
Time series forecasting by principal covariate regression

Christiaan Heij∗, Patrick J.F. Groenen, Dick J. van Dijk
Econometric Institute, Erasmus University Rotterdam

Econometric Institute Report EI2006-37

31-08-2006

Abstract

This paper is concerned with time series forecasting in the presence of a large number
of predictors. The results are of interest, for instance, in macroeconomic and financial
forecasting where often many potential predictor variables are available. Most of the
current forecast methods with many predictors consist of two steps, where the large
set of predictors is first summarized by means of a limited number of factors —for
instance, principal components— and, in a second step, these factors and their lags are
used for forecasting. A possible disadvantage of these methods is that the construction
of the components in the first step is not directly related to their use in forecasting in
the second step. This motivates an alternative method, principal covariate regression
(PCovR), where the two steps are combined in a single criterion. This method has
been analyzed before within the framework of multivariate regression models. Moti-
vated by the needs of macroeconomic time series forecasting, this paper discusses two
adjustments of standard PCovR that are necessary to allow for lagged factors and for
preferential predictors. The resulting nonlinear estimation problem is solved by means
of a method based on iterative majorization. The paper discusses some numerical
aspects and analyzes the method by means of simulations. Further, the empirical per-
formance of PCovR is compared with that of the two-step principal component method
by applying both methods to forecast four US macroeconomic time series from a set of
132 predictors, using the data set of Stock and Watson (2005).
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1 Introduction

Econometric modelers face many decisions, as was recently discussed in the special ‘Collo-

quium for ET’s 20th Anniversary’ issue of this journal by, among others, Hansen (2005),

Pesaran and Timmermann (2005), and Phillips (2005). In this paper, we pay attention to

one of the basic questions in forecasting, that is, which information should be included in the

model. In many cases, observational data are available for a large number of predictor vari-

ables that may all help to forecast the variable of interest. To exploit such rich information,

one should somehow limit the model complexity, as otherwise the forecasts will suffer from

overfitting due to the well-known curse of dimensionality. For instance, if T observations

are available for a set of k predictors, then for k > T it is simply impossible to estimate a

multiple regression model involving all predictors as separate regressors. If k is large with

k ≤ T , then it is still not advisable to estimate a regression model with all predictors as

regressors because the resulting forecasts will have large variance due to overfitting. Better

forecasts may be achieved by compressing the information in the predictors somehow and

by using a forecast equation containing fewer predictors.

Several methods for forecasting with many predictors have been proposed in the liter-

ature. We refer to Stock and Watson (in press) for a survey. For instance, in ‘principal

component regression’ (PCR) the information in the k predictors is summarized by means

of a relatively small number of factors (the principal components) and these factors are used

as predictors in a low-dimensional multiple regression model. This approach is based on

dynamic factor models and is followed, for instance, by Stock and Watson (1999, 2002a,b,

2005) to forecast key macroeconomic variables from large sets of predictor variables. An

essential aspect of PCR and similar methods is that they consist of two stages, that is, first

the factors are constructed and then the forecast equation is estimated.

The goal of this paper is to analyze a method that combines the two stages of predictor

compression and forecasting in a single criterion. This method, called principal covariate

regression (PCovR), was proposed by De Jong and Kiers (1992) for multiple regression mod-

els. PCovR is a data-based method that does not employ an explicit underlying statistical

model. Therefore, we will follow a data analysis approach in our paper and we will not

assume a statistical model for the data.

In Heij, Groenen, and Van Dijk (2005), the forecast performance of PCovR and PCR

was compared for simple forecast models that employ only the current factors and not their

lags. In the current paper, we extend the PCovR method in two respects that are essential

for practical applications in economics. The first extension is to allow for preferential pre-

dictors, that is, predictors that are always included in the forecast equation, for instance,

because of their exceptional forecast power or their economic interpretation. This extension
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is relatively straightforward, as the effects of the preferential predictors and of the factors can

be estimated in an iterative way. The second extension is to allow for lagged factors in the

prediction equation, which is relevant if the effect of the economic predictors is distributed

over several periods of time. This extension is much more fundamental, as it requires non-

linear estimation methods to respect the condition that the constructed lagged factors all

originate from the same underlying factors. We propose an iterative majorization algorithm

to estimate the model parameters. We also discuss some numerical aspects of PCovR, that

is, the non-convexity of the PCovR criterion function, the issue of initial estimates, and the

choice of weight factors in the PCovR criterion.

The forecast performance of PCovR is studied by means of simulation experiments.

We investigate various factors that may affect the forecast performance, including the use of

preferential predictors, the number of time lags, the number of predictors, and the correlation

of the predictors with the variable to be predicted. We make also an empirical comparison

of PCovR and PCR by forecasting four key variables of the real US economy (production,

income, employment and manufacturing sales) from a set of 132 predictors, using the data

set of Stock and Watson (2005). The forecast quality is evaluated by means of the mean

squared (several periods ahead, out of sample) forecast error. We consider both single factor

and multiple factor models. Model selection is based on the Bayes information criterion, as

is common in PCR because of the work of Stock and Watson (1999, 2002a, 2002b, 2005),

and also on cross validation methods.

The paper is organized as follows. In Section 2, we formulate the forecasting problem with

compressed predictors in more detail and we describe the principal component method. In

Section 3, we describe the PCovR method and we present estimation algorithms and discuss

some numerical issues, in particular, the choice of PCovR weights. The performance of

PCovR under various conditions is analyzed in Section 4 by means of simulation experiments,

and Section 5 provides an empirical comparison of PCovR and PCR in macroeconomic

forecasting. Section 6 concludes with a brief overview and with some suggestions for further

research. Finally, technical results are treated in appendices.

2 Forecasting with compressed predictors

2.1 The forecast model

First we introduce some notation. The observations consist of time series of length T on a

variable to be predicted (y) and on a set of predictor variables (X) and preferential predictors

(Z; these variables are excluded from X). We will always assume that the constant term is

excluded both from X and from Z. Let k be the number of predictors and kz the number

of preferential predictors, then y is a T × 1 vector, X is a T × k matrix and Z is a T × kz
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matrix.

The idea is to summarize the information in the k variables X by means of p factors F ,

with p (much) smaller than k. Here F is a T × p matrix consisting of linear combinations

of the X variables, so that

F = XA

for some k×p matrix A. These factors are used, together with the preferential predictors, to

forecast y by means of a distributed lag model. If q lags of F and r lags of Z are incorporated

in the model then the (one-step-ahead) forecast equation for yT+1 at period T is written as

ŷT+1 = α +
q∑

j=0

fT−jβj +
r∑

j=0

zT−jγj . (1)

Here α is the constant term, βj are p × 1 vectors (j = 0, . . . , q), γj are kz × 1 vectors

(j = 0, . . . , r), and fT−j = xT−jA where xt denotes the 1× k vector of observations on the

predictors at time t. The (multi) h-step-ahead forecast equation has the same structure,

replacing ŷT+1 in (1) by ŷT+h. In the sequel, we mostly consider the case h = 1, but the

methods are easily extended for h > 1. In the empirical application in Section 5, the forecast

horizon is h = 12 months.

To apply the forecast model (1) in practice, we should choose the structure parameters

(p, q, r) and estimate the parameters (A,α, β0, . . . , βq, γ0, . . . , γr) of the forecast equation.

In this paper, we pay most attention to the estimation of the parameters for a given set of

structure parameters. However, in the simulation experiments in Section 4, we consider the

effects of misspecification of (p, q, r), and in Sections 4 and 5 we consider the forecast per-

formance if the structure parameters (p, q, r) are selected by the Bayes information criterion

or by cross validation.

2.2 Two-step principal component regression (PCR)

In this section, we briefly describe the method of principal component regression (PCR) to

estimate the forecast equation (1). We refer to Stock and Watson (1999, 2002a,b, 2005) for

more details and for applications in macroeconomic forecasting.

The PCR method consists of two estimation steps. In the first step, A is estimated

by means of principal components. That is, the p factors are obtained by minimizing the

squared Frobenius norm ||X − X̂||2 under the restriction that X̂ has rank p. The squared

Frobenius norm of a matrix is simply the sum of squares of all elements of the matrix.

The X-variables should be standardized to prevent scale effects. For instance, each column

(variable) of X is scaled to have zero mean and unit norm.

The estimates A can be obtained from the singular value decomposition (SVD) of X.

More precisely, let X = USV ′ be an SVD of X where the singular values in the diagonal
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matrix S are listed in decreasing order. Then X̂ = UpSpV
′
p where Up and Vp consist respec-

tively of the first p columns of U and V and where Sp is the p×p diagonal matrix with the p

largest (non-zero) singular values of X on the diagonal. Define the k× p matrix A = VpS
−1
p

and p × k matrix B = SpV
′
p , then X̂ = XAB and (A,B) provides the minimizing solution

of

||X −XAB||2, with A k × p and B p× k. (2)

It is easily checked that the factors F = XA satisfy F ′F = A′X ′XA = Ip, so that the

p factors in F are scaled and mutually orthogonal. The factors F = XA are called the

principal components of X.

In the second step, the parameters (α, β0, . . . , βq, γ0, . . . , γr) in (1) are estimated by least

squares (OLS), for given values of A. Let F = XA with corresponding lagged matrices

F (−1), . . . , F (−q), and let Z(−1), . . . , Z(−r) be the lagged matrices of Z. Then the second

step corresponds to minimizing

||y − α−
q∑

j=0

F (−j)βj −
r∑

j=0

Z(−j)γj ||2, (3)

where some initial observations —that is, the first max(q, r) ones— should be dropped

because of missing observations for the lagged terms of F and Z.

Summarizing, PCR consists of the (SVD) minimization (2) followed by the (OLS) mini-

mization (3). In the next section, we consider a method that integrates these two steps by

minimizing a single criterion function.

3 Principal covariate regression (PCovR)

3.1 Introduction

In this section, we consider a method for forecasting with many predictors that combines the

two stages of predictor compression and estimating the parameters of the forecast equation

into a single criterion. This method is called ‘Principal Covariate Regression’ (PCovR) and

was proposed by De Jong and Kiers (1992) within the framework of multiple regression

models. We first describe ‘standard’ PCovR and we discuss extensions with preferential

predictors in Section 3.2 and with lagged factors in Section 3.3.

