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Abstract

In this paper we analyze a continuous-time model of investment with
uncertainty, irreversibility and a broad class of lumpy adjustment costs. We
show that the two components of the optimal investment strategy, the in-
vestment trigger and the investment increment, can be found sequentially,
and that the optimal investment increment maximizes a closed form func-
tion. Solving the model numerically, we find that adding a relatively small
amount of variable adjustment costs often leads firms to invest in much
smaller increments. We derive a measure of user cost that incorporates
lumpy investment, and use it to show that as firms invest in bigger incre-
ments, the investment trigger increases as well.
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1 Motivation and Background

Many studies suggest that investment is lumpy. Peck (1974) concludes that turbo-
generator investment is best described by a model with lumpiness. Working with
the Longitudinal Research Database, Doms and Dunne (1994) find that during a
17-year period, plants made over half of their investment within their three busiest
years. Using an extended version of the same data set, Cooper et al. (1999) find
that the “top five investment years at each plant account for more than 50 percent
of cumulative aggregate investment.” Goolsbee and Gross (1997) study data from
the Civil Aviation Board. They find that “on average, about 60 percent of the
total acquisitions of an aircraft type by a given airline take place in the largest
two-year investment episode.” As Pindyck (1988) remarks, “the assumption that
firms can continuously and incrementally add capital, though common in economic
models, is extreme. Most investments are lumpy, and sometimes quite so.”1

Several authors study investment cost structures that generate lumpiness; these
include Caballero and Leahy (1996), Eberly (1997), Abel and Eberly (1998) and
Caballero and Engel (1994, 1999).2 Their focus, however, is on the case where ad-
justment costs have a single fixed component.3 This represents a sharp break with
much of the investment literature, where variable adjustment costs, most notably
quadratic ones, play a large role. Although Abel and Eberly (1994) combine both
sorts of costs in their generalized model of non-lumpy investment, in the context
of lumpiness their “augmented adjustment cost function” has received little atten-
tion.4 Our contribution is to extend the analysis of lumpy investment in just this
direction.

1Cooper and Haltiwanger (2000) provide additional references.
2Extensive reviews of the investment literature can be found in Dixit and Pindyck (1994) and

Abel and Eberly (1994). A closely related body of work is the analysis of consumer durables
pioneered by Grossman and Laroque (1990), who derive an (S, s) rule for durables purchases. A
recent example is Bertola, et al. (2001).

3Caballero and Leahy (1996) note that their qualitative results hold when a convex adjustment
charge is added to the fixed cost. Caballero and Engel (1994) consider a production function with
two types of capital, with one type adjusting smoothly, and the other type adjusting lumpily.

4Abel and Eberly (1994) consider flow fixed costs, costs that are independent of the size of the
investment flow, but proportional to its duration. Because flow fixed costs vanish as the duration
of the investment flow goes to zero, they generate periods of inaction, but do not generate lumpy
investment. We work with discrete or stock fixed costs, which are independent of both the size
and the duration of the investment flow. The distinction between stock and flow fixed costs
disappears when one moves from a continuous- to a discrete-time framework. Notable discrete-
time studies of lumpy investment include Cooper et al. (1999), Cooper and Haltiwanger (2000)
and Khan and Thomas (2003).
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In particular, we consider a firm choosing the optimal pattern of investment un-
der irreversibility and demand uncertainty. When undertaken, investment causes
discrete jumps in the firm’s capital stock and its total costs. The firm’s decision
rule thus consists of two quantities: the investment trigger, the level to which
relative demand–equivalently, the marginal product of capital–must rise before
the firm invests; and the investment amount, expressed as a fraction of capital at
the trigger. These quantities relate to the firm’s augmented adjustment costs in a
surprisingly simple way. Our results are fairly general; the main restriction is that
adjustment costs be linearly homogeneous in existing capital and investment.
The remainder of the paper is organized as follows. In section 2, we describe

the model and the basic features of the firm’s decision rules. In section 3, we solve
the model. We show that the two elements of the firm’s decision rule–the in-
vestment trigger and the investment amount–can be found sequentially, and that
the optimal investment amount maximizes a closed form function. Because our
“semi-analytical” solution is quite easy to solve numerically, it should be especially
useful to those interested in simulation and/or structural estimation.
In section 4, we use numerical exercises to analyze a variety of cost structures.

We find that the interactions between fixed and variable adjustment costs are often
quite important. For example, we find that variable adjustment costs can signifi-
cantly reduce the degree of lumpiness that fixed adjustment costs induce–adding
variable adjustment costs often leads firms to invest in much smaller increments.
In section 5, we use our semi-analytical solution to derive an implicit version of the
user cost of capital. Analyzing this implicit user cost, we show that as investment
becomes more lumpy, the investment trigger increases. We conclude in section 6.

2 The Model and Its Basic Properties

We begin by constructing the firm’s profit function, using a specification common
in the investment literature. Consider a firm that uses capital and labor to produce
output, St, with the Cobb-Douglas production function

St = L
1−β
t Kβ

t ,

where 0 < β < 1. Output is non-storable. The firm faces an isoelastic demand
curve:

St = XtP
−ε
t ,
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with ε > 1. Pt is the firm’s output price. Xt is an exogenous demand shifter
following a geometric Brownian motion with drift:

dXt
Xt

= µdt+ σdz, (1)

where dz is an increment to a standard Wiener process.
The firm pays the constant wage w. Using this fact, it is straightforward to

show that profits at time t are

Π(Kt,Xt) =
h

1− γ
Kt

µ
Xt
Kt

¶γ

, (2)

where
γ =

1

1 + β(ε− 1) ; and h = (1− γ)(γε− 1)γε−1(γε)−γεw1−γε.
Since ε > 1, 0 < γ < 1 and h > 0.
The law of motion for capital is

dKt = It − δKtdt. (3)

Because investment, It, is defined as a total increment, rather than a flow rate
(per unit of time), this equation embeds two cases. When there is no investment,
capital depreciates at the constant rate δ:

K̇t = −δKt.

But at the moment investment occurs, capital follows

K+
t = K

−
t + It,

where K−
t and K

+
t denote the capital stock immediately before and immediately

after time t.
We assume firms cannot sell their capital, so that investment is always non-

negative:
It ≥ 0.

