CIRPÉE

Centre interuniversitaire sur le risque, les politiques économiques et l'emploi

Cahier de recherche/Working Paper 03-36

Assessing the Impact of Non-Response on the Treatment Effect in the Canadian Self-Sufficiency Experiment

Thierry Kamionka
Guy Lacroix

Octobre/October 2003

[^0]The authors gratefully acknowledge financial support from le Fonds de recherche sur la société et la culture du Québec (FRSCQ), The Social Research Demonstration Corporation (SRDC), and two anonymous referees for excellent comments.

Abstract

Résumé: Au Canada, une politique publique visant à aider les parents isolés à l'aide sociale à s'insérer sur le marché du travail a été mise en place sur une base expérimentale Ainsi, plus de 4134 chefs de familles monoparentales qui étaient entrés à l'aide sociale entre janvier 1994 et mars 1995 ont été échantillonnés aléatoirement pour faire partie du projet d'Autosuffisance (PAS). Seulement 3315 d'entre eux ont accepté de participer à cette expérimentation alors qu'ils avaient, dans le cadre de l'expérience, 50% de chance de disposer d'un supplément de revenu relativement important mais limité dans le temps. Les personnes qui ont fait partie du groupe de traitement ont pu recevoir ce supplément dès lors où elles ont quitté l'aide sociale pour occuper un emploi à temps plein. Dans cet article, nous cherchons à déterminer si un refus de participer à cette expérience de l'ordre de 20\% est susceptible d'avoir biaisé l'estimation de l'impact du supplément de revenu. Nous comparons l'effet estimé du traitement en utilisant l'échantillon expérimental seulement avec celui obtenu en utilisant des données additionnelles sur les individus qui ne prennent pas part à l'expérience. Nous écrivons la fonction de vraisemblance et obtenons une estimation de l'impact de ce programme sur la distribution de la durée de séjour à l'aide sociale. Nous mettons en évidence l'existence d'un biais de non-réponse. Nous corrigeons ce biais en tenant compte de la décision de participation et nous montrons que les estimations de l'effet du supplément de revenu obtenues à partir de l'échantillon expérimental seulement sous-estiment de façon importante l'impact du programme.

Mots Clés: Expérimentation sociale, biais de non-réponse, modèle de durée, aide sociale

Abstract

:

In Canada, a policy aiming at helping single parents on social assistance become self-reliant was implemented on an experimental basis. The Self-Sufficiency Entry Effects Demonstration randomly selected a sample of 4134 single parents who had applied for welfare between January 1994 and March 1995. It turned out only 3315 took part in the experiment despite a 50% chance of receiving a generous, timelimited, earnings supplement conditional on finding a full-time jobs and leaving income assistance within a year. The purpose of this paper is to determine whether a non-response rate as high as 20% is likely to bias the measurement of the treatment effect. We compare the estimated impact of the program using experimental data only to that obtained using additional data on individuals not taking part in the experiment. We write the likelihood of various sets of information and obtain relevant estimates of program impact on welfare spell durations. We find strong evidence of non-response bias in the data. When we correct for the bias, we find that estimates that rely on experimental data only significantly underestimate the true impact of the program.

Keywords: Social experiment, non-response bias, duration model, social assistance
JEL Classification: I38, J18, C41

1 Introduction

In seeking to alleviate the problems that plague particularly disadvantaged groups when integrating the labour market, governments have traditionally turned to skill enhancing training programs. By enhancing skills, it is hoped individuals will receive attractive job offers and thus reduce their reliance on transfer programs.

Over the past twenty years, the evaluation literature has generally found training programs to have had limited success in achieving these goals (see Heckman, LaLonde and Smith (1999) for a recent and detailed survey and Gilbert, Kamionka and Lacroix (2001) for results pertaining to Canada). Indeed, only very focused programs targeted at specifi c groups seem to have had any signifi cant impact on reliance toward support programs. Yet, decrease in reliance has not generally translated into signifi cant reductions in poverty rates. One may infer from such poor performance that training programs that were implemented over that period simply did not manage to increase productivity to a level that would make work a better alternative to social assistance.

Many governments have responded to such disappointing results by shying away from traditional training programs only to contemplate policies that directly address the relative attractiveness of work. By directly subsidizing wage rates, it is believed many will be induced to accept jobs offers that would not normally be good alternatives to transfer programs such as social assistance. Inducing individuals to work is motivated by two separate but complementary goals. First, by raising total income such policies may be more effective at addressing poverty than traditional programs. Second, holding a regular job may be more conducive to the acquisition of skills and attitudes that are necessary for self-reliance.

In Canada, a policy aiming at helping single parents on social assistance become selfreliant was implemented on an experimental basis. The Self-Suffi ciency Project (SSP) is a research and demonstration project that provides a generous, time-limited, earnings supplement to welfare recipients who fi nd a full-time jobs and leave income assistance. SSP consists of two main studies: the SSP Recipients Demonstration (RD) and the SSP Entry Effects Demonstration (EED). The former focuses on welfare recipients who have been on welfare for at least a year. The latter focuses on newly enrolled recipients.

The RD began in 1992 and enrolled over 9,000 volunteers. About half were randomly offered the SSP program. The other half were not offered the supplement and constitute the experimental control group. The EED, on the other hand, aimed at documenting so-called delayed exit effects. Since new entrants had to stay on welfare for at least 12 months to qualify for SSP, it was feared the supplement may entice some to remain longer on the rolls. The EED randomly selected a sample of single parents who had applied for welfare between January 1994 and March 1995. Half of those selected were offered the supplement. Most evaluations
of the SSP are based on the Recipients Demonstration. Nearly all of them conclude that the program has had sizable impacts on exits from welfare (Michalopoulos, Card, Gennetian, Harknett and Robins (2000), Quets, Robins, Paan, Michalopoulos and Card (1999)). Others have found the program benefi cial to children (Morris and Michalopoulos (2000)) and to have had ambiguous results on marital behaviour (Harknett and Gennetian (2001)).

There is little doubt the program has had signifi cant impacts on individual behaviour. Because both the RD and the EED use classical random assignment designs, estimates of program impacts rest on simple comparisons between mean responses of treatment and control groups. Such comparisons provide appropriate estimates of the "treatment effects on the treated" only under a number of relatively stringent assumptions. One of those states that individuals taking part in the experiment constitute a true random sample of the population of interest. There is little discussion of experimental biases in the literature partly because the data obtained from social experiments simply can not confi rm or deny that behaviour has been disrupted in one way or another. The evidence brought to bear is almost always indirect or inferential at best. ${ }^{1}$ It is thus important to determine whether behaviour has indeed been affected by the experimentation and if so, whether behavioural disruptions have contaminated the estimated impacts.

The purpose of this paper is to document the extent of non-response bias in the SSP experiment and to propose a measure of the impact of such bias, if any. Our analysis focuses on the EED because the non-response rate was much higher than in the RD (20% vs 5%). ${ }^{2}$ Our strategy is thus to compare the estimated impact of the program using experimental data only to those obtained using additional data on individuals not taking part in the experiment. Reasons for not participating are threefold. First, some recipients were simply not selected at baseline. This sample can be thought of as a legitimate control group for the purpose of the experiment. Second, some were selected but refused to participate. Finally, some were selected but could not be reached at baseline. Since we know the probability of being in each sample, we can write the likelihood of various sets of information and obtain relevant estimates of program impact on welfare spell durations. Our results are consistent with those of Berlin, Bancroft, Card, Lin and Robins (1998) in fi nding little evidence of delayed exits, if any. Furthermore, we fi nd strong evidence of non-response bias in the data. When we properly correct for the bias, we fi nd that the estimates that rely on experimental data alone underestimate the true impact of the program.

The remainder of the paper is organized as follows. Section 2 provides a detailed description of the Entry Effects Demonstration. Section 2.1 describes the data on both participants

[^1]and non-participants in the EED. Non-parametric evidence on delayed exits is presented as well. Section 3 discusses the statistical model and the treatment of unobserved individual heterogeneity. Section 4 reports our main fi ndings. Finally, Section 5 concludes the paper.

2 The Entry Effects Demonstration

Economists have long recognized that policies that provide a conditional earnings supplement may have the unintended consequence of inducing some to modify their behaviour in order to become eligible. There is very little empirical evidence to support this claim. Most studies that focus on so-called "entry effects" are based on simulation models (Moffi $\mathfrak{t t}(1992,1996))$ that have nevertheless been shown to perform relatively well at predicting inflows and outflows from welfare caseloads (Garasky and Barnow (1992)).

The Self-Suffi ciency Project was introduced in Canada in 1992. It aimed at measuring the response of long-term welfare recipients to a fi nancial incentive that made work pay better than welfare. SSP offered a generous, time-limited, monthly cash payment to eligible single parents in British Columbia and New Brunswick who found full-time jobs and left welfare. The supplement was available only to those who had remained on welfare for at least 12 months. This feature of the program and the (relative) generosity of the supplement were thought to potentially give rise to two types of entry effects. The first, "unconditional" effect, is to induce single parents to join the welfare rolls and become eligible. The second, "conditional" effect, is to induce those currently on the rolls to delay their exit from welfare in order to become eligible.

