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SUMMARY

We have estimated a 4-step sequential probit model with and without sample separation

information to characterize SSA’s disability determination process. Under the program

provisions, different criteria dictate the outcomes at different steps of the process. We used data

on health, activity limitations, demographic traits, and work from 1990 SIPP exact matched to

SSA administrative records on disability determinations. Using GHK Monte Carlo simulation

technique, our estimation results suggest that the correlations in errors across equations that may

arise due to unobserved individual heterogeneity are not statistically significant. In addition, we

examined the value of administrative data on the basis for allow/deny determinations at each

stage of the process. Following the marginal likelihood approach adopted by Benitez-Silva,

Buchinsky, Chan, Rust, and Sheidvasser (1999), we also estimated the above sequential probit

model without the sample separation information for the purpose of direct comparison. We found

that without the detailed administrative information on outcomes at each stage of the screening

process, we could not properly evaluate the importance of a large number of program-relevant

survey-based explanatory variables. In terms of both in-sample and jackknife-type out-of-sample

predictive analysis, the value of modeling the sequential structure of the determination process in

generating correct eligibility probabilities is confirmed.
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1.  INTRODUCTION

Social Security Administration’s (SSA’s) two disability programs – Disability Insurance (DI)

and Supplemental Security Income (SSI) – provide cash and medical benefits to people with

long-term disability. At the end of 1997, these programs paid benefits exceeding $70 billion a

year to over 10.3 million beneficiaries. SSA administers these programs with the help of the State

Disability Determination Services (DDSs), which make the initial determination on whether the

claimants meet the programs’ statutory definition of disability.  Lahiri, Vaughan and Wixon

(1995, hereafter LVW) first modeled the SSA’s disability determination process using a

multistage sequential logit model, mimicking exactly the steps of the determination process used

by the DDSs. By matching SSA administrative data on disability determinations to household

survey information from the Survey of Income and Program Participation (SIPP), they found that

the detailed administrative information on outcomes at each step of the determination process is

crucial in identifying the role of many important survey-based variables. They also found that the

predictions of overall allowance rates from the sequential model performed considerably better

than those based on a naive allow/deny logit regression. In a recent interesting paper, Benitez-

Silva, Buchinsky, Chan, Rust, and Sheidvasser (1999, hereafter BSBCRS) have modeled the

entire disability program by incorporating not only the initial DDS determinations, but also the

application and the appeal processes using data from the first three waves of the Health and

Retirement Survey (HRS). In the absence of administrative data on the reasons for disability

allowance or rejection at the DDS level, they identified the probability of disqualification at each

stage of the sequential process by using what they called the “marginal likelihood” method. They

found that the predicted probabilities from their marginal likelihood approach are quite

comparable to those obtained by LVW (1995), implying that one does not need to have

administrative data on the exact stage at which an application was allowed or denied to accurately

estimate the overall acceptance probability. The main purpose of the present paper is to
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reexamine this issue in the context of a more general econometric model than used by LVW

(1995), but utilizing the same data.

As serious social security reform looms in the near future, increasing the mandatory

retirement age becomes an inevitable alternative. However, the retirement and disability

behaviors of persons approaching mandatory retirement are highly interrelated. Thus, for a

comprehensive social security reform, one needs to understand the dynamics of disability

enrolment growth. It is now well understood that for the purposes of disability modeling and

forecasting, it is crucial to estimate accurately the eligibility probabilities for prospective

disability applicants, see Aarts and De Jong (1992). From a methodological standpoint,

econometric analysis of multi-step sequential models with incomplete sample separation

information has not been very common. Interestingly, the models formulated by LVW (1995) and

BSBCRS (1999) are multivariate logit models with varying degree of observability in the

decision variables. Previous literature on the value of sample separation information in the study

of switching regression models, disequilibrium models, and double-hurdle models found that

accurate sample separation information improves the efficiency of estimation.1 In particular,

Poirier (1980) and Meng and Schmidt (1985) analyzed the cost of partial observability in

bivariate probit models, and concluded that it is worthwhile to obtain the additional information.

However, all previous research in this area considered only relatively simple bivariate models.

The BSBCRS (1999) study is pioneering in that it considers a 4-level sequential logit model with

incomplete sample separation information. The intricacies in the estimation of this class of

models is not well understood, particularly when one likes to allow for cross-equation correlation

in errors.

Due to the strict sequential nature of the disability determination process, it is logical to think

that the cross-equation correlations in errors can be ignored. However, non-zero correlations may

                                                            
1 See Goldfeld and Quandt (1975), Kiefer (1978), Blundell, Ham and Meghir (1978), Schmidt (1981), and
Jones (1989), among others.
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result if there is significant unobserved individual heterogeneity in the equations due to

misspecification. In order to study this issue, we will first extend the work of LVW (1995) by

allowing for possible cross-equation correlations in a multivariate sequential probit framework.

Since we model the last four steps of the disability determination process with five possible

outcomes, the sequential probit model generates decision probabilities that are multivariate

integrals of order up to four. In general, the evaluation of such integrals has been computationally

difficult except in very special cases. However, recent developments in Monte Carlo simulation

techniques have facilitated the estimation of multivariate probit models. According to the

simulation experiments by Hajivassiliou, McFadden and Ruud (1996), the GHK simulator [cf.,

Geweke (1989), Hajivassiliou (1993) and Keane (1994)] appears to be the most reliable method

for simulating orthant probabilities. Using GHK, simulated maximum likelihood (SML)

estimation shows that none of the off-diagonal elements in the covariance matrix to be

significantly different from zero.

Second, we examine the value of the detailed administrative information in predicting

disability determinations. Our approach is first to model the process using a sequential probit

model with administrative sample separation information. We then compare its estimation and

prediction results with those without the administrative information. The advantage of this

experimental set-up is that we could control for everything except for the sample separation

information.

