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Abstract

Renegotiation-proof contracts are studied in infinitely repeated principal-

agent contracting. Contracts satisfying a weaker notion of renegotiation-

proofness always exist. With risk neutrality, efficient full-commitment con-

tracts are renegotiation-proof if the agent’s expected lifetime utility is above

a critical level; otherwise or if the agent is risk averse then efficient full-

commitment contracts may not be renegotiation-proof. The renegotiation-

proof value function has a simple characterization: it is the optimal value

function with an appropriate lower bound placed on the agent’s expected

lifetime utility. Sufficient conditions are provided for renegotiation-proof val-

ue functions in finite horizon setting to converge to a renegotiation-proof

value function in infinite horizon setting, as time goes to infinity.

Keywords: Dynamic Contracts, Renegotiation Proof, Principal-Agent Theory

JEL Classification: D8, C7
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1 Introduction

Consider a principal who hires an agent to work on a project for a long period

of time. The principal may offer the agent wage contracts that span part or

the whole life of the employment relationship. The main issue that arises in

this long-term principal-agent contracting problem concerns commitment. With

full commitment, the principal can offer long-term contract to the agent at the

beginning of the employment and sticks to the contract throughout the life of

the relationship. With limited commitment, the principal and the agent may

agree on and bind themselves to short-term contracts (for example, one-period

contracts), but can not commit themselves to any future contracts. The third

form is long-term contracts with renegotiation: the parties can write long-term

contract but may renegotiate and change the contract in the future as long as there

is mutual consent. Although the commitment issue has been extensively analyzed

within finite-horizon framework,1 it has not been the case for infinite-horizon

applications where the durations of relationships are not known beforehand. The

dynamic contracting literature focuses on full-commitment long-term contracting

and on limited commitment contracting,2 but offers only limited treatment of

long-term contracting with renegotiation, which is the subject matter of this paper.

Specifically, this paper investigates the properties of long-term renegotiation-proof

contracts and their connections with limited and full commitment contracts in the

infinite-horizon principal-agent setting.

Infinite-horizon applications present new challenges that are absent in finite-

horizon settings. At a conceptual level, renegotiation-proofness is well understood

in finite horizon (see Wang (2000)). Consider finitely repeated principal-agent

contracting where the principal and the agent can renegotiate the remaining con-

tract at the beginning of each period. If there is only one period, renegotiation-

proofness amounts to ex ante Pareto optimality. If there are more than one but

finitely many periods, renegotiation-proofness can be formulated as follows: Start-
1Fudenberg, Holmstrom, and Milgrom [7] and Rey and Salanie [18] examine connections be-

tween short-term and long-term contracts. Wang [25] investigates long-term renegotiation-proof

contracts.
2The literature starts with the work of Spear and Srivastava [22] and that of Green [9]. See

Phelan [15], Thomas and Worrall [23] for contracting with limited commitment. Ljungqvist and

Sargent [13] offer a comprehensive treatment of many applications of dynamic contracting.
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ing from the final period, one-period renegotiation-proof contracts are just Pareto

optimal contracts. Using backward induction, T-period renegotiation proof con-

tracts are Pareto optimal contracts subject to the constraint that their T-1-period

continuation contracts are renegotiation proof. This backward induction proce-

dure, however, will not work for infinite-horizon applications, which is the main

reason why so many competing concepts of renegotiation-proofness have been pro-

posed for general infinitely repeated games.3

Here I posit two intuitive axioms as basic requirements for renegotiation-proof

contracts, which are natural extensions from finite-horizon setting. The first ax-

iom (called recursion) requires that a contract be renegotiation proof if and only

if every continuation contract is renegotiation proof (henceforth RP). The sec-

ond axiom (called pareto optimality) requires that a RP contract not be Pareto

dominated by any other RP contract. The set of contracts that meet the two

conditions satisfy Self-Pareto-Generating : the Pareto frontier of the principal’s

optimal value function is identical to the continuation value function (see Section

4). This notion of renegotiation-proofness coincides with the concept of internal

renegotiation-proofness put forward by Ray [17]. In the analysis of this paper, the

principal is permitted to publicly randomize over menu of contracts, which guaran-

tees existence of contracts that satisfy a weaker notion of renegotiation-proofness

and facilitates the derivation of characterization results.

The key condition that determines the impact of renegotiation is the extent

of punishment the principal can inflict on the agent in a single period. If the

principal can arbitrarily lower the agent’s lifetime utility by simply reducing the

agent’s income in a single period (which is possible if the agent’s utility from

income is unbounded from below), then efficient full-commitment contracts are

renegotiation-proof: every continuation contract of every ex ante Pareto efficient

contract is itself efficient. This result is related to earlier studies of finite-horizon

applications. Rey and Salanie [18] show that short-term (two-period) contracts

with renegotiation can achieve full-commitment long-term efficiency if inter-period

transfers are unlimited (surjectivity) and agents’ objectives are conflicting. Fuden-

berg, Holmstrom and Milgrom [7] identify conditions that guarantee one-period
3See among others, Bernheim and Ray [4], Farrell and Maskin [6], van Damme [24], Abreu,

Pearce, and Stacchetti [1], Bergin and MacLeod [3], Ray [17], and Kocherlakota [11]. Bergin and

MacLeod [3] also discuss the relationships among various concepts.

4



contracts are sufficient for achieving long-term efficiency. Their conditions include:

there is common knowledge about preferences and technology at all renegotiation

stages; both agents have equal access to credit market (so the agents are effectively

risk neutral toward income streams); the utility frontier at every history generated

by the set of incentive compatible continuation contracts is downward sloping. In

comparison, in the current model the agent may not have access to credit market

and may be risk averse. Moreover, unlimited punishment falls short of the surjec-

tivity condition (which also requires unlimited reward so in effect requires agent’s

utility function to be full range) of Rey and Salanie. As a result, renegotiation-

proofness of the full-commitment contracts does not imply implementation by

short-term contracts.

The more interesting situation occurs when the principal can not inflict unlim-

ited punishment on the agent in a single period. This can happen if the agent’s

utility from income is bounded from below or if there is limited liability on the

part of the agent which requires a minimum wage. An efficiency-wage type of

argument applies (See Shapiro and Stiglitz [21]). Renegotiation will have a bite.

The reason is as follows. Because the principal has to offer the agent a mini-

mum level of instantaneous utility at any point in time, the agent will normally

receive positive rent if he is expected to exert nontrivial effort, namely the a-

gent must be paid an expected utility over and above his reservation utility. In

dynamic context, the principal can structure the agent’s intertemporal rent pay-

ments to maximize her expected profits. I identify two properties of the efficient

full-commitment rent structure. The first is the use of ex post Pareto inefficient

continuation contracts as punishment device. The second is the use of deferred

payment as reward device. These properties of the full-commitment rent structure

are not related to intertemporal consumption smoothing, neither are they due to

asymmetric information at renegotiation stage; rather they reflect the strategic

value of pre-committed payment plan. These properties, however, are usually in-

consistent with renegotiation-proofness. Several numerical examples are provided

to illustrate these possibilities.

The main findings about long-term renegotiation-proof contracts are the fol-

lowing. First, it is shown that long-term renegotiation proof contracts are equiv-

alent to efficient limited-commitment contracts with limited commitment placed

solely on the part of the agent. As indicated earlier, the contracting technologies

5



under the two regimes are quite different: With limited commitment the agent

can unilaterally walk away at the beginning of each period; with long-term con-

tracting and renegotiation, any abandonment or alteration of the contract must

receive mutual consent. Moreover, under long-term renegotiation-proof contracts

the agent in general receives a minimum level of lifetime utility over and above his

reservation lifetime utility. This can occur even if in the static model the principal

prefers to implement the minimum effort and to pay the agent the reservation

utility.

Second, if both the principal and the agent are risk neutral toward income and

if the agent’s reservation utility is sufficiently high, then efficient full-commitment

contracts and renegotiation-proof contracts coincide and both can be implemented

by a sequence of one-period contracts. This result generalizes Fudenberg, Holm-

strom and Milgrom [7]. However, if the agent’s reservation utility is below a

certain level, efficient long-term full-commitment contracts are not renegotiation

proof. Third, if the agent is risk averse, long-term full-commitment contracts in

general are not renegotiation proof.

I also offer a convergence result that links renegotiation-proof contracts in

the finite-horizon setting to that in the infinite-horizon setting, which also serves

as an algorithm for computing renegotiation-proof value functions. I stress that

it is important in the current analysis to allow random wage contracts and to

weaken the notion of renegotiation-proofness somewhat in order to establish the

existence of renegotiation-proof contracts, the link between renegotiation-proof

and limited-commitment contracts, and the link between finite and infinite horizon

renegotiation-proof contracts. Computed examples are provided to illustrate this

point.

The analysis in this paper can be contrasted with the literature on contracting

with asymmetric information and renegotiation. It is important in here that at

every renegotiation stage the principal and the agent have symmetric information

about their preferences over subsequent contingent outcomes. If there are asym-

metric information at renegotiation stage (for example if the agent knows more

about his preferences than the principal), then adverse selection problem arises

and the analysis will be quite different. Fudenberg and Tirole [8] and Park [14]

analyze renegotiation with asymmetric information in principal-agent contracting.