In PCovR, the parameters are estimated by minimizing a weighted average of the forecast

errors (3) (without preferential predictors Z and without lags of F , so that q = 0) and of

the predictor compression errors (2). For given weights w1 > 0 and w2 > 0 and for given

number of factors p, the criterion to be minimized is

f(A, B, α, β) = w1||y − α−XAβ||2 + w2||X −XAB||2, (4)
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where the T×p matrix F = XA consists of p factors that compress the predictor information

in the T × k matrix X. As before, A is a k × p matrix of rank p, B is a p × k matrix, α

is a scalar and β is a p × 1 vector. Clearly, if (A,B, α, β) is an optimal set of coefficients

then (AR, R−1B, α,R−1β) is also optimal for every invertible p× p matrix R. Therefore, A

may be chosen such that F ′F = A′X ′XA = Ip, as p ≤ rank(X). With this restriction, the

parameters are identified up to an orthogonal transformation R, that is, with R′R = Ip.

The vector norm in (4) is the Euclidean norm and the matrix norm is the Frobenius

norm. To prevent scaling effects of the X-variables, we will assume that all variables —that

is, all columns of X— are scaled to have mean zero and norm one. Further, because only

the relative weight w1/w2 is of importance, we consider weights of the form

w1 =
w

||y||2 , w2 =
1− w

||X||2 , (5)

with 0 ≤ w ≤ 1. For scaled predictor data there holds ||X||2 = k, where k is the number of

predictor variables. The user has to choose the PCovR weight w, balancing the objectives of

good predictor compression for X (for w small) and good (in-sample) fit for y (for w large).

The parameter w should be chosen between 0 and 1, because otherwise the criterion (4)

becomes unbounded and has no optimal solution. If the weight w tends to 0 then PCovR

converges to Principal Components (step 1 in PCR), and if w tends to 1 then PCovR

converges to OLS.

The minimization of (4) is a nonlinear —in fact, bilinear— optimization problem, because

of the product terms Aβ and AB. The estimates can be obtained by means of two SVD’s,

see Heij, Groenen, and Van Dijk (2005). We refer to De Jong and Kiers (1992) for further

background on PCovR in multiple regression models. The next two subsections discuss two

extensions that are needed in time series forecasting, namely, the inclusion of preferential

predictors and of lags in the forecast equation (1).

3.2 PCovR with preferential predictors

In many cases, one wishes to include some of the variables explicitly in the forecast equation,

and not indirectly via the constructed factors. For instance, to predict y one may wish to

use lagged values of y or variables closely related to y, and possibly also some variables

suggested by (economic) theory. These preferential predictors are denoted by Z in the

forecast equation (1). If we assume that there are no lags, so that q = r = 0 in (1), then

the PCovR criterion with preferential predictors is given by

f(A,B, α, β, γ) = w1||y − α−XAβ − Zγ||2 + w2||X −XAB||2, (6)

where Z is a T × kz matrix and γ a kz × 1 vector.
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A simple, alternating least squares method to estimate (A, B, α, β, γ) is the following. In

Step 1, regress y on a constant and Z to get initial estimates a of α and c of γ. In Step 2,

use the residuals (y− a−Zc) and X to estimate (A,B, β) by standard PCovR as described

in the foregoing section. These steps can be iterated, where at each new iteration updates of

the estimates of α and γ are obtained by regressing y−XÂb on a constant and Z, where Â

and b are the estimates of A and β obtained in the previous iteration. At each iteration and

at both steps, the criterion value f(A,B, α, β, γ) in (6) decreases and therefore converges,

since it is bounded from below by zero.

3.3 PCovR with lagged factors

The methods discussed so far are too limited to deal with time series data, as the effect of the

predictors X and Z on y will often be distributed over several time periods. Such distributed

effects may occur, for instance, in macroeconomic applications where adjustments may be

relatively slow. In such situations it is useful to incorporate lags in the forecast equation, as

in (1) with q lags of X and r lags of Z.

Lags of preferential predictors can be incorporated simply by extending the matrix

Z with additional columns for the lagged terms, so that Z in (6) is replaced by Zr =

[Z Z(−1) . . . Z(−r)]. In principle, one possible solution to add lagged factor terms is to

extend also the original predictor matrix X with lagged terms, so that X in (6) is replaced

by Xq = [X X(−1) . . . X(−q)]. The advantage is that the parameters can be estimated

in a relatively simple way. However, this method has three important disadvantages. The

first objection is of a practical nature. The motivation for the predictor compression is that

the number of predictors k in X is relatively large. However, this dimensionality problem

is magnified if we use Xq, as this matrix has k(q + 1) columns instead of k. The second

objection is related to the interpretation of the constructed factors. If F = XA, then at time

t the p factor values Ft = XtA consist of linear combinations of the values of the original

predictor variables that are all observed at the same time t. However, factors Fq = XqA

consist of mixtures of variables measured at different points in time, which makes it more

difficult to interpret the factors. The third objection is that a large number of predictors

requires the use of relatively small values for the weight factor w, as will be explained in

Section 3.5. As Xq has much more columns than X, the weight should be decreased accord-

ingly. In this case, the relative importance of the (in-sample) fit of y in (4), (6) decreases,

which may be a disadvantage in forecasting y.

Because of these considerations, we consider the PCovR criterion that is based directly

on the forecast equation (3). The criterion is given by f = f(A,B, α, β0, . . . , βq, γ0, . . . , γr)

7



with

f = w1||y − α−
q∑

j=0

F (−j)βj −
r∑

j=0

Z(−j)γj ||2 + w2||X − FB||2

= w1||y − α−
q∑

j=0

(XA)(−j)βj −
r∑

j=0

Z(−j)γj ||2 + w2||X −XAB||2, (7)

where F = XA are the factors to be constructed and F (−j) = (XA)(−j) and Z(−j) are

lags of respectively F = F (0) = XA and Z = Z(0). We include a constant term α in (7) to

allow for possible non-zero sample means of the variables and their lags.

An advantage of this method is that the constructed factors have the usual interpretation

of linear combinations of economic variables measured at the same point in time. A com-

putational disadvantage is that the minimization of (7) can no longer be solved by SVD’s

because of the implicit parameter restrictions for the parameters of X, X(−1), . . . , X(−q)

in (7). The resulting minimization problem can be solved by an iterative approximation

method known as ‘iterative majorization’. This approach is discussed in general terms in

the next subsection, and further details are given in Appendix A.1.

3.4 Iterative majorization for PCovR with lagged factors

The idea to solve the nonlinear minimization problem (7) is to approximate the criterion

function by a simpler (quadratic) one that can be solved by SVD, and to iterate the approx-

imation to get closer and closer to the minimum of the original criterion function (7). In this

section, we give a general outline of the method, and details of the algorithm are given Ap-

pendix A.1. For more background on iterative majorization we refer to Kiers (1990, 2002),

De Leeuw (1994), Heiser (1995), Lange, Hunter and Yang (2000), and Borg and Groenen

(2005).

Note that the non-linearity is only due to the parameter matrix A. Indeed, if A is fixed

then F = XA and its lags are known, so that the parameters (α, β0, . . . , βq, γ0, . . . , γr) in

(7) can be estimated by regressing y on a constant and F and Z and their lags, and (each

column of) B can be estimated by regressing (each column of) F on X. These regression

estimates depend on A, and if we substitute the estimates in (7) then PCovR boils down to

minimizing a non-linear function f(A) of the k × p matrix A, which is normalized so that

A′X ′XA = Ip.

The idea of majorization is to find a (local) minimum of f in an iterative way, where

at each iteration the objective function f is replaced by a computationally simpler function

g, the so-called majorizing function, with the following two properties: f(A) ≤ g(A) for

all A, so that g majorizes f , and f(A) = g(A) at the current estimate A. If g is minimal

for A = A∗, then it follows that f(A∗) ≤ g(A∗) ≤ g(A) = f(A) and that f(A∗) < f(A) if
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g(A∗) < g(A). By means of this iterative majorization we obtain a sequence of estimates of

A with monotonically decreasing function values f(A). The estimates converge to a local

minimum of f under suitable regularity conditions.

As is shown in Appendix A.1, in each iteration the PCovR criterion function can be

majorized by a function g(A) = v − trace(A′V A) where the scalar v and the k × k (semi-

definite positive) matrix V are computed from the observed data (y, X,Z) and from the

estimate of A in the previous iteration. The minimization of g, that is, the maximization of

trace(A′V A) under the condition A′X ′XA = Ip, can be solved by SVD on a k × p matrix,

which provides a new estimate of A. The computations can be simplified even further to

the SVD of a p × p matrix in each iteration step. This simplification is computationally

attractive, as in practice the number of factors p will be much smaller than the number of

predictors k. Details of the algorithm are given in Appendix A.1.

We mention some numerical aspects of minimizing the PCovR criterion. The criterion

function (4) is not convex in the parameters (A,B, α, β). Therefore, the criteria (6) and

(7) are also not convex. This is shown in Appendix A.2. Further, the criterion functions

may have several local minima. As the majorization method in practice converges to a

local minimum it is not guaranteed to arrive at a global minimum. Therefore, the choice of

initial estimates may of importance, as this choice may affect the attained (local or global)

minimum. Experiments with numerous random starts and with starts based on PCR did

not reveal different local minima, as always the same forecasts of y and approximations

of X were obtained, independent of the chosen initial estimates. Therefore, it seems that

PCovR criteria like (7) do not involve serious problems with local minima, so that we will

be satisfied with the estimates obtained by the iterative majorization algorithm.

3.5 Choice of weight to prevent overfitting

The PCovR criterion functions in the foregoing sections seek to find a balance between the

two objectives to forecast y and to compress the predictive information in X by means of

a small number of factors. The weights w1 and w2 in (4), (6) and (7) are defined in (5) in

terms of the PCovR weight 0 < w < 1. In this section, we show that this weight should be

chosen sufficiently small in order to prevent overfitting of y and that the upper bound on w

decreases with the number of predictors k and with the number of factors p. For example,

if the number of predictors exceeds the number of observations so that k ≥ T , then —in the

generic case that the T ×k matrix X has full row rank— we can reconstruct any T ×1 vector

y by means of Fb = XAb. By letting w approach to 1, the PCovR criterion value in (4), (6)

and (7) decreases towards 0, so that PCovR leads to overfitting of y in such situations.

To analyze this in more detail, we will assume in this section that the data are generated

by a factor model. We refer to Bai and Ng (2002), Boivin and Ng (2006), Forni et al. (2000,
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2003), and Stock and Watson (2002a) for further background on factor models. We can

derive an upper bound for the weight w for these models, by requiring that a specifically

constructed overfitting estimate does not provide a lower PCovR criterion value than the

data generating process itself. That is, the bound is derived by preventing a specific over-

fitting estimate. Of course, other overfitting estimates should also be excluded, so that the

derived upper bound on w is not necessarily the tightest one.