Although there are many reasons why investment might be irreversible–extreme
specificity and “lemons” problems in resale markets are two–we have adopted
this restriction in large part to simplify the analysis. One consequence of this
assumption is that there is an option value to delaying investment.5

5Dixit and Pindyck (1994) discuss this point in some detail.
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Normalizing the price of capital to 1, the costs of investing are given by

c(Kt, It) = νt [It +G(Kt, It)] , (4)

where νt is a 0-1 indicator variable equal to 1 only when investment is positive. νt
ensures that if there are fixed costs to investing, i.e., G(Kt, 0) > 0, the costs will
be incurred only when investment is positive.6 We assume that the adjustment
cost G(Kt, It) is linearly homogeneous in K and I. This implies that any fixed
costs to investing are proportional to the existing capital stock.7 Such a fixed cost
structure could occur if, for example, upgrading a machine requires retooling the
entire factory–as the factory grows, so do the costs of retooling it. Beyond the
assumption of homogeneity, which appears throughout the investment literature,
we impose few restrictions on G. Including fixed costs immediately implies that
G need not be convex, and we even consider cases where G is decreasing in It. In
the numerical treatment, G is usually specialized as [a(I/K − b)2/2 + c]K, which
generalizes the quadratic specification used in many recent empirical studies.
The firm’s objective is to maximize the expected present value of its cash flow–

profits less investment costs–discounted at rate r. Let Ct denote the undiscounted
cumulation of all investment expenses through time t. The value of the firm is then
given by

V (Kt,Xt) = max
{Is≥0}

Et

½Z ∞

t

e−r(s−t) [Π(Ks, Xs)ds− dCs]
¾
, (5)

subject to equation (3). The final term in the expectation should be interpreted
as a Stieltjes integral. When there are fixed costs to investment, the firm will find
it optimal to invest at distinct points of time si, i = 1, 2, 3, . . ., and the final term
can be written as

Et

½Z ∞

t

e−r(s−t)dCs

¾
= Et

( ∞X
i=1

e−r(si−t) [Isi +G(Ksi , Isi)]

)
.

To bound the value of the firm, we assume that r > µ, so that the firm’s discount
rate exceeds the growth rate of demand.

6Note that G(Kt, It) gives stock adjustment costs, rather than flow costs. This means, for
example, that the average cost of a new gas pipeline can vary with its diameter and length, but
not with the speed with which it is built.

7This property implies that fixed costs do not become irrelevant as the firm grows. Abel
and Eberly (1998) and Cooper et al. (1999) achieve the same result by making the fixed cost
proportional to the demand shifter Xt.
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Let θt ≡ It/Kt denote the firm’s relative investment. Because adjustment costs
are homogeneous, we can rewrite equation (4) as

c(Kt, It) = νt [θt + g(θt)]Kt.

Similarly, the capital accumulation equation can be rewritten as

K+
t = (1 + θt)K

−
t .

Moreover, since Xt evolves continuously, it follows from equation (5) that when an
investment occurs,

V (K−
t ,Xt) = V

¡
(1 + θt)K

−
t ,Xt

¢− [θt + g(θt)]K−
t .

This identity is often referred to as the “value matching condition.”
Now suppose, without loss of generality, thatX is fixed, and let V (Kt, X;Ku, θ)

denote the value of a firm that adopts the strategy of investing θKu whenever
capital depreciates to the level Ku. Even if Ku and θ are suboptimal, a variant
of equation (5) will hold, so that the value matching condition still applies. Then
when Kt = Ku, the value matching condition can be written as

V (Ku, X;Ku, θ) = V ((1 + θ)Ku,X;Ku, θ)− [θ + g(θ)]Ku. (6)

As Dumas (1991) and Dixit (1991) note, and we confirm below, for the optimal
policies K∗ and θ∗,

∂V (Kt, X;K
∗, θ∗)

∂Ku
=

∂V (Kt,X;K
∗, θ∗)

∂θ
= 0,

for all values of Kt and X. Intuitively, adopting a better investment rule increases
the firm’s discounted cash flow at every value of capital and demand. Following
Dumas (1991), one can then totally differentiate both sides of equation (6) with
respect to θ and Ku to get

∂V ((1 + θ∗)K∗,X;K∗, θ∗)
∂Kt

= 1 + g0(θ∗),

∂V (K∗,X;K∗, θ∗)
∂Kt

=
∂V ((1 + θ∗)K∗,X;K∗, θ∗)

∂Kt
(1 + θ∗)− [θ∗ + g(θ∗)] .

These are variants of the familiar “smooth pasting conditions.”
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To better interpret the first order conditions, let yt ≡ Xt/Kt denote the rela-
tive demand for the firm’s output. Since the firm’s profits, investment costs and
constraints are all linearly homogeneous in Kt and Xt, so is the value function
V (Kt,Xt). It follows that the marginal value of capital, q, is homogeneous of
degree zero in Kt and Xt:

q (Kt, Xt) ≡ ∂V (Kt, Xt)

∂Kt
= q (yt) .

Inserting this result into the smooth pasting conditions shows that the optimal
investment strategy is a trigger strategy in yt; whenever relative demand yt rises
to the threshold u, the firm will invest θK−, driving relative demand down to
v = u/ (1 + θ).8 In particular, the smooth pasting conditions can be written as

q

µ
u∗

1 + θ∗

¶
= 1 + g0(θ∗), (7)

q (u∗) = q
µ

u∗

1 + θ∗

¶
+ θ∗ [g0(θ∗)− g(θ∗)/θ∗] . (8)

The intuition behind equation (7) is the standard one: once the firm has com-
mitted to invest, it invests until the marginal value of capital equals its marginal
cost. The first term on the right-hand-side of equation (8), q (u∗/ (1 + θ∗)), arises
because q is forward-looking; the marginal value of capital immediately before an
investment depends directly on its marginal value immediately after investment.
The latter term, θ∗ [g0(θ∗)− g(θ∗)/θ∗], captures the way in which changing the
capital stock before investing alters non-marginal adjustment costs, by comparing
marginal and average adjustment costs. If, for example, investment involves only
a fixed cost (g(θ) = c) the latter term will be negative, so that the marginal value
of capital increases when an investment is made. Immediately prior to an invest-
ment, each additional unit of capital entails c units of upcoming fixed adjustment
costs; evidently, the marginal value of capital increases once the investment has
been made.
This discontinuity in the marginal value of capital is, not surprisingly, a function

of our particular specification. If investment costs depended only on investment,
i.e., if G(Kt, It) = G (It) = G (θtKt), the smooth pasting conditions would reduce
to q(K∗, X) = 1+G0(I∗) = q(K∗+ I∗,X), the standard condition. In either case,

8We restrict our analysis to the interval [0, u], which forms an absorbing set for y. The optimal
investment strategy for y > u is an interesting but involved topic that we do not pursue here.
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marginal q is of little help in predicting investment. As Caballero and Leahy (1996)
point out, when investment is lumpy, q (y) is not monotone in y, and therefore
cannot be a sufficient statistic for investment.9

3 The Model’s Solution

The model’s solution involves three steps. The first step consists of finding the law
of motion for the marginal value of capital, q (y), when no investment is taken. In
the second step, the investment trigger u is found as a function of the investment
fraction θ. In the final step the optimal value of θ is found.