Dewatripont [5] and Laffont and Tirole [12] analyze long-term renegotiation-proof
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contracts, while Hart and Tirole [10] and Rey and Salanie [19] analyze links be-

tween long-term renegotiation-proof contracts and limited commitment short-term

contracts. Moreover, the complete contracting approach of this paper also differs

from the literature on incomplete contracting with renegotiation.

The rest of the paper is organized as follows. Section 2 provides a simple ex-

ample to motivate the idea. Section 3 spells out the details of the model. Section 4

introduces the concept of renegotiation-proofness. Section 5 presents the existence

and some characterization results. Section 6 provides further characterizations and

several computed examples. Section 7 studies the link between finite-horizon and

infinite-horizon RP contracts. Section 8 deals with the two-action two-outcome

case where stronger results are possible. Section 9 concludes.

2 An Example

The following example demonstrates that efficient long-term contracts may not

be renegotiation-proof. Consider a two-period repeated principal-agent model

as follows. The agent has two hidden actions a2, a1, which also represent the

utility costs of exerting the actions. Without loss of generality, assume a2 >

a1 = 0. There are two possible output levels y2 > y1 = 0. To focus on the

incentive structure, I assume both the agent and the principal are risk neutral

toward consumption, so intertemporal smoothing is irrelevant. The agent has

a period utility function given by c − a and the principal cares only about her

expected net revenue. Let p2 be the probability that outcome y2 will occur when

the agent chooses effort a2, and p1 be the probability that outcome y2 will occur

when the agent chooses effort a1. The agent’s reservation utility level is normalized

to zero. The agent’s consumption level must be non-negative at all times.

Consider the following set of parameters: p2 = 0.8, p1 = 0.2, y2 = 1, e2 = 0.3.

One can verify that p2y2−a2 > p1y2−a1, which says it is jointly efficient to exert

high effort a2.

Start with the one-period model. To implement effort choice a2, the principal

promises a wage w2 if output y2 occurs and a wage w1 = 0 if output y1 occurs.

The agent’s incentive compatibility condition requires

p2w2 − a2 ≥ p1w2 − a1
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which implies that the minimum wage w2 the principal must pay to induce effort

a2 is given by

w2 =
a2 − a1

p2 − p1
=

0.3
0.8− 0.2

= 0.5.

For i = 1, 2, let Ri and ri be the expected utility of the principal and the agent

respectively if effort ai is implemented with minimum cost to the principal. One

can derive that r1 = 0, R1 = p1y2 = 0.2, r2 = p2w2 − a2 = 0.8 × 0.5 − 0.3 = 0.1,

and R2 = p2(y2−w2) = 0.4. Clearly in the one-period model, the principal prefers

to implement effort a2 although she must pay the agent positive rent.

Now consider the two-period model. What is the optimal long-term contract

for the principal? Given that there is no need for intertemporal smoothing, the

natural starting point is the repetition of the one-period optimal contract (w2 =

0.5, w1 = 0). The principal’s expected utility would be (1 + δ)R2 and the agent’s

expected utility would be (1 + δ)r2, where 0 < δ ≤ 1 is the common discount

factor. Can the principal do better than this? The answer is YES.

Consider the following two-period contract: if first period outcome is y2, the

agent gets wage payment ŵ and is promised the wage contract (w2 = 0.5, w1 = 0)

for the next period; if first period outcome is y1, the agent gets zero wage payment

and is promised wage contract (w′
2 = 0, w1 = 0) in the next period. The wage

payment ŵ is chosen to satisfy

p2(ŵ + δr2)− e2 = p1(ŵ + δr2)− a1

which ensures that effort a2 will be implemented in period 1. It follows that

ŵ =
a2

p2 − p1
− δr2 = w2 − δr2 = 0.5− 0.1δ (1)

Given the period 2 contingent wage contracts, the agent will choose a1 in period

2 if period 1 outcome was y1 and will choose a2 in period 2 if period 1 outcome

was y2. By equation (1), the principal’s ex ante expected utility is given as

p2(y2 − ŵ + δR2) + (1− p2)δR1

= p2(y2 − w2 + δr2 + δR2) + (1− p2)δR1

= p2(y2 − w2) + δp2r2 + δp2R2 + (1− p2)δR1

= (1 + δ)R2 + δp2r2 − (1− p2)δ(R2 −R1).
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It follows that the principal prefers this contract if the following condition is

satisfied

p2r2 − (1− p2)(R2 −R1) > 0,

which is guaranteed by the given parameters: p2r2 − (1 − p2)(R2 − R1) = 0.8 ×
0.1− 0.2× (0.4− 0.2) = 0.04 > 0.

The above long-term contract involves the use of ex post inefficient contract

in period 2 when first-period output is y1, so it will be subject to renegotiation if

such opportunity exists.

3 The Model

3.1 The Stage Model

The model is a repeated version of the standard principal-agent model. Time is

discrete: t = 1, 2, .... In each period, a wage scheme goes into effect. The agent

then takes a hidden action a from a finite set A. Each action a ∈ A induces

a probability distribution over a finite set Y of publicly observable outputs; in

particular, for every action a ∈ A, p(y|a) is the probability that output y ∈ Y

occurs. If the realized output is y, then the agent gets paid w(y) according to

current wage scheme w(·). The agent’s utility function is given by u(w) − g(a),

where w ∈ <+ is wage payment and a ∈ A is action. The principal’s utility is

y − w.

In each period, the wage scheme can be randomly drawn from a menu of wage

schemes according to some probability distribution. If the menu contains J wage

schemes: {w1(·), ..., wJ(·)}, each scheme wj(·) is drawn with probability πj , and

given each wage scheme wj(·) the agent’s action is aj , then the principal’s expected

payoff is
J∑

j=1

∑
y∈Y

πjp(y|aj)(y − wj(y))

and the agent’s expected payoff is

J∑
j=1

∑
y∈Y

πjp(y|aj)(u(wj(y))− g(aj)).
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3.2 The Repeated Model

In the repeated model, the public history at the beginning of period t is

ht = ((w1, y1), ..., (wt−1, yt−1)), where each pair (wτ , yτ ) records the realized wage

scheme and the realized output in period τ. Let Ht = (<|Y |+ × Y )t−1 be the set of

all possible histories at the beginning of period t. 4

A contract σ consists of a pair of plans: a contingent wage plan w
˜

and a

contingent action plan s
˜

recommended for the agent. A wage plan w
˜

is a sequence

of maps {wt}∞t=1 from time-t public history to the set of random wage schemes;

each wt(ht) specifies a probability distribution on <|Y |+ , the set of deterministic

wage schemes. A realized wage scheme wt ∈ <|Y |+ specifies wage payment wt(y) for

each output realization yt = y ∈ Y . A recommended action plan s
˜

for the agent

is also a sequence of maps {st}∞t=1 from time-t histories and time-t wage schemes

to set A; each st(ht, wt) specifies the action of the agent in period t given realized

time-t history ht and realized time-t wage scheme wt.5 Finally, let W be the space

of all possible wage plans, S be the space of all possible action plans, and Σ be

the space of all possible contracts.

Both the principal and the agent maximize the sum of expected discounted

period payoffs, using a common discount factor δ ∈ (0, 1). Specifically, the agent’s

expected sum of discounted period utility is given by a function v1 : W×S −→ <
defined as follows:

v1(w
˜
, s
˜
) = E

∞∑
t=1

δt−1[u(wt)− g(st)],

and the principal’s expected sum of discounted period utility is given by a function

v0 : W ×S −→ < defined as follows:

v0(w
˜
, s
˜
) = E

∞∑
t=1

δt−1[yt − wt],

where the two expectations are taken with respect to the distribution over histories

that is generated by action plan s
˜

and wage plan w
˜
. v0(σ) and v1(σ) are also

referred to as the value of the contract to the principal and the value to the agent,

respectively.
4Note that H1 is the null set.
5The action plans specify only pure actions; this is without loss of generality: in case there are

multiple optimal actions for the agent the contract picks the most desirable one for the principal.
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It is useful to introduce the notion of continuation. Given a contract σ = (w
˜
, s

˜
).

Fix an history ht, for t = 1, 2, .... The continuation action plan s
˜
|ht is the restriction

of s
˜

to histories hτ for τ ≥ t whose first t period components coincide with ht.

Continuation wage plan w
˜
|ht is defined analogously. Continuation contract σ|ht

is the pair (w
˜
|ht, s

˜
|ht).

A contract σ = (w
˜
, s
˜
) is incentive compatible if given wage plan w

˜
, action

plan s
˜

is optimal for the agent: v1(w
˜
, s
˜
) ≥ v1(w

˜
, s
˜

′), for all s
˜

′ ∈ S.

Given some constants ξ and ξ̄, a contract σ is feasible if v1(σ|ht) ∈ [ξ, ξ̄],

for every history ht. The upper bound on the agent’s lifetime utility reflects the

limited ability of the principal in making wage payments: although there is no

explicit limit on wage payment, the lifetime utility of the agent can not exceed ξ̄,

which implicitly imposes an upper bound on wage payments in each period. The

lower bound ξ reflects limited liability of the agent. For example, if wage can not

be negative and if the agent can choose an action that costs him nothing (as will

be assumed below), then the agent’s lifetime utility can not be below zero: ξ = 0.