In a factor model, the observed variables (y, X) are generated by underlying factors F

by means of

y = Fβ + ε and X = FΛ + V. (8)

Here F is a T × p0 matrix of (unobserved) factors, β is a p0 × 1 vector, Λ is a p0 × k

matrix of factor loadings, V and ε are respectively a T × k matrix and a T × 1 vector with

independent error terms, and (F, ε, V ) are mutually independent. The p0 factors are scaled

to have zero mean and unit covariance matrix E(F ′tFt) = Ip0 , and all observed variables

—y and the columns of X— are scaled to have zero mean and unit variance. Although the

model equations in (8) are written in non-dynamic form, lagged effects can be modelled by

including lagged factor values in the factor matrix F and by postulating a dynamic model

for the factors.

Let xi, λi and vi be the T × 1 vectors consisting respectively of the i-th column of X, Λ

and V , so that xi = Fλi + vi. Define ρ2
xiF

and ρ2
yF as respectively the squared correlation

between xi and F and between y and F . As y, xi and F all have unit variance and (F, ε, vi)

are independent, it follows that

ρ2
yF = 1− σ2

ε , ρ2
xiF = 1− σ2

vi
.

Now suppose that we model the data by means of PCovR with p factors, where p may be

equal to p0 or not. In a sense, the ‘true’ model is the one by which the data are generated (if

p ≥ p0) or the approximating model (if p < p0) obtained by taking only the first p principal

factors (that is, the ones explaining most of the variance). If we substitute the factors and

parameters of the data generating process into the PCovR criterion and approximate sample

averages by population means, we get the (asymptotic) approximations

||y − Fβ||2
||y||2 ≈ σ2

ε = 1− ρ2
yF (p),

||X − FΛ||2
||X||2 ≈ 1

k

k∑

i=1

σ2
vi

=
1
k

k∑

i=1

(
1− ρ2

xiF (p)
)
,

where ρ2
yF (p) and ρ2

xiF
(p) are the squared correlations of the first p factors of F with

respectively y and xi, with ρ2
yF (p) = ρ2

yF and ρ2
xiF

(p) = ρ2
xiF

if p ≥ p0. To simplify the

notation, we define the average correlation ρ2
XF (p) of all k predictors with the first p factors
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by

ρ2
XF (p) =

1
k

k∑

i=1

ρ2
xiF (p),

so that (1/k)
∑k

i=1(1− ρ2
xiF

(p)) = 1− ρ2
XF (p). The PCovR criterion value (4), (5) obtained

for the parameters of the data generating process is

w
||y − Fβ||2
||y||2 + (1− w)

||X − FΛ||2
||X||2 ≈ w(1− ρ2

yF ) + (1− w)
(
1− ρ2

XF (p)
)
.

We wish to prevent possible overfitting of y in situations where the number of predictors

k is relatively large as compared to the number of observations T . For this purpose, we

consider one particular option for overfitting, that is, to use a single factor to fit y with

a maximal number of zero errors and to use the other (p − 1) factors to approximate the

predictors X. If k < T then we can create (at least) k errors in y − ŷ = y − XAb with

value zero, with corresponding (sample) R-squared R2
yŷ ≈ 1 − (T − k)/T = k/T and with

||y − ŷ||2/||y||2 ≈ 1−R2
yŷ. If k ≥ T then we can recreate y = XAb without errors and with

R2
yŷ = 1. The remaining (p−1) factors to approximate X can be chosen, for instance, as the

(p−1) principal factors of the data generating process with resulting fit ||X− X̂||2/||X||2 ≈
1− ρ2

XF (p− 1). The resulting overfitted model has an (asymptotic) PCovR criterion value

w(1−R2
yŷ) + (1− w)

(
1− ρ2

XF (p− 1)
)
.

To prevent this kind of overfitting, this (asymptotic) PCovR criterion value should be larger

than the one obtained for the parameters of the data generating process. This condition is

equivalent to

w(ρ2
yF −R2

yŷ) + (1− w)
(
ρ2

XF (p)− ρ2
XF (p− 1)

)
> 0,

which provides the following upper bound for the weight w:

w <
ρ2

XF (p)− ρ2
XF (p− 1)

(R2
yŷ − ρ2

yF ) + (ρ2
XF (p)− ρ2

XF (p− 1))
.

As discussed before, R2
yŷ ≈ min(1, k/T ), but the population correlations in (9) are of course

unknown. In Appendix A.3, we prove that the correlation between X and F with p factors

can be approximated by

ρ2
XF (p) ≈

∑p
i=1 s2

i∑k
i=1 s2

i

,

where s2
i are the squared singular values of X, in decreasing order. This means that ρ2

XF (p)−
ρ2

XF (p − 1) ≈ s2
p/

∑k
i=1 s2

i . Further, to stay on the safe side, we take ρ2
yF = 0, which gives

the following upper bound for w.

w <
s2

p/
∑k

i=1 s2
i

min(1, k/T ) + s2
p/

∑k
i=1 s2

i

. (9)
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If p > 1 then it is also possible to spend more factors to fit y, which will increase the fit if

k < T . For instance, if pm ≤ p is the largest value with pmk ≤ T then we can use pm factors

to fit y and (p−pm) factors to fit X. In this way, we can derive another upper bound for w.

However, as is proven in Appendix A.3, this bound is not smaller than that in (9), so that

we will use (9) as upper bound.

It should be noted that the bound (9) is a rough approximation, as we only considered

one single option for overfitting. Even lower bounds may be necessary in practice to exclude

other types of overfitting. Our main message is that overfitting can only be prevented if

the weight is chosen small enough. In particular, the bound may become very small for rich

predictor sets with k relatively large as compared to T and with slowly decaying singular

values. In the extreme case without decay, that is, if all singular values of X are equal, the

bound becomes

w <
1

1 + min(k, k2/T )
→ 0 if

k2

T
→∞. (10)

As w = 0 corresponds to PCR, this result shows that PCovR becomes asymptotically

equivalent to PCR in such situations.

4 Simulation experiment for PCovR

4.1 Data generating process

We illustrate the PCovR method of Sections 3.3 and 3.4 by simulating data from simple data

generating processes (DGP’s). The specification of the DGP and of the employed PCovR

model are varied to investigate the forecast performance under different conditions. For

instance, we vary the number of predictor variables and the lag structure of the DGP, the

correlations between the observed variables, the lag structure of the PCovR model, and the

choice of the PCovR weight. In all cases, the purpose is to forecast the dependent variable

y one-step-ahead on the basis of observed past data on y and on a set of predictors X and,

possibly, on a set of preferential predictors Z. The forecast quality is measured by the mean

squared forecast error (MSE) of y over a number of simulation runs.

More specifically, we consider the following data generating process:

yt = x∗t−L1
+ γzt−L2 + εt. (11)

Here y, x∗ and z are observed scalar variables and ε is (unobserved) white noise. The

predictors x∗ and z are all independent white noise processes with zero mean and unit

variance. The information set at the forecast moment consists of observations over the time

interval t = 1, . . . , 100 for yt and over the interval t = 1, . . . , 101 for a set of k variables X

(including x∗) and for the single variable z, and the purpose is to forecast yt at t = 101.
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We consider the following specifications of the DGP. The number of predictors k is either

10, 40 or 100; note that in the last case the number of predictors is equal to the number

of observations. The lag L1 of x∗ is either 1 or 5. The preferential predictor z may be

absent (for γ = 0, which we will sometimes indicate by writing L2 = −1), and if z is present

(with γ 6= 0) then the lag L2 is either 1 or 5. Further, we consider values of 0.5 and 0.9 for

the squared partial correlations ρ2
yx and ρ2

yz, defined as the squared correlation respectively

between (yt − γzt−L2) and x∗t−L1
and between (yt − x∗t−L1

) and zt−L2 . The desired value

of ρ2
yx is achieved by choosing the variance σ2

ε of ε appropriately, and ρ2
yz is achieved by

choosing γ appropriately. More precisely, ρ2
yx = var(x∗)/var(x∗ + ε) = 1/(1 + σ2

ε) so that

σ2
ε =

1− ρ2
yx

ρ2
yx

, (12)

and ρ2
yz = var(γz)/var(γz + ε) = γ2/(γ2 + σ2

ε) so that

γ2 = σ2
ε

ρ2
yz

1− ρ2
yz

=
ρ2

yz(1− ρ2
yx)

ρ2
yx(1− ρ2

yz)
. (13)

For instance, for ρ2
yx = 0.5 and ρ2

yz = 0.5 we take σ2
ε = 1 and γ = 1, and for ρ2

yx = 0.9 and

ρ2
yz = 0.9 we take σ2

ε = 1/9 and γ = 1.

With three options for k, six for the lag structure (L1, L2), and four for the correla-

tions (ρ2
yx, ρ2

yz), this gives in total seventy-two configurations. However, in the twenty-four

combinations with γ = 0, the correlation between y and z is by definition zero so that the

distinction by means of ρ2
yz drops out, reducing the number of configurations by twelve.

That is, we consider in total sixty specifications of the DGP.

4.2 Forecast models and evaluation

The considered PCovR models have either one or two factors, so that p = 1 or p = 2.

The maximum lags of the factor and the preferential predictor are chosen to be equal, with

L = q = r = 1 or 5. This set-up implies that some of the models are over-specified, with

too many factors, with a superfluous preferential predictor, or with too large lags. Other

models are under-specified, with too small lags. Five values are considered for the PCovR

weight w, namely, (0.0001, 0.01, 0.1, 0.5, 0.9).

With two options for p, two for the lags (q, r) and five for w, this gives in total twenty

PCovR models. However, for some DGP’s with many predictors we do not consider the

largest weights, because of the bound (9) derived in Section 3.5. For this simulation, we can

easily compute the (theoretical) singular values needed in (9), as all variables in the T × k

matrix X (with k ≤ T ) are independent with equal variance, so that the covariance matrix

of X has k identical eigenvalues and we can take s2
i = 1 in (9). As k ≤ T , the bound then
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becomes

w <
1/k

(k/T ) + (1/k)
=

1
1 + k2/T

.

As T = 100, the bound gives w < 0.5 for k = 10 , w < 0.06 for k = 40, and w < 0.01 for

k = 100. For the sake of illustration, we will use a maximum weight of w = 0.9 for k = 10,

of w = 0.5 for k = 40, and of w = 0.1 for k = 100, to check for possible overfitting in these

situations.