Designing an experiment to measure unconditional entry effects is not feasible since it would require a very large sample and involve huge implementation costs. On the other hand, measuring delayed exit behaviour through a social experiment is much more feasible. The Entry Effects Demonstration thus utilized a random sample of single parents who had applied for and received Income Assistance (IA) between January 1994 and March 1995 in British Columbia. ${ }^{3}$ Selected individuals who agreed to be part of the experiment were interviewed at home to complete the baseline survey. They were also asked to sign an informed consent form that explained the nature of the experiment, described the random assignment process, and stated that all individual-level data would be kept confi dential. The agreement also gave researchers access to administrative records on income assistance from the British Columbia Ministry of Social Services. Immediately after the baseline interview, individuals were randomly assigned to either the program or the control group. Program members were sent a

[^2]letter and brochure explaining their potential eligibility to an earnings supplement. They were reminded that they had to remain on welfare for at least 12 months to qualify for the supplement and that upon qualifi cation, they had to fi nd a full-time job within the next 12 months. They were also mailed a "reminder" six to seven months after their baseline interview.

2.1 Data

As mentioned earlier, our empirical strategy consists of using information on individuals who were not in the experiment to assess the existence of non-response bias. Statistics Canada, the data collection contractor, agreed to provide us individual IA histories on participants and non-participants alike using administrative fi les.

The original sample was fi elded between January 1994 and March 1995. Each month, an independent random sample from the population of welfare applicants was selected. To be included in the experimental sample, individuals had not to have received welfare payments for at least 6 months prior to applying for benefi ts. Statistics Canada used the same algorithm to generate the sample of non-participants. ${ }^{4}$ For confi dentiality reasons, the data was restricted in two ways. First, only information on the first welfare spell was made available. Second, those who had refused to take part in the experiment were included in the population not sampled at baseline. ${ }^{5}$

The sampling scheme and the data at our disposal are illustrated in Figure 1. The original sample comprised over 4,337 individuals. Of those, 139 were declared out-of-scope, i.e. they were sampled by mistake, 56 were eventually excluded for the same reason, and an additional 8 asked to be removed from the study. This leaves a total of 4,134 individuals. Of these, 3,315 agreed to sign the informed consent form and complete the baseline survey. The response rate is thus approximately equal to 80%. Of the original sample, 694 individuals could either not be contacted at baseline (307) or were not followed up (387). We refer to this group as

[^3]

Figure 1: Randomization Scheme
sample C. ${ }^{6}$ Finally, 122 individuals refused to take part in the experiment. ${ }^{7}$ The randomization procedure yielded the experimental treatment and control groups (henceforth samples A and B, respectively).

Statistics Canada provided us a sample of 3,073 individuals sampled among those not contacted at baseline or who refused to be in the experiment. We refer to this group as sample $D .{ }^{8}$ Those who have refused are not identifi able in the data. As such sample D is a complex mix of groups A, B and C. Indeed, among those in D, some would have joined the experiment $(A+B)$ had they been selected, others would not have been contacted for different reasons (C), and still others would have refused to take part into the experiment. Under the null assumption that the data is void of non-response bias, groups B and D should behave in a similar manner. If it is found that there are systematic differences, it will be necessary to investigate whether the treatment effect is biased.

[^4]
2.2 Descriptive Statistics

Table 2 provides descriptive statistics for each sample separately. ${ }^{9}$ The fi rst two columns show that the experimental treatment and control groups are very similar in terms of observable characteristics. This is not surprising since treatment is randomly assigned among those who agree to take part in the experiment. Individuals in sample D are also very similar to those of samples A and B. On the other hand, sample C stands out as containing proportionately more men, and slightly younger individuals with fewer children. Although not reported in the table, women in sample C are somewhat younger than those of other samples whereas the converse holds for men. In all samples, male-headed households have signifi cantly fewer children than female-headed households.

Table 2 indicates that the mean IA spell duration is relatively similar for individuals in samples A, B and D. Those in sample C have a signifi cantly shorter mean and median durations. Finally, note that although we observe individual IA histories for over 65 months, more than 9.6% of all spells are censored.

To better ascertain the extent to which observable characteristics differ between samples A, B, C and D, we report simple logit regressions of belonging to a given sample in Table 3 . For example, column (1) reports the parameter estimates of the probability of belonging to sample A when samples A and B are pooled together. As expected, all parameter estimates turn out not to be statistically signifi cant. Likewise, columns (2) and (3) show that samples A, B and D are very homogeneous. Indeed, only the intercepts are statistically signifi cant in both regressions. The intercepts only reflect the relative weight of the samples in the regression. On the other hand, sample C appears to be quite different from the other samples. Column (4) indicates that women are less likely to belong to sample C, as are households with more children, as well as those with older heads. ${ }^{10}$

2.3 Non-Parametric Evidence

Recall from Section 2 that the Entry Effects Demonstration aimed at determining whether IA applicants might be induced to delay their exits from welfare in order to qualify for the

[^5]

Figure 2: Kernel Smoothed Hazard Functions - Experimental Groups
(relatively) generous earnings supplement. In order to qualify for the supplement, IA recipients had to stay on welfare for at least 12 months. Once qualifi ed, those in sample A had to fi nd a full-time job within 12 months in order to receive the supplement. Those in sample B continued to receive the standard IA benefi t.

Behavioural response to the EED is best investigated through the use of hazard and survival functions. ${ }^{11}$ Figure 2 plots smoothed hazard rates of IA spells for the experimental samples A and $B .{ }^{12}$ The first noteworthy feature of the figure is that the treatment sample appears to be sensitive to the parameters of the EED. Indeed, the hazard rates increases in the fi rst 8 months for both groups upon entry into IA. The hazard rates of the treatment group keep increasing up until the $25^{\text {th }}$ month while those of the control decrease steadily. ${ }^{13}$

Weak delayed exit behaviour is evidenced by the difference between the hazard functions during the first 7 months. Indeed, the hazard function of sample A lies below that of sample B during the first 7 months, then crosses it and remains above for the next 30 months or so. The underlying survival functions are plotted below in Figure 3. Not surprisingly, the survival

[^6]

Figure 3: Survival Functions - Experimental Groups
function of sample A lies above that of sample B up until month sixteen. This is consistent with the fi ndings of Michalopoulos and Hoy (2001) who have found that the individuals in sample A were proportionately more numerous to receive IA than those in sample B up until the $5^{\text {th }}$ quarter of the experiment. Based on Figure 3, it seems reasonable to claim that the earnings supplement first induces individuals to delay their exits in the beginning months and then provides a relatively strong incentive to leave IA. It is worth investigating though whether these differences are statistically signifi cant. Figure 4 plots the confi dence intervals of the two survival curves. The confi dence intervals of both survival functions overlap for the first 24 months. Thus delayed exit from welfare, although evidenced from the survival functions, seem to lack statistical support. This can be formally tested by means of a simple non-parametric test. Indeed, it can be shown that the estimated mean duration over the interval $[0, \tau]$ is ${ }^{14}$

$$
\begin{equation*}
\hat{\mu}_{\tau}=\int_{0}^{\tau} \hat{S}(t) d t \tag{1}
\end{equation*}
$$

where $\hat{S}(t)$ is the estimated survival rate at time t. The variance of this estimator is:

$$
\begin{equation*}
\hat{V}\left[\hat{\mu}_{\tau}\right]=\sum_{i=1}^{T}\left[\int_{t_{i}}^{\tau} \hat{S}(t) d t\right]^{2} \frac{n_{i}}{Y_{i}\left(Y_{i}-n_{i}\right)} \tag{2}
\end{equation*}
$$

[^7]

Figure 4: Confi dence Intervals of Survival Functions - Experimental Groups
where T is the number of distinct discrete intervals over $[0, \tau], n_{i}$ is the number of individuals who leave welfare at time t_{i}, and Y_{i} is the number of individuals at risk of leaving welfare at time t_{i}. The mean duration of samples A and B over the first 12 months are found to be 8.69 and 8.48 , respectively, a difference approximately equal to 2.5% in favour of sample B. A simple $\chi^{2}(1)$ test can not reject the null assumption that both durations are equal. This fi nding is similar to that of Berlin et al. (1998) who report an average impact of approximately 3.0%. On the other hand, mean durations computed over $[0,65]$ are equal 20.3 and 21.8 , respectively. This time, the $\chi^{2}(1)$ test $(=4.38)$ does reject the null assumption that mean durations are equal.

One could thus conclude that the treatment reduces mean duration by approximately 7.4%. Even though such an estimate does not account for individual characteristics, it is very unlikely the program impact will be affected by such variables given the results of Tables 3. The more interesting question that must be addressed is whether our estimates are plagued with nonresponse biases. Before we address this question formally, we will present informal evidence that such biases may be present in the data.

Figure 5 plots the survival functions of samples B, C and D. Notice first that the survival function of group D lies everywhere below that of group B. Standard Log-rank and Wilcoxon tests strongly reject equality of the two curves. Hence, individuals in sample B have longer spells than those in sample D. In the absence of non-response bias, sample D would normally

Figure 5: Survival Functions - Control, Not Contacted and Unsampled Groups
constitute a proper control group since the two differ only insofar as the individuals in the former (D) were not sampled while those in the latter (B) were sampled and agreed to participate in the experiment. Yet, the difference between D and B may be partly explained by the fact that sample D includes individuals with unusually short spells that are excluded from B. Those are individuals who could not be contacted were they sampled. They probably share similar characteristics with and behave similarly to those in sample C. Incidentally, the survival function of sample C lies well below that of sample D. Yet, according to the figure as many as a third would have qualifi ed for the earnings supplement had they been contacted at baseline, notwithstanding potential delayed exit effects.

The above discussion indicates that the experimental control group likely suffers from nonresponse bias. It does not necessarily follow that the comparison between samples A and B yield a biased estimator of the treatment effect. Indeed, sample A may just as well be plagued with similar non-response bias that increases mean durations in the same proportion as that of sample B. In order to measure the program impact correctly, non-response must be modelled explicitly and accounted for in a regression framework.