The paper is organized as follows. In section 2 we briefly introduce the disability

determination process and the data set used. Section 3 describes the sequential probit model with

or without the sample separation information for the intermediate step decisions of the sequential

process. We also allow for possible correlation among the structural disturbances. Section 4

reports the empirical results. We also examine the predictive capacity of these models through

extensive in-sample and jackknife-type out-of-sample predictive analysis. Section 5 summarizes

the conclusions.
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2. DISABILITY DETERMINATION PROCESS AND THE DATA

    The DDS makes accept/reject decisions according to a sequential five-step screening process as

depicted in Figure 1. LVW (1995) provide a detailed description and logic of the SSA

determination procedure. The first step is an earnings screen and is administered at one of nearly

1300 SSA field offices across the country. Applicants earning more than the substantial gainful

activity (SGA) are denied immediately. Since this step of the process is not part of the medical-

vocational determination made by DDS, it was not modeled in LVW(1995). We will also not

model the first step in this paper.

    The second step is to determine the severity of impairments. An applicant is denied if the

impairments do not significantly limit the physical or mental ability to accomplish basic work-

related activities. Applicants are also denied at step 2 if their impairments do not meet the

duration test of 12 months. Under step 3, the medical evidence obtained on an applicant’s

impairment is assessed. If the applicant’s impairment meets or equals the criteria of at least one of

over 100 “listed” impairment classifications, the applicant is granted a medical allowance without

further evaluation. Applicants neither denied at step 2 nor allowed at step 3 are evaluated in terms

of their residual capacity and vocational factors at steps 4 and 5. An applicant is denied benefits at

step 4 if he or she is judged able to perform past work. The remaining applicants, including those

with no recent work experience, are evaluated at the fifth and final step for their residual

functional capacity in conjunction with vocational factors. If an applicant is determined incapable

of working in any job in the national economy, a vocational allowance is awarded; otherwise the

applicant is given a vocational denial. For convenience, the five final outcomes are labeled as d2,

a3, d4, a5, and d5. Overall, an applicant is granted benefits if the outcome is either a3 or a5.

Insert Figure 1 here.
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    In this work, we use the study data derived in LVW (1995) from the 1990 panel (June 1990 -

May 1992) of the Survey of Income and Program Participation (SIPP) exact matched to SSA

disability determination records of SIPP sample members whose applications were acted upon in

the calendar years 1986-1993.2 The final study sample consists of 1230 survey cases who also

applied for DI or SSI adult disability benefits.  Among them, 223 cases (18.1%) were denied

benefits at step 2. At step 3, 359 cases were granted medical allowance and 648 cases were

passed on to step 4. At step 4, 188 cases were denied for being able to do past work. At the final

step, 213 cases were given vocational allowance and 247 cases received denial based on capacity

for some work. The sets of sample observations are denoted as D2, A3, D4, A5, and D5,

corresponding to the five outcomes denoted by d2, a3, d4, a5, and d5. LVW (1995) showed that the

percentage distribution of the study sample by step in the sequential process and outcome closely

approximates the pattern experienced by the full universe of applicants.3

3. THE 4- STEP SEQUENTIAL MODELS

    Throughout the paper, we only model the last four steps of the disability determination process

as shown in Figure 1. For any applicant denoted by j, let Si be the latent criterion function

involved at step i,

Si = β′i Xi + ui,                         (1)

for i = 2,3,4,5. Here Xi is the set of individual characteristics that are used to evaluate the criterion

function at step i, and βi is the corresponding parameter vector. To simplify notation, subscript j is

                                                            
2 In order to match the timing of the SIPP responses more closely with the administrative records, we also
conducted our analysis after deleting all applicants whose adjudication took place during 1986-1988,
resulting in a sample size of 927. The results were very similar to what we report later in the paper.
3 For the derivation of the study sample and other details, see Lahiri, Vaughan, and Wixon (1995).
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dropped when it is not ambiguous. Given that the application is at step i, a favorable outcome

from the standpoint of the applicant is assigned if Si > 0, an unfavorable outcome is assigned

otherwise. To accommodate possible correlation among decisions at multiple steps, we assume

that (u2, u3, u4, u5) are iid N(0, Ω), and Ω  = (ωkm) is pds, for k, m = 1,2,3,4.

    Now we consider the probability of an applicant attaining one of the five outcomes. At step 2,

an applicant may be denied benefits with probability P{S2 ≤ 0} and passed on to step 3 with

probability P{S2 > 0}. Conditional on the applicant not being denied at step 2, the applicant may

be granted medical allowance at step 3 with probability P{S3 > 0 | S2 > 0}. So the probability of

an applicant attaining outcome a3 is given by

   P{S3 > 0 | S2 > 0}P{S2 > 0}

= P{S2 > 0, S3 > 0}.

The applicant may be passed on to step 4 with probability P{S2 > 0, S3 ≤ 0}. Then conditional on

the applicant not being denied at step 2 and not being awarded medical allowance at step 3, he or

she may be denied benefits at step 4 with probability P{S4 ≤ 0 | S2 > 0, S3 ≤ 0}. So the probability

of an applicant attaining outcome d4 is given by

    P{S4 ≤ 0 | S2 > 0, S3 ≤ 0}P{S2 > 0, S3 ≤ 0}

= P{S2 > 0, S3 ≤ 0, S4 ≤ 0}.

Similarly, the probability of an applicant attaining outcome a5 is

   P{S2 > 0, S3 ≤ 0, S4 > 0, S5 > 0},
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and the probability of an applicant attaining outcome d5 is

   P{S2 > 0, S3 ≤ 0, S4 > 0, S5 ≤ 0}.

In the following we will use these probabilities to write the likelihood functions for our sample

under sample separation and without sample separation information, with general or restricted

covariance matrix Ω of errors.

3.1 Sample Separation Information Available

    Under this scenario, the step at which an applicant was accepted or denied benefits is known.