Finally, the following assumptions are made throughout the paper:

A 1. The agent has a separable utility function: u(c) − g(a), with c ≥ 0,

u′(·) > 0, u′′(·) ≤ 0, g(a) ≥ 0 for all a ∈ A, and there is an a ∈ A such that

g(a) = 0.

A 2. (Full Support) For all a ∈ A and for all y ∈ Y , p(y|a) > 0.

Note that under the full support assumption, a contract σ is incentive com-

patible if and only if every continuation contract σ|ht is incentive compatible.

4 Renegotiation-Proofness

This section introduces the concept of renegotiation-proofness. The idea is not to

spell out the detailed process of renegotiation, but rather to assume that the final

effective contract leaves no room for further renegotiation that can lead to welfare

improvement for some party without hurting others, i.e. Pareto improvement.
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4.1 The Preliminary Axioms

If a contract is to be renegotiated only once, then it is clear that renegotiation proof

contract is equivalent to Pareto optimal contract. In a multi-period model where

renegotiation can take place in every period, renegotiation proof contract should

be Pareto optimal subject to the constraint that the principal and the agent can

not achieve Pareto improvement through renegotiation in all future dates. If the

number of periods is finite, this constrained optimality can be defined recursively

in every period using backward induction. In the current infinite-horizon model

where renegotiation can take place infinitely many times, it is impossible to apply

backward induction. The method, however, does lend its recursive nature to

the development of a new concept: renegotiation proof contracts should be Pareto

optimal subject to the constraint that any continuation contract satisfies the same

requirement. The rest of this section is devoted to formalizing this seemingly

cyclical idea.

The recursive definition of renegotiation-proofness for the finite-horizon setting

motivates the following two conditions that one would like a renegotiation proof

contract in the infinite-horizon setting to satisfy.

Axiom 1. (Recursion) A contract is renegotiation proof if and only if every

continuation contract is renegotiation proof.

Axiom 2. (Pareto Optimality) A renegotiation proof contract is not Pareto

dominated by any other renegotiation proof contract.

The goal is to characterize contracts that satisfy these two axioms, and then

use the result to derive an operational definition of renegotiation-proofness. To

this end, next I consider the set of values that contracts can deliver to the principal

and the agent.

4.2 Value Functions and Renegotiation-Proofness

A value function f maps each promised payoff ξ′ of the agent to the optimal payoff

f(ξ′) of the principal, achievable using incentive compatible and feasible contracts.

Suppose f(·) is an optimal continuation value function, i.e. if the agent is

promised an expected payoff ξ′ from next period onwards then the principal’s

optimal continuation value is f(ξ′). Consider how one can find the principal’s
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optimal value function for today. The idea is to design current wage scheme and

promised utility scheme to generate the principal’s optimal value for today, given

optimal continuation value function f(·). Formally, one has the following notion

of generating.

Definition 1. Let f be a real-valued continuous function defined on an in-

terval [`, ξ̄] ⊂ <+. A function Γf : [δ`, ξ̄] −→ < is generated by f if for every

ξ ∈ [δ`, ξ̄], Γf(ξ) is given by:

Γf(ξ) = max
(πj ,wj ,ξj ,aj)

∑
j∈J

πj
∑
y∈Y

p(y|aj)
[
y − wj(y) + δf(ξj(y))

]
(2)

s.t. ∑
j∈J

πj

[∑
y∈Y

p(y|aj)
(
u(wj(y)) + δξj(y)

)
− g(aj)

]
= ξ, (3)

for all j ∈ J and for all a ∈ A,∑
y∈Y

[p(y|aj)− p(y|a)]
(
u(wj(y)) + δξj(y)

)
≥ g(aj)− g(a), (4)

where for all j ∈ J, wj : Y −→ R+, ξj : Y −→ [`, ξ̄], aj ∈ A, πj ≥ 0, and
∑

j∈J πj =

1. For the record, Γ is called the generating operator.

Note that random wage scheme is permitted: the choice variables are a dis-

tribution (πj) over a menu (wj(·), ξj(·), aj)j∈J , where for each j ∈ J , ξj(y) is the

promised payoff to the agent given current output y. The value function Γf(·) is

the upper frontier of the convex hull of the value function without randomization.

It follows that Γf(·) is concave.

Fix a real-valued continuous function f defined on a positive interval [`, ξ̄].

Define Φ as the Pareto generating operator, which is the composition of the gener-

ating operator Γ and the operation of taking Pareto frontier, so Φ(f) is the Pareto

frontier of the generated value function Γf .

Definition 2. A real-valued function f defined on a positive interval [`, ξ̄], is

Self-Pareto-Generating if the Pareto frontier of the generated value function Γf

is identical to f , i.e. if Φ(f) = f . 6

6Ray [17] calls such set internally renegotiation proof. Bergin and MacLeod [3] also introduce

a similar concept, called full recursive efficiency.
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Proposition 1. Let f be the value function the graph of which is the set of

all value pairs delivered by renegotiation-proof contracts that satisfy Axioms 1 and

2. Then Φ(f) = f .

Proof. Any point on the Pareto frontier Φ(f) corresponds to a renegotiation-

proof contract: it will not be renegotiated today, and its continuation contracts

are all renegotiation-proof. Thus Graph(Φ(f)) ⊆ Graph(f). On the other hand, a

point on Graph(f) can be generated by value function f , because the continuation

contracts of a renegotiation proof contract should also be renegotiation proof. It

follows that f must be part of the Pareto frontier Φ(f): Graph(f) ⊆ Graph(Φ(f)).

Hence, Φ(f) = f . Q.E.D.

Proposition 1 provides the basis for a definition of renegotiation-proofness

that satisfies Axioms 1 and 2. But we should note that Self-Pareto-Generating is

only a necessary condition following the two axioms; we still need to keep Pareto

Optimality (Axiom 2). In light of this, two concepts are introduced below.

Definition 3. A contract σ is (weak) renegotiation proof if the set of value

pairs delivered by all of its continuation contracts is a subset of the graph of a

Self-Pareto-Generating (henceforth also called renegotiation proof) value function.

Definition 4. A contract σ is strong renegotiation proof if it is weak rene-

gotiation proof and it is not Pareto dominated by any weak renegotiation proof

contracts. 7

Note that the value function of strong renegotiation proof contracts, if exists,

must be unique. In the rest of the paper, unless otherwise indicated, I will use

renegotiation proof to mean weak renegotiation proof, and use renegotiation proof

and Self-Pareto-Generating interchangeably.

Figure 1 illustrates a renegotiation proof value function, the graph of which is

the curve BC.

[Insert Figure 1 here]

7This pair of concepts may be contrasted with the concepts (with the same namesakes) intro-

duced by Farrell and Maskin [6] and those by Bernheim and Ray [4]. The weak renegotiation-

proofness here is stronger than theirs.
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A special case where efficient full-commitment contracts are in fact renegotiation-

proof is when the principal can punish the agent arbitrarily severely in a single

period, as shown in the following proposition. Similar result was also obtained by

Fudenberg, Holmstrom and Milgrom [7]. It is included here for completeness.

Proposition 2. Assume A1-A2 and u(0) = −∞. Then every continuation

contract of an efficient full-commitment contract is efficient.

Note that this “recursive efficiency” property clearly implies renegotiation-

proofness. The proof of the proposition is sketched as follows. If any continuation

contract is inefficient, then replace it by a Pareto superior incentive compatible

and feasible continuation contract. If the agent’s continuation payoff is not in-

creased as a result, then the agent’s incentives are not affected and the principal’s

continuation payoff must be increased. The resulted new contract then Pareto

dominates the old one, a contradiction. If the agent’s continuation payoff goes up

after the replacement, then reduce the agent’s wage payments in the previous peri-

od by some amount independent of output realizations so as to bring her expected

payoff at that history back to the original level promised by the old contract. The

agent’s incentives are unaffected after that and the principal’s expected payoff is

increased, which again leads to a contradiction.

For the rest of this paper, I will assume that u(0) = 0 and the agent’s reser-

vation utility is zero. As seen from the example in the previous section, ex ante

efficient contracts in general are not renegotiation proof.

For later reference, I record the following two results concerning generating

operator Γ, the proof of the first lemma is obvious and omitted.

Lemma 1. Let f1 : [`1, ξ̄] −→ <, and f2 : [`2, ξ̄] −→ < be two continuous

functions. Suppose `2 ≥ `1, and f1(ξ) ≥ f2(ξ), for all ξ ∈ [`2, ξ̄]. Then Γf1(ξ) ≥
Γf2(ξ) whenever both sides are defined.

Lemma 2. There exist some w̄ > 0 and some M > 0 such that given any con-

tinuous real-valued function f defined on a positive interval [`, ξ̄], (a) the generated

function Γ(f) is concave, and the left and right derivatives of Γ(f) are bounded

from below by −M ; (b) wage payments are bounded from above by w̄.