For each DGP we perform one thousand simulation runs. The data of each run are used

to compute one-step-ahead forecasts of y for each of the twenty PCovR models. The models

are compared by the MSE, that is,

MSEj =
1

1000

1000∑

i=1

(yi − ŷij)2

σ2
ε

(14)

where j denotes the employed PCovR model, yi is the actual value of y at the forecast time

t = 101 in the i-th simulation run, and ŷij is the value forecasted by method j in the i-th

simulation run. The squared forecast error (yi − ŷij)2 is divided by the error variance σ2
ε ,

as this provides a natural benchmark for the forecast errors that would be obtained if the

DGP (11) were estimated perfectly. So we should expect that MSE > 1 in all cases, and

values close to 1 indicate near optimal forecasts.

The variance of the dependent variable y depends on the DGP. Therefore, to facilitate

the interpretation of the reported MSE values, we also report the MSE for the model-free

‘zero-prediction’ ŷ = 0, which is equal to var(y)/σ2
ε . We call this the relative variance of y,

denoted by rvar(y). The variance of y in (11) is (1 + γ2 + σ2
ε), and with the expressions for

σ2
ε and γ2 obtained in (12) and (13) we get

rvar(y) =
var(y)

σ2
ε

= 1 +
1
σ2

ε

+
γ2

σ2
ε

= 1 +
ρ2

yx

1− ρ2
yx

+
ρ2

yz

1− ρ2
yz

.

For each PCovR model, the parameters are estimated by minimizing the criterion function

(7) in Section 3.4 by means of iterative majorization. The employed tolerance to stop the

PCovR iterations is that the relative decrease in the criterion function (7) is smaller than

10−6. However, as the number of considered DGP and model combinations is large (around

a thousand, resulting in around a million simulations), we limit the number of PCovR

iterations to a maximum of one hundred in each instance.

4.3 Forecast results

The MSE results of the simulations are shown in Table 1. The DGP’s are shown in rows and

the PCovR models in columns. To limit the size of the table, we report only the outcomes

for thirty-six of the sixty considered DGP’s (i.e., with identical correlations of y with x and

z, equal to 0.5 or 0.9) and for four of the five considered PCovR weights w (i.e., 10−4, 0.1,
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0.5 and 0.9) (more detailed results are available on request). The results for w = 0.01 are

very close to those for w = 10−4 for k = 10 and k = 40, with MSE differences of at most

3%. The MSE’s for w = 10−4 are also very close to those of PCR which are, therefore, not

reported separately. Further, in most cases the results for (ρ2
yx, ρ2

yz) = (0.5, 0.9) are similar

to those for (0.5,0.5), and the results for (0.9,0.5) are similar to those for (0.9,0.9).

As the MSE in (14) is measured relative to the best (DGP) predictor, all MSE values are

larger than 1. The column ‘rvar(y)’ shows the MSE of the ’zero-prediction’, so that MSE

values between 1 and ‘rvar(y)’ show the forecast gain of PCovR. The model is correctly

specified if p = 1 and L = L1 = L2, whereas the model is under-specified if L < max(L1, L2)

and over-specified if p = 2 or L > min(L1, L2). As was discussed in the previous section,

for some DGP’s the PCovR model is not estimated for w = 0.9 and w = 0.5 so that the

columns for these weights are not complete.

<< Table 1 to be included around here. >>

First we discuss the results for the relatively simple case of k = 10 predictors. In this case,

the forecasts are in general best for large PCovR weights, that is, for w = 0.5 and w = 0.9.

The MSE values for p = 1 and w = 0.9 vary roughly between 1.2 and 1.4 for all DGP’s,

provided that the lags in the PCovR model are not too small. Of course, if the model lag

L is smaller than the DGP factor lag L1, then the predictors x do not help in forecasting

y because the relevant predictor x∗t−L1
is uncorrelated with all considered predictors xi,t−L

with L < L1. As expected, the MSE increases for over-specified models, i.e., if the lag of

the model is larger than that of the DGP or if the model has p = 2 factors instead of p = 1

(note that the DGP can be forecasted by a single factor, namely x∗). For instance, for the

DGP with lags L1 = L2 = 1, the MSE for w = 0.5 and 0.9 is around 1.2 for the PCovR

model with correct specification (p, L) = (1, 1), whereas it is around 1.4 for (p, L) = (1, 5),

1.3 for (p, L) = (2, 1), and 1.7 for (p, L) = (2, 5).

For the case of k = 40 predictors, most MSE values are somewhat larger than for k = 10.

For DGP’s with large predictor lag L1 = 5, PCovR produces relatively better forecasts for

ρ2
y = 0.9 than for ρ2

y = 0.5. Note that, for L = 5, the task is to find the DGP predictor

x∗t−L1
in the set of 240 possible predictors consisting of the forty predictors and their five

lagged values. The optimal weight w depends on the DGP. For instance, for the simple DGP

with (L1, L2, ρ
2
y) = (1,−1, 0.9), the best choice is w = 0.5, whereas for the more complex

DGP with (L1, L2, ρ
2
y) = (5, 1, 0.5) it is w = 10−4. Further note that the MSE for w = 0.5 is

relatively large in many cases, which is consistent with the result in Section 3.5 that suggests

an upper bound (for k = 40 and T = 100) of w < 0.06. In general, the optimal weight tends

to be smaller for DGP’s with more lags and smaller correlations. In the next section, we

will consider data-based methods to select the weight.
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Finally, for the case of k = 100 predictors, acceptable results are only obtained for the

smallest considered weight w = 10−4. Even for w = 0.01 most of the forecasts are useless, as

the MSE is much larger than that of the naive zero-prediction, and for w > 0.01 the forecasts

are even worse. This finding is in line with the bound w < 0.01 for this case, but the results

for w = 0.01 indicate that this bound may still be too large to prevent overfitting. PCovR

with w = 0.0001 does not suffer from overfitting, but it does also not succeed in exploiting

the information in the hundred predictors x. Indeed, the zero-prediction is only beaten for

DGP’s with a preferential predictor (L2 = 1 or 5), whereas PCovR performs worse than this

simple benchmark for DGP’s without preferential predictor (L2 = −1).

As was stated in Section 4.2, the number of majorization iterations to estimate each

PCovR model is limited to at most one hundred. For k = 10, this iteration bound is nearly

never reached, except for (p, L,w) = (2, 5, 0.9), that is, for the case of an over-specified model

with large PCovR weight. In general, the iteration bound is restrictive only in overfitting

situations where the PCovR weight w is larger than the upper bound of Section 3.5. We

investigated for several of these cases whether the early stop of the iterations caused the

large MSE values, but this does not seem to be the case. If no upper bound on the number

of iterations is imposed in these overfitting cases, then the PCovR majorization algorithm

may take a very large number of iterations (up to several thousands), but the forecasts do

not improve.

4.4 Model selection

The results in the foregoing section show that the optimal PCovR weight w depends on

the DGP and on the applied forecast model. Therefore, we now consider the performance

of PCovR if the structure parameters of the forecast model are not fixed a priori but are

selected by using the Bayes information criterion (BIC) or cross validation (CV). That is,

for each simulated data set, a set of models with different weights w, number of factors p

and lag lengths q and r are estimated, and the model parameters (p, q, r, w) are selected by

minimizing BIC or the cross validation MSE. In addition, we consider also the selection of

(p, q, r) for a given PCovR weight w. The set of considered models is larger than that of

Section 4.3, as the models have p = 1, 2, or 3 factors with possibly different lags q and r,

which are both chosen from the set {−1, 0, 1, 2, 5, 6, 10}. Here q = −1 (r = −1) means that

the forecast equation (1) does not contain any factor (preferential predictor). The considered

DGP’s have lags -1, 1 or 5, so that the model set contains models with the correct DGP

lags as well as models with too small or too large lags. The considered PCovR weights are

{10−4, 0.01, 0.1, 0.5, 0.9}. This gives in total 735 models.

For each simulated data set, the task is to select one of the 735 models. For BIC this

is done as follows. For each model (p, q, r, w), the PCovR criterion (7) is minimized with
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k = p factors. This delivers fitted values of yt on the time interval t ≤ 100, by substituting

the constructed PCovR factors ft and the PCovR coefficients of (7) into the right-hand-side

of the forecast equation (1). Let the corresponding residual variance be s2, then the BIC

value of the model is log(s2) + d log(Te)/Te, where d = p(q + 1) + r + 2 is the number of

parameters in (1) and Te = 100 − max(q, r) is the effective number of observations in (1).

The model with the lowest BIC value is selected to forecast y on t = 101.

As an alternative, we consider five-fold cross validation to select the model. In this case,

the observation sample with t ≤ 100 is split into five equally large parts. Each of the five

parts is used as a validation sample, in which case the data of the other four parts are

used to estimate PCovR models and to compute the corresponding MSE in forecasting the

validation sample. The selected model is the one with the smallest average MSE over the five

validation samples. This selected model is estimated once more, now using all observations

t ≤ 100 in the minimization of (7), and the resulting model is used to forecast y on t = 101.

The MSE results are in Table 2, and Table 3 contains information on the selected models

and weights. We report the results only for a subset of all considered DGP’s, the same as

in Table 1. The columns show the MSE if BIC or CV are used for a given weight w, and

also if in addition this weight is also selected by BIC or CV. For BIC, it turns out that the

selected weight is always minimal (w = 10−4), although this weight is often not the one

giving the best forecasts. The reason is that the fit of y contributes the term log(s2) to BIC,

which in our simulations is relatively small as compared to the term pq log(Te)/Te related

to the number of factor lags. As the results in Table 3 show, BIC prefers to choose q (too)

small, which goes at the expense of larger values of s2. This lack of attention to the fit of y

corresponds to a small PCovR weight w in (4) and (5). In short, BIC is not suited well to

choose w, and Table 2 shows that cross validation works much better in this respect.

<< Tables 2 and 3 to be included around here. >>

Table 2 shows that CV has lower MSE than BIC for nearly all DGP’s with k = 10 and

k = 40. We mention some results of interest, consecutively for k = 10, 40 and 100. For

k = 10, the differences between BIC and CV are not so large for DGP’s with factor lag

L1 = 1, but if L1 = 5 then CV is far better than BIC for all weights. Full CV to choose

all model parameters (p, q, r, w) works reasonably well in all cases. Table 3 shows that the

average selected weight is relatively large, with averages of around 0.65 for ρ2
y = 0.5 and 0.85

for ρ2
y = 0.9. Table 3 shows also that CV tends to choose much fewer factors p than BIC,

that CV performs much better in selecting the factor lag q (BIC mostly chooses q much

smaller than the DGP lag L1), and that BIC tends to be better in selecting the lag r of the

preferential predictor.
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The results for k = 40 are roughly similar. Again, CV works better than BIC in most

cases, and full CV gives good MSE results. The selected weight is smaller than for k = 10,

with averages smaller than 0.1 for ρ2
y = 0.5 and between 0.3 and 0.5 for ρ2

y = 0.9. As

compared to BIC, CV again chooses fewer factors and it is better in selecting q, whereas

BIC is better in selecting r. For k = 100, we only consider w = 10−4. CV and BIC

give comparable MSE’s in this case. CV performs again better in the selection of p and

q, although it has problems in choosing q if the DGP lag is L1 = 5, and BIC is better in

selecting r.