Figure 6: Welfare Applicants.

3 Modelling Individual Spell Durations

In order to derive an appropriate estimator of the treatment effect, non-response bias must be explicitly taken into account. The framework within which the experiment took place is illustrated in Figure 6, which depicts a hypothetical sample of individuals drawn from the flow of welfare applicants. The inner circle is the set of those who are sampled with probability p at baseline. Those who in the population are not willing a priori to participate in such an experiment are located below the dashed line. Likewise, those who could not be contacted are located in the ellipse. Among the latter, a unknown fraction would agree to be part of the experiment (above the dashed line) and another unknown fraction would refuse (below the dashed line).

The treatment group is located inside the inner circle to the left of the vertical line. Members of this group have all accepted to participate (above the dashed line) and have been contacted (outside the ellipse). The control group is located inside the inner circle to the right of the vertical line. The surface between the inner and outer circles is the set of applicants who were not selected at baseline. This set can be broken down in sets similar to those of the experimental samples: acceptance, refusal, contacted, non-contacted, etc.

Our task is to model all the information that is available in Figure 6. In order to do this, we need to determine the probability of belonging to the experimental samples. The experimental samples comprise 3,315 individuals. According to Statistics Canada, these represent 45\% of all claimants over the enrolment period. ${ }^{15}$ If we consider those who could not be contacted as well as those who refused to participate in the experiment, then we can establish that the

[^8]average probability of being sampled each month ranges between 60% and 65%. We will thus consider that each applicant faces a probability $p=0.65$ of being sampled. ${ }^{16}$

In order to model individual contributions to the likelihood function, we need to defi ne a number of dummy variables. Thus let:

$$
\begin{aligned}
E & =\left\{\begin{array}{l}
1, \text { if the individual was sampled at baseline }, \\
0, \text { otherwise } .
\end{array}\right. \\
A & =\left\{\begin{array}{l}
1, \text { if the individual is willing to participate in the experiment }, \\
0, \text { otherwise }
\end{array}\right. \\
R & =\left\{\begin{array}{l}
1, \text { if the individual could be contacted at baseline }, \\
0, \text { otherwise }
\end{array}\right. \\
T & =\left\{\begin{array}{l}
1, \text { if the individual belongs to the treatment group } \\
0, \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Finally, let y be a realization of the experiment:

$$
y=(e, a, r, t, u)
$$

where u is the duration of a welfare spell. ${ }^{17}$
Which arguments of $y(\cdot)$ are observable depend on which set an individual belongs to. Only T and U are observable for all individuals. ${ }^{18}$ Thus, for those in A we know that they have been sampled in the experiment $(e=1)$, that they have agreed to participate $(a=1)$, that they could be contacted $(r=1)$ and are eligible for the supplement $(t=1)$. Table 3 below summarizes the realizations of the random variables according to group membership.

3.1 Likelihood function

Each individual contributes a sequence $y=(e, a, r, t, u)$ to the likelihood function. The contribution can be written conditionally on a vector of exogenous variables, x, and on an un-

[^9]| Group | E | A | R | T |
| :--- | :---: | :---: | :---: | :---: |
| A | 1 | 1 | 1 | 1 |
| B | 1 | 1 | 1 | 0 |
| C | 1 | 0,1 | 0 | 0 |
| D | 0,1 | 0,1 | 0,1 | 0 |

Table 1: Realizations of random variables
observed heterogeneity factor, ν. In order to simplify the presentation, we assume that the components of y that are not observed are equal to -1 .

Let $l_{v}(\theta)$ denote the conditional contribution of the realization y. We have,

$$
l_{v}(\theta)=f(y \mid x ; \nu ; \theta)
$$

where $f(y \mid x ; \nu ; \theta)$ is the conditional density of y given x and ν, and $\theta \in \Theta \subset \mathbb{R}^{p}$ is a vector of parameters. When the welfare spell is right censored, the contribution to the conditional likelihood function is limited to the survivor function of the observed duration.

The random variable ν is assumed to be independently and identically distributed across individuals, and independent of x. If the unobserved heterogeneity only takes a fi nite number of values, ν_{1}, \ldots, ν_{J}, the contribution of a realization y to the likelihood function is

$$
\begin{equation*}
l(\theta)=\sum_{j=1}^{J} f\left(y \mid x ; \nu_{j} ; \theta\right) \pi_{j} \tag{3}
\end{equation*}
$$

where π_{j} is the probability that $\nu=\nu_{j}$ with $0 \leq \pi_{j} \leq 1$ and $\sum_{j=1}^{J} \pi_{j}=1$.
If ν is a continuous random variable, then

$$
\begin{equation*}
l(\theta)=\int_{S} f(y \mid x ; \nu ; \theta) g(\nu ; \gamma) d \nu \tag{4}
\end{equation*}
$$

where $g(\nu ; \gamma)$ is a probability density function and S is the support of ν.
The conditional contribution of the realization $y=(e, a, r, t, u)$ to the likelihood function is written using the joint distribution of the components of y with the values of the realization fi xed to those observed in the sample for a given individual.

3.2 Modelling Individual Contributions

In this section we focus on the conditional distributions of variable A, R and U. Recall that the probability of being sampled in the experiment is p and that the probability of assignment to the treatment group conditional on acceptance and on being contacted is 0.5 . We assume these two probabilities are independent of individual characteristics.

Defi ne $z(x, \nu)$ as the conditional probability that the individual agrees to participate in the experiment. We will assume that

$$
\begin{equation*}
z(x, \nu)=\operatorname{Prob}\left[A^{*} \geq 0 \mid x ; \nu\right] \tag{5}
\end{equation*}
$$

where

$$
A^{*}=x^{\prime} \beta_{a}+\nu+\epsilon_{a},
$$

where ϵ_{a} is a normal random variable with mean zero and variance equal to 1 , and is distributed independently of ν. In the model, ν is an unobserved heterogeneity term. In the participation equation ν can be considered as an individual random effect.

Let $\phi(\nu, x, a)$ denote the conditional probability that the individual cannot be contacted. We assume

$$
\begin{equation*}
\phi(x, \nu, a)=\operatorname{Prob}\left[R^{*} \geq 0 \mid x ; a ; \nu\right], \tag{6}
\end{equation*}
$$

where

$$
R^{*}=x^{\prime} \beta_{r}+a \xi_{a}+\nu+\epsilon_{r},
$$

where a is the realization of the participation decision, and β_{r} is a vector of parameters and $\xi_{a} \in \mathbb{R}$. We also assume that ϵ_{r} is a normal random variable with mean zero and variance equal to 1 . For simplicity, we further assume that $\epsilon_{a}, \epsilon_{r}$ and ν are independent.

Finally, let $q(e, a, r)$ denote the conditional probability that the individual belongs to the treatment group given selection into the experiment ($e=1$ or 0), given acceptance ($a=1$ or 0) and given having been contacted ($r=1$ or 0). Let us assume that:

$$
\operatorname{Prob}[T=1 \mid e, a, r]=q(e, a, r)=\left\{\begin{array}{l}
\frac{1}{2}, \text { if } e=1, a=1 \text { and } r=1, \\
0, \text { otherwise } .
\end{array}\right.
$$

Hence, an individual can be assigned to the treatment group if and only if he/she has been sampled in the experiment, has agreed to participate and could be contacted.

The conditional probability density function of the welfare duration is denoted $f(u \mid$ $x ; a ; r ; t ; \nu ; \theta$, where θ is a vector of parameters. Therefore, the conditional contribution of a given realization to the likelihood function is

$$
\begin{equation*}
\ell_{\nu}(\theta)=p z(x, \nu)(1-\phi(x, a, \nu)) 0.5 f(u \mid x ; a=1 ; r=1 ; t=1 ; \nu ; \theta), \tag{7}
\end{equation*}
$$

if the individual belongs to group A;

$$
\begin{equation*}
\ell_{\nu}(\theta)=p z(x, \nu)(1-\phi(x, a, \nu)) 0.5 f(u \mid x ; a=1 ; r=1 ; t=0 ; \nu ; \theta), \tag{8}
\end{equation*}
$$

if the individual is in group B;

$$
\begin{align*}
\ell_{\nu}(\theta) & =p z(x, \nu) \phi(x, a, \nu) f(u \mid x ; a=1 ; r=0 ; t=0 ; \nu ; \theta) \\
& +p(1-z(x, \nu)) \phi(x, a, \nu) f(u \mid x ; a=0 ; r=0 ; t=0 ; \nu ; \theta) \tag{9}
\end{align*}
$$

if the individual is in group C;
and

$$
\begin{align*}
\ell_{\nu}(\theta) & =p(1-z(x, \nu))(1-\phi(x, a, \nu)) f(u \mid x ; a=0 ; r=1 ; t=0 ; \nu ; \theta) \\
& +(1-p) z(x, \nu)(1-\phi(x, a, \nu)) f(u \mid x ; a=1 ; r=1 ; t=0 ; \nu ; \theta) \\
& +(1-p) z(x, \nu) \phi(x, a, \nu) f(u \mid x ; a=1 ; r=0 ; t=0 ; \nu ; \theta) \tag{10}\\
& +(1-p)(1-z(x, \nu))(1-\phi(x, a, \nu)) f(u \mid x ; a=0 ; r=1 ; t=0 ; \nu ; \theta) \\
& +(1-p)(1-z(x, \nu)) \phi(x, a, \nu) f(u \mid x ; a=0 ; r=0 ; t=0 ; \nu ; \theta)
\end{align*}
$$

if the individual belongs to group $D .{ }^{19}$
The contribution of each group to the likelihood function is indicated in Figure 7. Thus groups A and B contribute sections 1 and 2 (equations (7) and (8), respectively). Likewise, group C (equation (9)) corresponds to sections 3 and 4 . Group D (equation (10)) to sections $5,6,7,8$ and 9.

