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Abstract 

It has long been recognized that worker wages and possibly productivity are higher in large firms.  

Moreover, at least since Schumpeter (1942) economists have been interested in the relative 

efficiency of large firms in the research and development enterprise.  This paper uses 

longitudinal worker-firm-matched data to examine the relationship between the productivity of 

workers specifically engaged in innovation and firm size in the pharmaceutical and 

semiconductor industries.  In both industries, we find that inventors’ productivity increases with 

firm size.  This result holds across different specifications and even after controlling for 

inventors’ experience, education, the quality of other inventors in the firm, and other firm 

characteristics.  We find evidence in the pharmaceutical industry that this is partly accounted for 

by differences between how large and small firms organize R&D activities.  
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I. Introduction 

It has long been recognized that worker wages and possibly productivity is higher in large 

firms.  Moreover, at least since Schumpeter (1942) economists have been interested in the 

relative efficiency of large firms in the research and development enterprise.  This paper exploits 

panel data on inventors in the pharmaceutical and semiconductor industries, two industries that 

are prolific generators of innovations and patents, to examine the relationship between firm size 

and the productivity of workers specifically engaged in innovation.  We use patents and patent 

citations as measures of inventor productivity.  We link the inventors to firms in these industries 

through U.S. patent records, and obtain additional information on both the inventors and their 

employers from secondary sources.  We find that in both industries, inventors’ productivity 

increases with firm size.  This result holds across different specifications and even after 

controlling for inventors’ experience, educational level, the quality of other inventors in the firm, 

and other firm characteristics.   

This paper is organized as follows.  The next section summarizes the literatures on the 

worker productivity-employer size relationship and on the R&D-firm size relationship.  Section 

III describes our empirical method and the dataset we created for this project.  Section IV 

describes our empirical results and Section V concludes. 

 

II. Literature Review  

Do scientists’ productivity vary across firms, and if so, how?  Schumpeter (1942), Panzar 

and Willig (1981), and Cohen and Klepper (1996), among others, have argued that a firm’s size 

may be an important determinant of its productivity in R&D, generally.  Large firms with 

substantial market share may have an advantage in R&D because monopoly power enables them 
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to capture the returns to innovation.  Large firms may also have an advantage because of either 

scale economies (due to fixed costs to mounting an R&D operation) or because their size affords 

them wider access to external sources of financing.  Large firms with many product lines may be 

better able to exploit unexpected innovations.    

 There is considerable empirical research examining the relation between the productivity 

of R&D in firms and firm size.  Such research has examined how patent (or citation-weighted 

patent) yields from R&D activities (usually measured by R&D expenditures) vary with firm size.  

This empirical work has failed to demonstrate a consistent pattern of increasing returns in R&D.  

While some studies find an advantage to size in R&D (e.g., Cohen & Klepper, 1996), many 

studies fail to show a relationship between size and R&D productivity, and still others find a 

negative relationship between size and R&D productivity (e.g., Acs and Audretsch, 1991, Bound 

et al, 1984, and Hausman et al, 1984).  See Symeonidis, 1996, for a survey of this literature.1  

To our knowledge no studies in the economic literature have examined the relation 

between firm size and worker productivity in the R&D enterprise.23  A substantial literature 

documents employer size-wage or productivity premia generically, however.  Large firms pay 

workers a premium that is comparable to or even greater than the wage gaps observed between 

genders, among races, and between unionized and non-unionized workers (see, for example, Oi, 

1983; Brown and Medoff, 1989; Davis and Haltiwanger, 1991; and Troske, 1999).  Moreover, 

                                                 
1 In examining the relation between size and R&D productivity, researchers face difficulties obtaining accurate 
measures of R&D expenditures. A number of scholars (e.g., see Cohen and Levin, 1989) have discussed the 
strengths and limitations of the various measures of R&D inputs (R&D expenditures, scientific employment) and 
outputs (patents, patent citations).  Many believe that R&D expenditures are especially poorly measured for smaller 
firms because smaller firms often conduct R&D informally (they lack R&D departments and separate R&D staff).  
This may explain why many studies fail to show a relationship between size and R&D productivity and other studies 
even find that the patent yield from R&D expenditures falls with firm size.   
2 A body of research exists (much of it outside economics) on other determinants (especially academic) scientist’s 
productivity.  See Stephan’s (1996) survey. 
3 Some studies have examined the determinants (without examining firm size) of scientist earnings, however (see, 
e.g., Lillard and Weiss, 1979).  
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workers in large firms appear to be more productive.  Many hypotheses have been put forward to 

explain the size-wage/productivity premium.  For example, Idson and Oi (1999), Dunne and 

Schmitz (1992), and others have argued that labor productivity is higher in large firms because 

large firms adopt new technologies sooner and possess higher quality capital than small firms.  In 

the context of R&D, this could imply that large firms possess newer and more sophisticated 

laboratories than small firms.  Griliches (1970) and Hamermesh (1993) argue that the employer 

size-productivity premium is due to the complementarity between worker skill and physical 

capital.  Large firms may employ inherently more able workers and impose higher work 

standards than small firms (see Idson and Oi).   