Proof. To prove part (b), let p be the min{p(y|a) : ∀a ∈ A, ∀y ∈ Y.}; let

ḡ = max{g(a) : ∀a ∈ A}; and let w̄ be such that u(w̄)p− ḡ = ξ̄. Concavity of Γ(f)
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is already established. To prove the rest of part (a), by inspecting Eq. (2), and

by a variation argument, one finds that the left derivative of Γ(f) at ξ̄ will be no

smaller than ∑
j

πj
∑
y∈Y

− p(y|aj)
u′(wj(y))

which together with part (b) implies that the left derivative of Γ(f) at ξ̄ is no

smaller than −M ≡ − 1
u′(w̄) . Since Γ(f) is concave, the left and right derivatives

of Γ(f) at every point (derivatives of support functions) must be bigger than or

equal to −M. Q.E.D.

The concept of RP can be demanding when it comes to existence. A weaker

concept, principal renegotiation proof, will guarantee existence.

Definition 5. Let f : [`, ξ̄] −→ R be a nonincreasing function. Then f is

said to be principal renegotiation proof (PRP) if Γf(ξ) = f(ξ), for all ξ ∈ [`, ξ̄]

and f(`) ≥ Γf(ξ), for all ξ in the domain of Γf .8

To paraphrase, f can not contain any point that makes the principal strictly

better off without hurting the agent, compared to other points on f , but f may

contain points that make the agent strictly better off without hurting the principal,

compared to other points on f .9 The concept thus implicitly assumes that it is

the principal who initiates renegotiation and she will do so only if there is strict

gain for herself. Apparently, an RP set is also a PRP set, but the reverse is not

necessarily true.

5 Existence and Characterization

In this section, I show that the value function of renegotiation proof contracts

has a simple characterization: it is the value function of optimal contracts with

an appropriate lower bound placed on the agent’s promised utility. Thus, RP

contracts are equivalent to optimal contracts with limited commitment, where the

agent faces an appropriate outside option in each date and can choose to walk

away forever.
8When ` = ξ̄, function f is defined on the singleton set {ξ̄} and is trivially nonincreasing.
9This is somewhere between weak Pareto optimality and full Pareto optimality: the principal

and the agent are treated asymmetrically.
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5.1 Optimal Contracting with Limited Commitment

Consider a class of optimal contracting problems where the agent has limited

commitment so his promised utility is bounded from below by some value ` ∈ [0, ξ̄]

of an outside option.

Given a promised utility ξ ∈ [`, ξ̄] to the agent,10 let V (ξ, `) be the maximum

value the principal can obtain using incentive compatible and feasible contracts

with the additional constraint that every continuation contract promises the agent

a payoff within [`, ξ̄].

Following standard argument,11 the optimal value function V (·, `) : [`, ξ̄] −→ <
satisfies the following functional equation:

V (ξ, `) = max
(πj ,wj ,ξj ,aj)

∑
j∈J

πj
∑
y∈Y

p(y|aj)
[
y − wj(y) + δV (ξj(y), `)

]
(5)

s.t. ∑
j∈J

πj

[∑
y∈Y

p(y|aj)
(
u(wj(y)) + δξj(y)

)
− g(aj)

]
= ξ

∑
y∈Y

[p(y|aj)− p(y|a)]
(
u(wj(y)) + δξj(y)

)
≥ g(aj)− g(a), ∀a ∈ A, ∀j ∈ J,

where for all j ∈ J, wj : Y −→ R+, ξj : Y −→ [`, ξ̄], aj ∈ A, πj ≥ 0, and
∑

j∈J πj =

1.

Again, random wage scheme is permitted: the choice variables are a distribu-

tion (πj) over a menu (wj(·), ξj(·), aj)j∈J . The value function V (·, `) is the upper

frontier of the convex hull of the value function without randomization. It follows

that V (·, `) is concave.

Let T` be the contraction mapping operator embedded in functional equation

(5). Given a real-valued function defined on an positive interval [`, ξ̄], function

T`f(·, `) is the restriction of the generated function Γf(·, `) to [`, ξ̄]: for all ξ ∈ [`, ξ̄],

Γf(ξ, `) = T`f(ξ, `), but the domain of Γf(·, `) is [δ`, ξ̄].

The following result compares the effects of different values of the agent’s

outside option on the principal’s welfare: higher value of the outside option reduces

the principal’s payoff.
10Note that the promised utility ξ is not the standard reservation utility of the agent because

the principal is constrained to deliver to the agent an expected payoff exactly equal to ξ.
11For instance, see Green ([9]) and Spear and Srivastava ([22]).
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Lemma 3. If 0 ≤ `′ < ` ≤ ξ̄, then V (ξ, `′) ≥ V (ξ, `) for all ξ ∈ [`, ξ̄]; and

ΓV (ξ, `′) ≥ ΓV (ξ, `) whenever both sides are defined.

Proof of Lemma 3. Let f : [`′, ξ̄] −→ < and h : [`, ξ̄] −→ < be identically zero

on their respective domains. Then by Lemma 1, Γf(ξ) ≥ Γh(ξ), for all ξ ∈ [`, ξ̄].

Hence T`′f(ξ) ≥ T`h(ξ), for all ξ ∈ [`, ξ̄]. Again, by Lemma 1, ΓT`′f(ξ) ≥ ΓT`h(ξ),

for all ξ ∈ [`, ξ̄]. Hence T 2
`′f(ξ) ≥ T 2

` h(ξ), for all ξ ∈ [`, ξ̄]. Keep applying Lemma 1,

one has for all n = 1, 2, ... and for all ξ ∈ [`, ξ̄], Tn
`′f(ξ) ≥ Tn

` h(ξ). Note that The

two sequences converge to V (·, `′) and V (·, `) respectively. The first statement

follows, and so does the second using Lemma 1 one more time. Q.E.D.

The next important result shows that the family of value functions V (·, ·) has

a certain sense of continuity with respect to its second argument `: as the lower

bounds get closer, the value functions also get closer uniformly on the intersection

of their domains. Formally:

Lemma 4. (Continuity) For all ` ∈ [0, ξ̄], it holds that

lim
`′→`

{
supξ∈[max(`,`′),ξ̄]|V (ξ, `)− V (ξ, `′)|

}
= 0

Proof of Lemma 4. See the Appendix. Q.E.D.

5.2 Existence and Characterization

The existence of Principal-Renegotiation-Proof value function and the main char-

acterization result about the RP and PRP value functions will be established.

Let L = {` ∈ [0, ξ̄] : V (·, `) is nonincreasing.}. Note that L is nonempty: ξ̄ ∈ L.

Let `∗ = inf L.

Lemma 5. Function V (·, `∗) is nonincreasing on [`∗, ξ̄].

Proof. The result trivially holds if `∗ = ξ̄. Suppose `∗ < ξ̄. Let 〈`n〉 be a

sequence in L which converges to `∗. Lemma 4 ensures that 〈V (·, `n)〉 converges

in metric d to V (·, `∗). Since all 〈V (·, `n)〉 are nonincreasing, it follows V (·, `∗) is

also nonincreasing. Q.E.D.

The following characterization result also establishes the existence of PRP

value function.
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Proposition 3. Value function V (·, `∗) is PRP. If V (·, `∗) is strictly decreas-

ing, then it is RP, and in fact strong renegotiation proof.

Proof. The proof is by contradiction. Suppose V (·, `∗) is not PRP (or not RP

if it is decreasing). Then there must exist some ξ̂ ∈ [0, `∗) such that ΓV (ξ̂, `∗) >

V (`∗, `∗). I will show that then there exists some `′ < `∗ such that ΓV (ξ̂, `′) <

ΓV (ξ̂, `∗), which is a contradiction by Lemma 3. For later reference, let ∆ ≡
ΓV (ξ̂, `∗)− V (`∗, `∗) > 0.

By Lemma 4, given any ε ∈ (0, ∆
2 ), there exists some η′ > 0 such that for all

`′ ∈ (`∗ − η′, `∗),

|V (`∗, `∗)− V (`∗, `′)| < ε.

Since V (`∗, `∗) ≤ V (`∗, `′) by Lemma 3, it follows that

V (`∗, `∗) + ε > V (`∗, `′). (6)

Now by Lemma 2, there exists some constant M > 0 such that ∀`′ ∈ [0, ξ̄] and

∀ξ ∈ [`′, `∗],

V (`∗, `′) + (`∗ − ξ)M ≥ V (ξ, `′). (7)

Let η = min{η′, ∆
2M }. Then for `′ ∈ (`∗ − η, `∗) and ∀ξ ∈ [`′, ξ̄],

ηM ≥ (`∗ − ξ)M. (8)

Adding up Eq.(8) and Eq. (6), one has

V (`∗, `∗) + ε + ηM ≥ V (`∗, `′) + (`∗ − ξ)M. (9)

Eq.(9) and Eq. (7) imply that ∀`′ ∈ (`∗ − η, `∗) and ∀ξ ∈ [`′, ξ̄],

V (`∗, `∗) + ε + ηM ≥ V (ξ, `′),

which further implies,

V (`∗, `∗) + ∆ = V (`∗, `∗) +
∆
2

+
∆

2M
M > V (ξ, `′). (10)

By the definition of `∗, for any `′ ∈ [0, `∗), function V (·, `′) attains its maximum

value somewhere in (`′, ξ̄ ]. Concavity of the generated function ΓV (·, `′) and the

fact that V (·, `′) and ΓV (·, `′) coincide on [`′, ξ̄] imply that ΓV (·, `′) also attains

its (identical) maximum value at the same points.
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Thus by Eq.(10) the maximum of V (·, `′), hence the maximum of ΓV (·, `′) will

be less than V (`∗, `∗) + ∆ = ΓV (ξ̂, `∗). Therefore, ΓV (ξ̂, `′) < ΓV (ξ̂, `∗), which is

impossible by Lemma 3, because `′ < `∗.