3.1 The Value of Capital When There is No Investment

In those time intervals where no investment occurs, the value of capital evolves in
the typical fashion. Our treatment most closely follows Abel and Eberly (1996).
In the absence of investment, the following Bellman equation will hold:

rV (Kt, Xt) = Π(Kt, Xt) +Et

½
dV (Kt,Xt)

dt

¾
.

SinceXt follows a geometric Brownian motion, one can apply Ito’s Lemma to show

rV (K,X) =
h

1− γ
XγK1−γ − δKVK(K,X) + µXVX(K,X) (9)

+
1

2
σ2X2VXX(K,X).

Differentiating both sides with respect to K yields

rVK(K,X) = h

µ
X

K

¶γ

− δVK(K,X)− δKVKK(K,X) (10)

+ µXVXK(K,X) +
1

2
σ2X2VXXK(K,X).

Recalling equations (1) and (3), one can show that in the absence of investment,
relative demand, yt, follows a geometric Brownian motion:

dyt
yt
= λdt+ σdz,

λ = µ+ δ.

9In the case where q (u∗) = q (v∗) but u∗ 6= v∗, Caballero and Leahy’s result is immediate. Le
(2002) shows that their result also holds for our specification, where q (u∗) need not equal q (v∗).
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Equation (10) is thus identical to

(r + δ)q(y) = hyγ + λyq
0
(y) +

1

2
σ2y2q

00
(y). (11)

As Dixit and Pindyck (1994, Chapters 5 and 6) show, the solution to this
differential equation is

q(y) = Ayγ +ByαP + CyαN , (12)

where A, B and C are constants to be determined, and αP and αN are the roots
of the following quadratic equation:

ρ(z) = −1
2
σ2z2 − (λ− 1

2
σ2)z + r + δ = 0.

It can be confirmed that A = h/ρ(γ) > 0, and that

αN < 0 < γ < 1 < αP . (13)

This leaves the task of finding the constants B and C. Note that unless

C = 0,

the marginal value of capital will explode as relative demand, y, approaches zero.
(With irreversible investment, such an outcome is possible.) We turn to finding B.

3.2 Finding the Investment Trigger u

Suppose that the firm follows the possibly suboptimal strategy given by the trigger
u and investment percentage θ. Given this strategy, the value matching condition
given by equation (6) provides a boundary condition that expresses the coefficient
B in equation (12) as a function of u and θ. This relationship in turn allows one
to find the optimal investment trigger as a function of the investment fraction θ,
and from there find the optimal value of θ.
Let Q (y) ≡ V (K,X) /K denote Tobin’s (1969) q, the average value of capital.

Recall that the value matching condition restricts the level of the value function.
What we are seeking, however, is the coefficient B in the expression for q (y), the
value function’s slope. To convert the value matching condition from a restriction
on levels to a restriction on slopes, we need the following result:
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Lemma 1: Tobin’s q can be expressed in terms of q(y) and q
0
(y):

Q (y) =
1

r − µ
·
h

1− γ
yγ − λq(y)− 1

2
σ2yq

0
(y)

¸
. (14)

The proof, which appears in Appendix A, is a straightforward application of linear
homogeneity.
We can now solve for B. Let Q (y;u, θ) denote the average value of a firm

that adopts the strategy (u, θ). We will assume throughout that the investment
fraction is strictly positive, with θ = 0 as a limiting case. Let φ (θ) ≡ θ + g(θ)
denote investment costs per unit of existing capital. Using this notation, the value
matching condition given by equation (6) can be written as

Q (u;u, θ) = (1 + θ)Q

µ
u

1 + θ
;u, θ

¶
− φ (θ) . (15)

Applying Lemma 1, with q(y;u, θ) = Ayγ +ByαP , yields10

Q (y;u, θ) =
1

r − µ [Hy
γ −BEyαP ] , (16)

(1 + θ)Q

µ
y

1 + θ
;u, θ

¶
=

1

r − µ
·

H

(1 + θ)γ−1
yγ − BEyαP

(1 + θ)αP−1

¸
,

where D ≡ λ+ 1
2
γσ2, E ≡ λ+ 1

2
αPσ

2 and H ≡ h/ (1− γ)− AD. Inserting these
results into equation (15) (so that y = u), the value matching condition becomes11

uγ[(1 + θ)1−γ − 1]H −BEuαP [(1 + θ)1−αP − 1] = (r − µ)φ (θ) . (17)

We show in Appendix B that

H =
h

1− γ
−AD = 2h(µ− r)

(γ − αP )(γ − αN)(1− γ)σ2
, (18)

so that equation (17) implies

B =
µ− r

E[(1 + θ)1−αP − 1]
·
2h[(1 + θ)1−γ − 1]uγ−αP

(γ − αP )(γ − αN)σ2(1− γ)
+ φ (θ)u−αP

¸
. (19)

10Although Lemma 1 technically applies to the value function for the optimal strategy, Q (y) =
Q (y;u∗, θ∗), the homogeneity properties that make it hold also apply to Q (y;u, θ). Similarly,
the law of motion for q (y) given by equation (12) also holds for q (y;u, θ).
11Even if V (·) is not differentiable at the investment trigger u, one can apply Lemma 1 by

taking limits as y approaches u from below.
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It follows from equation (16) that u and θ affect the value of the firm only to
the extent they affect B. This implies that the first order condition for the optimal
investment trigger, u (θ), is

∂Q (y;u (θ) , θ)

∂u
= − 1

r − µEy
αP

∂B (u (θ) , θ)

∂u
= 0,

or
∂B (u (θ) , θ)

∂u
= 0.