 

III. Empirical Implementation  

3.1  Model Specification 

We use panel data on a sample of research scientists in industry to test whether scientists are 

more productive in large firms.  We estimate the effect of firm size on the scientist’s labor 

productivity in patenting using a Poisson-based maximum-likelihood regression model 

(Hausman, Hall, and Griliches, 1984).  We favor a Poisson-based specification because the 

number of patents granted to a scientist in a particular year is a nonnegative count variable.  We 

assume that the expected number of patents invented by a scientist, conditional on the scientist’s 

characteristics and the characteristics of his/her firm, is 

E(PATit) = exp[α + β1 ln(R&Dit) + β2 PHDEGi + β3 EXPit + β4 EXPit
2  

+ β5 PSTOCK_5Ait + β6 PSTOCK_5Bit + γ Xit], 

where PATit is the number of patents granted to scientist i that were applied for in year t, and 

R&Dit is year t R&D expenditures (deflated by the GNP deflator) of the firm to which scientist 
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i's patents are assigned.  We use as a measure of firm size the magnitude of research 

expenditures instead of a more comprehensive firm size measure (such as firm sales) because it 

is likely a more relevant size factor in a scientist’s productivity.  To check the robustness of our 

result, however, we employ total sales (SALES) and the total number of employees 

(EMPLOYEE) as alternative size measures.   Note also that we match a scientist with the firm to 

which the scientist’s patents are assigned under the presumption that patents are assigned to 

inventors’ employers.  PHDEGi is a binary variable for those scientists with a Ph.D. degree, and 

EXPit is the number of years elapsed at year t since scientist i had first been named to a patent.  

Following the Mincerian earnings regression studies, the two variables, EXPit and EXPit
2, are 

included to capture the scientist’s experience in research.  PSTOCK_5Ait and PSTOCK_5Bit also 

capture aspects of experience.  PSTOCK_5Ait is the number of patents in the last 5 years (t-5 

through t-1) on which the scientist is a named inventor.  PSTOCK_5Bit is the number of patents 

accumulated until year t-5.  PSTOCK_5Ait and PSTOCK_5Bit by reflecting preferences and 

ability capture the inclination to patent, but also they capture the experience and knowledge upon 

which scientist i can draw in his/her t period inventive activities.  We anticipate finding a 

positive relationship between the likelihood of patenting at t and PSTOCK_5Ait, and 

PSTOCK_5Bit.  Because recent experience and learning is likely more relevant, however, we 

expect a stronger relationship between patenting and PSTOCK_5Ait.  We use these two variables 

in linear form since they take non-negative values. 

Xit is a vector of the (time-varying) characteristics of the firm to which scientist i’s 

patents are assigned, all in logarithmic form.  The vector includes the capital-labor ratio (K/L), 

the share of Ph.D. degree holders among all patenting inventors in the firm (PHD/INV), the 

mean experience of the patenting inventors (MEXP), firm age (FIRMAGE), and the number of 
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business lines (NSIC).  To control for the quality of patents, we include the projected average 

number of citing patents per patent (MCITE) as an additional regressor in one specification.  In 

an attempt to adjust the scientist’s output measure for the number of collaborators, another 

specification includes the average number of inventors named on the scientist’s patents in year t 

(COINVENT) as an additional regressor (we explain how we constructed these variables in the 

following section). 

 Because missing scientist-specific factors may affect the scientist’s productivity in patenting, 

we estimate the models with scientist-specific random effects.   