The joint log-likelihood function incorporating this information is given by

   LNP = ∑j∈D2 ln P{S2j < 0} + ∑j∈A3 ln P{S2j > 0, S3j > 0}

+ ∑j∈D4 ln P{S2j > 0, S3j ≤ 0, S4j ≤ 0}

+ ∑j∈A5 ln P{S2j > 0, S3j ≤ 0, S4j > 0, S5j > 0}

+ ∑j∈D5 ln P{S2j > 0, S3j ≤ 0, S4j > 0, S5j ≤ 0}.        (2)

    Like many sequential response models, however, we have unbalanced observations across

steps, i.e., the applicants who are adjudicated as allowed or denied at an earlier step are not

evaluated any further. This gives rise to a multivariate probit model with partial observability. As

a result, the summation of the log-probability for each outcome is taken only over the sample

cases that have attained that final outcome, as denoted by the sets D2, A3, D4, A5, and D5. The

evaluation of the log-likelihood function LNP in general involves higher-dimension multiple

integrals of normal rectangle probabilities unless Ω assumes a simplified structure. We use GHK
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simulator to simulate the probabilities and evaluate the log-likelihood function.4 Note that in

expression (2), each of the integration of the probabilities for different outcomes involves only a

top-left subset of Ω, depending on the dimension of the integral.

    Obviously, when Ω is an identity matrix, the log-likelihood function in (2) is equivalent to that

of a 4-stage step-wise sequential probit model:

 LSSP = (∑j∈D2 ln P{S2j ≤ 0} + ∑j∈A3∪D4∪A5∪D5 ln P{S2j > 0})

 + (∑j∈A3 ln P{S3j > 0} + ∑j∈D4∪A5∪D5) ln P{S3j ≤ 0})

 + (∑j∈D4 ln P{S4j ≤ 0} + ∑j∈A5∪D5 ln P{S4j > 0})

 + (∑j∈A5 ln P{S5j > 0} + ∑j∈D5 ln P{S5j ≤ 0}).             (3)

Note that the expressions inside each pair of parentheses are independent of each other and may

be evaluated separately, cf. LVW (1995).

3.2 Sample Separation Information Unavailable

Now suppose that we ignore the administrative information about the step of the disability

determination process at which an applicant was allowed or denied benefits. This structure is

similar to that of hurdle models. From the standpoint of an applicant, each step in the disability

determination process is a hurdle.5 The decision by a DDS to pass the applicant an intermediate

hurdle is not observed by the researcher. Note that a conventional hurdle model involves a

continuous observed dependent variable with truncation, see Blundell et al. (1987).

                                                            
4 We used the GAUSS code, available on the Internet, provided by Hajivassiliou, McFadden and Ruud
(1996).
5 Early advocates of double-hurdle models include Fisher (1962) and Cragg (1971). Jones (1989)
considered a trivariate model when identification of non-starters and ex-smokers is given in a study of
cigarette consumption.
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    In the absence of sample separation information in the intermediate steps, we only observe

whether an applicant was awarded or denied benefits. A disability applicant would be granted

benefits if he or she attains outcomes a3 or a5; otherwise the applicant would be denied. Using the

probabilities of an applicant attaining each of the five outcomes derived above, the probability of

an applicant being granted allowance is given by

 Ψ = P{S2 > 0, S3 > 0} + P{S2 > 0, S3 ≤ 0, S4 > 0, S5 > 0},                        (4)

and the probability of being denied benefits is (1 − Ψ). The joint log-likelihood function then

becomes:

LMH = ∑j∈A lnΨj  + ∑j∈D ln (1−Ψj),         (5)

where A = A3 ∪ A5 is the set of applicants  granted benefits, D = D2 ∪ D4 ∪ D5 is the set of

applicants denied benefits.

    The log-likelihood function (5) places no restriction on the error covariance matrix Ω. The

involved multiple integrals may be evaluated using the GHK simulator, similar to that for (2).

Identification of the parameters in (5) is, however, complicated. We conjecture that the property

of the log-likelihood function in (5) resembles that of disequilibrium models with unknown

sample separation. Even if the diagonal elements in Ω are normalized to be 1’s, under certain

circumstances, some of the off-diagonal elements may converge to certain values (not necessary

to be +1 or –1 in the multivariate case) such that Ω becomes singular.6

    If Ω is assumed to be an identity matrix, (5) gets simplified. In this case, P{S2 ≤ 0} is the

conditional probability of being denied at step 2, P{S3 ≤ 0} is the conditional probability of being

                                                            
6 See Maddala (1983, pp. 299-302) for a review of the relevant literature.
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passed on to step 4, P{S4 ≤ 0} is the conditional probability of being denied at step 4, and P{S5 ≤

0} is the conditional probability of being denied at step 5. Then under the assumption of no

correlation and normality of the structural disturbances, the probability of an applicant being

awarded benefits is given by

Ψ = P{S2 > 0, S3 > 0} + P{S2 > 0, S3 ≤ 0, S4 > 0, S5 > 0}

    = P{S2 > 0}P{S3 > 0} + P{S2 > 0}P{S3 ≤ 0}P{S4 > 0}P{S5 > 0}

    = Φ(β2′X2)Φ(β3′X3) + Φ(β2′X2)Φ(−β3′X3)Φ(β4′X4)Φ(β5′X5),                            (6)

where Φ(.) denotes the cumulative standard normal density. The joint log-likelihood function

correspondingly gets simplified, and is akin to the marginal likelihood function analyzed by

BSBCRS (1999).

4. EMPIRICAL RESULTS

4.1 With Sample Separation Information

    For this case, the log-likelihood function in (2) with general Ω (Model 1) is evaluated using

SML using the GHK simulator. In the estimation, the explanatory variables used for each step are

the same as in LVW (1995). Identification of the model requires us to impose restrictions on the

parameter vector βi’s or the covariance matrix Ω.7 To make results of this model comparable to

the results reported in LVW (1995) using a multi-stage sequential logit model, we normalize the

diagonal elements of Ω to be unity (i.e., ωkk= 1 for k = 1,2,3,4). This normalization, however,

prevents us from directly using the convenient derivatives of the multivariate normal rectangle

                                                            
7 Keane (1992) considered identification in multinomial probit models. Since we have distinct variables for
the criterion function at each step, a simple normalization in each equation would be sufficient for
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probabilities in the GHK simulator as derived by Hajivassiliou, McFadden and Ruud (1996) to

estimate standard errors. 8 Instead, we rely on the maximum likelihood algorithm to generate

standard errors for all parameters. We first used a sampling size of 50 for the GHK simulator to

obtain initial estimates and then fine-tuned the estimation finally with a sampling size of 500.