In Appendix C, we show that this first order condition implies

u (θ)γ =
αPφ (θ) (γ − αN)(1− γ)σ2

2h[(1 + θ)1−γ − 1] , (20)

which can also be expressed as

u (θ)γ =

µ
1− γ

αN

¶
(1− γ)(r + δ)φ (θ)

h[(1 + θ)1−γ − 1] . (21)

In Appendix D, we confirm that equation (21) identifies a maximum.
It follows from equation (13) that u (θ)γ and thus u (θ) are strictly positive.

Moreover, combining equations (19) and (20) yields

Bu (θ)αp =
µ− r

E[(1 + θ)1−αP − 1]φ (θ)
·

γ

γ − αP

¸
. (22)

This expression can be shown to be negative, so that B is negative.
Combining equations (12) and (22) (and recalling the definition of φ (θ)) reveals

that for any investment fraction θ, the marginal value of capital is

q(y; θ) = Ayγ +
γ(r − µ)[θ + g(θ)]

(αP − γ)E[(1 + θ)1−αP − 1] ×
µ

y

u (θ)

¶αP

, (23)

while the average value of the firm, Q(y; θ), as calculated in Appendix E, is

Q(y; θ) =
1

αP − γ

·
2hyγ

σ2(γ − αN)(1− γ)
+

γ[θ + g(θ)]

1− (1 + θ)1−αP
×
µ

y

u (θ)

¶αP
¸
. (24)
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3.3 Finding the Investment Fraction θ

Having found the marginal and average value of capital for arbitrary values of θ, we
turn to finding the optimal investment fraction. Recalling equation (13), it follows
immediately from equation (24) that maximizing Q(y; θ) boils down to solving

max
θ≥0

θ + g(θ)

1− (1 + θ)1−αP
u (θ)−αP .

But the optimal investment trigger u (θ) is given by equation (21), so that

θ∗ = argmax
θ≥0

[(1 + θ)1−γ − 1]αP /γ
1− (1 + θ)1−αP

[θ + g(θ)]1−αP /γ . (25)

In Appendix F, we verify that the first order conditions to this maximization
problem satisfy the smooth pasting conditions given by equations (7) and (8).
In short, the optimal investment policy can be found by solving equation (25)

for θ∗, and inserting the optimizing value into equation (21) to find the investment
trigger u∗ = u (θ∗). In general, the optimal investment fraction θ∗ must be found
numerically. Fortunately, equation (25) is quite easy to solve. In the next section,
we use this numerical solution to analyze a variety of cost structures.

4 Numerical Analyses

Using the methodology described immediately above, we can find the optimal in-
vestment fraction, θ∗, for any well-behaved adjustment cost structure. To facilitate
comparison with the existing literature, we examine, separately and then jointly,
the two most familiar adjustment cost structures: the pure fixed cost, g(θ) = c;
and the quadratic variable cost g(θ) = a(θ − b)2/2.

4.1 Calibration

Throughout the numerical analyses, we utilize the following parameter values:

1. γ = 0.431. This follows from a capital share, β, of 0.33, from Abel and Eberly
(1999), and a demand elasticity, ε, of 5, from Cooper and Haltiwanger (2000).

2. σ = 0.05 and µ = 0.03. We derive demand volatility, σ, and growth, µ,
from Abel and Eberly (1999) and from data on U.S. post-tax corporate
profits (DRI variable name: NANICP01NCALSA@C111) over the period
1960-2000.

12
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Figure 1: θ∗ as a Function of the Fixed Cost c

3. δ = 0.06 and r = 0.04. These values are fairly standard. (See, for example,
Veracierto, 1998.)

4. αP = 1.1094. This is the positive solution to ρ(z) = 0, using the values for
µ,σ, r and δ listed above.

4.2 Pure Fixed Cost

We begin with the adjustment cost structure that has received the most attention
in the study of lumpiness, the pure fixed cost: g(θ) = c. This case appears as the
top (a = 0) line of Figure 1, which shows θ∗ as a function of the fixed cost c. (We
discuss the rest of Figure 1 further below.) Figure 1 shows that fixed adjustment
costs can have large effects: for example, a fixed cost equal to 0.2 percent of the
capital stock generates an investment fraction of over 40 percent.
In Appendix G, we show that one can approximate the first-order condition for

θ around 0 to get

θ∗ ∼=
µ
12

γαP
c

¶1/3
.
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Abel and Eberly (1998) derive similar cubic approximations while analyzing their
analogues to u and u/ (1 + θ).12 These approximations confirm that θ∗ can be
quite sensitive to fixed costs. In particular, the derivative of θ∗ with respect to c
is infinite at c = 0.

4.3 Pure Variable Cost

The familiar quadratic adjustment cost, g(θ) = a(θ− b)2/2, appears extensively in
the empirical literature.13 As shown below, the parameter b in many ways acts as
a fixed cost. We thus begin our analysis with the purest case, g(θ) = aθ2/2, where
adjustment costs are completely variable. For any a ≥ 0, the solution is θ∗ = 0; if
a firm wants to invest the total amount Θ in M increments, the total adjustment
cost, M ×a (Θ/M)2 /2, is minimized with θ ≡ Θ/M = 0. Investment follows what
is known as barrier control.14 Moreover, applying L’Hôpital’s rule to equation (21)
shows that

lim
θ→0

hu (θ)γ =

µ
1− γ

αN

¶
(r + δ),

which is the trigger condition for smooth irreversible investment shown in Abel
and Eberly (1996).

12The approximations differ because Abel and Eberly (1998) assume that the fixed cost c is
proportional to the demand shifter Xt, rather than the capital stock. This seemingly minor
difference in specification also changes the way in which the model must be solved. In particular,
when adjustment costs are given by cXt, the value matching condition given by equation (15)
becomes

Q (u;u, θ) = (1 + θ)Q

µ
u

1 + θ
;u, θ

¶
− [θ + cu] .