 Our data include instances where in a given year a scientist is named as inventor on the 

patents assigned to multiple firms.   These instances can take place, for example, when a scientist 

changes employers or when he/she is affiliated with one or more firms but not as an employee.  In 

our analyses we exclude observations of this kind; that is, we exclude observations in which the 

scientist is matched to multiple firms in one year.4   

 

3.2  Data and Variables Used 

Our data are taken from six sources: (1) Patent Bibliographic data (Patents BIB) released 

by the U.S. Patent and Trademark Office (USPTO) that contain bibliographic information for 

U.S. utility patents issued from 1969 to 2002; (2) the Compact D/SEC database which contains 

firm information taken primarily from 10-K reports filed with the Securities and Exchange 

Commission; (3) the Standard & Poor’s Annual Guide to Stocks-Directory of Obsolete Securities 

                                                 
4 This exclusion drops the number of observations by 4.4% in pharmaceutical and 4.6% in semiconductor industry. 
In an alternative specification, omitted from this draft, we include such observations, assuming that the inventor is 
employed sequentially to each of the firms to which he/she is matched.  For these observations, we assume the 
employment duration with any one firm is proportional to the ratio of patents assigned to that firm to patents assigned to 
all firms in that year. This alternative specification, however, leads to qualitatively similar results as we report in this 
paper. 

 5



which include a history of firm ownership changes due to mergers and acquisitions, bankruptcy, 

dissolution, and name changes; (4) the NBER Patent-Citations data collected by Hall, Jaffe and 

Trajtenberg (2001) which contain all citations made by patents granted in 1975-1999; (5) the 

Thomas Register data which report the firm’s founding year, and finally (6) the ProQuest Digital 

Dissertation Abstracts database which contains information on the date, the field, and the type of 

degree for degree holders  We match these data to the inventors in the Patents BIB data by 

scientists’ names. 

As the first step for merging these datasets, we choose all firms whose primary SIC is 

2834 (pharmaceutical preparation) or 3674 (semiconductor and related devices) in the Compact 

D/SEC data.  We selected these two industries for our study because the firms in these industries 

are active in patenting and produce homogenous products relative to other industries.  Because 

patents are typically assigned to the firm that employs the inventors, we identify the inventors’ 

employers in the Patents BIB data by patent assignees.   

Because parent firms sometime patent under their own names and at other times under 

the names of their subsidiaries, however, merging the Patents BIB data with firm-level data in 

the Compact D/SEC data is not straightforward.  Mergers and acquisitions at both the parent firm 

and subsidiary levels, common in these two industries during the 1990s, and name changes 

further complicate linking the patent to firm-level data.  (The USPTO does not maintain a unique 

identifier for each patenting assignee at the parent firm level nor does it track assignee name 

changes.)  Thus, to use the firm-level information available in the Compact D/SEC data, the 

names of parent firms and their subsidiaries and the ownership of firms must be tracked over the 

entire period of the study.   
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We use the S&P data to identify whether each assignee in our Patents BIB extract was a 

stand-alone firm.  In some cases, due to a merger or acquisition, for example, the assignee was 

actually part of another firm at the time of the patent application.  In these cases, we substituted 

this parent firm’s name for the name given as the assignee.  We then use the subsidiary data in 

the Compact D/SEC data to track changes in the parent for each of the firms (with the corrected 

names) in our Patents BIB extract.  We thus assign our own firm identifier accordingly after 

tracking the histories of M&A’s as well as of name changes of each firm.  For example, if a firm 

is acquired, we keep separate data on the firm through the year prior to acquisition, because the 

acquiring firm reports consolidated information and because the patents applied for by the target 

firm after acquisition should be linked to the acquiring firm.  The firm that acquires the target 

firm retains the same firm identifier.  If firms are merged, we keep their observations up to the 

year prior to merger and assign the newly merged firm a new firm identifier.  If a firm changes 

its name, it retains the same identifier.  If a subsidiary’s ownership changes, the subsidiary’s 

identifier becomes the identifier of the new parent, from the date of the change forward.   

After merging the Patents BIB data with the firm-level information in the Compact 

D/SEC data, we then link the patent inventors to the firms in the Compact D/SEC data by the 

final firm name to produce a data set on inventors and patents that includes firm-level data (e.g., 

R&D expenditures, sales, and number of employment) on the patents’ assignees.  

We obtained the inventors’ educational backgrounds (degree types, dates, and fields for 

those who earned masters or doctoral degrees) from the ProQuest database, and linked this 

information to the patent and firm data by inventor name.  Based on the list of those who earned 
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degrees in all natural science and engineering fields between 1945-2002, the inventors are 

matched to those on the list by their last, first and middle names.5   

Information on all citations is from the NBER Patent-Citations data collected by Hall, 

Jaffe and Trajtenberg (2001).  In these data each citing patent that was granted between 1975 and 

1999 is matched to all patents cited by the patent.  According to Hall et al., 50 percent of all 

citations are made to patents at least 10 years older than the citing patent, and 5% of citations 

refer to patents that are at least 50 years older than the citing one.  Thus, we cannot observe the 

total number of citations for most of the patents in our data.  We construct the projected number 

of all citing patents for each patent in our data as follows: Based on the average number of citing 

patents per cited patent in each ensuing year since application year for pharmaceutical and 

semiconductor patents in the USPTO data, we count what percentage of all citing patents cites a 

patent, for example, in the first 3 years after the cited patent’s application year, and then estimate 

the total number of citing patents for a patent for which our data are censored 3 years after its 

application year.6  We then calculate the projected average number of citing patents for scientist i 

in year t. 