Let us consider a given individual. Let S_{e} denote the set of possible values of E :

$$
S_{e}=\left\{\begin{array}{l}
\{1\}, \text { if the observed value } e=1, \\
\{0\}, \text { if the observed value } e=0, \\
\{0,1\}, \text { if } e \text { is not observed, i.e. } e=-1,
\end{array}\right.
$$

[^10]

Figure 7: Welfare Applicants.

Let S_{a} and S_{r} denote the sets of possible values of A and R. Both are defi ned in a similar fashion to S_{e}. Finally, the contribution to the likelihood function can be written ${ }^{20}$

$$
\begin{aligned}
\ell_{\nu}(\theta)= & \sum_{e \in S_{e} ; a \in S_{a} ; r \in S_{r}} p^{e}(1-p)^{1-e} z(x, \nu)^{a}(1-z(x, \nu))^{1-a} \times \\
& \phi(x, a, \nu)^{1-r}(1-\phi(x, a, \nu))^{r} q(e, a, r)^{t}(1-q(e, a, r))^{1-t} f(u \mid x ; a ; r ; t ; \nu ; \theta) .
\end{aligned}
$$

3.3 Unobserved heterogeneity

Estimation of the parameters by means of maximum likelihood requires that we specify the distribution of the unobserved heterogeneity terms. We will first approximate arbitrary continuous distributions using a fi nite number of mass points (see Heckman and Singer (1984)). Next we will investigate the robustness of the slope parameters using various continuous distributions.

1. Discrete distributions

[^11]Let V denote the random variable associated to the unobserved heterogeneity terms.
Assume that

$$
\operatorname{Prob}[V=v]= \begin{cases}p_{0}, & \text { if } v=\nu_{0}, \tag{11}\\ \left(1-p_{0}\right), & \text { if } v=-\nu_{0},\end{cases}
$$

where the probability p_{0} is defi ned as

$$
p_{0}=\Phi(d),
$$

where $d, \nu_{0} \in \mathbb{R}$ are parameters and Φ is the cumulative distribution function of the normal distribution with mean zero and variance 1 .

This unrestricted model is estimated first. Next we consider a restricted version which imposes $d=0$ or, equivalently, that $p=0.5$ (i.e. $E(V)=0$).

2. Continuous distributions

The unobserved heterogeneity terms ν are assumed to be independently and identically distributed. Let $g(\nu ; \gamma)$ be the pdf of ν, with $g(\nu ; \gamma)$ representing any well-behaved probability density function (the pdf of normal or student distributions, for example).

3.4 Specification of conditional hazard function

The conditional hazard function for welfare durations is given by

$$
\begin{equation*}
h(u \mid x ; a ; r ; t ; \nu ; \theta)=h_{0}(u ; \alpha) \varphi\left(x ; a ; r ; t ; \beta_{d}\right) \exp (-\nu), \tag{12}
\end{equation*}
$$

where φ is a positive function of the exogenous variables, x, and of a, r and t, and where $h_{0}(u ; \alpha)$ is the baseline hazard function. Depending on which version of the model is estimated, x may or may not include a constant. We assume that:

$$
\varphi\left(x ; a ; r ; t ; \beta_{d}\right)=\exp \left(-x^{\prime} \beta_{x}-a \delta_{a}-r \delta_{r}-t \delta_{t}\right)
$$

where $\delta_{a}, \delta_{r}, \delta_{t} \in \mathbb{R}$ and β_{x} are vectors of parameters.
The baseline hazard function is

$$
h_{0}(u ; \alpha)=\alpha u^{\alpha-1},
$$

$\alpha \in \mathbb{R}^{+}$. Consequently, welfare duration is assumed to be distributed as a Weibull random variable. If $\alpha>1$, then the hazard function is increasing with respect to u. If $\alpha<1$, then the
hazard function is decreasing with respect to u, and if $\alpha=1$ the conditional hazard function is constant. ${ }^{21}$

For uncensored spells, the contribution of the welfare duration is given by the conditional probability density function :

$$
\begin{aligned}
f(u \mid x ; a ; r ; t ; \nu ; \theta) & =h(u \mid x ; a ; r ; t ; \nu ; \theta) \exp \left\{-\int_{0}^{u} h(s \mid x ; a ; r ; t ; \nu ; \theta) d s\right\} \\
& =\alpha u^{\alpha-1} \varphi\left(x ; a ; r ; t ; \beta_{d}\right) \exp (-\nu) \exp \left\{-\varphi\left(x ; a ; r ; t ; \beta_{d}\right) \exp (-\nu) u^{\alpha}\right\}
\end{aligned}
$$

where $u<64$ months.
The contribution of censored spells is given by the conditional survival function:

$$
\begin{aligned}
f(u \mid x ; a ; r ; t ; \nu ; \theta) & =\exp \left\{-\int_{0}^{u} h(s \mid x ; a ; r ; t ; \nu ; \theta) d s\right\}, \\
& =\exp \left\{-\varphi\left(x ; a ; r ; t ; \beta_{d}\right) \exp (-\nu) u^{\alpha}\right\},
\end{aligned}
$$

if $u \geq 64$ months.

3.5 Estimation

We consider two alternative specifi cations for the unobserved heterogeneity distribution.

1. Discrete Distribution

The log likelihood is

$$
\begin{equation*}
\log (L(\theta))=\sum_{i=1}^{N} \log \left(l_{i}(\theta)\right) \tag{13}
\end{equation*}
$$

where $l_{i}(\theta)$ is obtained by substituting the sequence $y_{i}=\left(e_{i}, a_{i}, r_{i}, t_{i}, u_{i}\right)$ and the observed vector of covariates x_{i} in (3), and where N is the sample size.
In equation (3) π_{j} is set equal to ${ }^{22}$

$$
\pi_{j}= \begin{cases}p_{0}, & \text { if } j=1, \\ \left(1-p_{0}\right), & \text { if } j=2,\end{cases}
$$

where $\pi_{1}=\operatorname{Prob}\left[V=\nu_{0}\right], \pi_{2}=\operatorname{Prob}\left[V=-\nu_{0}\right]$ and $\nu_{0} \in \mathbb{R}$ is a parameter. The \log-likelihood is then maximized with respect to $\theta(\theta \in \Theta)$. The number of mass points

[^12]J is set to $2{ }^{23} \pi_{1}$ represents the probability that the unobserved term V takes the value $\nu_{0}\left(\pi_{2}=1-\pi_{1}\right)$.

2. Continuous Distribution

The model includes an unobserved heterogeneity terms $\nu(\nu>0)$. We assume these terms to be independently and identically distributed. Let $g(\nu ; \gamma)$ be the pdf of ν.

The contribution of a given realization to the likelihood function is given by equation (4), where $S=\mathbb{R}^{+}$. The log-likelihood is given by equation (13), where $l_{i}(\theta)$ is the contribution to the likelihood of the sequence $y_{i} .{ }^{24}$ Since the integral in $l(\theta)$ generally cannot be analytically computed it must be numerically simulated.
Let $\hat{l}(\theta)$ denote the estimator of the individual contribution to the likelihood function. We assume that

$$
\hat{l}(\theta)=\frac{1}{H} \sum_{h=1}^{H} f\left(y \mid x ; \nu_{h} ; \theta\right),
$$

where ν_{h} are drawn independently according to the $\operatorname{pdf} g(\nu ; \gamma)$. The drawings $\nu_{h}(h=$ $1, \ldots, H)$ are assumed to be specific to the individual. The parameter estimates are obtained by maximizing the simulated log-likelihood:

$$
\log (L(\theta))=\sum_{i=1}^{N} \log \left(\hat{l}_{i}(\theta)\right)
$$

where $\hat{l}_{i}(\theta)$ is the simulated contribution of the sequence y_{i} to the likelihood function. The maximization of this simulated likelihood yields consistent and effi cient parameter estimates if $\frac{\sqrt{N}}{H} \rightarrow 0$ when $H \rightarrow+\infty$ and $N \rightarrow+\infty$ (see Gourriéroux and Monfort (1991, 1996)). Under these conditions, this estimator has the same asymptotic distribution as the standard ML estimator. We have used 1,000 draws from the random distributions when estimating the models. Using as few as 100 draws yielded essentially the same parameter estimates. Usually, fewer draws are considered adequate (see Kamionka (1998) and Gilbert et al. (2001)).

3.6 Incomplete Information Schemes

It is possible to examine the impact of the non-response biases on the treatment effect by considering various estimates obtained using more or less complete information schemes. For

[^13]

Figure 8: Participants in the experiment who could be contacted.
instance, we can estimate the treatment effect using only the control and the treatment groups A and B.

Let f defi ne the conditional density of the welfare durations given the conditioning variables and the value of the vector of parameters.