With this change, θ∗ and u∗ must be found simultaneously, rather than in sequence.
13See, for example, Chirinko (1993), Cummins et al. (1994, 1996), Gilchrist and Himmelberg

(1995), Hassett and Hubbard (1996), and Oliner et al. (1996).
14An intuitive discussion of barrier control can be found in Dixit and Pindyck (1994, Chapter

11). Recall that θ = I/K, where I measures the total investment increment, rather than the
flow rate of investment per unit of time. Under barrier control any such investment increments
are infinitesimal, but when they occur their flow rate is infinite. Barrier control is therefore
optimal for the convex stock adjustment costs we consider here (as it minimizes our version of
θ), even though it would not be optimal for convex flow adjustment costs. A formal treatment
of barrier control appears in Harrison and Taksar (1983). Although the control variable in
Harrison and Taksar’s framework is the cumulation of all investment, while our control variable
is the investment increment I, in the limit the two frameworks yield the same investment process;
as Harrison, Sellke and Taylor (1983) point out, as fixed costs approach zero “impulse control"
reduces to barrier control.
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Figure 2: θ∗ as a Function of the Adjustment Cost Parameter a

Lumpiness re-emerges when a is negative, so that there are increasing returns to
investment. This is illustrated in Figure 2, which shows θ∗ for a range of negative
values of a. As the analysis of the pure fixed cost already showed, increasing
returns do not rule out a bounded solution; the key regularity condition is not
that the adjustment cost g(θ) be convex, but rather that the function maximized
in equation (25) be well-behaved.15 Intuitively, if the profit function Π(K,X) is
sufficiently concave, the firm’s problem will have an interior solution even when
g(θ) is non-convex.

4.4 Full Quadratic Form

The most interesting specification is the full quadratic form, g(θ) =
a(θ − b)2/2 + c. To analyze this case, we calibrate two additional parameters:

1. a = 1. Relating this parameter to the coefficient on Tobin’s q in an invest-
ment equation, Hassett and Hubbard (1996) suggest that a is between 1 and
2. Estimating a structural model, Cooper and Haltiwanger (2000) find a to
be less than 0.1.

15An important early study of smooth, as opposed to fixed-cost-driven, concave adjustment
costs is Manne (1961). Dixit and Pindyck (1994, Chapter 11) provide many other references.
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Figure 3: θ∗ as a Function of the Adjustment Cost Parameter b

2. −0.25 ≤ b ≤ 0.25. This covers the range of reasonable reported estimates.
For example, Cummins et al. (1994) find that |b| is less than 0.25, and is
usually less than 0.03. Another common approach is to assume that there
are no adjustment costs along a balanced growth path, so that b = δ+ µ: in
our case, this would imply that b = 0.09.

Figure 3 shows the values of θ∗ generated by this calibration, for different values
of the fixed cost c. The bottom (c = 0) line of this figure deserves mention. When
c is set to 0, g(θ) reduces to a(θ − b)2/2. In this case the optimal value of θ has a
surprisingly precise and simple approximation: θ∗ = |b|. Since θ = b minimizes the
adjustment cost g (θ), it is not surprising that the approximation holds for b > 0.
What is surprising is that it holds for b < 0. To understand this symmetry further,
define the function h (θ) such that equation (25) can be written as

θ∗ = argmax
θ≥0

(θ + g(θ))1−αP /γ h (θ) .

16



When g(θ) = a(θ − b)2/2, the first-order condition for this maximization problem
is

− h0 (θ∗)
(1− αP/γ)h (θ

∗)
= J (θ∗, b) ,

J (θ, b) ≡ 1 + a(θ − b)
θ + a(θ − b)2/2 =

1 + g0(θ)
θ + g(θ)

.

Note that
J (b0, b0) = J (b0,−b0) = 1

b0
.

It immediately follows that if θ∗ = b0 satisfies the first-order condition when b = b0,
it also satisfies the first order condition when b = −b0.
Note that g(0) = ab2/2 + c, so that in many ways b is a fixed cost like c.

It is therefore not surprising that the interactions between the two parameters
depend on their relative sizes. It is also useful to recall Figure 1, which shows that
θ∗ exhibits diminishing returns in c. This suggests that if c (or b) is large, the
incremental effect of b (or c) will be small. For example, the incremental effect of
b is the smallest on the top (c = 0.05) line of Figure 3, where the fixed cost c is
the largest.
The interactions between the fixed cost c and the parameter a, which deter-

mines the relative weight of the quadratic term, are also quite interesting. Figure 1,
which shows the values of θ∗ that arise when g(θ) = c+ aθ2/2, reveals that even a
small amount of variable adjustment costs (a = 0.1) can significantly dampen the
effects of fixed adjustment costs. This is consistent with Cooper and Haltiwanger
(2000), who fit a (discrete-time) structural model to their lumpy investment data,
and find a to be less than 0.05. A similar set of implications appears in Figure 4,
which shows that when b = 0, higher values of a lead to considerably less in-
vestment. Figure 4 also shows that when c is small (0.0 or 0.002) and b is large
(0.25), the approximation θ∗ = |b| holds for nearly all values of a; the slope of the
adjustment cost function can be as important as its size.
In short, variable adjustment costs can significantly alter a firm’s investment

strategy. It immediately follows that for any given value of the fixed cost c, the
standard practice of ignoring variable costs can lead to extremely inaccurate pre-
dictions. Even if c is calibrated or estimated to replicate some feature of the data,
a specification that excludes variable adjustment costs is a reduced form, with
limited value for policy analysis.

17



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Adjustment Cost Parameter, a

Theta

c=0.0, b=0.25

c=0.002, b=0.0

c=0.002, b=0.25

c=0.01, b=0.0

c=0.01, b=0.25
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5 Augmented User Cost

As formulated by Jorgenson (1963), the user cost of holding capital, U(y), consists
of interest and depreciation costs, less any gains in the price of capital. Abel
and Eberly (1996) generalize this measure by replacing the price of capital (here
normalized to 1) with q(y), its marginal value to the firm:

U(y) = (r + δ)q(y)− 1

dt
Et {dq(y)} .

Since y follows a geometric Brownian motion, it follows from Ito’s Lemma that
the expected change in the value of capital is

1

dt
Et {dq(y)} = λyq

0
(y) +

1

2
σ2y2q

00
(y),

so that

U(y) = (r + δ)q(y)−
·
λyq

0
(y) +

1

2
σ2y2q

00
(y)

¸
.

Imposing equation (11), the implicit user cost of capital reduces to

U(y) = hyγ. (26)
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Recalling that profits are given by

Π(K,X) =
h

1− γ
K1−γ
t Xγ,

equation (26) shows that the implicit user cost of a unit of capital always equals
its marginal revenue product, hyγ.
Although this implicit user cost cannot be interpreted as the competitive rental

rate of capital, as could the traditional user cost, it can still be used to find the
marginal revenue product of capital at the time of an investment. This in turn
can be used to interpret the investment trigger u∗. In particular, it follows from
equation (21) that immediately before an investment, the implicit user cost of
capital is

U (u∗) =
µ
1− γ

αN

¶
(r + δ)

·
1 +

g(θ∗)
θ∗

¸
× (1− γ)θ∗

(1 + θ∗)1−γ − 1 .