To prove that a strictly decreasing V (·, `∗) is strong renegotiation proof, note

that any weak renegotiation proof value function V (·, `) satisfies TV (·, `) = V (·, `),
so ` ∈ L. Since `∗ = inf L, by Lemma 3, V (·, `∗) Pareto dominates any such V (·, `).

Q.E.D.

[Insert Figure 2 here]

The logic of the proof is illustrated by Figure 2. The AD curve is for function

ΓV (·, `∗) and the BC curve is for ΓV (·, `′). Function ΓV (·, `∗) attains its maxi-

mum at ξ̂. For all `′ < `∗, ΓV (·, `′) attains its maximum on (`′, ξ̄]. As `′ → `∗,

the maximum of ΓV (·, `′) → ΓV (·, `∗), which implies ΓV (ξ̂, `′) < ΓV (ξ̂, `∗), a

contradiction.

This result establishes a connection between RP contracts and limited commit-

ment contracts. It also validates an informal treatment of renegotiation-proof con-

tracts in the dynamic contracting literature. In dynamic principal-agent contract-

ing the optimal value of the principal as a function of the agent’s promised utility

in general is not a nonincreasing function. Thus a point on the upward-sloping

portion of the value function may be subject to renegotiation. Downward-sloping

value functions may be obtained if suitable lower bounds are placed on the agent’s

promised utility. It seems that the downward-sloping value function generated

by the smallest such lower bound corresponds to some “renegotiation-proof” con-

tracts.12 Proposition 3 formally validates this method. However, one should note

that this result is obtained by permitting public randomization and by weakening

renegotiation-proofness to principal-renegotiation-proofness. The weaker concept

indeed is crucial for existence, for Self-Pareto-Generating or renegotiation-proof

value function may not exist in some cases (then the informal treatment would be

questionable). See Example 5 in the next section for an illustration.
12For instance, Phelan and Townsend [16] hinted on such a treatment; Vincenzo Quadrini

(2001) uses this method to study optimal renegotiation-proof financial contracts between an

entrepreneur and an investor.
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6 Further Characterization

In this section, I offer some characterizations of the renegotiation-proof value func-

tion and contrast the results with the full-commitment value function. One basic

conclusion is that renegotiation-proofness imposes a lower bound `∗ on the agen-

t’s lifetime utility, which in general is above zero (the reservation level of utility)

and below ξ̄ (the maximum level of the agent’s lifetime utility). I also charac-

terize the relationship between RP value function and the Pareto frontier of the

full-commitment value function.

6.1 Renegotiation raises agent’s minimum payoff

Consider first the stage model. For each action a ∈ A, let R(a) be the principal’s

maximum payoff by implementing a and let r(a) be the agent’s payoff thereof. If

a can not be implemented, then R(a) = −∞ and r(a) is not defined. Clearly, r(a)

= 0. To implement any action a with utility cost g(a) > 0, it is necessary for the

wage schedule (w(y))y∈Y to satisfy

r(a) = E[w(y)|a]− g(a) ≥ E[w(y)|a]

where E[·|a] is the expectation operator with respect to the probability distribution

p(·|a) on Y. By the full support assumption A2, it follows that r(a) > 0.

Proposition 4. Suppose that for the one-period problem, the principal’s max-

imum payoff R(a∗) by implementing an action a∗ with g(a∗) > 0 is strictly higher

than the payoff R(a) by implementing the least-cost-action a. Then the lower

bound `∗ > 0.

Proof. Suppose `∗ = 0. Then the full-commitment value function V f (·) and

RP value function coincide, so V f (·) is nonincreasing. If the agent is promised

zero payoff, then the principal’s maximum payoff is given by

R(a) + δV f (0).

The principal can always implement a∗ and get a payoff at least as high as

R(a∗) + δV f (0)
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while providing the agent with payoff r(a∗) > 0. This contradicts that V f (·) is

nonincreasing. Q.E.D.

Wang (2000) obtains a similar result in the context of a finitely repeated

principal-agent problem.

It is also of interest to know whether the only principal-renegotiation-proof

(PRP) function is a singleton, i.e. `∗ = ξ̄. The next result shows that for practically

all interesting contracting problems, PRP functions are not singleton.

Proposition 5. Suppose for the one-period contracting problem, the Pareto

frontier of the principal’s value function contains more than one point. Then

`∗ < ξ̄.

Proof. By Proposition 3, function V (·, `∗) is PRP. But the singleton function

V (ξ̄, ξ̄) is not Self-Pareto-Generating, so is not PRP. Q.E.D.

Proposition 4 states that if the value function for the one-period problem is not

nonincreasing then the full-commitment value function for the repeated problem is

not nonincreasing either. The reverse, however, is not true: even if the one-period

problem has nonincreasing (or even decreasing) value function, the value function

for the repeated problem may not be nonincreasing and the minimum utility `∗

for the agent can still be bigger than zero. This is illustrated by the following

example.

Example 2

Both the principal and the agent are risk-neutral toward income. The agent

has two actions a1, a2, which also represent the utility costs. Specifically, a1 = 0,

a2 = 0.2 + ε, where ε ≥ 0. There are two output levels: y1 = 0, y2 = 1. The

probabilities are given by p1 ≡ Prob(y2|a1) = 0.4, p2 ≡ Prob(y2|a2) = 0.8. Recall

that R(a) and r(a) are the payoffs of the principal and the agent respectively

when a is implemented by the principal with minimum cost. It is straightforward

to show that r(a1) = 0, R(a1) = p1y2 = 0.4, r(a2) = p1w
∗ = 0.2 + ε, and R(a2) =

p2(y2 −w∗) = 0.4− 2ε, where w∗ ≡ a2/(p2 − p1) = 0.5 + 2.5ε. The value function

for the one-period problem is nonincreasing for ε = 0 and decreasing for ε > 0.

Figure 3 shows the value function, assuming that the maximum utility of the agent

is 0.4 and ε = 0.02.
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[insert figure 3 here]

The full-commitment value function V f (·), however, is not nonincreasing. To

see this, first note that V f (0) = R(a1)/(1−δ). Next consider the following contract

that the principal can offer. For periods t > 2 offer zero wage regardless of future

and past output realizations. For period 1 given output realizations y1, y2, offer

current wage payments w(y1) = 0, w(y2) = w∗ − δr(a2) and promised utility for

period 2, ξ(y1) = 0, ξ(y2) = r(a2), where w∗ = a2/(p2 − p1). It is clear that these

offers will implement a2 in period 1. In period 2, if promised utility to the agent is

ξ(y1) = 0 then the principal offers zero wage regardless of output realization and

the principal’s payoff is equal to R(a1); if promised utility is equal to ξ(y2) = r(a2)

then the principal should offer to implement a2 and derive current payoff equal to

R(a2). In summary, the principal’s payoff for the first two periods is given by

p2{y2 − w2(y2) + δR(a2)}+ (1− p2)δR(a1)

= R(a2) + δp2(R(a2) + r(a2)) + (1− p2)δR(a1)

which is larger than (1+δ)R(a1) for small ε. (Clearly, if ε = 0, then R(a2) = R(a1)

and the difference is equal to δp2r(a2) > 0.) This shows that (0, V f (0)) is not a

peak point of V f (·) if ε is not too large.

This example also demonstrates the useful role of “deferred payments”: It is

cheaper for the principal to promise future payments rather than making current

wage payments in order to implement high effort today. This is because the slope

of the continuation value function is flat, so large future payments only result

in moderate decrease in profits for the principal. Note this phenomenon is not

related to intertemporal smoothing, as the agents are risk neutral toward income.

6.2 RP value function versus efficient frontier of full-commitment

value function

I now turn to the relationship between RP value function and the Pareto frontier

of the full-commitment value function. We have seen that if the agent’s utility

from income is unbounded from below these two objects coincide, so renegotiation-

proofness does not have much of a bite. But in general RP value function and the

Pareto frontier of the full-commitment value function will differ.
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If both the principal and the agent are risk neutral toward income, then there

is a range of promised payoffs for the agent on which the renegotiation-proof value

function and the full-commitment value function coincide. To illustrate this, once

again let R(a) and r(a) represent the payoffs of the principal and the agent respec-

tively for the one-period problem if action a ∈ A is implemented with minimum

cost to the principal. Let â ∈ arg maxa R(a) + r(a), namely action â maximizes

total surplus. Then it follows from risk neutrality that â ∈ arg maxa Ea[y − g(a)],

i.e. â maximizes expected output net of utility cost. Recall that V (·, `∗) is the

principal-renegotiation-proof value function.