1. Treatment and Control Groups

Each individual contributes a sequence $y=(t, u)$ to the likelihood function. They all agreed to participate and all could be contacted at baseline (see fi gure 8).
The conditional contribution of a given realization to the likelihood function is

$$
\ell_{\nu}(\theta)=0.5 f(u \mid x ; t=1 ; \nu ; \theta)
$$

if the individual belongs to A;

$$
\ell_{\nu}(\theta)=0.5 f(u \mid x ; t=0 ; \nu ; \theta)
$$

if the individual belongs to B.
The conditional distribution of the welfare durations corresponds to the hazard function (12), where $\delta_{a}=\delta_{r}=0$ (here a and r are set equal to arbitrary values in the conditional distribution of the welfare duration).
2. Participants in the experiment

Each individual contributes a sequence $y=(r, t, u)$ to the likelihood function. All were selected for the experiment, some could be contacted but others could not be reached (see fi gure 9). Those who were contacted were offered the treatment with probability $p=0.5$.

Figure 9: Participants to the experiment.

The conditional contribution of a given realization to the likelihood function is

$$
\ell_{\nu}(\theta)=(1-\phi(x, \nu)) 0.5 f(u \mid x ; r=1 ; t=1 ; \nu ; \theta)
$$

if the individual belongs to A;

$$
\ell_{\nu}(\theta)=(1-\phi(x, \nu)) 0.5 f(u \mid x ; r=1 ; t=0 ; \nu ; \theta)
$$

if the individual belongs to B;

$$
\ell_{\nu}(\theta)=\phi(x, \nu) f(u \mid x ; r=0 ; t=0 ; \nu ; \theta),
$$

if the individual belongs to C;
Here, $\phi(\nu, x)$ denotes the conditional probability that the individual could not be contacted and is defi ned as in the context of a complete information scheme (see equation (6)), where $\xi_{a}=0$ (here a is fi xed to an arbitrary value in this equation and in the expression of the conditional hazard function).
The expression of the conditional hazard function of the welfare durations is given by the equation (12) where $\delta_{a}=0$.

3. Selected and non-selected welfare applicants

Here, each individual contributes a sequence $y=(e, a, t, u)$ to the likelihood function. Those that were selected at baseline have agreed to participate in the experiment. Those who were not selected may or may not have agreed (see fi gure 10).
The conditional contribution of a given realization to the likelihood function is

$$
\ell_{\nu}(\theta)=p z(x, \nu) 0.5 f(u \mid x ; a=1 ; t=1 ; \nu ; \theta)
$$

Figure 10: Selected and Non-Selected welfare applicants.
if the individual belongs to A;

$$
\ell_{\nu}(\theta)=p z(x, \nu) 0.5 f(u \mid x ; a=1 ; t=0 ; \nu ; \theta)
$$

if the individual belongs to the B;

$$
\begin{aligned}
\ell_{\nu}(\theta) & =p(1-z(x, \nu)) f(u \mid x ; a=0 ; t=0 ; \nu ; \theta) \\
& +(1-p) z(x, \nu) f(u \mid x ; a=1 ; t=0 ; \nu ; \theta) \\
& +(1-p)(1-z(x, \nu)) f(u \mid x ; a=0 ; t=0 ; \nu ; \theta)
\end{aligned}
$$

if the individual belongs to D.
Here, $z(x, \nu)$ is the conditional probability that the individual agrees to participate in the experiment. The defi nition of $z(x, \nu)$ is similar to the one given for the complete information scheme (see equation (5)).

The expression of the conditional hazard function of the welfare durations is given by equation (12), where $\delta_{r}=0$ (r, for convenience, is fi xed to an arbitrary value in the expression of the conditional hazard).

4 Results

4.1 Single treatment effect

The estimation results presented in Table 4 investigate the overall impact of the treatment on the average spell duration. Since the experiment's setup is expected to delay exit prior to
the qualifying period and to hasten it in the following months, using a single treatment effect provides a measure of the programs' net impact. The first four columns of the table provide estimates based on non-parametric unobserved heterogeneity (see equation (11)). ${ }^{25}$

The estimates of the first column are obtained from the experimental samples only. This specifi cation is the only one in which we omit unobserved heterogeneity. This is done for two reasons. First, given that individuals were randomly assigned to control and treatment groups, unobserved characteristics should be distributed similarly across groups. Second, the maximum likelihood estimator of the treatment effect that neglects unobserved heterogeneity should be relatively close to a simple difference in mean durations between the two groups.

The estimate of α indicates that the hazard function is decreasing with duration. The slope parameters show that duration increases with the number of children and decreases with age. Both parameter estimates are highly statistically signifi cant. Women are also found to have longer mean spell durations than men. Finally, the treatment effect is found to reduce spell duration by approximately 7.5%. This estimate is quite similar to that reported in section 2.3 where it was found that the treatment group had a 7.3% shorter mean duration.

Column 2 of the table reports the results using groups A, B, and C (see Figure 9). The baseline hazard function is decreasing with duration. As previously, spell duration decreases with age and increases with the number of children. Likewise, women are found to have longer spell durations than men. The impact of the treatment is very similar to that of column (1) although it is not statistically signifi cant. Note that the parameter estimate of the contact binary variable is positive and signifi cantly different from zero. This is consistent with the observation that individuals in sample C have signifi cantly shorter spells (see Table 2). Hence, once we include those that could not be contacted at baseline, the treatment effect vanishes. The third panel of the table reports the parameter estimates of the probability of not being contacted at baseline. It is found that the probability is decreasing with age and the number of children. Women are also less likely not to be contacted than men. These results are consistent with those obtained for descriptive statistics on sample C (see Table 2).

Column 3 of the table reports the results using groups A, B, and D (see Figure 10). Contrary to the previous cases, the conditional hazard function is increasing with duration. Inclusion of this group allows us to model explicitly the participation decision. Omission of the latter thus induces a spurious negative duration dependence. This phenomenon is well known in duration models. The marginal duration model is the mixture of conditional duration models with respect of the acceptance decision. The sign of the slope parameters are similar to those obtained using groups A, B and C. The parameter of the acceptance binary variable is positive and statistically signifi cant. Thus among the individuals that could be contacted a priori,

[^14]those who decided to participate have longer mean spell duration. The treatment effect is now nearly four times greater than the one obtained using samples A and B. Consequently, omission of the participation decision signifi cantly biases the effect of the earning supplement on the exits from welfare. The second panel of the table reports the parameters of the conditional probability of agreeing to participate in the experiment. Unfortunately, not a single parameter is statistically signifi cant in this specifi cation.

Column 4 of the table reports the results using groups A, B, C and D (see Figure 6). The parameter estimates show that the conditional hazard function is increasing with duration. The sign of the slope parameters are similar to those of the previous specifi cations. The impact of the treatment is again nearly four times greater than the one obtained using the experimental groups only. Spell duration is also longer for participants and for those who could be contacted. Both parameter estimates are statistically signifi cant.

The next two panels indicate that the probability of not being contacted is decreasing with age, the number of children and is higher for women than for men. The parameters are very similar those obtained using groups A, B and C. Furthermore, the probability is signifi cantly lower for those who are willing to participate ex ante. Finally, note that the probability of agreeing to participate increases with age and that the parameter estimate is statistically signifi cant at 5%.

The estimates in columns (1)-(4) of Table 4 are based on a rather restrictive specifi cation for the unobserved heterogeneity component. Previous research has shown that the slope parameters of duration models are usually rather insensitive to particular distributional assumptions (see Heckman and Borjas (1980), Bonnal, Fougère and Sérandon (1997), Gilbert et al. (2001)). It is thus worth investigating whether our results are also robust to various assumptions pertaining to the distribution of the unobserved heterogeneity.

The last four columns of Table 4 report results based on particular parametric distribution and using samples A, B, C and D. The parameter estimates are thus comparable to those of column 4. The treatment effect is still sizable although slightly smaller than that of column (4), except for the specifi cation based on the student distribution (with 5 degrees of freedom). As with column (4), the mean spell duration of those who could be contacted or agreed to participate in the experiment is considerably longer. Furthermore, the parameter estimates of the two latent equations are very similar to those of column(4). Thus the estimates of the treatment effect appears relatively robust with respect to the distribution of the unobserved heterogeneity.

4.2 Multiple treatment effects

The parameter estimates of the treatment effect presented in Table 4 make no distinction between the qualifying period and the ensuing months. Yet, the experiment is setup so as to measure potential delayed exit effects that may arise with a full-scale program. The nonparametric evidence provided in previous sections suggested that such effects are likely rather small, if at all signifi cant. Our model can easily be modifi ed to account for potential timevarying treatment effects. Using the experiment's design, we have re-estimated the model by allowing the treatment to have a differentiated impact on the duration at discrete intervals ([0,12[, [12,24[, [24,36[, [36 and more].).

The estimation results are reported in Table 5. The table has the same setup as Table 4. The specifi cation in the fi rst column uses samples A and B. According to the parameter estimates, the treatment group does not appear to delay exit any more than the control group since the parameter estimate of the treatment effect is not statistically different from zero. The treatment effects for subsequent interval are all highly signifi cant. The results indicate that the treatment effect reduces durations considerably over the [12,24[and [24,36[intervals. On the other hand, the treatment group appears to have longer spells over the [36 and more] interval. The parameter α indicates that there is negative duration dependence in the data.

The second column reports the estimation results using samples A, B and C. This specifi cation yields rather strange results. Indeed, the parameter estimates suggest that the treatment group has a much longer mean spell duration that the control group. There are no appealing reasons that may justify such a result, but further investigation certainly seems warranted.

Columns (3) and (4) yield essentially similar results. Contrary to the first two specifi cations, there now appears to be positive duration dependence in the data. Furthermore, the parameter estimates suggest there is no evidence of exit delayed behaviour. If anything, the treatment group has a shorter conditional duration over the [0,12[interval. Likewise, the treatment effect over the [12,24[and [24,36[intervals reduces duration considerably. In both cases, it is found that the treatment has no impact on the mean duration over the [36 and more] interval.