U (u∗) can be broken into three components:

1. The sum of interest and depreciation costs:

(r + δ)[1 + g(θ∗)/θ∗].

Note that the firm behaves as if interest and depreciation expenses are in-
curred on adjustment costs as well as the new capital actually installed.

2. The effects of irreversibility:
1− γ

αN
.

Abel and Eberly (1996) show that the implicit user cost for a firm facing irre-
versibility but no fixed costs is (1− γ/αN) (r+δ), as opposed to the standard
measure of r + δ. For the parameters used in the preceding subsection, the
irreversibility effect is quite small: −γ/αN ≈ 0.006.

3. The effects of lumpiness:
(1− γ)θ∗

(1 + θ∗)1−γ − 1 .

With 0 < γ < 1, (1 + θ)1−γ is a concave function, so that for positive θ,
(1+θ)1−γ < 1+(1− γ) θ and the ratio is bigger than 1. As θ∗ increases, and
investment grows lumpier, the implicit user cost at the time of investment,
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and thus the investment trigger u∗, both grow as well. This immediately
implies that the trigger capital stock, K∗ = Xt/u∗, is decreasing in θ∗: when
investment is lumpy, firms let their capital depreciate further before they
invest. By way of example, in the model with c = 0.002 and a = 0, the
optimal value of θ is 0.444, and lumpiness increases user cost by 8.65 percent.
Intuitively, a discrete increase in the capital stock causes a drop in relative
demand, y, and thus a decrease in the marginal revenue product of capital.
This upcoming drop in marginal product is a cost of investing that does not
occur when capital evolves smoothly.

Note that the effects of irreversibility and lumpiness compound; as investments
get larger, the flexibility losses they entail get larger as well, so that the investment
trigger rises. For example, in the model with c = 0.002 and a = 0 (so that
θ∗ = 0.444), the implicit user cost is roughly 0.11, about 10% higher than the
conventional value of 0.10.
The effects of irreversibility and lumpiness are illustrated further in Figure 5,

which shows different (mis-) measures of the user cost for the full quadratic form,
g(θ) = a(θ − b)2/2 + c, using three of the specifications shown in Figure 4. In
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interpreting this figure, it is useful to note that the standard user cost, (r+δ), and
implicit user cost under irreversibility, (1− γ/αN) (r+ δ), are the same for all the
adjustment cost specifications.

6 Conclusion

For a broad class of adjustment costs, the optimal pattern of investment under
lumpiness has a convenient analytical characterization. The firm’s decision rule
consists of an investment quantity, which can be found by maximizing a closed form
function, and an investment trigger, which can be expressed as a function of the
investment quantity. This makes the decision rule quite easy to study. Moreover,
the user cost theory of investment can be extended to incorporate lumpiness in a
very intuitive way.
While lumpy investment models with fixed adjustment costs have been studied

extensively, our approach allows us to consider combinations of fixed and variable
adjustment costs as well. Some straightforward numerical analyses show that the
investment policy under a combination of fixed and variable adjustment costs is
often quite different from the policy under a pure fixed cost. For example, adding
a relatively small amount of convex adjustment costs can lead firms to invest in
much smaller increments. These results suggest that the standard fixed-cost-only
specification is an approximation that should be used with some caution.
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7 Appendices

7.1 Appendix A: Proof of Lemma 1

Since V (K,X) is linearly homogeneous, it follows from Euler’s formula that

K
∂V (K,X)

∂K
+X

∂V (K,X)

∂X
= V (K,X), (27)

so that

X
∂V (K,X)

∂X
= V (K,X)−Kq(y). (28)

Differentiating both sides of (27) with respect to X yields

K
∂q(y)

∂X
+

∂V (K,X)

∂X
+X

∂V 2(K,X)

∂X2
=

∂V (K,X)

∂X
,

which implies that

X
∂V 2(K,X)

∂X2
= −K ∂q(y)

∂X
(29)

= −K ∂q(y)

∂y

∂y

∂X

= −q0(y).
Inserting equations (28) and (29) into equation (9) yields

rV (K,X) =
h

1− γ
Kyγ − δKq(y) + µ[V (K,X)−Kq(y)]− 1

2
σ2Kyq

0
(y),

which is equivalent to equation (14).

7.2 Appendix B: Derivation of Equation (18)

Given that αP and αN are the roots of the quadratic equation

ρ(z) = −1
2
σ2z2 −

µ
λ− 1

2
σ2
¶
z + r + δ = 0, (30)

it follows that

−2ρ(z)
σ2

= z2 −
µ
1− 2λ

σ2

¶
z − 2r + δ

σ2
= (z − αP )(z − αN),
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so that

αPαN = −2r + δ

σ2
, (31)

αP + αN = 1− 2λ
σ2
, (32)

ρ(γ) = −σ2

2
(γ − αP )(γ − αN). (33)

Recalling further that,

A = h/ρ (γ) ; D = λ+
1

2
γσ2,

we have

h−AD(1− γ) = h+ h
2D(1− γ)

(γ − αP )(γ − αN)σ2

= h
(γ − αP )(γ − αN)σ

2 + 2D(1− γ)

(γ − αP )(γ − αN)σ2

= h
γ2σ2 + 2λγ − γσ2 − 2r − 2δ + 2λ+ γσ2 − 2λγ − γ2σ2

(γ − αP )(γ − αN)σ2
,

with the last line following from equations (31) and (32). With λ = µ + δ, this
simplifies to

h−AD(1− γ) =
2h(µ− r)

(γ − αP )(γ − αN)σ2
,

which is equivalent to equation (18) in the main text.

7.3 Appendix C: Calculation of the Upper Trigger u

Differentiating equation (19), it follows that the first order condition for optimality
is equivalent to

∂B

∂u
= F

·
(γ − αP )2h[(1 + θ)1−γ − 1]uγ−αP−1

(γ − αP )(γ − αN)σ2(1− γ)
− αPφ (θ)u

−αP−1
¸
= 0, (34)

F ≡ µ− r
E[(1 + θ)1−αP − 1] > 0,

which reduces to

uγ =
αPφ (θ) (γ − αN)(1− γ)σ2

2h[(1 + θ)1−γ − 1] . (35)
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Imposing equation (31) yields:

uγ =

µ
1− γ

αN

¶
(r + δ)φ (θ)

1− γ

h[(1 + θ)1−γ − 1] .

