and 97.5% significance levels. The abbrevi-
ations are: S stands for stocks, B for bonds, TB for T-bills and G for gold.
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Figure 14: Recursive cross-section test: Flight to quality and liquidity III

(a) BTB/BG (b) BTB/GTB

(c) BG/GTB

Note: Test statistics have been calculated using Eq. 14 in a recursive way.
Horizontal lines indicate the 2.5% and 97.5% significance levels. The abbrevi-
ations are: S stands for stocks, B for bonds, TB for T-bills and G for gold.
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Figure 15: Recursive cross-section test: Co-crashes and flight to qual-
ity/liquidity

(a) SB/SB (b) STB/STB

(c) SG/SG (d) BTB/BTB

(e) BG/BG (f) GTB/GTB

Note: Test statistics have been calculated using Eq. 14 in a recursive way.
Horizontal lines indicate the 2.5% and 97.5% significance levels. The abbrevi-
ations are: S stands for stocks, B for bonds, TB for T-bills and G for gold.
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an impact on the lower tail index of stocks in that period.

6 Conclusions

In this paper we study the linkages between four different US asset classes

(US stocks, government bonds, T-bills, and gold) in times of market turbu-

lence. The linkages were characterized by their asymptotic tail dependence.

Studying the likelihood of co-exceedances across asset classes is interesting

for investors who have to choose their investment portfolios according to their

preferred risk-return combinations. On the other hand, policy makers and

supervisory bodies are interested in these linkages because they potentially

influence the level of systemic risk in financial markets.

We use a non-parametric multivariate measure to identify the tail depen-

dence of the marginal return distributions and derive estimates for the ex-

pected conditional probabilities of return co-exceedances. Such an approach

does not rely on a particular probability law for the marginal return distri-

butions and thereby has advantages over the usual conditional correlation

measures because wrong parametric assumptions can easily distort extreme-

spillover probabilities. We also tested for stability of these linkage measures

through time in order to see if there are any periods with stronger or weaker

spillover effects.

A preliminary (rolling and recursive) correlation analysis showed similar

positive correlations between stocks and bonds as well as stocks and T-bills

over time. During periods of market turbulence (oil crises in the 1970s and

1980s, the stock market crash in October 1987 and the terrorist attacks in

New York in 2001), correlations typically dropped to below-average values.

As expected, T-bills and bonds show a very strong correlation (but decreasing

since the second oil shock). Gold turns out to be only mildly correlated with

the rest of the assets in the sample set. These time varying correlations

already give a first indication that there are possible flight-to-quality and

flight-to-liquidity effects (especially during periods of financial uncertainty).

Structural break tests applied on the univariate and multivariate extreme

value measures show very similar results. Both cases reveal breaks from thin
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to fatter tails either before the first or the second oil shock. Shifts back

from fat to thinner tails occur during the 1980s. This indicates that asset re-

turns (especially stocks, bonds, and T-bills) showed an increased probability

of co-exceedances in the period between the mid 70s and mid 80s. For the

squared returns, results are rather similar. Stocks and bonds, and especially

bonds and T-bills show the highest conditional probability of common ex-

treme volatilities. Again, breaks seem to occur around economically and po-

litically turbulent times like the two oil shocks, the Volcker FED-presidency,

or the stock market crash of 1987.
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7 Appendix

We choose the Dow Jones Industrial Average as stock price index and ex-

tracted it from Datastream, Inc. 10-year government bond and 3-month

T-bill returns were calculated from the corresponding yield to maturity data

from the Board of Governors of the Federal Reserve Board.17 We calculated

returns from these yield data according to the methods used, for example,

in Campbell et al. (1997, Chapter 10). Gold prices were extracted from

www.usagold.com. The stock data are Financial Times Standard & Poors

world price indices, whereas the bond data correspond to ten year (“all-

traded”) government bonds. In order to arrive at the returns for stocks and

gold we calculated the first differences of the log of their prices levels. Data

on stocks, T-bills, and bonds start on February 2, 1962 whereas gold starts

on January 2, 1973. Last observations in the sample are on July 5, 2005.

We did not include corporate bond indices, because of our particular interest

in the flight to quality phenomenon. The stock and bond returns are not

compensated for dividends and coupon payments, respectively.

17http:\\www.federalreserve.gov.
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