The specifi cations in columns (5)-(8) are identical to that of column (4) but use parametric distributions for the unobserved heterogeneity. The parameter estimates of the treatment effect are qualitatively similar to those of columns (3) and (4) except they are much smaller in magnitude. Furthermore, only in column (5) is the treatment found to have an impact on the duration over the [36 and more] interval.

4.3 Mean Durations

The slope parameters can not directly be interpreted as marginal impacts since the expected duration is highly non-linear with respect to the covariates. ${ }^{26}$ We thus report the conditional (on treatment) expected durations for various model specifi cations in Table 6. The top panel of the table reports the expected durations based on the parameters of the first column of Table 4. This specifi cation allows only one treatment effect and is based on the experimental samples only. The expected durations are computed by bootstrapping the samples 500 times and averaging the mean durations across individuals. This allows to integrate over the distribution of the covariates in the experimental population. The table shows that men have somewhat shorter durations than women. Likewise, the treatment effect reduces duration by approximately 6.9% for women, and 7.7% for men.

The middle panel uses the same parameter estimates as the top panel except that the drawing is made within sample D . This allows to measure the impact of differing distributions of the covariates between the experimental samples and the population of welfare recipients. The results show that the mean durations are very similar to those of the top panel. This is not surprising given the results reported in Table 2. If anything, the durations are slightly shorter when using data from sample D as opposed to the experimental samples.

The bottom panel of the table uses the parameter estimates of the $4^{\text {th }}$ column of Table 5. The treatment effect is allowed to vary with duration and data from all samples are used to estimates the parameters. To compute mean durations, only data from sample D is used since this sample best mimics the population of welfare recipients. The table shows that the treatment is much larger when using the complete model. Indeed, the treatment effect is found to reduce mean spell duration by as much as 25% for both men and women.

To the extent that our model properly accounts for the non-response bias in the data, one must conclude that the expected durations of experimental data void of any bias would be considerably shorter. We conjectured previously that such bias did not necessarily imply that the impact of the treatment itself would be biased. According to our parameter estimates and to our simulations, though, it does seem that the estimate is biased.

5 Conclusion

Over the past twenty years experimental designs have become the preferred means of many by which to evaluate employment and training programs. This is not surprising given that in an ideal setting social experimentation is able to solve the so-called "evaluation problem". In

[^15]practise, implementation of a demonstration project is likely to be hampered by many logistical and behavioural problems that may prove detrimental to the quality of the data it generates (see Hotz (1992)). Although the literature has singled out non-response or randomization bias as the main culprit, we know surprisingly little about the extent to which demonstrations are contaminated by these potential problems. The evidence brought to bear is almost always indirect or inferential at best.

In Canada, a policy aiming at helping single parents on social assistance become selfreliant was implemented on an experimental basis. The Self-Suffi ciency Entry Effects Demonstration (EED) focused on newly enrolled recipients. The EED randomly selected a sample of 4,134 single parents who had applied for welfare between January 1994 and March 1995. It turned out only 3,315 agreed to be part of the experiment despite a 50% chance of receiving a generous, time-limited, earnings supplement conditional on fi nding a full-time job and leaving income assistance.

The purpose of this paper is to determine whether a non-response rate as high as 20% is likely to bias the measurement of the treatment effect. Our empirical strategy is to compare the estimated impact of the program using experimental data only to those obtained using additional data on individuals not taking part in the experiment and drawn from the same population. We identify three reasons for not participating in the experiment. First, some recipients simply were not selected at baseline. Second, some were selected but refused to participate. Thirdly, some were selected but could not be reached at baseline. We write the likelihood of various sets of information and obtain relevant estimates of program impact on welfare spell durations.

We fi nd strong evidence of non-response bias in the data. When we correct for the bias, we fi nd that the estimates of the treatment effect that rely solely on experimental data underestimate the true impact of the program. We conjecture this is because those who agreed to participate have longer mean spell durations and are likely less responsive to fi nancial incentives than others. Furthermore, we fi nd no evidence of the so-called "delayed exit effect" that may arise due to the program setup.

Finally, the sensitivity of the parameter estimates to distributional assumptions pertaining to the unobserved heterogeneity is also investigated. We fi nd that many parametric distributions yield similar results to those obtained from a simple non-parametric model.

References

Berlin, G., W. Bancroft, D. Card, W. Lin, and P. K. Robins (1998) 'Do work incentives have unintended consequences ? measuring "entry effects" in the self-suffi ciency project.' Working Paper, SRDC
Bonnal, L., D. Fougère, and A. Sérandon (1997) 'Evaluating the impact of french employment policies on individual labour market histories.' The Review of Economics Studies 64(4), 683-718
Brown, J. B., W. Hollander, and R. M. Korwar (1974) 'Nonparametric tests of independence for censured data, with applications to heart transplant studies.' In Reliability and Biometry: Statistical Analysis of Lifelength, ed. F. Proschan and R. J. Serling (Philadelphia: SIAM) pp. 327-354
Drolet, S., B. Fortin, and G. Lacroix (2002) 'Welfare benefi ts and the duration of welfare spells: Evidence from a natural experiment in Canada.' Forthcoming, Journal of Public Economics
Fomby, T.B., R. C. Hill, and S.R. Johnson (1984) Advanced Econometric Methods (Springer-Verlag)
Fougère, D., B. Fortin, and G. Lacroix (2002) 'The effects of welfare benefi ts on the duration of welfare spells: Evidence from a natural experiment in Canada.' In Institutional and Financial Incentives for Social Insurance, ed. C. D'Aspremont and P. Pestieau (Kluwer Press) chapter 1, pp. 1-24
Garasky, S., and B. S. Barnow (1992) ‘Demonstration evaluations and cost neureality: Using caseload models to determine the federal cost neutrality of New Jersey's REACH demonstration.' Journal of Policy Analysis and Management 11(3), 624-636
Gilbert, L., T. Kamionka, and G. Lacroix (2001) 'The impact of government-sponsored training programs on the labour market transitions of disavantaged men.' Working Paper 2001-15, CREST, Paris
Gouriéroux, C., and A. Monfort (1996) Simulation-Based Econometric Methods Core Lectures (Oxford University Press)
Gourriéroux, C., and A. Monfort (1991) 'Simulation based econometrics in models with heterogeneity.' Annales d'économie et de statistique 20(1), 69-107
Harknett, K., and L. A. Gennetian (2001) 'How an earnings supplement can affect the marital behaviour of welfare recipients: Evidence from the self-suffi ciency project.' Working Paper, SRDC
Heckman, J., and B. Singer (1984) 'A method for minimizing the distributional assumptions in econometric models for duration data.' Econometrica pp. 271-320
Heckman, J. J. (1992) 'Randomization and social policy evaluation.' In Evaluating Welfare and Training Programs, ed. F. C. Manski and I. Garfi nkel (Harvard University Press)
Heckman, J.J., and G.E. Borjas (1980) ‘Does unemplyment cause future unemployment? defi nitions, questions and answers from a continuous time model of heterogeneity and
state dependence.' Economica pp. 247-283
Heckman, J.J., R.J. LaLonde, and J.A. Smith (1999) 'The economics and econometrics of active labor market programs.' In Handbook of Labor Economics, ed. O. Ashenfelter and Eds. D. Card (North-Holland) chapter
Hotz, V. J. (1992) 'Designing an evaluation of the Job Training Partnership Act.' In Evaluating Welfare and Traiing Programs, ed. C.F. Manski and I. Garfi nkel (Harvard University Press) chapter 2, pp. 76-114
Kamionka, T. (1998) 'Simulated maximum likelihood estimation in transition models.' Econometrics Journal 1, C129-C153
Klein, J. P., and M. L. Moeschberger (1997) Survival Analysis (Statistics for Biology and Health, Springer)
Lacroix, G., and J. Royer (2001) 'Vérifi cation empirique de l'absence de biais de non-réponse à l'aide d'une procédure de test MC.' mimeo, Université Laval
Michalopoulos, C., and T. Hoy (2001) 'When fi nancial work incentives pay for themselves: Interim fi ndings from the self-suffi ciency project's applicant study.' Working Paper, SRDC
Michalopoulos, C., D. Card, L. A. Gennetian, K. Harknett, and P. K. Robins (2000) 'The self-suffi ciency project at 36 months: Effects of a fi nancial work incentive on employment and income.' Working Paper, SRDC
Moffitt, R. A. (1992) 'Evaluation methods for program entry effects.' In Evaluating Welfare and Training Programs, ed. C. F. Manski and I. Garfi nkel (Harvard Univeristy Press) pp. 231-152
Moffitt, R.A. (1996) 'The effect of employment and training programs on entry and exit from welfare caseload.' Journal of Policy Analysis and Management 15(1), 32-50
Morris, P., and C. Michalopoulos (2000) 'The self-suffi ciency project at 36 months: Effects on children of a program that increased parental employment and income.' Working Paper, SRDC
Quets, G., P. K. Robins, E. C. Paan, C. Michalopoulos, and D. Card (1999) 'Does SSP Plus increase employment? The effect of adding services to the self-suffi ciency project's fi nancial incentives.' Working Paper, SRDC