7.4 Appendix D: Second-order Condition for Optimal u

We confirm that equation (21) identifies a maximum by showing

∂2Q(y;u, θ)

∂u2
= − 1

r − µEy
αP

∂2B

∂u2
< 0.

This boils down to showing that ∂2B/∂u2 is positive. It follows from equation (34)
that

∂2B

∂u2
= F

·
(γ − αP − 1)2h[(1 + θ)1−γ − 1]uγ−αP−1

(γ − αN)σ2(1− γ)
+ (αP + 1)αPφ (θ)u

−αP−1
¸
,

the sign of which is given by the sign of

(γ − αP − 1)2h[(1 + θ)1−γ − 1]uγ
(γ − αN)σ2(1− γ)

+ (αP + 1)αPφ (θ) .

Upon inserting equation (35), this expression simplifies to

(γ − αP − 1)αPφ (θ) + αP (αP + 1)φ (θ) > 0.

7.5 Appendix E: Derivation of Q(y; θ)

The marginal value of capital is

q(y; θ) = Ayγ +
γ(r − µ)[θ + g(θ)]

(αP − γ)E[(1 + θ)1−αP − 1] ×
³y
u

´αP
.

Imposing the expression for A given in Appendix B yields

q(y, θ) = − 2hyγ

σ2(γ − αP )(γ − αN)
− γ(r − µ)φ (θ)u−αP
(γ − αP )E[(1 + θ)1−αP − 1]y

αP ,

so that

yq
0
(y, θ) = − 2γhyγ

σ2(γ − αP )(γ − αN)
− αPγ(r − µ)φ (θ)u−αP
(γ − αP )E[(1 + θ)1−αP − 1]y

αP .
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Substituting these results into equation (14) (Lemma 1) yields

(r − µ)Q(y; θ) = hyγ

1− γ
+

2λhyγ

σ2(γ − αP )(γ − αN)
+

γλ(r − µ)φ (θ)u−αP
(γ − αP )E[(1 + θ)1−αP − 1]y

αP

+
γhyγ

(γ − αP )(γ − αN)
+

αPγσ
2(r − µ)φ (θ)u−αP

2(γ − αP )E[(1 + θ)1−αP − 1]y
αP

=
σ2(γ − αP )(γ − αN) + 2λ(1− γ) + (1− γ)γσ2

σ2(γ − αP )(γ − αN)(1− γ)
hyγ

+
γ(r − µ)φ (θ)u−αP (2λ+ αPσ

2)

2(γ − αP )E[(1 + θ)1−αP − 1] y
αP .

Inserting equations (31) and (32), and recalling that E = λ+ 1
2
αPσ

2 and λ = µ+δ,
we have

(r − µ)Q(y; θ) = −2r + 2µ
σ2(γ − αP )(γ − αN)(1− γ)

hyγ +
γ(r − µ)φ (θ)u−αP

(γ − αP )[(1 + θ)1−αP − 1]y
αP .

Thus,

Q(y; θ) =
1

αP − γ

·
2hyγ

σ2(γ − αN)(1− γ)
− γφ (θ)

(1 + θ)1−αP − 1 ×
³y
u

´αP ¸
.

7.6 Appendix F: Verification of the Smooth Pasting Con-
ditions

Recall from equation (25) that θ solves

argmax
θ0≥0

(γ − αP ) log[θ0 + g(θ0)]− γ log[1− (1 + θ0)
1−αP ] + αP log[(1 + θ0)

1−γ − 1].

The first-order condition for this problem is

(γ − αP )
1 + g0(θ)
θ + g(θ)

= −
·
γ(1− αP )(1 + θ)−αP

1− (1 + θ)1−αP
+

αP (1− γ)(1 + θ)−γ

(1 + θ)1−γ − 1
¸
, (36)

which can be written as

(1 + θ)−αP

(1 + θ)1−αP − 1 =
1

γ(1− αP )

·
(γ − αP )[1 + g

0(θ)]
θ + g(θ)

+ αP
(1− γ)(1 + θ)−γ

(1 + θ)1−γ − 1
¸
. (37)

Now it follows from equation (23) that
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q (v) = q

µ
u

1 + θ

¶
= Auγ(1 + θ)−γ +

γ(r − µ)[θ + g(θ)]
(αP − γ)E[(1 + θ)1−αP − 1](1 + θ)−αP .

Combining this with equation (37) yields

q (v) = Auγ(1 + θ)−γ +
(r − µ)[1 + g0(θ)]
(1− αP )E

(−1) (38)

+
(r − µ)[θ + g(θ)]
(αP − γ)(1− αP )E

αP
(1− γ)(1 + θ)−γ

(1 + θ)1−γ − 1 .

Applying equation (32), we have

E = λ+
1

2
αPσ

2 =
1

2
σ2(1− αN).

Moreover, it follows from Appendix B and the definition of λ that

(1− αP )(1− αN) = 2
µ− r
σ2

.

Combining these results yields

(1− αP )E = µ− r.
Inserting this result, equation (38) reduces to

q (v) = Auγ(1 + θ)−γ + 1 + g0(θ)− θ + g(θ)

αP − γ
αP
(1− γ)(1 + θ)−γ

(1 + θ)1−γ − 1 . (39)

Imposing equation (35) and the definition of A given in Appendix B shows that

Auγ =
h

−σ2(γ − αP )(γ − αN)/2
× αPφ (θ) (γ − αN)(1− γ)σ2

2h[(1 + θ)1−γ − 1] (40)

=
αPφ (θ) (1− γ)

(αP − γ)[(1 + θ)1−γ − 1] .

But φ (θ) = θ + g(θ), so that

Auγ(1 + θ)−γ − θ + g(θ)

αP − γ
αP
(1− γ)(1 + θ)−γ

(1 + θ)1−γ − 1 = 0,
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and
q(v) = 1 + g0(θ). (41)

This verifies the first of the smooth pasting conditions.
Repeating the steps that led to equation (39) yields

q (u) = Auγ +

·
1 + g0(θ)− θ + g(θ)

αP − γ
αP
(1− γ)(1 + θ)−γ

(1 + θ)1−γ − 1
¸
(1 + θ)αP .