5 Empirical comparison of PCovR and PCR

5.1 Data and forecast design

We use the data set of Stock and Watson (2005) for an empirical comparison of PCovR

with PCR. In a series of papers, Stock and Watson (1999, 2002a, 2002b) applied PCR to

forecast key macroeconomic variables in the US for different forecast horizons, using monthly

observations of a large set of predictors. Here, we consider forecasts of four variables of the

real economy, that is, industrial production, employment, income, and manufacturing sales,

with forecast horizons of six, twelve and twenty-four months. As predictors we take 128

variables of the 132 in Stock and Watson (2005) (we exclude their four regional housing

starts variables because of some missing observations, but we include the series of total

housing starts). The monthly data are available over the period 1959.01 to 2003.12 and are

transformed to get stationary series without serious outliers. We refer to Stock and Watson

(2005) for a more detailed description of the used data set.

Our purpose is to illustrate the results of PCovR in forecasting the four mentioned series

and to compare the outcomes with those of PCR. We follow the same forecast set-up as

in Stock and Watson (2002b), where the four variables are forecasted from a different set

of predictors over a shorter observation interval. We use the forecast model (1), which is

called a diffusion index model with autoregressive terms and lags (DI-AR-Lag) in Stock and

Watson (2002b). They also consider restricted models without autoregressive terms and

factor lags, but here we will restrict the attention to the DI-AR-Lag model. The forecasted

variable is the (annualized) growth of the economic variable of interest over the considered

forecast horizon, and the preferential predictor zt is the one-month growth of the economic

variable over the last month. Simulated out-of-sample forecasts are computed over the

period 1970.01 till 2003.12−h, where h is the forecast horizon, and the forecast quality is

measured by the MSE of the corresponding 408− h forecasts over this period. This MSE is

expressed relative to an AR benchmark, that is, the forecast model (1) with q = −1 so that

it contains only a constant and zT and its lags as predictors.
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We consider the same model set as in Stock and Watson (2002b), with 1 ≤ p ≤ 4 factors,

0 ≤ q ≤ 2 factor lags, and −1 ≤ r ≤ 5 autoregressive lags, where r = −1 means that also

the zero-order lag term zT is missing in (1). This setting defines a set of 84 models. For

PCovR, we consider the weights w in the set {0.01, 0.1, 0.3, 0.5, 0.7, 0.9}, giving in total 504

models. The results for weights w < 0.01 are close to those of PCR and are therefore not

reported. Apart from multiple factor models (with p ≤ 4), we consider also single factor

models (with p = 1).

For a fair comparison of PCovR with PCR, we optimize the set-up for PCR in three

respects. Firstly, we use the PCR algorithm proposed in Heij, Van Dijk and Groenen

(2006), because this improves the PCR forecasts somewhat as compared to the method

of Stock and Watson (2002b). Secondly, we use a moving window of fifteen years (180

observations) to estimate the forecast model, instead of the expanding window used in Stock

and Watson (2002b). This choice reduces the MSE of PCR by around 5 − 10% for most

variables and forecast horizons (here we do not provide further details, which are available

on request). Thirdly, we applied PCR both with BIC and with CV, and it turned out that

BIC gives the lowest MSE in the far majority of cases. Therefore, we use BIC to select the

model parameters (p, q, r), both for PCR and for PCovR. The PCovR weight w is chosen

afterwards by CV, as follows. Let (pw, qw, rw) be the model selected by BIC for each of

the six considered weights w, then w is selected by CV on the resulting set of six models.

We use a CV algorithm with buffers, as proposed by Burman, Chow and Nolan (1994) and

Racine (2000), to reduce the correlation between the estimation and validation samples.

More precisely, the window of 180 observations is split into three parts, a validation sample

of 36 observations, two buffers around this sample of 12 observations, and an estimation

sample consisting of the remaining 120 observations.

In the above set-up, with T = 180 observations and k = 128 predictors, the rough upper

bound (10) on the weight gives w < 0.01. This bound means that a direct application of

PCovR, with such small weights, will give results that are close to PCR. As we aim for

a comparison of both methods, larger weights are of more interest, which is possible by

reducing the number of predictors. For simplicity, we use a method that does not affect

PCR, namely, by replacing the predictors by their leading principal components. More

precisely, at time t we replace the 180 × 132 matrix Xt with the observations of the 132

predictors on the estimation interval [t−179, t] by the 180× k̂ matrix X̂t, defined as follows.

Let Xt = UtStV
′
t be an SVD of Xt, then X̂t = US where U consists of the first k̂ columns

of Ut and S consists of the first k̂ rows and columns of St. We choose k̂ = 10, so that the

upper bound (10) becomes w < 0.65. PCR with p ≤ 4 is not affected by this change of

predictors, as the four leading principal components of Xt and X̂t are identical, that is, the

first four columns of Ut. The choice of k̂ = 10 is somewhat arbitrary, as smaller values give
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a larger upper bound (10) and larger values retain more of the original predictor variance.

PCR uses at most four principal components, which (measured over the full sample period)

account for roughly one-third of the total predictor variance. Ten principal components

account for around one half of this predictor variance, whereas accounting for two-thirds of

the variance requires twenty components, in which case the bound (10) becomes w < 0.3.

We take k̂ = 10 to allow for somewhat larger weights. In practice, the joint choice of T and

k̂ is of interest, but we will not analyze this any further here.

5.2 Forecast results

The forecast results of PCovR and PCR are summarized in Table 4 (for single factor models

with p = 1) and Table 5 (for multiple factor models with p ≤ 4). The table rows show the

four forecasted variables and the three considered forecast horizons, and the columns show

the applied forecast method. The MSE’s of PCR and PCovR are measured relative to the

MSE of the AR benchmark model. For PCovR, results are shown both for the (data-based,

time dependent) CV weights w and for the (a posteriori, time independent) optimal choice

of a fixed weight w. This (a posteriori) optimal choice is not feasible in practice, but it

serves as a benchmark to evaluate the quality of the CV weights. The last four columns

show the forecast gains of PCovR as compared to PCR over the full sample and over three

sub-samples, two (70-80 and 81-91) with 132 months and one (92-03) with 144− h months

where h is the forecast horizon.

<< Tables 4 and 5 and Figure 1 to be included around here.>>

Table 4 shows that the PCR and PCovR single factor models both improve much on the

AR benchmark and that PCovR provides better forecasts than PCR in nearly all cases.

The results of PCovR with CV weight (column ‘PCovR’) are, as expected, somewhat worse

than with a posteriori chosen fixed weight (column ‘PCovR*’), but cross validation works

reasonably well. The gains are, on average, largest for production and sales, and smallest

for income. Averaged over the four variables and over the full sample period, the MSE gain

of PCovR as compared to PCR is 18.6% for h = 6, 23.4% for h = 12, and 26.3% for h = 24.

The gain tends to be larger for longer forecast horizon and for early sample periods.

A comparison of Tables 4 and 5 shows that multiple factor models provide better fore-

casts than single factor models. Further, PCR improves relatively more than PCovR by

adding extra factors. Stated otherwise, the first PCovR factor is a better predictor than

the first PCR factor, but additional PCR factors add more to the forecast power than ad-

ditional PCovR factors. For a horizon of h = 6 months, the full sample gains are 7.9% for

employment, 4.9% for sales, 0.5% for income and −4.7% for production, with an average

20



gain of 2.1%. The forecasts are worse for h = 12, with an average loss of 3.2%. The most

consistent gains are for h = 24, with an average gain of 6.0%. PCovR does not succeed in

forecasting the production series any better than PCR, but forecast gains can be achieved

for the other three series. This result means that, with the set-up chosen in Section 5.1,

none of the two methods is uniformly better.

Figure 1 shows the MSE gains when evaluated over forecast intervals starting in 1970.01

and ending at varying times, ranging from 1975.01 till the end of the full sample period.

The gains are most persistent for h = 24, with largest gains in initial periods and with losses

sometimes later on. As concerns the prediction of the production series, for h = 6 PCovR

looses much on PCR in initial periods and it relatively improves in later periods, whereas

for h = 24 it gains much in initial periods but looses afterwards.

5.3 Further comparison of PCovR and PCR

Table 6 summarizes some results on the structure of the selected multiple factor forecast

models of PCovR and PCR and on the series of forecast errors of both methods. The rows

in this table are the same as in Tables 4 and 5. The first columns of the table show the mean

values of the parameters (p, q, r, w) of the selected forecast models. On average, PCovR uses

somewhat fewer factors than PCR, whereas the average lags q and r are comparable for both

methods. The cross validation weight w does not vary much across the considered variables

and forecast horizons and lies mostly between 0.2 and 0.4.

The last columns in Table 6 show three statistics of the forecast errors, that is, the mean

value, the mean absolute value, and the standard deviation. PCR and PCovR have roughly

the same bias and variance. The bias tends to be somewhat smaller for PCovR, and the

variance is smaller for PCR if h = 12 but it is smaller for PCovR if h = 24. Both methods

have a comparable mean absolute error. This result indicates that outliers do not play an

important role, which could be expected because the data in Stock and Watson (2005) have

been treated for outliers.

We also performed the test of Diebold and Mariano (1995), with robust standard errors,

to examine whether PCovR provides a significantly lower MSE than PCR. For multiple

factor models, the differences are not significant when evaluated over the full sample period.

However, PCovR is significantly better than PCR for some of the variables over some of the

subperiods 1970-1980, 1981-1991 and 1991-2003, six times at a 10% significance level and

four times at a 5% level. Further, PCovR is never significantly worse than PCR for any of

the series over any of the subperiods or over the full sample period, at a 10% significance

level. As could be expected from the results in Table 4, PCovR is often significantly better

than PCR for single factor models.
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<< Table 6 to be included around here. >>

6 Conclusion

In this paper, we considered the Principal Covariate Regression (PCovR) method. This

method estimates factors that approximate the predictors X and the dependent variable y

by minimizing a criterion that consists of a weighted average of the squared errors for y

and those for X. We presented an iterative estimation method for the resulting nonlinear

estimation problem and discussed the choice of weights in the criterion function. The forecast

quality of PCovR under various circumstances was analyzed by means of a simulation study.