    The empirical results for Model 1 are reported in Table 1. Assuming general Ω, the estimated

covariance matrix was

 1.000    

 0.028 (0.261)  1.000

      -0.239 (0.444)  0.189 (0.291)  1.000

 0.458 (0.413) -0.350 (0.262)  0.257 (0.394) 1.000

with standard errors in parentheses. We find that none of the off-diagonal elements is statistically

significant, with p-values ranging from 0.09 to 0.46. Meanwhile all the structural parameters have

estimates and standard errors comparable to those reported in LVW (1995) using a multi-stage

sequential logit model. This finding that Ω = I has an important policy implication: The decisions

at multiple steps of the DDS disability determination process are not correlated and therefore

there is no loss of efficiency if the process is modeled separately. It also suggests that, given the

specified explanatory variables, the unobserved heterogeneity in the four equations is not very

important.

    In Table 1, we also report results from estimation of a multi-stage step-wise sequential probit

model with identity covariance matrix, i.e., Ω = I (Model 2), by evaluating the log-likelihood

function in (3). We find that all the parameter estimates are statistically significant, most of which

are significant at the 5% level of significance. Between Models 1 and 2, although some of the

parameter estimates differ to some extent, the difference in the values of log-likelihood function

                                                                                                                                                                                    
identification. However, it is not sufficient to let just one of the diagonal elements to be 1, which is
sufficient for the multinomial probit model. The reason is that here we have multiple levels.
8 If the constant terms are alternatively normalized to be +1 or –1, analytical derivatives of the multivariate
normal rectangle probabilities may be readily derived and implemented in the GHK simulator.
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is not statistically significant. A likelihood ratio test statistic for the null hypothesis of no

correlation has a value of 2.85, which is statistically negligible for a sample of 1230 observations

with 6 restrictions on the off-diagonal elements of the covariance matrix.

4.2 Without Sample Separation Information

    In the previous subsection, we found that there is no significant correlation between decisions

at multiple steps. Therefore, we will assume an identity covariance matrix in the following and

the simplified log-likelihood function (6) will be evaluated. We found that one has to be very

careful while maximizing this likelihood function. Due to the lack of data on dependent variables

as anchors at each step, difficulty arises in the selection of explanatory variables. Noticeably,

many of the variables that were statistically significant in LVW (1995) as well as in subsection

4.1 lost their significance. With a number of relatively less significant variables present in the

specifications, the maximum likelihood algorithm may generate unreasonably large but

insignificant parameter estimates for some variables or fail to compute the variance-covariance

matrix for the estimated parameters even using BHHH algorithm. Having too many overlapping

explanatory variables also tends to create problems. However, it is not essential that the

explanatory variables in the four equations be completely non-overlapping, as in BSBCRS

(1999). In order to accommodate the maximum number of statistically significant explanatory

variables in the four specifications, we took first a “general to specific”, then a “specific to

general” approach in identifying regressors for each step. First we excluded all variables that had

relatively large p-values in Table 1 until we found a set of variables such that the maximum

likelihood algorithm converged normally and produced reasonable parameter estimates. Then we

retained variables with statistically significant parameter estimates, which consisted of only 14

variables in the total. Next, we examined the incremental contribution of each of the remaining

variables to this core specification. We added the variables that had significant parameter

estimates in the second step. After some additional experiments, we found a set of 27 variables
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for which most of the parameter estimates are statistically significant in the combined model. A

casual inspection of this set of 27 variables (6 in step 2, 10 in step 3, 5 in step 4, and 6 in step 5)

reveals that they still very much capture the basic logic of the screen at each step. We should

point out that in BSBCRS (1999, Table 3) a total of only 8 variables (including two year

dummies) were statistically significant at the 10% level of significance. Of these eight variables,

“Back problems” had a perverse sign at step 3 and “Divorced” of step 4 has no program specific

meaning. Note that BSBCRS consolidated the last two steps of the determination process into one

(their step 4), but had an additional step (SGA) at the beginning. Unfortunately, the SGA step in

their analysis had no statistically significant explanatory variable at the 10% level. These results

are consistent with those in Meng and Schmidt (1985), Blundell, Ham, and Meghir (1987), and

Jones (1989) who found substantial loss of efficiency in the absence of sample separation

information. Also, it should be obvious that without very strong prior information on the

specification of the regressions at each step, it would virtually be impossible to estimate multi-

stage sequential probit models when sample separation information is not available. Fortunately,

in this empirical case the program provisions clearly guide us in specifying different set of

covariates at different steps of the determination process.

 The maximum likelihood estimates without the administrative information on sample

separation and with an identity covariance matrix (Model 3) are reported in Table 2. Recall that

the total number of explanatory variables in Table 1 (i.e., with sample separation) is 56 excluding

the constant terms, and each of them is significant at the 10% level of significance. There are only

27 explanatory variables in Table 2. Among them, parameter estimates for 22 variables

(excluding the constant terms) have p-value less than 0.05. Using this restricted set of 27

variables, we also evaluated the log-likelihood function (3) with sample separation information,

i.e., a sequential probit model using the administrative information (Model 4). We find in Table 2

that the estimated sampling variances of parameters with sample separation were on the average

about one-sixth of those without sample separation information. To examine the cost of partial
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observability further, Figures 2 and 3 plot the estimated probabilities of attaining a favorable

outcome at each step and overall for each observation, sorted from low to high for each plotted

probability. Compared to the sequential probit models using administrative information (Models 2

and 4), we note that Model 3 (i.e., without sample separation information) predicts higher

probabilities of favorable outcome for about 80% of the observations at step 2 and for all

observations at step 5, lower probabilities of favorable outcome for about 90% of the

observations at step 3 and for all observations at step 4, but overall probabilities of attaining

favorable outcome are very close across models. Also, it seems that, with sample separation

information, use of the full set of variables as in Table 1 or the restricted set of variables as in

Table 2 makes only a slight difference. Table 3 reports the averages of these probabilities for all

models estimated, including Model 1 in subsection 4.1. Clearly, without using the administrative

information, we cannot identify the probability of allowance at each step with satisfactory

accuracy. According to Model 3, the average probability of an applicant being granted medical

allowance at step 3 is only a half of the actual probability, while the average probability of an

applicant being granted vocational allowance at step 5 is 40% higher than the actual probability.