 Definitions and summary statistics of variables used in our analysis are reported in table 1. 

 

                                                 
5 Prior to the matching, we modified persons’ names in both datasets by converting all lower case letters to upper 
case letters, deleted all non-alphanumeric characters, such as commas and hyphens. We noticed that inventors’ 
middle names are sometimes reported inconsistently. That is, sometimes middle names are spelled out, sometimes 
only their initials are included, and at other times no middle name or initial is included. To achieve more accurate 
matching of inventors, only the initial was taken as middle name and then inventors with unique last, first and 
middle name were given a unique identifier. See Kim et al. (2004) for the detailed description of our data matching 
procedure. 
6 We choose patents in subcategories of 14, 19. 31-33 in in the USPTO classification for pharmaceutical industry 
and subcategories of 21, 22, 24, 41, 46 for semiconductor industry.  
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IV. Empirical Findings 

 We estimate the association between the number of an inventor’s patent grants applied 

for in year t (PAT) and his/her employer’s R&D expenditures in year t (R&D), our measure of 

the size of the firm’s research enterprise.  Respectively, tables 2 and 3 report separate estimation 

results for the pharmaceutical and semiconductor industries.7  Our use of contemporaneous R&D, 

as opposed to lagged R&D, follows the extensive literature estimating patent production 

functions (e.g., Hall, Grilliches, and Hausman, 1986).  Evidence suggests that R&D activities 

and innovations occur somewhat simultaneously.  Moreover, if a firm attempts to patent an 

innovation, it files the application while the innovation is being developed or very shortly 

afterwards (Hall et al.).   

 Our base model (model 1) includes as regressors R&D in log, our measure of the size of 

the enterprise; additional firm-level regressors (X) to isolate and differentiate the effect of firm 

size from those of other firm characteristics; and the individual-level characteristics education, years 

of experience, and the two stock measures of past patenting.  Following the Mincerian earnings 

regression studies, we employ both a linear and a quadratic experience term.8  PHDEG is a 

binary variable indicating a holder of a Ph.D. degree from a university in a developed country.  

We expect that the majority of the inventors in our data set have at least a college education, and 

that those with PHDEG=0 have either a bachelor’s or a master’s degree, and sometimes a Ph.D. 

from a university in a developing country.   

                                                 
7 Scientists appear in our data only if they appear on a patent.  Presumably, many scientists in firms’ R&D programs 
do not appear as inventors on patents in a given year, even though they are engaged in research.  Our dependent 
variable is thus left-truncated at zero.  In all Poisson-based estimations reported in tables 2 and 3, we adjust the 
likelihood for truncation. 
8 Education and years of experience are frequently shown to be significant in worker-level productivity and earnings 
regressions (e.g. Mincer, 1974, Card, 1999).   
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 Models 2 and 3 use as an alternative measure for firm size, SALES and EMPLOYEE, 

respectively.  Model 4 re-estimates the base specification assuming a fixed instead of a random 

effect.  Often more than one scientist is named in a patent’s inventor field.  In such cases, perhaps, a 

single scientist’s contribution or output is smaller than for patents when the scientist is named as 

sole inventor.  Our variable COINVENT is our attempt to adjust the scientist’s output measure for 

the number of collaborators.  Model 5 includes the log of COINVENT as an additional regressor.   

 Our empirical exercise is designed to measure the effect of the size of the R&D enterprise 

on real output, which patents proxy.  The economic values of the innovations underlying patents, 

however, vary considerably from patent to patent.  Moreover, the economic value of many patents is 

close to zero.  Evidence exists that a patent’s citation by a subsequent patent—each patent 

documents the “prior art” upon which the new innovation builds—is an indicator not only of the 

importance of the underlying innovation but its economic value as well (see Trajtenberg, 1990).  

We created the variable MCITE, the average number of citations received by scientist i's patents in 

year t, to capture the quality of the scientist’s patents (see section III for a description of this 

variable).  Model 6 includes MCITE as an additional regressor.  Thus model 6 generates an estimate 

of the effect of size on patent counts holding constant patent quality.   