Further, an empirical comparison of PCovR and PCR was made by one-year-ahead forecasts

of four macroeconomic variables (production, income, employment and manufacturing sales).

The results show that PCovR can be a valuable tool in forecasting.

We conclude by mentioning some extensions that are of possible interest. In the empirical

application, the model structure (p, q, r) was selected by BIC. Another option is to use

forecast oriented selection methods, for instance, cross validation methods. Further, we

showed that, to prevent overfitting, the PCovR weight should be small if the number of

predictors is large. It is of interest to develop methods for regularization of PCovR to

prevent overfitting for larger weights. As an alternative, first a subset of the predictors can

be selected and then PCovR can be applied (with larger weights) on this smaller set.
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Appendix

This appendix contains proofs of some results and an algorithm for PCovR with lagged

factors. Interested readers can contact the authors for Matlab routines of this algorithm.

Appendix A.1 (Section 3.4)

Majorization algorithm for PCovR with lagged factors

We present an iterative majorization algorithm for the minimization of (7) in Section 3.4.

We assume that the estimation interval contains no ‘missing’ observations. Such missing

observations may occur in cross validation if the validation sample is taken somewhere in the

middle of the sample. The algorithm should be slightly adjusted in that case to incorporate

the selection of data for the estimation sample, but for simplicity we do not discuss the

details here. First we derive the various required steps in (a) to (e), and then we summarize

this by means of a step-by-step algorithm in (f).

(a) Simplification of the optimization problem

For given values of (A,B, β0, . . . , βq), the parameters (α, γ0, . . . , γr) are simply obtained by

regressing the residuals (y −∑q
j=0(XA)(−j)βj) on a constant and Z and its r lags. Next,

the parameters (A,B, β0, . . . , βq) can be updated by applying the majorization algorithm

below on the residuals (y − α −∑r
j=0 Z(−j)γj) and X. Therefore, in what follows we can

restrict the attention to (7) without constant term and without Z and its lags, so that we

wish to minimize

f(A,B, β) = w1||y −
q∑

j=0

(XA)(−j)βj ||2 + w2||X −XAB||2. (15)

(b) Notation

We introduce some notation, in addition to the notation used in Section 3.4. Because of

the lags of F and Z in (7), the relevant vector for y in (7) contains the observations on

the time interval [m + 1, T ] where m = max(q, r). By X we denote from now on the ‘q-

past extended’ (T −m + q) × k matrix with the values of the predictors over the interval

[m− q + 1, T ]. Let Sj be the j-th (T −m)× (T −m + q) shift matrix consisting of (q − j)

columns of zeros, followed by the identity matrix, followed by j columns of zeros, that is,

Sj = [O(T−m)×(q−j) I(T−m)×(T−m) O(T−m)×j ]. Then the criterion (15) can be written

more explicitly as

f(A,B, β) = w1||y −
q∑

j=0

SjXAβj ||2 + w2||X −XAB||2
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= w1||y −
q∑

j=0

Sjcj ||2 + w2||X −XAB||2, (16)

where cj = XAβj . Then c = (c′0, . . . , c
′
q)′ is a (q+1)(T−m+q)×1 vector, R = [S0 S1 . . . Sq]

is a (T −m)× (q + 1)(T −m + q) matrix,
∑q

j=0 Sjcj = Rc, and

||y −
q∑

j=0

Sjcj ||2 = (y −Rc)′(y −Rc) = ||y||2 + c′R′Rc− 2c′R′y. (17)

Here R′R is the (q+1)(T −m+q)× (q+1)(T −m+q) matrix with (T −m+q)× (T −m+q)

blocks S′hSi on the (h, i)-th block position (h, i = 0, . . . , q).

(c) Construction of majorizing function

Let θ = (A,B, β), with β = (β′0, . . . , β
′
q)
′, be the parameter vector and let θ = (A, B, β) be

a given set of parameter values, that is, initial values or the values obtained at a previous

iteration. To apply the idea of majorization we need to construct a function g(θ) with the

properties that f(θ) ≤ g(θ) for all θ and f(θ) = g(θ). To find a suitable function g, we will

expand the function f in (16) and (17) explicitly.

The (non-zero) eigenvalues of R′R are the same as those of RR′ =
∑q

j=0 SjS
′
j = (q +

1)I(T−m)×(T−m), that is, R′R has (T − m) eigenvalues equal to (q + 1) and the other

eigenvalues are all zero, so that (q +1)I(q+1)(T−m+q)×(q+1)(T−m+q)−R′R is a positive semi-

definite matrix. Let cj = XAβj correspond to the current parameter estimates and write

λ = (q + 1), then λ(c− c)′(c− c)− (c− c)′R′R(c− c) ≥ 0 so that

c′R′Rc ≤ λc′c + λc′c− 2λc′c− c′R′Rc + 2c′R′Rc. (18)

We now exploit the fact that the p factors F = XA may always be chosen so that F ′F =
A′X ′XA = Ip×p. With this choice, the term c′c in (18) simplifies, as c′c =

∑
β′jA

′X ′XAβj =∑
β′jβj . If we substitute (17) and (18) in (16), it follows that

f(A, B, β) ≤ w1

(
||y||2 + λc′c + λc′c− 2λc′c− c′R′Rc + 2c′R′Rc− 2c′R′y

)

+w2||X −XAB||2

= w1

(
λ

∑
β′jβj − 2c′(λc−R′Rc + R′y)

)
+ w2||X −XAB||2 + a

= w1

(
λ

∑
β′jβj − 2

∑
c′j(λcj + S′j(y −Rc))

)
+ w2||X −XAB||2 + a

= w1

(
λ

∑
β′jβj − 2

∑
c′juj

)
+ w2||X −XAB||2 + a

= w1

(
λ

∑
β′jβj − 2

∑
β′jA

′X ′uj

)
+ w2||X −XAB||2 + a

= g(A, B, β),

where a = w1(||y||2 + λc′c− c′R′Rc) and uj = λcj + S′j(y −Rc) are fixed, that is, obtained

from the data and the previous estimates and not dependent on the values of (A,B, β). The

function g majorizes f (as the above derivation shows) and it also satisfies the condition

that f(θ) = g(θ) at θ = (A, B, β), as for c = c the inequality in (18) becomes an equality.
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The essential simplification of g(A, B, β) as compared to f(A,B, β) is (18), where the

term c′R′Rc, which is quadratic in the bilinear terms cj = XAβj , is approximated by an

expression that is linear in cj and quadratic in βj (as c′c =
∑

β′jβj). That is, the term

c′R′Rc in (17), which is of order four in the parameters, is approximated by a second-order

expression.

(d) Minimization of majorizing function

The function g can be minimized, as follows. For given values of A with A′X ′XA = Ip×p,

the optimal values of B and βj are simply obtained by regression, with solutions

B̂ =
(
(XA)′XA

)−1

(XA)′X = A′X ′X, β̂j =
1
λ

A′X ′uj .

If we substitute these values in g, it remains to minimize the function of A defined by

g(A, B̂, β̂). We use the following facts, where tr denotes the trace of a matrix.

λ
∑

β̂′j β̂j − 2
∑

β̂′jA
′X ′uj = − 1

λ

∑
u′jXAA′X ′uj = − 1

λ
tr(A′X ′(

∑
uju

′
j)XA),

||X −XAB̂||2 = tr(X −XAB̂)′(X −XAB̂) = tr
(
X ′X + B̂′A′X ′XAB̂ − 2X ′XAB̂

)

= tr
(
X ′X + B̂′B̂ − 2X ′XAB̂

)
= tr

(
X ′X −X ′XAA′X ′X

)

= tr(X ′X)− tr(A′X ′XX ′XA).

It follows that

g(A, B̂, β̂) = tr
(
−w1

λ
A′X ′(

∑
uju

′
j)XA− w2(A

′X ′XX ′XA)
)

+ w2tr(X
′X) + a

= −tr(A′V A) + v,

where V = (w1/λ)X ′(
∑

uju
′
j)X + w2X

′XX ′X and v = a + w2tr(X ′X) are constant, that

is, independent of the value of A. It follows that the minimization of g boils down to the

minimization of

−tr(A′V A), V =
w1

λ
X ′(

∑
uju

′
j)X + w2X

′XX ′X, (19)

under the condition that A′X ′XA = Ip×p. Let D = (X ′X)1/2A so that D′D = Ip×p, and

let W = (X ′X)−1/2V (X ′X)−1/2 have eigendecomposition W = QΣQ′, then tr(A′V A) =

tr(D′QΣQ′D) where the k× p matrix Q′D satisfies D′QQ′D = Ip×p. The optimal choice is

to take Q′D equal to (Ip×p O)′, so that D consists of the first p columns of Q, which we

denote by Qp, and the resulting function value is −tr(A′V A) = −∑p
i=1 σi where (σ1, . . . , σp)

are the p largest eigenvalues of W . Therefore, the optimal value of A is Â = (X ′X)−1/2Qp,

with resulting minimal function value

g(Â, B̂, β̂) = w1

(
||y||2 + λc′c− c′R′Rc

)
+ w2tr(X ′X)−

p∑

i=1

σi.
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Because of the majorizing properties of g, it follows that

f(Â, B̂, β̂) ≤ g(Â, B̂, β̂) ≤ g(A,B, β) = f(A,B, β).

This majorization can now be applied iteratively, returning to (c) to construct a new majoriz-

ing function, using the new estimates θ̂ = (Â, B̂, β̂) instead of the old estimates θ = (A, B, β).

(e) Additional majorization for numerical simplification

From a numerical point of view, the main step in the minimization problem in (d) is the

eigendecomposition of the k×k matrix W = (X ′X)−1/2V (X ′X)−1/2. As the number of pre-

dictors k may be large this may be a relatively time consuming operation, especially because

this eigendecomposition should be performed in each iteration of the majorization algorithm.

We now describe an additional iterative majorization method where the high-dimensional

eigendecomposition of W is approximated by iterations involving the eigendecomposition of

p× p matrices where, in practice, p is much smaller than k.

Let G = (X ′X)1/2A, then the minimization of−tr(A′V A) in (19) subject to the condition

A′X ′XA = Ip×p is equivalent to the minimization of h(G) = −tr(G′WG) subject to the

condition G′G = Ip×p. Define G = (X ′X)1/2A where A is the current estimate of A. As V

in (19) is positive semi-definite, the same holds true for W , so that tr(G−G)′W (G−G) ≥ 0

and hence

h(G) = −tr(G′WG) ≤ −2tr(G′WG) + tr(G
′
WG) = h∗(G).