Proposition 6. Assume A1, A2 and that both the principal and the agent

are risk neutral toward income. Then V (ξ, `∗) = V f (ξ), for all ξ ∈ [`, ξ̄ ], where

` ≡ r(â)/(1− δ).

Proof. The conclusion will follow if we can show that V (ξ, `) = V f (ξ) for all

ξ ∈ [`, ξ̄ ]. Need only to show that V (ξ, `) ≥ V f (ξ) for all ξ ∈ [`, ξ̄ ], because by

Lemma 3, V (ξ, `) ≤ V f (ξ) for all ξ ∈ [`, ξ̄ ].

Fix ξ ∈ [`, ξ̄]. Let σ be a full-commitment contract that delivers payoffs V f (ξ)

and ξ to the principal and the agent respectively. Since agents are risk neutral, it

follows that

V f (ξ) + ξ = Eσ[
∞∑

t=1

(yt − g(at))]

where the expectation is taken with respect to the distribution generated by σ

over outputs and pure actions.

On the other hand, if in each period the principal offers the same static contract

that implements action â and gives the agent per-period payoff (1− δ)ξ (which is

possible because (1 − δ)ξ ≥ r(â)) , then the principal obtains payoff Vp which is

given by

Vp + ξ = (Eâ(y)− g(â))/1− δ.

But

(Eâ(y)− g(â))/1− δ ≥ Eσ[
∞∑

t=1

(yt − g(at))] = V f (ξ) + ξ.

Hence Vp ≥ V f (ξ). It follows that V (ξ, `) = V f (ξ), for all ξ ∈ [`, ξ̄ ]. Q.E.D.

Thus when the principal and the agent are both risk neutral toward income,

there is a critical level of payoff for the agent above which the efficient full-
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commitment contracts are renegotiation-proof; furthermore, the payoff outcomes

of the efficient full-commitment contracts can be attained using stationary one-

period contracts. Fudenberg, Holmstrom, and Milgrom (1990) obtains a spe-

cial case of this result. They show that if both agents are risk neutral and the

principal’s expected payoff is zero then efficient full-commitment contracts are

renegotiation-proof and can be implemented by a sequence of short-term con-

tracts. Note that when the principal’s expected payoff is zero the payoff of the

agent in general is above the critical level identified in here.

Although the renegotiation-proof value function may coincide with part of

the full-commitment value function, in general the Pareto frontier of the full-

commitment value function is “larger” than the renegotiation-proof value function.

Namely, there are efficient full-commitment contracts that are not renegotiation

proof, even if both agents are risk neutral. The following example illustrates this

point.

Example 3

Consider a class of problems which includes Example 1 in Section 2. Both the

principal and the agent are risk neutral; the agent has two actions a1 = 0, a2 > 0,

which also identify the respective utility costs of taking the actions; there are two

output levels y1, y2. Again let Ri and ri represent the payoffs of the principal and

the agent respectively if action ai, i = 1, 2, is implemented with minimum cost to

the principal. Assume that the stage model satisfies the following condition:

A 3. R2 > R1, r2 > r1 = 0. p2r2 − (1− p2)(R2 −R1) > 0.

Lemma 6. Assume A1-3 and that both the principal and the agent are risk

neutral toward income. Let `f be the largest maximizer of the full-commitment

value function V f (·). Then (i) `f < `∗; (ii) the renegotiation-proof value function

V (·, `∗) coincide with V f (·) on [`∗, ξ̄].

Proof. By Lemma 10, `∗ = r2/(1− δ). Part (ii) then follows from Proposition

6. It follows from Assumption A3 and the logic of Example 1 that the principal

can obtain payoff higher than V (`∗, `∗) by offering the agent some payoff below

`∗, which proves part (i). Q.E.D.

Example 4: Risk aversion
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When the agent is risk averse, the renegotiation-proof value function can lie

strictly below the Pareto frontier of the full-commitment value function. The

following computed example illustrates this possibility. The stage model is the

same as in Example 1 (Section 2), except that the agent is now risk averse toward

income: his period utility function is given by
√

c− a, where c is consumption or

income and a is the utility cost of taking action a. The RP and full-commitment

value functions are computed and are shown in Figure 4. The RP value function

lies below the Pareto frontier of the full-commitment value function.

[insert figure 4 here]

6.3 Non-existence and non-convergence

Proposition 3 proves the general existence of principal-renegotiation-proof value

function, which is a nonincreasing function. However, such a PRP value function

may not be strictly decreasing and therefore may fail to be Self-Pareto-Generating

or renegotiation-proof. In fact Self-Pareto-Generating value function may not even

exist. The following example illustrates this possibility.

Example 5

The stage model is identical to that in Example 2. The emphasis here will be

on the principal-renegotiation-proof and full-commitment value functions. In the

computation, ε is assumed to be 0.02. The lower bound of the PRP value function

turns out to be `∗ = 1.74. The value functions are shown in Figure 5.

[insert figure 5 here]

The PRP value function is not strictly decreasing, as seen from the graph. In

fact, one can show that a Self-Pareto-Generating value function can not exist for

this example.

Lemma 7. There does not exist Self-Pareto-Generating value function for Ex-

ample 5.

Proof. Suppose to the contrary that there exists a Self-Pareto-Generating value

function f : [`∗, ξ̄ ]. It is straightforward to verify that given decreasing continu-

ation value function f the peak point of the generated value function Γf occurs
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either at δ`∗ (by implementing action a1) or at δ`∗ + r2 (by implementing a2). In

the former case, one must have `∗ = 0, which is impossible. In the latter case, one

must have `∗ = δ`∗ + r2 or `∗ = r2/(1− δ). But then the principal can get better

payoff by implementing a1 and offering agent a payoff equal to δ`∗, contradicting

that f is Self-Pareto-Generating. Q.E.D.

Consequently, if one repeatedly applies Pareto-generating operator Φ to some

function f in this example, the sequence of functions 〈Φnf〉 will not converge. In

the next section, I provide sufficient conditions that guarantee convergence.

7 A Convergence Result

This section is concerned with the convergence of the sequence of functions 〈Φn(f)〉
which are generated by continuously applying the Pareto generating operator Φ

to a given value function f .

Let F denote the set of potential PRP functions. Formally, a real-valued

continuous function f defined on a positive interval [`, ξ̄] belongs to F if (a) f is

nonincreasing and concave; (b) for every ξ1 6= ξ2 within [`, ξ̄]:

f(ξ1)− f(ξ2)
ξ1 − ξ2

≥ −M,

where M > 0 is given in Lemma 2; (c) for every ξ ∈ [`, ξ̄], f(ξ) ≤ V f (ξ), where

V f (·) is the full-commitment value function (i.e. when the lower bound on the

promised utility is zero.).

Let f1 and f2 be two functions in F , with f1 : [`1, ξ̄] −→ < and f2 : [`2, ξ̄] −→ <.

For our purposes, the distance between f1 and f2 is defined as follows:

d(f1, f2) = max
(
|`1 − `2|, sup

ξ∈[max(`1,`2),ξ̄]

|f1(ξ)− f2(ξ)|
)

(11)

Recall that the Pareto generating operator Φ maps F into F in the following

manner: for any f ∈ F , the function Φf is the (strictly) decreasing portion of Γf ,

the value function generated by f .

Let f ∈ F . Successively applying operator Φ to the Pareto generated value

functions, one obtains a sequence of functions, 〈Φnf〉. There is one difficulty in

showing that the sequence 〈Φnf〉 converge: the domain of the generated functions

can vary, which makes it hard to directly apply the usual fixed point theorems.
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In Proposition 7 below, I derive a sufficient condition for 〈Φnf〉 to converge. To

prove the proposition, the following Lemma is needed, which describes a form of

continuity of operator Φ: if two members of F get close, so do the two Pareto

generated functions.

Lemma 8. Let f1, ..., fn, ... be a sequence of functions in F . Suppose there is

a function f0 in F such that limn→∞ d(f0, fn) = 0. Then

lim
n→∞

d(Γf0,Γfn) = 0, and lim
n→∞

d(Φf0,Φfn) = 0.

Proof. See the appendix. Q.E.D.

It is now ready to state and prove the main result of this section, which shows

that if the domains of the functions 〈Φnf0〉 converge in Hausdorf metric, then

〈Φnf0〉 converge.

Proposition 7. Let f ∈ F . Let domain of Φnf be [`n, ξ̄]. Suppose 〈`n〉 con-

verge to `∗ 6= ξ̄. Then 〈Φnf〉 converge to a strictly decreasing function f∗ ∈ F ,

i.e. limn→∞ d(Φnf, f∗) = 0, and f∗ is Self-Pareto-Generating: Φf∗ = f∗. More-

over, if `∗ is independent of f , then the Self-Pareto-Generating value function f∗

is unique.