 In models 1 through 6, the specifications include scientist-specific random or fixed effects.  

An alternative specification might include a separate firm-specific effect, to take into account 

unobserved firm characteristics that influence scientist productivity. To address this, we created a 

sub sample by omitting all scientists from our sample who were named inventors on more than one 

assignee’s patent.  We thus deleted from our sample scientists who move and patent for their 

different employers.  Model 7 re-estimates the base specification using this sample of non-movers.  

In model 7, therefore, the random effects take care of both the scientist-specific and firm-specific 
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effects.  Moreover, we mitigate the problem of potential name mismatches by deleting these 

observations in this model.   

Controlling for the individual characteristics, the results of model 1 in both industries 

indicate that inventor productivity increases with the size of the R&D enterprise.  The effect of 

firm size (R&D) on patent productivity (PAT) is positive and statistically significant in all 

models in Table 3 and most models in Table 2.  (Note that in the Poisson specification the 

estimated coefficients for the log-transformed regressors have an elasticity interpretation.)  

Controlling for patent citations (see model 6) does not change the estimated size effects.  The 

two other measures for firm size exhibit qualitatively the same effect on PAT (models 2 and 3).  

Note also that the magnitude of the firm size effect on patenting is generally similar in both the 

semiconductor industry and the pharmaceutical industry.  These results support the finding in the 

labor literature that worker wages and productivity are higher in large firms,9 but contrasts with 

findings elsewhere that small firms have higher patent-R&D ratios than large firms.  In fact, Kim 

et al. (2003), using the firm-level variables constructed from the same databases as those in this 

paper, show that the estimated relationship between firm size and patenting productivity of R&D 

expenditures at the firm level is significantly negative.   

Controlling for the number of collaborators (model 5) does not change the estimated size 

effect in the semiconductor regressions.  In the pharmaceutical regressions, however, controlling 

for the number of collaborators does reduce the magnitude of the coefficient on ln(R&D).  

Adding the regressor ln(COINVENT) also makes the coefficient estimate only marginally 

significant.  This suggests that the patent-firm size effect in the pharmaceutical industry is partly 

due to the way the R&D enterprise is organized.  Table 4 confirms that the average number of 

                                                 
9 Our elasticity estimates are smaller than have been reported for manufacturing workers.  The elasticity estimates 
reported by Idson and Oi, for example, range between .09 and .18. 
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collaborators on a patent rises with firm size.  This relationship is especially pronounced in the 

pharmaceutical industry, where the number of inventors per patent is 25 percent greater in the 

top size quartile compared to the bottom quartile.   

Note that the magnitude of the coefficient estimates on ln(R&D) in the estimation using 

non-movers only (model 7) is similar to the magnitude using the full sample (model 1).  In the 

pharmaceutical industry regression, however, the t statistic falls from 2.29 to 1.82. 

 Human capital theory predicts that higher education is associated with higher 

productivity and that labor productivity has an inverted U-shaped relationship with experience.  

Both predictions are strongly confirmed in tables 2 and 3.  PHDEG exhibits a significant and 

positive effect on PAT, and EXP has an inverted U-shape relationship with PAT.10  According to 

the estimated coefficients in model 1 of tables 2 and 3, the peak in PAT is reached at EXP=13 

years and 11.9 years in pharmaceutical and semiconductor industry, respectively.  The 

coefficient estimates on PSTOCK_5A and PSTOCK_5B are generally both positive and 

significant, as predicted.  (The coefficient estimate on PSTOCK_5B in the fixed effects 

specification in Table 2 is statistically insignificant).  Also, recent inventions are more strongly 

correlated with patent productivity than earlier ones. 

 We include the capital labor ratio as a regressor because given R&D expenditures a 

highly capitalized firm may have a stronger incentive to patent than less capitalized firms.  A 

patent infringement lawsuit that leads to production stoppage will be more destructive for a firm 

that has made a large capital investment in a state-of-the-art physical plant.  Such vulnerability 

may encourage the firm to develop a diverse portfolio of patents that it can use as a bargaining 

chip to ward off infringement suits (Cohen et al., 2000; Parr and Sullivan, 1996).  In addition, we 
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expect that the capital intensity in the R&D division will be positively correlated with the capital 

intensity in the entire firm.  Therefore, a higher K/L in the entire firm may raise labor 

productivity in patenting of an inventor due to capital-skill complementarity.  The results in both 

tables show support for this prediction.  In tables 2 and 3, K/L in log exhibits a significant and 

positive effect on PAT in all models.11   

 A higher percentage of Ph.D. degree holders among inventors may raise the labor 

productivity of an inventor in the same firm due to a positive spillover effect.  On the other hand, 

firms with a higher concentration of Ph.D. degree holders may be engaged in innovations with 

higher economic values and produce a smaller number of patents.  The net effect of the 

proportion of Ph.D. degree holders on labor productivity is thus theoretically ambiguous.  In the 

pharmaceutical regressions, our results show that PHD/INV has a positive and generally 

significant effect on PAT. (In the fixed effects estimation in the pharmaceutical industry 

regressions, model 4, Table 2, the coefficient estimate is statistically insignificant.)  On the other 

hand, in the semiconductor industry, corresponding coefficient estimate is either insignificant or 

significantly negative.  