As h(G) = h∗(G) this means that h∗ can be used as majorizing function for h. The mini-

mization of h∗ is equivalent to

maximize tr(G′WG), subject to G′G = Ip×p. (20)

Let M = G
′
W 2G, then M is a p × p positive semi-definite matrix (we assume that M is

positive definite, as will be true generically for reasonable values of p, but the steps below

are easily adjusted in case M is only positive semi-definite). Let M = VmΣmV ′
m be an

eigendecomposition of M , and define Um = WGVmΣ−1/2
m . We will prove that Ĝ = UmV ′

m

solves (20), so that the majorizing function h∗ can be minimized by an eigendecomposition

of the p × p matrix M . This result gives the claimed numerical simplification by iterative

majorization to minimize (19).

It remains to prove that Ĝ = UmV ′
m solves (20). This result follows, for instance, from

the solution of the so-called orthogonal Procrustean problem in Borg and Groenen (2005,

Section 20.2). However, for the sake of completeness we give an explicit proof. As

U ′
mUm = Σ−1/2

m V ′
mG

′
W 2GVmΣ−1/2

m = Σ−1/2
m V ′

mMVmΣ−1/2
m = Ip×p,
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it follows that Ĝ′Ĝ = VmU ′
mUmV ′

m = Ip×p. Further, as WG = UmΣ1/2
m V ′

m it follows that

tr(G′WG) = tr(G′UmΣ1/2
m V ′

m) = tr(V ′
mG′UmΣ1/2

m ).

If we take Ĝ = UmV ′
m, then this expression delivers the value tr(Σ1/2

m ) in (20), and we

should prove that for any other value of G with G′G = Ip×p there holds tr(V ′
mG′UmΣ1/2

m ) ≤
tr(Σ1/2

m ) =
∑p

i=1 σi, where σi > 0 are the values on the diagonal of Σ1/2
m . Let G̃ = V ′

mG′Um

with values g̃ii on the diagonal, then, as Σ1/2
m is a diagonal matrix, it follows that

tr(V ′
mG′UmΣ1/2

m ) = tr(G̃Σ1/2
m ) =

p∑

i=1

σig̃ii.

To prove that this is at most
∑p

i=1 σi it suffices to prove that |g̃ii| ≤ 1 for all i = 1, . . . , p.

Let ui be the i-th column of Um and let vi be the i-th column of GVm, then U ′
mUm = Ip×p

implies that u′iui = 1 and V ′
mG′GVm = Ip×p implies that v′ivi = 1. Therefore, g̃ii = v′iui ≤

(v′ivi)1/2(u′iui)1/2 = 1.

This concludes the proof that Ĝ = UmV ′
m solves (20).

(f) Summary of algorithm

We summarize the above steps in the following algorithm. As noted in step (a), the algorithm

should be applied in an iterative way to X and the residuals yres = (y−α−∑r
j=0 Z(−j)γj)

that are obtained from the current estimates of (α, γ0, . . . , γr).

1. Initialization

Construct initial estimates (A,B, β), with A
′
X ′XA = Ip×p. For instance, let X =

UxΣxV ′
x be an SVD with Σx a square, invertible matrix (we assume that X has full

column rank, but the steps below are easily adjusted in case X has reduced column

rank). Further let Vp consist of the first p columns of Vx and let Σp be the p × p

diagonal matrix with the p largest singular values of X on the diagonal. Define A =

VpΣ−1
p , then A

′
X ′XA = Ip×p and the factors F = XA consist of the first p principal

components of X. Further define B = A
′
X ′X = ΣpV

′
p and define β by regressing y

on S0XA, . . . , SqXA, so that βj is the vector of coefficients belonging to the regressor

sub-vector SjXA. Define H+ = (X ′X)1/2 = VxΣxV ′
x, H− = (X ′X)−1/2 = VxΣ−1

x V ′
x,

and λ = (q + 1).

2. Computation

Compute cj = XAβj and uj = λcj + S′j(yres − Rc) for j = 0, . . . , q, and compute

V = (w1/λ)X ′(
∑

uju
′
j)X + w2X

′XX ′X and W = H−V H−.

3. Update of A

Compute G = H+A and M = G
′
W 2G, compute an eigendecomposition of the p × p
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matrix M , say M = VmΣmV ′
m, compute Um = WGVmΣ−1/2

m , and update G by

Ĝ = UmV ′
m. The updated estimate of A is defined as Â = H−Ĝ.

4. Update of (B, β)

Compute updated estimates of B and β by B̂ = Â′X ′X = Ĝ′H+ and β̂j = (1/λ)Â′X ′uj ,

j = 0, . . . , q.

5. Update of (α, γ0, . . . , γr)

Use the estimates (Â, B̂, β̂) of Steps 3 and 4 to update the estimates of (α, γ0, . . . , γr)

in (7) by regressing the residuals (y −∑q
j=0 SjXÂβ̂j) on a constant and Z and its r

lags. Compute the corresponding updated residuals yres = (y − α̂−∑r
j=0 Z(−j)γ̂j).

6. Iteration

Return to Step 2, using the residuals yres of Step 5 and replacing (A, β) by (Â, β̂) of

Steps 3 and 4. Iterate Steps 2 to 5 until the PCovR criterion values in (7) converge.

In Step 6 we used a stopping criterion in terms of the relative improvement of the PCovR

criterion (7). For instance, in the empirical applications in Section 5, we stopped the itera-

tions if (fp − fc)/fp < 10−6, where fp and fc denote respectively the previous and current

value of the PCovR criterion (7).

Appendix A.2 (Section 3.4)

Non-convexity of the PCovR criterion function

We prove the assertion made at the end of Section 3.4 that the function

f(A,B, α, β) = w1||y − α−XAβ||2 + w2||X −XAB||2

in (4) is not convex in its arguments θ = (A,B, α, β). For this purpose it suffices to construct

data (y, X), two parameter sets θ1 and θ2, and a scalar value 0 < h < 1 so that

f(hθ1 + (1− h)θ2) > hf(θ1) + (1− h)f(θ2).

Let θ1 = (A, 0, 0, b) with B = 0 and α = 0 and with Ab 6= 0, and let θ2 = (0, 0, 0, 0). We

consider (special) data with y = XAb 6= 0, so that θ1 provides a prefect fit of y. It follows

that f(θ1) = w2||X||2 and f(θ2) = w1||y||2 + w2||X||2, so that

hf(θ1) + (1− h)f(θ2) = (1− h)w1||y||2 + w2||X||2.

As hθ1 + (1− h)θ2 = (hA, 0, 0, hb) we get

f(hθ1 + (1− h)θ2) = w1||y −X(hA)(hb)||2 + w2||X||2 = w1(1− h2)2||y||2 + w2||X||2.
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As y 6= 0, it suffices to find a value 0 < h < 1 so that (1− h2)2 > (1− h). This is possible,

as (1− h2)2/(1− h) = (1− h2)(1 + h) = 1 + h− h2 − h3 > 1 for h > 0 sufficiently small, for

instance, for h = 0.1.

This concludes the proof that f is not convex.

Appendix A.3 (Section 3.5)

Approximation of the correlation between X and F

We consider the approximation of the squared correlation ρ2
XF (p) to derive the upper bound

(9) in Section 3.5. The argument is based on the fact that PCR, or equivalently SVD, is

a consistent method to estimate the factors in a factor model, see for instance Stock and

Watson (2002a). We assume for simplicity that all variables are scaled to unit norm, that

is, each column xi of the predictor matrix X has norm 1, i = 1, . . . , k.

Let X = USV ′ be an SVD of X with ordered singular values s1 ≥ s2 ≥ . . . ≥ sk,

where sT+1 = . . . = sk = 0 if k > T . As each column of X has norm 1, it follows that
∑k

i=1 s2
i = ||X||2 = k. Let X̂(p) be the SVD approximation of X of rank p, which provides

a consistent estimator of the first p principal factors. Then ||X − X̂(p)||2 =
∑k

i=p+1 s2
k. Let

x̂i(p) be the i-th column of X̂(p), then the R-squared between xi and its approximation

x̂i(p) is

R2
xix̂i(p) = 1− ||xi − x̂i(p)||2

||xi||2 = 1− ||xi − x̂i(p)||2.

If we average this result over the k variables we get

1
k

k∑

i=1

R2
xix̂i(p) = 1− 1

k

k∑

i=1

||xi − x̂i(p)||2 = 1− 1
k
||X − X̂(p)||2

= 1−
∑k

i=p+1 s2
i∑k

i=1 s2
i

=
∑p

i=1 s2
i∑k

i=1 s2
i

.

If we take R2
xix̂i(p) as an approximation of ρ2

xiF
(p), then we get

ρ2
XF (p) =

1
k

k∑

i=1

ρ2
xiF (p) ≈ 1

k

k∑

i=1

R2
xix̂i(p) =

∑p
i=1 s2

i∑k
i=1 s2

i

.

This result provides the approximation ρ2
XF (p)− ρ2

XF (p− 1) ≈ s2
p/

∑k
i=1 s2

i used in Section

3.5.

Finally we show that, if we employ the same idea with more factors to fit y, this does

not lead to a tighter bound for w. Suppose that p > 1 and that we use pm ≤ p factors to

fit y, where kpm ≤ T , and that we use the remaining (p − pm) factors to fit X. Then by

arguments similar to the ones used in Section 3.5 for the case pm = 1, it follows that we
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can create (at least) kpm zero errors in fitting y and that, in order to prevent overfitting,

we should require that

w
(
1− kpm

T

)
+ (1− w)

(
1− ρ2

XF (p− pm)
)

> w(1− ρ2
yF ) + (1− w)

(
1− ρ2

XF (p)
)
,

or equivalently,

w <
ρ2

XF (p)− ρ2
XF (p− pm)

(kpm/T ) + (ρ2
XF (p)− ρ2

XF (p− pm))
.

The above arguments can be used again to approximate ρ2
XF (p) − ρ2

XF (p − pm) by means

of
∑p

i=p−pm+1 s2
i /

∑k
i=1 s2

i . This gives the bound

w <

∑p
i=p−pm+1 s2

i /
∑k

i=1 s2
i

(kpm/T ) +
∑p

i=p−pm+1 s2
i /

∑k
i=1 s2

i

=
(
∑p

i=p−pm+1 s2
i /pm)/

∑k
i=1 s2

i

(k/T ) + (
∑p

i=p−pm+1 s2
i /pm)/

∑k
i=1 s2

i

.