The similarity of the overall average probability of being awarded benefits across all models is

not surprising; it is due to a feature of probit models we are estimating.

A careful look at Figure 3 reveals that the estimated probabilities of favorable outcome at

each step with sample separation and using the full set of variables are much smoother across

observations, which means that additional variables help to pick up the variations in

characteristics in the sample.

    We also tried to evaluate the likelihood function (5) with a general or partially restricted Ω. We

worked on the set of variables from Table 2 but excluded those with p-values greater than 0.025,

giving a total of 19 variables excluding constant terms. Using the simulated maximum likelihood

based on GHK simulator with a sampling size of 500, we obtained an estimate for Ω as:
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 1.000

 0 1.000

 0 0.320 (0.564) 1.000

-0.860 (0.451) 0 0 1.000

with standard errors in the parentheses. Here elements with 0’s were constrained and any further

relaxation resulted in singular Ω. We find that only the (4,1) and (1,4) elements, i.e., the

covariance between the step 2 and step 5 errors is marginally significant, and has a negative sign.

We, however, can not explain the estimate intuitively. The estimates of other structural

parameters have been reported in Table 4. Compared to maximum likelihood estimation of (5)

using the same set of variables but with Ω = I, the estimated sampling variances of parameters in

this estimation with Ω ≠ I were on the average about 5% greater. The |t|-values for the included

variables at step 2 were significantly lower in this estimation; the rest of the parameters were

close to those with Ω = I, see the last two columns of Table 4. Therefore there is slight efficiency

loss if Ω is not assumed to be diagonal in our context. This result is consistent with the finding in

Meng and Schmidt (1985) and Keane (1992) that there is a trade-off between efficiency in the

parameter estimates and the covariance matrix restrictions, making identification of a model like

(5) to be ‘fragile’ and data dependent, see Poirier (1980). Note that based on the complete set of

explanatory variables in Table 1, we found Ω to be diagonal. Thus, we attribute any non-zero

values of the correlations to mis-specification in the list of explanatory variables in Table 4. As a

result, we did not use the estimates with Ω ≠ I in our subsequent analysis.

4.3 Out-of-Sample Predictive Capacity: A Jackknife Approach

    In order to investigate further the value of the structural approach and the sample separation

information, we studied the out-of-sample predictive capacity of various model specifications

through jackknifing. A model is repeatedly estimated by omitting one observation at a time. The



18

estimated model is then used to generate a prediction for the probability of attaining an observed

outcome for the omitted observation at each step of the process and for the overall probability.

This process is replicated for all observations one by one for Models 2 and 3. It should be noted

that the computation of jackknife predictions for Model 3 is time consuming and takes more than

twenty days on a Pentium II 450MHz PC. We computed Brier’s (1950) quadratic probability

score (QPS) for attaining a favorable outcome at each step and for the composite allowance

probability. The sign test, Wilcoxon’s signed-rank test, and the Morgan-Granger-Newbold

(MGN) test statistics are also computed for the loss differentials to test the null hypothesis that

the competing predictions have no difference in their capacity to predict the binary outcomes. See

Hettmansperger (1984) and Diebold and Mariano (1995) for expositions on these statistics. We

used the quadratic loss function in computing these test statistics, even though the use of a linear

loss function generated very similar conclusions. The reported test statistics have been

studentized and are distributed asymptotically standard normal under the null.

    When we compared the in-sample predictions with those from the jackknife approach, we

found that the QPS scores and the average probabilities of attaining favorable outcomes at each

step and also for the composite allowance were remarkably similar across all models. However,

the sign test, Wilcoxon’s signed-rank test, and MGN test statistics were highly significant and

indicated that the jackknife predictions were considerably inferior in predicting the binary

outcomes at each step and also the final outcome. This is an expected result, and shows that the

jackknife approach gives a better evaluation of the true predictive capacity of an estimated model

than those based on simple in-sample predictions. The important point to note is that the QPS

statistics and the average allowance probabilities are not able to discern these differences.

In Table 5 we compare the jackknife predictions from Model 2 (i.e., sequential model

with administrative data on sample separation) and those from Model 3 (i.e., sequential model

without sample separation information).  The QPS statistics for the overall outcome are almost

the same for the two models, even though they are substantially better at the individual steps
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when sample separation information is available. We find a similar result when we look at the

sign test, Wilcoxon’s signed-rank test, and MGN test. At the individual steps they are generally

statistically significant at the 5% level, but for the overall probability the computed statistics are

insignificant. These results underscore the usefulness of the marginal likelihood approach adopted

by BSBCRS (1999) in cases where the distribution of only the final eligibility probabilities is

needed. However, we should emphasize that this encouraging predictive result for Model 3 may

not necessarily carry over to other empirical contexts.

    We also generated jackknife predictions based on an estimated reduced-form model, which

only used the binary final outcomes and ignored the sequential structure of the disability

determination process. Table 6 reports the parameter estimates from a probit regression of a

reduced-form model with explanatory variables that were statistically significant at the 10% level.

A comparison of the jackknife predictions from the reduced-form model with those from Model 2

for the final overall outcome revealed that that reduced-form model is inferior to Model 2. The

sign test, Wilcoxon’s signed-rank test, and MGN test statistics are calculated to be –4.73, –3.22,

and -2.41 respectively, which are highly significant. When we compared the reduced form

predictions with those from Model 3, these three test statistics are found to be -5.36, -3.60, and -

1.74, which are statistically significant at the 10% level. Thus, we find little evidence to suggest

that in the absence of sample separation information the conventional reduced form approach

over the sequential one should be adopted.