 In the pharmaceutical industry regressions, the coefficient estimate on the median 

experience of patenting inventors in a firm, MEXP, is statistically significant only in the fixed 

effects specification.  In the semiconductor industry regressions, this coefficient estimate is 

statistically significant only in the model that contains the citation measure, and in that model, 

                                                                                                                                                             
10 Note, however, that because we are not controlling for attrition, which likely occurs selectively, the inverted U-
shaped relationship is due not only to changes in the productivity of a given cohort of scientist, but to the changing 
composition of the cohort as well. 
11 To further control for the capital intensity in research, we have estimated a specification with the log of R&D 
expenditures per (patenting) inventor as an additional regressor. Ideally, such a measure captures the R&D resources 
(laboratory capital and colleagues, for example) accessible to the scientist.  Because we only observe the subset of 
inventors who patent, however, R&D/INV is a noisy measure of this characteristic at best, and is likely biased. The size 
effect on scientist productivity is still significantly pronounced in this specification.  
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the coefficient estimate is negative.  Thus, we find no clear evidence of positive productivity 

spillovers across inventors within a firm.  

 Tables 2 and 3 show that the age of a firm is negatively related to the patent productivity 

of the firm’s inventors (except in the fixed effects specification for the semiconductor industry).  

Two possible reasons may be that (1) older firms carry out larger scale projects and produce a 

smaller number of patents with higher economic value, or (2) older firms have exhausted new 

ideas for innovations and produce fewer patents.  

 Our results indicate that in both industries, the number of business lines in a firm, 

measured by the number of secondary SIC’s classified to the firm (NSIC), has a negative and 

generally significant effect on PAT.  This evidence does not support the presence of economies 

of scope in scientific labor productivity.  The evidence may reflect instead varying mixes of the 

technologies researched across firms of varying NSIC.  That is, scientists in firms with multiple 

lines may be working in fields where the economic value of patents is large, relative to the fields 

in which scientists in firms with few business lines.  

 

V. Conclusion 

Our findings can be summarized as follows.  Using patents as our measure of a scientist’s 

output, we find that labor productivity of scientists rises with firm size, whether size is measured 

in R&D expenditures, sales or employees.  Our finding that patent productivity rises with firm 

size even after controlling for measures of the ability of scientists in the firm (including scientist-

specific fixed effects), suggest that productivity advantages enjoyed by large firms is not simply 

due to large firms’ ability to hire and retain high quality researchers.  Our results are robust 

across different specifications, including specifications that control for unobserved firm and 
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scientist heterogeneity, and arise in both the pharmaceutical and semiconductor industry analyses.  

This is especially interesting because at the firm level in these two industries, the patent yield per 

R&D spent varies inversely with firm size. 

An alternative interpretation supported by the pharmaceutical industry data is not that 

scientists in large firms are more productive, but that the scientific enterprise is organized 

differently in large firms.  For example, it is possible that in large firms or in firms with large 

R&D enterprises, a scientist plays a smaller role in any single R&D project.  In a large firm, due 

to the opportunity for specialization, a single scientist in a given period performs smaller tasks on 

any one project but contributes to more projects than his/her counterpart in a small firm.  

Consistent with this story, we find that the scientist-firm size productivity effect in the 

pharmaceutical industry disappears when we control for the number of collaborators. 
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Table 1  Variable Definition and Sample Statistics  

 Definition [Data Source] Mean (Standard Deviation) 
  Pharmaceutical Semiconductor 
    

PAT Number of patents granted to a scientist by 
application year [Patents BIB] 

1.587 
(1.429) 

2.024 
(2.717) 

R&D Real R&D expenditures in 1996 constant dollars 
[Compact D/SEC] 

9,433 
(3,999) 

6,144 
(6,672) 

SALES Real sales volume in 1996 constant dollars 
[Compact D/SEC] 

92,353 
(47,126) 

58,470 
(71,545) 