Proof. First, I show that there is a subsequence 〈Φnkf〉 that converge to some

function f∗∗ : [`∗, ξ̄] −→ <. Extend each function Φnf to the entire interval [0, ξ̄]

by letting Φnf(ξ) equal to the maximum of Φnf for each ξ that was not previously

in its domain. Graphically, this amounts to horizontally extending the graph of

Φnf to hit the vertical axis. It is straightforward to verify that the family of the

extended functions 〈Φnf〉 is equicontinuous. Then by Ascoli-Arzela Theorem (see

[20], page 169.), there exists a subsequence 〈Φnkf〉 that uniformly converge to a

continuous function f∗∗. Now the sequence 〈Φnkf〉 without extension converge

to the restriction of f∗∗ on [`∗, ξ̄], which will still be denoted by f∗∗ to lessen

notational burden.

Second, I show that there is a subsequence 〈Φmjf〉 that converge to the fixed

point, f∗ : [`∗, ξ̄] −→ <, of the contraction mapping operator T defined in Eq. (5)

(section 4.1), i.e. Tf∗ = f∗. Fix an ε > 0. Consider the sequence 〈Γ(Φnkf)〉,
each term of which is obtained by applying Γ to a term in 〈Φnkf〉. By Lemma 8,

〈Γ(Φnkf)〉 converge to Γf∗∗. Now 〈Φnk+1f〉 converge to Tf∗∗, the restriction of
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Γf∗∗ to [`∗, ξ̄]. Pick one element of the sequence and denote it by Φm1f , so that

d(Φm1f, Tf∗∗) ≤ ε
2 . Similarly, 〈Φnk+jf〉 converge to T jf∗∗. I then pick Φmjf , so

that d(Φmjf, T jf∗∗) ≤ ε
2j . Since 〈T jf∗∗〉 converge to the fixed point f∗ = Tf∗,

the sequence 〈Φmjf〉 converge to f∗.

Next, I show that 〈Φnf〉 converge to f∗. Since 〈Φmjf〉 converge to f∗, it follows

〈Φmj+1f〉 converge to Tf∗ = f∗. By induction, 〈Φmj+kf〉 converges to f∗, for all

k = 1, 2, · · · . The union of these sequences, excluding repetitions of terms, differ

from 〈Φnf〉 for only finitely many elements. It follows that 〈Φnf〉 converge to f∗.

Finally, by Lemma 8, 〈Φ(Φnf)〉 converge to Φ(f∗), which implies f∗ = Φf∗.

The last sentence of the proposition obviously holds. Q.E.D.

The condition that the domains of 〈Φnf〉 converge is crucial for the proposition

to hold. In general, the sequence of Pareto-generated functions 〈Φnf〉 may not

converge at all. See Example 5 in Section 6 for an illustration.

I close this section by presenting an intuitive definition of RP contracts and

show that it coincides with the notion of Self-Pareto-Generating if the convergence

result can be applied. The definition links the infinite-horizon setting to the finite-

horizon setting.

A contract σ is 0-period renegotiation proof if σ is Pareto optimal. A contract σ

is T-period renegotiation proof , for T = 1, 2, ...., if σ|h1 is T-1-period renegotiation

proof and σ is Pareto optimal among all incentive compatible and feasible contracts

σ′ whose continuation contracts σ′|h1 are T-1-period renegotiation proof.

Let QT be the value set associated with T-period renegotiation-proof contracts.

The intuitive definition for renegotiation-proofness would be ∞-period RP, which

is associated with the limit of 〈QT 〉. If the sequence of sets 〈QT 〉 indeed converges,

then the limit is a Self-Pareto-Generating (or weak renegotiation-proof) value

function. So these two notions, ∞-period RP and Self-Pareto-Generating coincide.

8 The Case of Two Outputs and Two Actions

In this section, I analyze in detail a simple special case of the contracting problem:

the two-action-two-outcome case. Throughout this section I assume that the agent

has two actions, so A = {a1, a2}, with g(a2) > g(a1) = 0, and there are two output

levels, i.e. Y = {y1, y2} with y2 > y1. Let ph = prob(y2|a2) and p` = prob(y2|a1).
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With this much simplified setting, more can be said about RP contracts. The

main result in this section is to show that a unique fixed point exists for the Pareto

Generating operator Φ, so a unique RP value function exists. As a result, there

is a natural connection between RP value functions in finite-horizon setting and

that in infinite-horizon setting, as seen at the end of last section, which allows a

very intuitive interpretation of renegotiation-proofness.

The next a few lemmas show that in the two-action two-outcome case the

condition required for Proposition 7 to apply is satisfied, therefore there exists a

unique renegotiation-proof value function. The following assumption is needed,

which is quite general yet sufficient to give rise to the desired result.

A 4. With the agent’s reservation utility being zero, it is strictly optimal for

the principal to induce action a2 in the one-period contracting problem. (Note:

This assumption implies ph > p`.)

Lemma 9. Suppose that assumption A4 holds. Given any nonincreasing con-

tinuation value function, it is strictly optimal for the principal to induce action

a2.

Proof. See the appendix. Q.E.D.

Pick an arbitrary strictly decreasing concave function f0 : [`0, ξ̄] −→ < from

set F . Continuously applying operator Φ, one obtains a sequence Φf0, Φ2f0, ...,

Φnf0, .... We are interested in whether the sequence converges to some function f∗

with Φf∗ = f∗. First, the next lemma shows that the domains of 〈Φnf0〉 converge.

Lemma 10. Let f0 be a strictly decreasing function in F . For n = 0, 1, ..., let

[`n, ξ̄] be the domain of function Φnf0. Then there exists some `∗ ∈ [0, ξ̄] such that

〈`n〉 converges to `∗.

Proof: By lemma 9, for all n and fn ≡ Φnf0, the maximum of function Γfn is

attained by inducing a2. Let (z1, z2), (ξ1, ξ2), where z1, z2 ≥ 0 and ξ1, ξ2 ∈ [`n, ξ̄],

be a vector of current and promised utilities that attain the maximum of Γfn. It

follows that they must satisfy:

z1 = 0; ξ1 = `n

(ph − p`)(z2 + δξ2 − z1 − δξ1) = g(a2)
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Thus the point `n+1 is given by

`n+1 = ph(z2 + δξ2) + (1− ph)(z1 + δξ1)− g(a2)

which by the two preceding equations becomes

`n+1 = δ`n +
p`g(a2)
ph − p`

.

It follows that `n = δn`0 + (δn−1 + ... + δ + 1)p`g(a2)
ph−p`

= δn`0 + (1 − δn)`∗, where

`∗ ≡ p`g(a2)
(1−δ)(ph−p`)

. Hence `n −→ `∗.

Q.E.D.

Now Lemma 10 and Proposition 7 imply the following main result for the

two-action-two-outcome case.

Proposition 8. Suppose that assumption A4 holds. Then a unique RP value

function exists.

Remark: Lemma 8 and Proposition 7 (in section 5) do not depend on two-

action two-outcome assumption. However, to apply these results to get unique

RP value function, Pareto generating operator Φ need to produce a unique set of

promised utilities, i.e. applied to any f0 ∈ F , limn→∞ Φnf0 should have the same

domain. For two-action two-outcome case, this is easy to obtain.

9 Summary

This paper studies renegotiation-proof contracts in the infinite horizon principal-

agent framework. The concept of renegotiation-proofness naturally extends the

one used in finite-horizon settings. It proves fruitful for existence and characteri-

zation to allow public randomization over menu of contracts. The renegotiation-

proof value function has a simple characterization: it is the optimal value function

with an appropriate lower bound placed on the agent’s promised utility. This

result thus establishes the equivalence between renegotiation-proof contracts and

optimal contracts with one-sided limited commitment on the part of the agen-

t. I have identified sufficient conditions for renegotiation-proof value functions

in finite-horizon settings to converge to a renegotiation-proof value function in

infinite horizon, as time goes to infinity.
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Appendix A: Proofs

Proof of Lemma 4. The proof consists of two parts.

Part I. Show left continuity at each ` ∈ (0, ξ̄].

Step 1. The plan of the proof.

Let T be the contraction mapping operator embedded in functional equation

(5) (in section 4.1) when ` is the lower bound on promised utility. Let f be the

restriction of V (·, `′) on [`, ξ̄]. I will repeatedly apply operator T to function f and

show that the distance between f and Tnf , for all n, is bounded by a constant

multiple of γ ≡ |`− `′|. Since Tnf converges to V (·, `), continuity will follow.

Step 2. V (·, `′) has uniform bounded variation across all `′(< `) that are close

to `.

By Lemma 2, the derivatives V (·, `′) are bounded from below by some −M ,

so only need to find an upper bound.

Let x ≡ 1
2(δ` + `). Let V f (·) : [0, ξ̄] −→ < be the full commitment value

function. Let

K ′ ≡ V f (x)− ΓV (δ`, `)
x− δ`

.