5. CONCLUSIONS

We have estimated a 4-step sequential probit model to characterize SSA’s disability

determination process with and without the sample separation information on the outcomes in the

intermediate steps. Under the program provisions, different criteria dictate the outcomes at

different steps of the determination process. We used data on health, activity limitations,
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demographic traits, and work from 1990 SIPP exact matched to SSA administrative records on

disability determinations. Using GHK Monte Carlo simulation technique, our estimation results

suggest that the correlations in errors across equations that may arise due to unobserved

individual heterogeneity is not statistically significant. In addition, we examined the value of the

administrative data on the basis for allow/deny determinations at each stage of the process.

Following the approach taken by BSBCRS (1999), we also estimated the above sequential probit

model without the sample separation information for the purpose of a direct comparison. We

found that without this detailed administrative information on outcomes at each stage of the

screen, we could not properly evaluate the importance of a large number of program-relevant

survey-based explanatory variables. A considerable loss in estimation efficiency was also

observed when the sample separation information was not used. In terms of both in-sample and

jackknife-type out-of-sample predictive analysis, the value of structural modeling over the

conventional allow/deny reduced form regression is clearly established.
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Table 1. Sequential Probit Model with Sample Separation Information
Variable Description Mnemonic With general Ω

Estimate (t-ratio)
When Ω = I

Estimate (t-ratio)
Step 2: Severe impairment
Constant 0.681 (5.294) 0.710 (5.535)
With recent work experience and disability
  determination in 1990 WORK90C -0.412 (-2.479) -0.376 (-2.276)
Three or more severe ADLs, wave 6 SAL36 0.685 (1.935) 0.776 (2.260)
One or more severe IADLs, wave 3 SIL13 0.400 (2.627) 0.388 (2.532)
Prevented from working (wave 2) and never
  able to work at a job T8338W2D 0.941 (1.871) 0.872 (1.695)
Gender (male) SEXD 0.251 (2.566) 0.255 (2.588)
General health status good (wave 6) T8800W6B -0.229 (-1.797) -0.282 (-2.146)
General health status poor (wave 6) T8800W6E 0.190 (1.559) 0.199 (1.622)
White-south (Black/other and north in the base) RACESTDA -0.281 (-1.905) -0.320 (-2.159)
White-north (Black/other and south in the base) RACESTDB 0.298 (2.195) 0.283 (2.089)
Black-south (White/other and north in the base) RACESTDC -0.536 (-3.322) -0.567 (-3.506)
Work limited because of mental condition MEDFRP31 0.334 (2.163) 0.337 (2.153)
Reports inability to work in at least 2 waves TDIREP12 0.255 (2.333) 0.268 (2.434)
Work limiting condition caused by accident T8326W2D -0.178 (-1.417) -0.230 (-1.799)
Age 18-34 (35 plus in the base) AGE12 -0.203 (-1.826) -0.203 (-1.807)
Work limited less than 12 months WPRVDUD1 -0.307 (-1.984) -0.297 (-1.915)
Needs help in getting around the house T8840W3D -0.669 (-2.093) -0.709 (-2.172)
Work limited, but to do prior work (both in
  wave 2) WORKV2D2 0.669 (3.321) 0.620 (2.996)
Work limited, but able to work occasionally or
  irregularly WORKV1D3 -0.509 (-2.019) -0.499 (-1.984)
Step 3: Listing impairment
Constant -0.483 (-4.886) -0.470 (-5.808)
At least 1 overnight hospital stay in last 12
  months T9100W3D 0.190 (1.809) 0.175 (1.656)
Reports at least two mental conditions (wave 3) TDI12W3D 0.803 (2.473) 0.817 (2.459)
Has two or more severe ADLs (wave 6) TAS12W6D 0.389 (1.886) 0.367 (1.814)
Has at least two IADLs (wave 3) TIL12W3D 0.285 (1.885) 0.288 (1.935)
With recent work experience and disability
  determination occurred in 1991 WORK91C 0.275 (2.017) 0.259 (1.891)
With recent work experience and disability
  determination occurred in 1992 WORK92C 0.263 (2.224) 0.274 (2.306)
Never married MSF 0.264 (2.360) 0.247 (2.213)
Work limiting condition caused by accident T8326W2D -0.422 (-3.094) -0.369 (-2.682)
Aged 55 or older (18-54 in the base) AGE56 -0.157 (-1.589) -0.165 (-1.672)
Work limited because of musculoskeletal
  condition MEDGRP32 -0.207 (-1.699) -0.246 (-2.009)
Work limited because of sensory/neurological
  condition MEDGRP33 0.450 (2.662) 0.449 (2.603)
Unable to walk 3 city blocks T8832W3D -0.234 (-1.828) -0.265 (-2.074)
Needs help in doing light house work T8859W6D 0.371 (2.357) 0.360 (2.277)
Has difficulty lifting 10 lbs., and reports
  presence of work limitation (both in wave 6) LFTCNW6D -0.315 (-2.560) -0.329 (-2.637)
Has difficulty walking up stairs and reports
  presence of work limitation (both in wave 6) WUPCNW6D 0.245 (2.034) 0.279 (2.275)
Needs help in getting out of bed or chair T8848W3D -0.510 (0.306) -0.589 (-1.959)
Needs help in getting around inside the home T8840W3D 0.501 (0.335) 0.566 (1.697)
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Table 1. (Cont.) Sequential Probit Model with Sample Separation Information
Variable Description Mnemonic With general Ω