Table 2: Descriptive Statistics

Variable	Sample			
	A	B	C	D
Age	0.89	0.91	0.86	0.90
	(0.31)	(0.28)	(0.34)	(0.30)
Children	32.65	32.37	31.79	32.42
	(7.88)	(7.41)	(7.85)	(7.73)
Mean spell length ${ }^{\dagger}$	1.65	1.68	1.57	1.65
	(0.80)	(0.82)	(0.77)	(0.81)
Median spell length	20.28	21.75	13.76	20.34
Proportion of censured spells	(0.47)	(0.51)	(0.75)	(0.38)
No. Observations	7.83	10.20	6.59	9.63
Estimated from Kaplan-Meir survival rates and tail corrections proposed by Brown, Hollander and Korwar (1974)				

Table 3: Logit Regressions

	Sample			
Variable	A vs B	A vs D	B vs D	$C v s D$
Intercept	0.151	-0.700^{*}	-0.851^{*}	-0.650^{*}
	(0.215)	(0.184)	(0.186)	(0.253)
Sex (Women=1)	-0.193	-0.021	0.173	-0.378^{*}
	(0.122)	(0.103)	(0.108)	(0.135)
Children	-0.065	-0.018	0.047	$-0.102^{* *}$
	(0.044)	(0.034)	(0.038)	(0.057)
Age	0.003	0.004	0.001	-0.013^{*}
	(0.005)	(0.184)	(0.004)	(0.006)
Observations	3315	4721	4740	3710
Log-Likelihood	-2294.5	-3053.3	-3071.5	-1693.6
* Sta				

* Statistically signifi cant at 5\% or better. ${ }^{* *}$ Statistically signifi cant at 10% or better.

Table 4: Maximum Likelihood Estimates: Single Treatment Effect

Parameter Estimates	Non-Parametric Heterogeneity				Parametric Heterogeneity			
	$A+B$	$A+B+C$	$A+B+D$	$\begin{gathered} A+B+ \\ C+D \end{gathered}$				
					Exponential	Gamma	$\begin{gathered} \hline \text { Log- } \\ \text { Normal } \end{gathered}$	Student (5)
α	$\begin{gathered} 0.873 \\ (0.013) \end{gathered}$	$\begin{gathered} 0.896 \\ (0.015) \end{gathered}$	$\begin{gathered} 1.506 \\ (0.026) \end{gathered}$	$\begin{gathered} 1.382 \\ (0.024) \end{gathered}$	$\begin{gathered} 1.048 \\ (0.020) \end{gathered}$	$\begin{gathered} 1.035 \\ (0.020) \end{gathered}$	$\begin{gathered} 0.983 \\ (0.016) \end{gathered}$	$\begin{gathered} 0.993 \\ (0.019) \end{gathered}$
ν		$\begin{gathered} 0.460 \\ (0.036) \end{gathered}$	$\begin{aligned} & -1.326 \\ & (0.039) \end{aligned}$	$\begin{aligned} & -1.246 \\ & (0.041) \end{aligned}$	$\begin{aligned} & -0.424 \\ & (0.073) \end{aligned}$	$\begin{aligned} & -0.497 \\ & (0.074) \end{aligned}$	$\begin{aligned} & -1.499 \\ & (0.107) \end{aligned}$	$\begin{aligned} & -1.236 \\ & (0.217) \end{aligned}$
Intercept	$\begin{gathered} 2.753 \\ (0.120) \end{gathered}$	$\begin{gathered} 2.027 \\ (0.121) \end{gathered}$	$\begin{gathered} 3.820 \\ (0.149) \end{gathered}$	$\begin{gathered} 2.552 \\ (0.133) \end{gathered}$	$\begin{gathered} 1.493 \\ (0.137) \end{gathered}$	$\begin{gathered} 1.458 \\ (0.134) \end{gathered}$	$\begin{gathered} 1.293 \\ (0.135) \end{gathered}$	$\begin{gathered} 1.109 \\ (0.130) \end{gathered}$
Women	$\begin{gathered} 0.198 \\ (0.064) \end{gathered}$	$\begin{gathered} 0.209 \\ (0.064) \end{gathered}$	$\begin{gathered} 0.161 \\ (0.065) \end{gathered}$	$\begin{gathered} 0.213 \\ (0.062) \end{gathered}$	$\begin{gathered} 0.272 \\ (0.053) \end{gathered}$	$\begin{gathered} 0.277 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.222 \\ (0.047) \end{gathered}$	$\begin{gathered} 0.215 \\ (0.057) \end{gathered}$
Age/100	$\begin{aligned} & -0.697 \\ & (0.240) \end{aligned}$	$\begin{aligned} & -0.776 \\ & (0.249) \end{aligned}$	$\begin{aligned} & -1.063 \\ & (0.251) \end{aligned}$	$\begin{aligned} & -0.579 \\ & (0.242) \end{aligned}$	$\begin{aligned} & -0.988 \\ & (0.213) \end{aligned}$	$\begin{aligned} & -0.900 \\ & (0.207) \end{aligned}$	$\begin{aligned} & -0.716 \\ & (0.190) \end{aligned}$	$\begin{aligned} & -0.605 \\ & (0.213) \end{aligned}$
Children	$\begin{gathered} 0.203 \\ (0.052) \end{gathered}$	$\begin{gathered} 0.203 \\ (0.055) \end{gathered}$	$\begin{gathered} 0.239 \\ (0.058) \end{gathered}$	$\begin{gathered} 0.269 \\ (0.058) \end{gathered}$	$\begin{gathered} 0.202 \\ (0.047) \end{gathered}$	$\begin{gathered} 0.196 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.187 \\ (0.043) \end{gathered}$	$\begin{gathered} 0.189 \\ (0.046) \end{gathered}$
Treatment	$\begin{aligned} & -0.075 \\ & (0.037) \end{aligned}$	$\begin{aligned} & -0.059 \\ & (0.042) \end{aligned}$	$\begin{aligned} & -0.288 \\ & (0.044) \end{aligned}$	$\begin{aligned} & -0.294 \\ & (0.048) \end{aligned}$	$\begin{aligned} & -0.176 \\ & (0.037) \end{aligned}$	$\begin{aligned} & -0.187 \\ & (0.037) \end{aligned}$	$\begin{aligned} & -0.186 \\ & (0.033) \end{aligned}$	$\begin{aligned} & -0.259 \\ & (0.036) \end{aligned}$
Accept			$\begin{gathered} 1.148 \\ (0.112) \end{gathered}$	$\begin{gathered} 1.167 \\ (0.086) \end{gathered}$	$\begin{gathered} 1.495 \\ (0.125) \end{gathered}$	$\begin{gathered} 1.560 \\ (0.115) \end{gathered}$	$\begin{gathered} 1.727 \\ (0.115) \end{gathered}$	$\begin{gathered} 1.620 \\ (0.136) \end{gathered}$
Contacted		$\begin{gathered} 0.810 \\ (0.066) \end{gathered}$		$\begin{gathered} 0.242 \\ (0.077) \end{gathered}$	$\begin{gathered} 0.431 \\ (0.160) \end{gathered}$	$\begin{gathered} 0.336 \\ (0.141) \end{gathered}$	$\begin{gathered} 0.196 \\ (0.160) \end{gathered}$	$\begin{gathered} 0.208 \\ (0.125) \end{gathered}$
Acceptance Intercept			$\begin{gathered} 2.026 \\ (0.245) \end{gathered}$	$\begin{gathered} 1.461 \\ (0.201) \end{gathered}$	$\begin{gathered} 1.043 \\ (0.187) \end{gathered}$	$\begin{gathered} 1.046 \\ (0.184) \end{gathered}$	$\begin{gathered} 0.978 \\ (0.182) \end{gathered}$	$\begin{gathered} 0.785 \\ (0.180) \end{gathered}$
Women			$\begin{gathered} 0.130 \\ (0.124) \end{gathered}$	$\begin{gathered} 0.112 \\ (0.107) \end{gathered}$	$\begin{gathered} 0.180 \\ (0.100) \end{gathered}$	$\begin{gathered} 0.166 \\ (0.098) \end{gathered}$	$\begin{gathered} 0.202 \\ (0.094) \end{gathered}$	$\begin{gathered} 0.232 \\ (0.098) \end{gathered}$
Age/100			$\begin{aligned} & -0.419 \\ & (0.546) \end{aligned}$	$\begin{gathered} 0.402 \\ (0.443) \end{gathered}$	$\begin{aligned} & -0.049 \\ & (0.419) \end{aligned}$	$\begin{aligned} & -0.087 \\ & (0.413) \end{aligned}$	$\begin{aligned} & -0.162 \\ & (0.407) \end{aligned}$	$\begin{aligned} & -0.066 \\ & (0.395) \end{aligned}$
Children			$\begin{gathered} -0.011 \\ (0.114) \\ \hline \end{gathered}$	$\begin{gathered} 0.021 \\ (0.093) \\ \hline \end{gathered}$	$\begin{gathered} 0.031 \\ (0.090) \\ \hline \end{gathered}$	$\begin{gathered} 0.029 \\ (0.089) \\ \hline \hline \end{gathered}$	$\begin{gathered} 0.026 \\ (0.087) \\ \hline \end{gathered}$	$\begin{gathered} 0.024 \\ (0.085) \\ \hline \end{gathered}$
Not Contacted Intercept		$\begin{aligned} & -0.493 \\ & (0.154) \end{aligned}$		$\begin{gathered} 1.860 \\ (0.212) \end{gathered}$	$\begin{gathered} 1.328 \\ (0.245) \end{gathered}$	$\begin{gathered} 1.288 \\ (0.243) \end{gathered}$	$\begin{gathered} 1.039 \\ (0.226) \end{gathered}$	$\begin{gathered} 0.576 \\ (0.220) \end{gathered}$
Women		$\begin{aligned} & -0.288 \\ & (0.085) \end{aligned}$		$\begin{aligned} & -0.276 \\ & (0.111) \end{aligned}$	$\begin{aligned} & -0.284 \\ & (0.122) \end{aligned}$	$\begin{aligned} & -0.297 \\ & (0.118) \end{aligned}$	$\begin{aligned} & -0.234 \\ & (0.109) \end{aligned}$	$\begin{aligned} & -0.192 \\ & (0.108) \end{aligned}$
Age/100		$\begin{aligned} & -0.988 \\ & (0.085) \end{aligned}$		$\begin{aligned} & -0.880 \\ & (0.433) \end{aligned}$	$\begin{aligned} & -1.540 \\ & (0.510) \end{aligned}$	$\begin{aligned} & -1.463 \\ & (0.512) \end{aligned}$	$\begin{aligned} & -1.475 \\ & (0.466) \end{aligned}$	$\begin{aligned} & -1.114 \\ & (0.437) \end{aligned}$
Children		$\begin{aligned} & -0.140 \\ & (0.078) \end{aligned}$		$\begin{aligned} & -0.165 \\ & (0.094) \end{aligned}$	$\begin{aligned} & -0.177 \\ & (0.120) \end{aligned}$	$\begin{aligned} & -0.176 \\ & (0.115) \end{aligned}$	$\begin{aligned} & -0.170 \\ & (0.107) \end{aligned}$	$\begin{aligned} & -0.148 \\ & (0.096) \end{aligned}$
Accepted				$\begin{aligned} & -3.732 \\ & (0.122) \end{aligned}$	$\begin{aligned} & -2.346 \\ & (0.134) \end{aligned}$	$\begin{aligned} & -2.279 \\ & (0.133) \end{aligned}$	$\begin{aligned} & -1.899 \\ & (0.132) \end{aligned}$	$\begin{aligned} & -1.593 \\ & (0.150) \end{aligned}$
Likelihood	-12391	-18522	-33 553	-34310	-34 427	-34 453	-34 470	34491