Since by Lemma 3, V f (x) ≥ ΓV (x, `′) and ΓV (δ`, `′) ≥ ΓV (δ`, `), one has

ΓV (x, `′)− ΓV (δ`, `′)
x− δ`

≤ K ′

Since ΓV (·, `′) is concave, the derivative of ΓV (·, `′) (hence that of V (·, `′)) at any

ξ ∈ [x, ξ̄ ] is less than K ′. Thus, for all `′ ∈ (x, `), the derivatives of V (·, `′) at any

ξ ∈ [`′, ξ̄ ] is less than K ′.

Let K = max{M, |K ′|}. Then for all `′ ∈ (x, `), the left and right derivatives

of V (·, `′) are contained in the interval [−K, K].

Step 3. Find a lower bound on Tf .

For any ξ ∈ [`, ξ̄], let (πj , wj , ξj , aj)j∈J be a solution that attains V (ξ − γ, `′),

given continuation value function V (·, `′) :

V (ξ − γ, `′) =
∑

j

πj
∑

y

p(y|aj)
[
y − u−1(zj(y)) + δV (ξj(y), `′)

]
, (12)
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where each zj(y) = u−1(wj(y)).

Now for each j, construct z̃j and ξ̃j such that for all y ∈ Y , z̃j(y) ≥ zj(y),

ξ̃j(y) ≥ ξj(y), ξ̃(y) ≥ ` 13 and

z̃j(y) + δξ̃(y) = zj(y) + δξj(y) + γ. (13)

It can be shown that for all z = zj(y) and z̃ = z̃j(y),

−u−1(z̃) ≥ −u−1(z + γ) (14)

≥ −du−1(z + γ)
dz

γ − u−1(z)

= − γ

u′(u−1(z + γ))
− u−1(z)

≥ −Mγ − u−1(z).

where again M > 0 is given in Lemma 2.

Moreover, for each y ∈ Y , since |ξ̃j(y) − ξj(y)| ≤ γ and V (·, `′) has bounded

variation by Step 2, it follows that

V (ξ̃j(y), `′) ≥ V (ξj(y), `′)−Kγ. (15)

Clearly, the vector (πj , w̃j , ξ̃j , aj)j∈J is feasible, incentive compatible, and

promise the agent exactly the value ξ. By equations (12), (14) and (15), one

concludes that for all ξ ∈ [`, ξ̄],

Tf(ξ) ≥ V (ξ − γ, `′)−Kγ

which again by bounded variation implies that for ξ ∈ [`, ξ̄],

Tf(ξ) ≥ V (ξ, `′)− 2Kγ.

Letting B ≡ 2K and noticing f is the restriction of V (·, `′) to [`, ξ̄], one has

f(ξ) ≤ Tf(ξ) + Bγ. (16)

Step 4. Prove left continuity.

Since operator T is monotone and discounting, it follows

Tf(ξ) ≤ T (Tf)(ξ) + δBγ,

13For some y, ξ(y) may be in [`′, `).
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which by (16) implies

f(ξ) ≤ (T 2f)(ξ) + Bγ + δBγ.

Repeatedly applying operator T on both sides and regrouping terms, one obtains,

for all n,

f(ξ) ≤ Tnf(ξ) + Bγ + δBγ + ... + δn−1Bγ.

Since limn→∞ Tnf(ξ) = V (ξ, `), for all ξ ∈ [`, ξ̄], it follows

V (ξ, `′) ≤ Bγ

1− δ
+ V (ξ, `).

Since for all ξ ∈ [`, ξ̄], V (ξ, `′) ≥ V (ξ, `), it follows∣∣V (ξ, `′)− V (ξ, `)
∣∣ ≤ Bγ

1− δ
=

B

1− δ
|`− `′|.

This establishes left continuity at ` ∈ (0, ξ̄].

Part II. Show right continuity at any ` ∈ [0, ξ̄).

The argument parallels that in Part I. Consider an `′ > `. Let f be the re-

striction of V (·, `) on [`′, ξ̄]. Let T be the contraction mapping operator embedded

in Eq. (5) when the lower bound on promised utility is `′. The strategy of proof

is again to keep applying operator T on f and show that the distance between f

and Tnf is bounded by some constant multiple of |`− `′|.
The only difference from Part I is the argument for bounded variation of func-

tion V (·, `), which in fact is much simpler to obtain in this case. A lower bounded

−M on the left and right derivatives of V (·, `) is already known to exist; concave

function V (·, `) can be extended to a concave function ΓV (·, `) on [δ`, ξ̄], which im-

plies the existence of finite left derivative at `; that is an upper bound. Thus there

exists some K > 0 that bounds the absolute values of left and right derivatives of

V (·, `) on [`, ξ̄].

The rest of the proof goes through similarly as in part I. Q.E.D.

Proof of Lemma 8. The following result will be used for the proof.

Claim: There exists a constant K > 0 such that the left and right derivatives

of function Γf0 are bounded within the interval [−K, K].

To prove the claim, first note that by Lemma 2 there exists M > 0 such that the

left and right derivatives of function Γf0 are bounded from below by −M . To find

an upper bound, let Vmax be the maximum of function Γf0. Let β be the minimum
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promised payoff to the agent while the principal is still able to implement an action

a with g(a) > 0. Note that β > δ`0. Define K ′ = (Vmax − Γf0(δ`0))/(β − δ`0).

Clearly, the left and right derivatives of function Γf0 are bounded from above by

K ′. The claim follows by taking K = max{K ′,M}.
To proceed, for each n = 0, 1, ..., let the domain of fn be [`n, ξ̄]; let γn ≡ |`n−`0|;

let dn ≡ d(f0, fn) ≥ γn. Note that γn → 0 and dn → 0.

I will show that there exists some B > 0 such that for all n, |Γfn(ξ)− Γf0(ξ)|
is uniformly bounded on the interval [max(δ`n, δ`0), ξ̄ ] by Bdn. The conclusion of

the lemma will then follow from there.

First consider the case when `n < `0. Fix ξ ∈ [δ`0, ξ̄ ]. Let (πj , wj , ξj , aj)j∈J

be a vector that attains value Γf0(ξ). It follows that

Γf0(ξ) =
∑
j∈J

πj
∑

y

p(y|aj)
{
y − wj(y) + δf0(ξj(y))

}
≤

∑
j∈J

πj
∑

y

p(y|aj)
{
y − wj(y) + δ[fn(ξj(y)) + dn]

}
≤ Γfn(ξ) + dn.

On the other hand, let (πi, w
i(·), ξi(·), ai)i∈I be a vector that generates Γfn(ξ).

Then

Γfn(ξ) =
∑
i∈I

πi
∑

y

p(y|ai)
{
y − wi(y) + δfn(ξi(y))

}
≤

∑
i∈I

πi
∑

y

p(y|ai)
{
y − wi(y) + δ

[
fn(ξi(y) + γn) + Mγn

]}
≤

∑
i∈I

πi
∑

y

p(y|ai)
{
y − wi(y) + δ

[
f0(ξi(y) + γn) + dn

]}
+ Mγn

≤ Γf0(ξ + γn) + (M + 1)dn

≤ Γf0(ξ) + Kγn + (M + 1)dn

≤ Γf0(ξ) + (K + M + 1)dn.

The first inequality follows because the left and right derivatives of function fn

are within [−M, 0]; the second follows from the fact that d(fn, f0) → 0; the third

follows from the suboptimality of menu (πi, wi, ξi + γn, ai)i∈I ; the fourth follows

from the claim in the above.
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Similar result holds if `n > `0. In conclusion, this shows that there exists

some B such that |Γfn(ξ) − Γf0(ξ)| < Bdn for all ξ ∈ [max(δ`n, δ`0), ξ̄ ]. Hence

d(Γfn,Γf0) → 0.

As for operator Φ, let a subsequence 〈Φfnk
〉 converge to a function h : [`′, ξ̄] −→

<. Let Φf0 : [ˆ̀, ξ̄] −→ <. Note that Φf0 and h coincide on [max(`′, ˆ̀), ξ̄]. Suppose
ˆ̀ 6= `′. If ˆ̀< `′ then

Γf0(ˆ̀) = Φf0(ˆ̀) > Φf0(`′) = h(`′) ≥ lim
nk→∞

Γfnk
(ˆ̀) = Γf0(ˆ̀),

which is a contradiction. If ˆ̀ > `′, a similar contradiction is reached. Thus

d(Φf0, h) = 0. Q.E.D.

Proof of Lemma 9. First, consider the one-period problem. The maximum

return the principal can get by inducing a1 is:

E1y ≡ p`y2 + (1− p`)y1.

The maximum return the principal can get by inducing a2 is:

E2y − phw∗
2 ≡ phy2 + (1− ph)y1 − phw∗

2,

where wage scheme (w∗
1 = 0, w∗

2) is such that,

(ph − p`)u(w∗
2)− g(a2) = 0.

So assumption A4 amounts to

E2y − phw∗
2 > E1y. (17)

Fix a nonincreasing function f : [`, ξ̄] −→ <. Consider the generating problem, as

defined in section 3. One way to induce action a2 is to use current wage scheme

(w∗
1 = 0, w∗

2) and promise continuation utility ` regardless of the outcome. The

return is:

E2y + δf(`)− phw∗
2,

which by Eq. (17) is strictly bigger than the maximum return by inducing a1:

E1y + δf(`). Q.E.D.
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