Because s2
i ≥ s2

p for all i = p − pm + 1, . . . , p it follows that
∑p

i=p−pm+1 s2
i /pm ≥ s2

p, and

this implies that the above bound is larger than or equal to (9) in Section 3.5.
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Figure 1: Percentage MSE gain of PCovR as compared to PCR. The gain at time t is the
percentage gain in MSE of PCovR as compared to PCR, both using multiple factor models,
when evaluated over the forecast interval starting at 1970.01 (t = 1) and ending at varying
times, ranging from 1975.01 (t = 61) till the end of the sample (t = 408− h).
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Table 2: MSE of PCovR when the forecast model is selected by BIC or CV.
BIC CV

k L1 L2 ρ2
y rvar(y) w 10−4 0.1 0.5 0.9 BIC 10−4 0.1 0.5 0.9 CV

10 1 -1 0.5 2 1.99 1.39 1.29 1.35 1.99 1.74 1.30 1.14 1.14 1.15
10 1 -1 0.9 10 7.97 1.82 1.23 1.31 7.97 6.29 1.69 1.22 1.20 1.20
10 5 -1 0.5 2 2.23 2.24 2.36 2.41 2.23 1.90 1.58 1.27 1.29 1.29
10 5 -1 0.9 10 9.95 8.09 2.35 1.89 9.95 8.10 2.22 1.25 1.26 1.26
10 1 1 0.5 3 2.12 1.60 1.32 1.40 2.12 1.76 1.47 1.26 1.27 1.27
10 1 1 0.9 19 7.78 3.09 1.27 1.32 7.78 6.78 3.02 1.29 1.24 1.24
10 1 5 0.5 3 2.18 1.65 1.29 1.39 2.18 1.95 1.64 1.35 1.36 1.37
10 1 5 0.9 19 8.41 3.16 1.19 1.21 8.41 7.29 3.46 1.41 1.35 1.38
10 5 1 0.5 3 2.06 2.08 2.16 2.22 2.06 1.91 1.63 1.30 1.27 1.28
10 5 1 0.9 19 10.82 10.27 3.23 2.08 10.82 8.70 4.25 1.34 1.24 1.26
10 5 5 0.5 3 2.24 2.25 2.39 2.46 2.24 2.09 1.79 1.38 1.40 1.42
10 5 5 0.9 19 11.41 11.09 3.32 1.95 11.41 9.38 4.52 1.35 1.31 1.31
40 1 -1 0.5 2 2.01 2.81 5.71 2.01 1.94 1.70 1.93 1.86
40 1 -1 0.9 10 10.23 3.36 4.35 10.23 9.47 2.22 1.87 1.91
40 5 -1 0.5 2 2.23 2.94 5.77 2.23 2.06 2.43 3.21 1.98
40 5 -1 0.9 10 10.32 14.35 28.53 10.32 10.31 3.03 3.42 3.42
40 1 1 0.5 3 2.07 2.68 5.42 2.07 1.95 1.95 2.10 1.95
40 1 1 0.9 19 10.19 6.92 2.70 10.19 9.87 3.57 1.98 1.98
40 1 5 0.5 3 2.22 2.99 4.91 2.22 2.19 2.05 2.79 2.05
40 1 5 0.9 19 10.93 9.25 2.59 10.93 9.84 3.89 2.00 2.02
40 5 1 0.5 3 2.03 2.47 6.10 2.03 2.21 2.38 3.50 2.16
40 5 1 0.9 19 10.29 11.85 27.74 10.29 11.00 5.46 3.83 4.01
40 5 5 0.5 3 2.17 2.91 6.88 2.17 2.35 2.77 3.61 2.36
40 5 5 0.9 19 10.81 12.98 30.73 10.81 10.99 6.13 4.01 4.77
100 1 -1 0.5 2 1.97 2.19
100 1 -1 0.9 10 10.45 10.05
100 5 -1 0.5 2 5.44 2.08
100 5 -1 0.9 10 10.77 9.99
100 1 1 0.5 3 2.08 2.24
100 1 1 0.9 19 10.32 10.06
100 1 5 0.5 3 2.15 2.22
100 1 5 0.9 19 10.96 10.86
100 5 1 0.5 3 2.07 2.01
100 5 1 0.9 19 10.36 10.26
100 5 5 0.5 3 2.22 2.28
100 5 5 0.9 19 11.06 10.51

The first five DGP columns specify the DGP, see Table 1. The PCovR forecast model is
selected by BIC or CV, for fixed weight w and also for w selected by BIC or CV. For each
DGP row, values in italics show the methods with the smallest MSE.
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Table 4: MSE of PCR and PCovR with single factor, for four vari-
ables and three horizons.

method gain
PCR PCovR PCovR∗ 70-03 70-80 81-91 92-03

h = 6
Production 94.9 74.4 73.0 21.6 32.8 -10.4 18.8
Employment 93.0 78.0 75.0 16.2 13.6 29.9 -4.5
Income 84.1 77.1 77.8 8.3 26.6 -33.7 5.0
Sales 96.6 69.2 64.0 28.4 35.3 28.2 -5.2
Average 92.2 74.7 72.4 18.6 27.1 3.5 3.5
h = 12
Production 98.4 66.0 55.9 32.9 45.5 20.0 7.5
Employment 91.5 74.9 67.5 18.1 14.5 30.3 2.8
Income 89.0 80.8 73.7 9.2 22.5 -14.9 4.4
Sales 97.4 64.8 57.4 33.4 40.1 36.5 -11.8
Average 94.1 71.6 63.6 23.4 30.7 18.0 0.7
h = 24
Production 101.7 62.2 54.1 38.8 54.9 33.4 9.1
Employment 98.2 78.2 70.3 20.3 31.5 8.3 13.1
Income 97.6 85.6 78.8 12.3 18.8 -2.0 14.1
Sales 98.6 65.3 52.0 33.7 37.5 22.8 30.3
Average 99.0 72.8 63.8 26.3 35.7 15.6 16.6

The columns PCR and PCovR show the MSE of respectively PCR
and PCovR (with CV weight), as percentage of the MSE of the AR
benchmark model, and the column PCovR∗ shows this percentage MSE
for a posteriori optimal choice of a fixed weight w. The four gain
columns show the percentage gain (+) or loss (-) of the MSE of PCovR
(with CV weight) as compared to PCR, over the full sample and over
three sub-samples.

Table 5: MSE of PCR and PCovR with multiple factors, for four
variables and three horizons.

method gain
PCR PCovR PCovR∗ 70-03 70-80 81-91 92-03

h = 6
Production 64.2 67.3 65.8 -4.7 -11.3 -1.1 6.6
Employment 86.2 79.4 75.4 7.9 7.8 12.4 -3.3
Income 73.4 73.0 71.9 0.5 -5.7 5.4 4.7
Sales 67.1 63.8 62.3 4.9 11.6 -0.5 -10.4
Average 72.7 70.9 68.8 2.1 0.6 4.0 -0.6
h = 12
Production 54.5 54.7 55.2 -0.4 -0.6 1.8 -2.7
Employment 67.0 70.4 65.1 -5.0 -12.6 5.3 -5.3
Income 67.8 68.3 67.7 -0.7 -0.9 -6.1 6.3
Sales 46.4 49.6 46.5 -6.8 1.3 -5.7 -27.7
Average 58.9 60.7 58.6 -3.2 -3.2 -1.2 -7.3
h = 24
Production 55.5 55.6 51.3 -0.1 14.3 -13.8 -11.2
Employment 71.8 65.0 68.5 9.5 8.2 -1.2 27.2
Income 75.3 69.9 72.4 7.1 12.3 -3.3 10.6
Sales 54.6 50.6 50.6 7.4 15.9 -17.9 1.8
Average 64.3 60.3 60.7 6.0 12.7 -9.0 7.1

This table is similar to Table 4, but now for multiple factor models
with number of factors (p ≤ 4) selected by BIC.
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Table 6: Statistics of models and forecast errors for PCR and PCovR with multiple factors.
models forecast errors

PCR PCovR PCR PCovR
p q r p q r w mean mabs std mean mabs std

h = 6
Production 2.16 0.39 0.12 1.74 0.54 0.25 0.29 -0.52 3.33 4.31 -0.33 3.40 4.43
Employment 2.46 0.63 -0.32 1.76 0.72 -0.38 0.40 -0.17 1.26 1.74 -0.10 1.21 1.68
Income 2.32 0.47 -0.76 1.90 0.74 -0.82 0.39 -0.37 2.06 2.58 -0.21 2.03 2.59
Sales 2.29 0.16 0.16 1.80 0.50 1.09 0.29 -0.55 3.26 4.45 -0.49 3.28 4.35
Average 2.31 0.41 -0.20 1.80 0.63 0.03 0.34 -0.40 2.48 3.27 -0.28 2.48 3.26
h = 12
Production 2.31 1.13 0.19 2.21 1.02 -0.72 0.25 -0.86 2.66 3.30 -0.79 2.63 3.32
Employment 2.48 0.98 -0.21 2.00 0.88 -0.44 0.36 -0.35 1.19 1.55 -0.25 1.22 1.61
Income 2.42 0.66 -0.60 2.21 0.74 -0.72 0.25 -0.53 1.74 2.07 -0.48 1.73 2.09
Sales 2.31 1.14 1.04 2.14 1.24 1.32 0.17 -0.70 2.20 2.83 -0.71 2.34 2.92
Average 2.38 0.98 0.11 2.14 0.97 -0.14 0.26 -0.61 1.95 2.44 -0.56 1.98 2.49
h = 24
Production 2.55 1.04 -0.88 2.09 1.16 -0.87 0.32 -0.89 2.20 2.61 -0.84 2.18 2.63
Employment 2.24 1.17 -0.54 2.18 1.11 -0.65 0.31 -0.46 1.18 1.44 -0.38 1.12 1.39
Income 2.64 0.75 -1.00 2.45 0.57 -0.99 0.33 -0.56 1.47 1.74 -0.47 1.41 1.70
Sales 2.66 0.99 0.07 2.01 1.21 0.01 0.45 -0.79 1.84 2.31 -0.73 1.84 2.24
Average 2.52 0.99 -0.59 2.18 1.02 -0.62 0.35 -0.67 1.67 2.03 -0.61 1.64 1.99

Results for multiple factor models selected by BIC, for PCR and PCovR. Shown are the average
number of factors p, factor lags q, AR lags r, and (for PCovR) weights w of the selected models.
Further, ‘mean’ is the average forecast error, ‘mabs’ the average absolute forecast error, and ‘std’
the standard deviation of the forecast errors.
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