Table 5: Maximum Likelihood Estimates: Multiple Treatment Effects

Table 6: Mean Spell Duration*

Model		Women and Men	Women	Men
Model $\mathrm{A}+\mathrm{B}^{\dagger}$	$\mathrm{T}=0$	Experimental Sample ($A+B$)		
		23.547	24.082	18.568
		(0.044)	(0.035)	(0.091)
	$\mathrm{T}=1$	21.913	22.426	17.138
		(0.043)	(0.034)	(0.086)
Model $\mathrm{A}+\mathrm{B}^{\dagger}$	$\mathrm{T}=0$	Sample D		
		23.490	24.040	18.698
		(0.046)	(0.034)	(0.089)
	$\mathrm{T}=1$	21.857	22.385	17.260
		(0.044)	(0.036)	(0.084)
Model $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}^{\ddagger}$	$\mathrm{T}=0$	Sample D		
		26.130	26.417	23.644
		(0.019)	(0.012)	(0.057)
	$\mathrm{T}=1$	19.309	19.594	16.836
		(0.020)	(0.015)	(0.054)

* Computed on the basis of 500 replications of the relevant samples. Empirical standard errors in parentheses.
${ }^{\dagger}$ Based on the parameter estimates of column (1), Table 4.
\ddagger Based on the parameter estimates of column (4), Table 5.

[^0]: Kamionka: CNRS and CREST
 kamionka@ensae.fr
 Lacroix: Département d'économique, Université Laval, CIRPÉE and CIRANO
 guy.lacroix@ecn.ulaval.ca

[^1]: ${ }^{1}$ See Heckman (1992) for a discussion of randomization biases.
 ${ }^{2}$ As many as 4,134 individuals were contacted for the EED. Yet, only 3,326 completed the baseline survey, and an additional 9 asked to be removed from the experiment after completing the survey. Thus the response rate is about 80%.

[^2]: ${ }^{3}$ To be considered as new entrants, applicants had not to have received IA in the six previous months. A signifi cant minority (31%) had nevertheless received IA at some time in the two years prior to their current application (Berlin et al. (1998)).

[^3]: ${ }^{4}$ Randomization occurred during the fi rst month following application for benefi ts in most cases. Indeed, as many as 2,464 individuals had either received no or one IA payment at randomization. Another 653 individuals had received two monthly payments. Finally, 92 individuals had received as many as three or four payments prior to assignment. We use the randomization date as the starting date for the experimental sample since this corresponds to the beginning of the treatment. We acknowledge, though, that this will tend to decrease the average duration of the experimental sample.
 ${ }^{5}$ Statistics Canada estimates that 8% of the original sample either refused to sign the informed consent, asked to be removed from the project or did not agree to have their data included in any parts of the study. These observations are excluded from the population that was not sampled at baseline

[^4]: ${ }^{6}$ Although Statistics Canada documents show that 694 individuals were not contacted or followed up at baseline, the sample we were provided contains only 637 observations. Further, we have no information on the individual status in the sample.
 ${ }^{7}$ It is very likely that those who were not followed up also refused to take part in the experiment.
 ${ }^{8}$ The total population of welfare applicants over the period covered by the EED is 7,390 . Thus, samples A, B, C and D represent over 95% of the total population.

[^5]: ${ }^{9}$ The administrative fi les contain more information on individual characteristics than those reported in the table. To insure confi dentiality of IA claimants, we were only provided information on characteristics reported in the table.
 ${ }^{10} \mathrm{We}$ did not report the results using samples A, B and C for the sake of brevity. They are very similar to those reported in column (4) of Table 3.

[^6]: ${ }^{11}$ This section only presents brief non-parametric evidence on non-response bias in the Applicant Study. More extensive analyzes using non-parametric permutation tests can be found in Lacroix and Royer (2001).
 ${ }^{12}$ Recall that approximately 20% of the sample had been on welfare for at least 2 months prior to randomization. If we use first month on IA instead of randomization date as the start of the spell, the fi gure is basically unchanged. We use the Epanechnikov kernel with optimal bandwidth to draw the hazard functions.
 ${ }^{13}$ The rise in the hazard rates in the fi rst few months has been observed in many studies using Canadian data. See for instance Drolet, Fortin and Lacroix (2002) and Fougère, Fortin and Lacroix (2002).

[^7]: ${ }^{14}$ See Klein and Moeschberger (1997) for a formal derivation.

[^8]: ${ }^{15}$ See footnote 8.

[^9]: ${ }^{16}$ The indeterminacy of the probability of being sampled arises due to some confusion related to sample C. According to private communications with Statistics Canada, our sample C only includes individuals that could not be contacted at baseline. In such a case, the probability of being sampled is roughly equal to 65%. If, on the other hand, the sample includes both those who could not be contacted and those who were not followed up, then the probability of being sampled is approximately equal to 60%. The model was estimated with $p=0.60$ and $p=0.65$. The main results are very robust to the choice of p.
 ${ }^{17} \mathrm{We}$ follow the convention of denoting a random variable by a capital letter and write its realization in lower case.
 ${ }^{18}$ The welfare duration are right censored at 64 months.

[^10]: ${ }^{19}$ The likelihood function of individuals in sample D is written as if the sample included all the individuals outside the experiment, i.e. as if sample D was the complement of samples A, B and C. In principles, the likelihood function should be weighted to account for the fact that sample D is a subsample of those outside the experiment. As mentioned in footnote 8, sample D comprises over 95% of that population. Further, selection into the sample was made using a random procedure. We have thus chosen not to weigh the function so as to avoid making an already involved function overly complicated.

[^11]: ${ }^{20}$ One may question whether there is a unique mapping between these reduced form equations and the structural model. Note that we have imposed a number of restrictions on the covariance matrix of the reduced form model. In particular, the dichotomization of the latent variables corresponding to the acceptance and recontact variables imposes that their variances be normalized to unity. Furthermore, there are no correlations between the latent variables and the duration variable. It is then then possible to show that a generalized order condition holds for each latent equation in the conditional model (see Fomby, Hill and Johnson (1984)). It should be noted, however, that assuming there is no correlation between the latent variables does not imply that they are independent. Indeed, the conditional expectation of the recontact variable depends on the acceptation decision. Consequently, whereas the errors term ϵ_{a} and ϵ_{r} are assumed to be independent, the recontact variable R^{*} and the acceptance variable A^{*} are correlated. The correlation between the two latent variables is given by the parameter a (see equation (6))

[^12]: ${ }^{21}$ Note that the hazard function of the Weibull model with parametric unobserved heterogeneity need not be monotonic in duration. In fact, if the distribution function of the unobserved heterogeneity is Gamma, the hazard function is non-monotonic and is known as the Singh-Maddala.
 ${ }^{22}$ See section 3.1.

[^13]: ${ }^{23}$ The data support only two mass points. This is due to the fact that the individuals in our sample are relatively homogeneous as shown in Table 2.
 ${ }^{24}$ In what follows, θ includes γ, the parameters of $q(\cdot)$.

[^14]: ${ }^{25} \mathrm{We}$ only report results based on the restricted version, i.e. $p=0.5$. Except for a few specifi cations, p could be estimated freely. The parameter estimates are relatively robust to the estimation of p.

[^15]: ${ }^{26}$ Indeed, it can be shown that $E(U \mid X, \nu, \theta)=\lambda^{-\frac{1}{\alpha}} \Gamma(1+1 / \alpha)$, where $\lambda=\exp \left(-X^{\prime} \beta-\nu\right)$.