EMPLOYEE Number of Employees [Compact D/SEC] 39,334 
(13,921) 

21,819 
(19,584) 

PHDEG Binary variable for a Ph.D. degree holder 
[ProQuest] 

0.303 
(0.459) 

0.128 
(0.334) 

EXP Years elapsed since the inventor’s first patent 
granted is applied [Patents BIB] 

6.314 
(6.175) 

4.604 
(5.152) 

PSTOCK_5A Number of patents in years t-5 through t-1 on 
which the scientist is a named inventor [Patents 
BIB] 

2.573 
(4.281) 

2.429 
(5.207) 

PSTOCK_5B Number of patents accumulated before year t-5 on 
which the scientist is a named inventor [Patents 
BIB] 

2.204 
(5.860) 

0.879 
(2.957) 

K/L Capital-labor ratio, or deflated plant and equipment 
over the number of employees [Compact D/SEC] 

0.917 
(0.382) 

1.313 
(1.541) 

PHD/INV Share of inventors who hold Ph.D. degrees 
[ProQuest, Patents BIB] 

0.305 
(0.070) 

0.133 
(0.067) 

MEXP Median experience of all inventors in a firm 
[Patents BIB] 

6.928 
(0.921) 

5.021 
(1.213) 

FIRMAGE Years elapsed since the founding year of a firm 
[Thomas Register] 

92.372 
(37.040) 

28.603 
(19.372) 

NSIC Number of secondary SIC’s assigned to a firm 
[Compact D/SEC]  

5.258 
(1.902) 

2.408 
(1.611) 

COINVENT Average number of inventors named on the 
scientist’s patents in year t [Patents BIB] 

4.373 
(2.921) 

2.973 
(1.854) 

MCITE Average projected number of citations per patent 
[Citation] 

5.579 
(11.032) 

6.783 
(12.354) 

 
  

 

  



Table 2  Scientist Patent Productivity: Pharmaceutical  
Poisson Model with Truncation and Random Effects 

 (1) (2) (3) (4) 
 Base Sales Employees Fixed Effects 
     
ln(R&D) 0.0269   0.0622 
 2.29   3.20 

ln(SALES)  0.0276   
  3.27   

ln(EMPLOYEE)   0.0326  
   3.50  

PHDEG 0.0730 0.0735 0.0746 0.0699 
 6.10 6.16 6.29 2.13 

EXP 0.0260 0.0262 0.0256 0.0474 
 8.52 8.61 8.47 8.66 

EXP2 -0.0010 -0.0011 -0.0010 -0.0013 
 -7.43 -7.51 -7.38 -4.80 

PSTOCK_5A 0.0363 0.0365 0.0368 0.0141 
 50.37 50.44 52.06 8.10 

PSTOCK_5B 0.0029 0.0030 0.0029 0.0026 
 3.75 3.74 3.75 1.07 

ln(K/L) 0.1243 0.1329 0.1414 0.0719 
 7.26 7.23 7.84 2.45 

ln(PHD/INV) 0.0811 0.0801 0.0926 0.0634 
 2.82 2.81 3.37 1.42 

ln(MEXP) 0.0208 0.0040 0.0158 0.1767 
 0.42 0.08 0.32 2.32 

ln(FIRMAGE) -0.0233 -0.0206 -0.0231 -0.0777 
 -2.12 -2.00 -2.22 -3.44 

ln(NSIC) -0.0213 -0.0289 -0.0324 -0.1528 
 -1.55 -2.02 -2.20 -6.63 

Observation 20829 20994 21182 20829 
Log Likelihood -29729 -29921 -30178 -13561 

 

  



Table 2  Scientist Patent Productivity: Pharmaceutical (Continued) 
Poisson Model with Truncation and Random Effects 