Upon inserting equation (40), this expression reduces to

q(u) = (1 + θ)αP [1 + g0(θ)] +
αP (1− γ)[θ + g(θ)]

(αP − γ)[(1 + θ)1−γ − 1][1− (1 + θ)αP−γ]. (42)

Using equations (41) and (42), we have

(αP − γ)[q(u)− (1 + θ)q(v)]

θ + g(θ)
= [(1 + θ)αP − (1 + θ)]

(αP − γ)[1 + g0(θ)]
θ + g(θ)

+
αP (1− γ)

(1 + θ)1−γ − 1[1− (1 + θ)αP−γ]. (43)

Note that equation (36) can be written as

[(1+θ)αP−(1+θ)](αP − γ)[1 + g0(θ)]
θ + g(θ)

= γ(1−αP )+αP (1− γ)[(1 + θ)αP−γ − (1 + θ)1−γ]
(1 + θ)1−γ − 1 .

Inserting this result into equation (43) yields

(αP − γ)[q(u)− (1 + θ)q(v)]

θ + g(θ)
= γ(1− αP ) +

αP (1− γ)

(1 + θ)1−γ − 1[1− (1 + θ)1−γ]

= γ(1− αP )− αP (1− γ) = γ − αP ,

or
q(u) = (1 + θ)q(v)− [θ + g(θ)].

This verifies the second smooth pasting condition.
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7.7 Appendix G: Local Approximation of θ

We begin with some background results. It follows from the Taylor series expansion
of (1 + θ)αP that

(1 + θ)αP − (1 + θ) = (αP − 1) θ
h
1 +

αP
2
θ + θ2J (θ)

i
, (44)

J (θ) =
αP (αP − 2)

6
+

αP (αP − 2) (αP − 3)
24

θ + · · · .
This implies that

θ

(1 + θ)αP − (1 + θ)
− θ

(αP − 1) θ
£
1 + αP

2
θ
¤ = − θ2J (θ)

(αP − 1)
£
1 + αP

2
θ
¤ £
1 + αP

2
θ + θ2J (θ)

¤ ,
so that after some polynomial division,

θ

(1 + θ)αP − (1 + θ)
=

1

(αP − 1)
£
1 + αP

2
θ
¤ + j0θ2 + θ2

£
j1θ + j2θ

2 · · · ¤ ,
j0 ≡ αP (αP − 2)

6 (1− αP )
,

and the remaining j’s are coefficients on a bounded remainder. It follows that

γ(1− αP )θ

(1 + θ)αP − (1 + θ)
=

−γ
1 + αP

2
θ
+

γαP (αP − 2)
6

θ2 + γ(1− αP )θ
2
£
j1θ + j2θ

2 · · · ¤ .
(45)

Similarly, it can be shown that

θ

1 + θ − (1 + θ)γ
=

1

(1− γ)
¡
1 + γ

2
θ
¢ + j00θ2 + θ2

£
j01θ + j

0
2θ
2 · · · ¤ ,

j00 ≡
γ (2− γ)

6 (1− γ)
,

so that

αP (1− γ)θ

1 + θ − (1 + θ)γ
=

αP
1 + γ

2
θ
+

γαP (2− γ)

6
θ2 + αP (1− γ)θ2

£
j01θ + j

0
2θ
2 · · · ¤ . (46)

Combining equations (45) and (46) shows that

γ(1− αP )θ

(1 + θ)αP − (1 + θ)
+

αP (1− γ)θ

1 + θ − (1 + θ)γ
=

−γ
1 + 1

2
αPθ

+
αP

1 + 1
2
γθ

(47)

+ (αP − γ)r0θ
2 + θ2R (θ) ,
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where

r0 =
1

αP − γ

·
γαP (αP − 2)

6
+

γαP (2− γ)

6

¸
=

γαP
6
, (48)

R (θ) = γ(1− αP )
£
j1θ + j2θ

2 · · · ¤+ αP (1− γ)
£
j01θ + j

0
2θ
2 · · · ¤ .

Returning to the main problem, recall from equation (36) that the first order
condition for θ is

(γ − αP )
θ[1 + g0(θ)]
θ + g(θ)

= −
·
γ(1− αP )θ(1 + θ)−αP

1− (1 + θ)1−αP
+

αP (1− γ)θ(1 + θ)−γ

(1 + θ)1−γ − 1
¸
. (49)

When g(θ) = c, this simplifies to

αP − γ

θ + c
=

γ(1− αP )

(1 + θ)αP − (1 + θ)
+

αP (1− γ)

1 + θ − (1 + θ)γ
.

Imposing equations (47) and (48), one can rewrite the first-order condition as

αP − γ

θ + c
=

−γ
θ
¡
1 + 1

2
αP θ

¢ + αP

θ
¡
1 + 1

2
γθ
¢ + (αP − γ)

γαP
6

θ + θR (θ)

=
(αP − γ)[1 + θ

2
(αP + γ)]

θ(1 + αP
2
θ)(1 + γ

2
θ)

+ (αP − γ)
γαP
6

θ + θR (θ) .

Thus,
1

θ + c
=

1 + θ
2
(αP + γ)

θ(1 + αP
2
θ)(1 + γ

2
θ)
+

γαPθ

6
+

θ

αP − γ
R (θ) ,

which can be written as

1

θ + c
=
1 + θ

2
(αP + γ) + 1

6
γαPθ

2 + S (θ)

θ(1 + αP
2
θ)(1 + γ

2
θ)

,

where S (θ) is a polynomial of third- and higher-order terms. This is equivalent to

(θ + c)

·
1 +

θ

2
(αP + γ) +

1

6
γαP θ

2 + S (θ)

¸
= θ

³
1 +

αP
2
θ
´³
1 +

γ

2
θ
´
,

or

θ+c+
θ2

2
(αP+γ)+

αP + γ

2
cθ+

1

6
cγαPθ

2+
1

6
γαPθ

3+(θ+c)S (θ) = θ+θ2
αP + γ

2
+
αPγ

4
θ3.
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The latter expression simplifies to

c+ c
θ

2
(αP + γ) +

1

6
cγαPθ

2 +
1

6
γαPθ

3 + (θ + c)S (θ) =
αPγ

4
θ3,

or

c =
1
12
γαPθ

3 − θS (θ)

1 + αP+γ
2

θ + 1
6
γαP θ

2 + S (θ)
.

Employing some polynomial division, and dropping fourth- and higher-order terms,
one gets

c ∼= 1

12
γαPθ

3,

so that

θ ∼=
µ
12c

γαP

¶1/3
.
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