Estimate (t-ratio)
When Ω = I

Estimate (t-ratio)
Step 4: Capacity for past work
Constant 0.655 (2.869) 0.509 (3.874)
Any one of the five mental disability reported
  or a mental condition reported as causing
  work or activity limitation MENTDISD 0.349 (2.432) 0.339 (2.403)
Unable to lift 10 lbs., and prior work was very
  physically demanding using strength, stoop,
  climb criteria NSTRLIFT 0.402 (1.695) 0.440 (1.847)
No recent work experience NOWORKD 0.472 (2.912) 0.461(2.928)
Work limited, but able to perform prior work
  (both in wave 2) WORKV2D2 -0.483 (-2.628) -0.492 (-2.701)
Principal occupation of prior work was in sales
  or service OCCSIPP3 -0.442 (-2.930) -0.456 (-3.067)
Never married MSF 0.443 (2.448) 0.432 (2.473)
Prior work physically demanding according to
  broad strength, stoop, climb criteria SIPPOCC4 0.416 (3.244) 0.413 (3.209)
Has work limitation and has difficulty lifting
  and carrying 10 lbs. LFTCNW6D -0.313 (-2.801) -0.300 (-2.594)
White-north (Black/other and south in the base) RACESTDB -0.282 (-2.110) -0.227 (-2.001)
Step 5: Capacity for other work
Constant -1.134 (-4.719) -0.739 (-3.917)
Aged 55 or older (18-54 in the base) AGE56 1.330 (5.993) 1.454 (7.830)
Gender (male) SEXD -0.244 (-1.576) -0.350 (-2.413)
Disability determination occurred in 1988 SSAY88D 0.463 (1.534) 0.561 (1.729)
Disability determination occurred in 1991 SSAY91D 0.316 (1.560) 0.388 (1.937)
Disability determination occurred in 1992 SSAY92D 0.371 (1.872) 0.453 (2.131)
Mental condition is cause of work or activity
  limitation MENTDISD 0.569 (3.165) 0.572 (3.172)
Prior work physically demanding according to
  broad strength, stoop, climb criteria SIPPOCC4 0.332 (2.319) 0.344 (2.262)
Able to work only occasionally or irregularly
  (wave 2) WORKV1D3 -1.095 (-1.832) -1.127 (-1.709)
Unable to work (wave 2) WORKV1D4 0.305 (2.177) 0.261 (1.721)
Under age 35 and has a mental condition YONDMENT 0.831 (2.874) 0.868 (2.844)
Has one or more severe functional or ADL
imitations, has more than 12 years of
  education, under age 55 FLADLEDY -0.295 (-2.150) -0.330 (-2.197)
No severe functional limitation, no ADL, under
  age 55 NFLADLYD -0.333 (-1.976) -0.351 (-1.944)

Average log-likelihood -1.383 -1.384
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Table 2. Sequential Probit Model without/with Sample Separation Information, Ω = I
Variable Description Mnemonic Without Sample

Separation
Estimate (t-ratio)

With Sample
Separation

Estimate (t-ratio)
Step 2: Severe impairment
Constant 1.838 (3.266) 1.052 (13.83)
With recent work experience and disability
  determination in 1990 WORK90C -1.074 (-2.938) -0.413 (-2.762)
General health status good (wave 6) T8800W6B -0.681 (-1.934) -0.309 (-2.466)
White-south (Black/other and north in the base) RACESTDA -1.350 (-2.668) -0.414 (-3.956)
Black-south (White/other and north in the base) RACESTDC -1.828 (-3.391) -0.728 (-5.975)
Reports inability to work in at least 2 waves TDIREP12 1.021 (3.218) 0.371 (4.120)
Work limiting condition caused by accident T8326W2D -0.545 (-1.416) -0.190 (-1.666)
Step 3: Listing impairment
Constant -1.807 (-4.806) -0.616 (-8.824)
At least 1 overnight hospital stay in last 12
  months T9100W3D 0.511 (2.209) 0.191 (1.906)
Reports at least two mental conditions (wave 3) TDI12W3D 1.394 (1.722) 0.875 (2.689)
Has two or more severe ADLs (wave 6) TAS12W6D 0.857 (2.161) 0.308 (1.650)
With recent work experience and disability
  determination occurred in 1991 WORK91C 0.677 (2.256) 0.195 (1.453)
With recent work experience and disability
  determination occurred in 1992 WORK92C -0.899 (-1.155) 0.259 (2.239)
Never married MSF 1.016 (3.405) 0.357 (3.336)
Work limiting condition caused by accident T8326W2D -1.878 (-2.328) -0.513 (-4.301)
Work limited because of sensory/neurological
  condition MEDGRP33 1.045 (3.035) 0.533 (3.306)
Needs help in doing light house work T8859W6D 0.702 (2.323) 0.408 (2.750)
Has difficulty walking up stairs and reports
  presence of work limitation (both in wave 6) WUPCNW6D 0.704 (2.532) 0.046 (0.479)
Step 4: Capacity for past work
Constant 0.795 (2.464) 0.528 (4.262)
No recent work experience NOWORKD -0.215 (-1.048) 0.549 (3.617)
Work limited, but able to perform prior work
  (both in wave 2) WORKV2D2 -0.509 (-1.663) -0.397 (-2.239)
Prior work physically demanding according to
  broad strength, stoop, climb criteria SIPPOCC4 0.244 (1.360) 0.373 (3.137)
Has work limitation and has difficulty lifting
  and carrying 10 lbs. LFTCNW6D -0.454 (-2.365) -0.279 (-2.554)
White-north (Black/other and south in the base) RACESTDB -0.408 (-2.059) -0.171 (-1.558)
Step 5: Capacity for other work
Constant 0.193 (0.749) -0.564 (-3.684)
Aged 55 or older (18-54 in the base) AGE56 0.829 (2.637) 1.424 (8.053)
Disability determination occurred in 1992 SSAY92D 0.616 (2.074) 0.256 (1.297)
Mental condition is cause of work or activity
  limitation MENTDISD 1.256 (2.919) 0.862 (5.745)
Able to work only occasionally or irregularly
  (wave 2) WORKV1D3 -1.370 (-2.638) -1.135 (-2.152)
Has one or more severe functional or ADL
  limitations, has more than 12 years of
  education, under age 55 FLADLEDY -0.542 (-2.499) -0.300 (-2.170)
No severe functional limitation, no ADL, under
  age 55 NFLADLYD -0.269 (-1.317) -0.225 (-1.382)