 (5) (6) (7) 
 Co-inventors Citations Non movers 
    
ln(R&D) 0.0206 0.0345 0.0281 
 1.75 2.86 1.82 

PHDEG 0.0750 0.0747 0.0910 
 6.25 6.23 6.21 

EXP 0.0262 0.0259 0.0370 
 8.55 8.45 9.84 

EXP2 -0.0011 -0.0010 -0.0014 
 -7.49 -7.33 -8.16 

PSTOCK_5A 0.0359 0.0364 0.0357 
 50.65 50.36 43.70 

PSTOCK_5B 0.0030 0.0028 0.0013 
 3.80 3.56 1.43 

ln(K/L) 0.1159 0.1273 0.1240 
 6.68 7.43 5.75 

ln(PHD/INV) 0.0747 0.0833 0.0792 
 2.59 2.88 2.02 

ln(MEXP) 0.0386 0.0319 0.0266 
 0.78 0.64 0.40 

ln(FIRMAGE) -0.0208 -0.0277 -0.0107 
 -1.89 -2.52 -0.75 

ln(NSIC) -0.0191 -0.0297 -0.0312 
 -1.38 -2.15 -1.60 

ln(COINVENT) 0.0828   
 7.01   

MCITE  0.0060  
  6.09  

MCITE2  -7.89E-05  
  -5.09  

Observation 20829 20829 14488 
Log Likelihood -29693 -29705 -20614 
Note: Two rows for each variable report the coefficient and the ratio of the coefficient to its standard error.  The coefficient 
estimates for constant terms are omitted from the table due to space considerations. 

  



Table 3  Scientist Patent Productivity: Semiconductor 
Poisson Model with Truncation and Random Effects 

 (1) (2) (3) (4) 
 Base Sales Employees Fixed Effects 
     
ln(R&D) 0.0265   0.0508 
 4.05   3.76 

ln(SALES)  0.0393   
  8.09   

ln(EMPLOYEE)   0.0431  
   9.26  

PHDEG 0.0881 0.1140 0.1133 0.1828 
 5.94 10.78 10.71 4.03 

EXP 0.0668 0.0506 0.0508 0.0995 
 23.48 24.14 24.23 15.80 

EXP2 -0.0028 -0.0021 -0.0021 -0.0036 
 -20.52 -20.96 -21.00 -11.85 

PSTOCK_5A 0.0257 0.0277 0.0276 0.0075 
 184.93 238.90 237.11 8.45 

PSTOCK_5B 0.0066 0.0050 0.0049 0.0120 
 5.95 6.07 6.10 4.29 

ln(K/L) 0.0467 0.0210 0.0442 0.0180 
 11.87 6.44 13.89 2.37 

ln(PHD/INV) -0.0349 -0.0567 -0.0588 0.0040 
 -2.31 -4.48 -4.64 0.15 

ln(MEXP) -0.0432 0.0019 0.0184 0.0244 
 -1.34 0.07 0.66 0.44 

ln(FIRMAGE) -0.0895 -0.1530 -0.1627 -0.0004 
 -5.21 -14.03 -14.72 -0.01 

ln(NSIC) -0.0514 -0.0604 -0.0546 -0.0168 
 -6.10 -8.68 -8.27 -0.88 

Observation 17867 33294 33294 17867 
Log Likelihood -30557 -53618 -53606 -12315 

 

  



Table 3  Scientist Patent Productivity: Semiconductor (Continued) 
Poisson Model with Truncation and Random Effects 

 (5) (6) (7) 
 Co-inventors Citations Non movers 
    
ln(R&D) 0.0254 0.0229 0.0295 
 3.86 3.37 3.21 

PHDEG 0.0891 0.0891 0.0892 
 5.97 6.02 4.59 

EXP 0.0675 0.0665 0.1185 
 23.61 23.17 23.85 

EXP2 -0.0028 -0.0027 -0.0056 
 -20.64 -20.32 -14.24 

PSTOCK_5A 0.0255 0.0251 0.0204 
 178.42 171.89 111.64 

PSTOCK_5B 0.0067 0.0066 -0.0049 
 5.93 5.96 -1.80 

ln(K/L) 0.0455 0.0411 0.0405 
 11.55 10.29 8.18 

ln(PHD/INV) -0.0443 -0.0316 -0.0177 
 -2.90 -2.06 -0.85 

ln(MEXP) -0.0485 -0.1129 -0.0443 
 -1.48 -3.08 -0.99 

ln(FIRMAGE) -0.0879 -0.0948 -0.1103 
 -5.15 -5.46 -4.71 

ln(NSIC) -0.0508 -0.0466 -0.0471 
 -5.93 -5.49 -4.68 

ln(COINVENT) 0.1324   
 14.33   

MCITE  -0.0042  
  -4.12  

MCITE2  -5.71E-06  
  -0.35  

Observation 17867 17867 13686 
Log Likelihood -30489 -30523 -22993 
Note: Two rows for each variable report the coefficient and the ratio of the coefficient to its standard error.  The coefficient 
estimates for constant terms are omitted from the table due to space considerations. 

  



 
Table 4  Average Number of Co-Inventors per Patent by Firm Size 

 

Firm R&D Size Pharmaceutical 

Industry 

Semiconductor 

Industry 

Bottom 25% 3.926 2.980 

25-50% 4.301 2.805 

50-75% 4.411 2.875 

75-100% 4.859 3.216 
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