Average log-likelihood -0.607 -1.445
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Table 3. In-Sample Prediction Analysis: Average Probabilities for Favorable Outcomes
Model Step 2 Step 3 Step 4 Step 5 Overall
Model 1. With sample separation
information, general Ω, and full set  of
variables a

0.819 0.352 0.715 0.475 0.471

Model 2. With sample separation
information, Ω = I, and full set of
variables a

0.819 0.351 0.719 0.464 0.472

Model 3. Without sample separation
information, Ω = I, and restricted set of
variables b

0.870 0.177 0.661 0.648 0.464

Model 4. With sample separation
information, Ω = I, and restricted set of
variables b

0.818 0.351 0.715 0.456 0.463

Actual value 0.819 0.357 0.710 0.463 0.465
Notes: a The set of variables in Table 1 is used.
            b The set of variables in Table 2 is used.
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Table 4. Sequential Probit Model without Sample Separation Information: Ω ≠ I vs. Ω = I
Variable Description Mnemonic Ω ≠ I

Estimate (t-ratio)
Ω = I

Estimate (t-ratio)
Step 2: Severe impairment
Constant 1.589 (3.336) 1.457 (3.204)
With recent work experience and disability
  determination in 1990 WORK90C -1.106 (-2.999) -1.222 (-3.217)
White-south (Black/other and north in the base) RACESTDA -1.023 (-2.306) -1.046 (-2.362)
Black-south (White/other and north in the base) RACESTDC -1.418 (-2.861) -1.628 (-3.587)
Reports inability to work in at least 2 waves TDIREP12 0.929 (2.664) 1.307 (3.354)
Step 3: Listing impairment
Constant -1.469 (-4.124) -1.537 (-4.418)
At least 1 overnight hospital stay in last 12
  months T9100W3D 0.560 (2.522) 0.507 (2.326)
Has two or more severe ADLs (wave 6) TAS12W6D 0.805 (2.108) 0.783 (2.114)
With recent work experience and disability
  determination occurred in 1991 WORK91C 0.651 (2.333) 0.673 (2.415)
Never married MSF 0.749 (2.758) 0.789 (2.925)
Work limiting condition caused by accident T8326W2D -2.022 (-2.127) -1.873 (-2.196)
Work limited because of sensory/neurological
  condition MEDGRP33 0.861 (2.543) 0.873 (2.634)
Needs help in doing light house work T8859W6D 0.644 (2.194) 0.610 (2.114)
Has difficulty walking up stairs and reports
  presence of work limitation (both in wave 6) WUPCNW6D 0.534 (2.053) 0.501 (1.942)
Step 4: Capacity for past work
Constant 0.788 (2.166) 0.720 (2.057)
Has work limitation and has difficulty lifting
  and carrying 10 lbs. LFTCNW6D -0.430 (-2.153) -0.442 (-2.200)
White-north (Black/other and south in the base) RACESTDB -0.388 (-1.821) -0.318 (-1.604)
Step 5: Capacity for other work
Constant 0.105 (0.413) -0.004 (-0.015)
Aged 55 or older (18-54 in the base) AGE56 0.902 (2.858) 0.904 (2.845)
Disability determination occurred in 1992 SSAY92D 0.451 (1.743) 0.503 (1.767)
Mental condition is cause of work or activity
  limitation MENTDISD 1.170 (2.652) 1.242 (2.629)
Able to work only occasionally or irregularly
  (wave 2) WORKV1D3 -1.264 (-2.867) -1.359 (-2.812)
Has one or more severe functional or ADL
  limitations, has more than 12 years of
  education, under age 55 FLADLEDY -0.455 (-2.153) -0.459 (-2.051)

Average log-likelihood -0.614 -0.615
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Table 5. Jackknife Prediction Analysis: Comparison between Models 2 and 3
Step 2 Step 3 Step 4 Step 5 Overall

Number of observations 1230 1007 648 460 1230

QPS-Model 2

QPS-Model 3

Sign test

Wilcoxon’s signed-rank test

MGN test

0.364

0.413

0.228

-8.318*

-10.941*

0.282

0.403

-0.725

-10.576*

-16.053*

0.369

0.332

2.278*

3.336*

5.383*

0.175

0.234

-4.663*

-5.790*

-5.896*

0.221

0.222

1.483

0.580

-0.565

Note: QPS is defined as mean squared prediction errors. It ranges from 0 to 1, with a score of 0
corresponding to perfect accuracy. The sign test, Wilcoxon’s signed-rank test, and MGN test statistics
are studentized. * denotes significant at a 5% level.
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Table 6. Probit Reduced-form Regression
Variable Description Mnemonic Parameter Estimate (t-ratio)

Constant -0.225 (-3.432)
With recent work experience and disability
  determination in 1990 WORK90C -0.375 (-2.519)
White-south (Black/other and north in the base) RACESTDA -0.141 (-1.492)
Black-south (White/other and north in the base) RACESTDC -0.363 (-3.030)
Work limiting condition caused by accident T8326W2D -0.374 (-3.736)
At least 1 overnight hospital stay in last 12 months T9100W3D 0.322 (3.547)
Never married MSF 0.156 (1.502)
Age 55 or older (18-54 in the base) AGE56 0.436 (5.276)
Work limited because of sensory/neurological condition MEDGRP33 0.488 (3.270)
Able to work only occasionally or irregularly (wave 2) WORKV1D3 -0.829 (-2.992)
Under age 35 and has a mental condition YONDMENT 0.657 (4.638)

Average log-likelihood -0.640
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Figure 1. SSI disability determination process
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Figure 2. Ordered probabilities for
favorable outcomes by steps and overall:
without or with sample separation
information (S.S.I.) --- both with
restricted set of variables as in Table 2
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Figure 3. Ordered probabilities for
favorable outcomes by steps and overall:
without sample separation information
(S.S.I.) and using restricted set of
variables as in Table 2 vs. with S.S.I. and
full set of variables as in Table 1
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