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PRODUCTION ANALYSIS: ECONOMETRIC ISSUES

�Via.Cynthia 5. Bantilan

This paper addressessome econometric issuesthat arise in produc-
tion analysis. The first section presents the basic analytical framework
in analyzing production decisions. The discussion serves as a back-
ground for the three subsequent sections which deal with the follow-
ing issues: model selection, the use of panel data, and bias in nonran-
dom sampling.

Methodological Foundation

There are essentially two approaches in econometric productivity
analysis, namely, the primal and the dual approach. The first approach
is based on the idea that, given a transformation or production function
and the assumption of profit maximization or cost minimization,
factor demand and output supply may be derived basedon the neces-
sary conditions of optimization. While this approach may be easily
worked out from simple production functions (e.g., factor demandsare
straightforwardly obtained from the Cobb-Douglas production func-
tion), it may not be workable when the production technology is
complex.

The second approach provides an alternative in obtaining rela-
tionships describing producer behavior. By appealing to duality theory
and the concept of cost and profit functions, it enables one to derive
a system of input demand and output supply quite readily while pre-
serving the complexity of the structure of the producer decisionmaking
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process. In the context of production studies, the duality theory pro-
vides the theoretical background that makes it possible to recover
information about the production structure from a dual profit or cost
structure. It theorizes that optimal input and output levels implied by
the technical transformation function and the necessary conditions
are equivalently obtained by the optimization of a dual profit or cost
function. It ensures that when certain restrictions hold for the optimi-
zed dual function, they also hold for the transformation function.
The general development of the application of duality theory and the
concept of profit and cost functions is given in Section II of the over-
view paper. An application of these developments is illustrated as
follows. A system model may be constructed for a farmer producing
one output, say rice, by applying four variable factors of production,
say labor, fertilizer, animal power and tractors..Consider that this
farmer produces under perfect competition in both input and product
markets. Assume that

g (Y, x 1,x2, x 3 , x 4s) =o

is the technical transformation function that represents the farmer's
production technology, where Y represents Output, X i represents
the ith input, i = 1,2,3,4 and S is a vector of variables representing the
structure of the farm as may be measured by size of farm, proportion
of area planted with high-yielding varieties, irrigation investment,
past investment in researchand extension, and degree of rural electri-
fication. Diewert (1974) proposed that, if the transformation
function obeys certain regularity conditions, it is possible to obtain
the maximum profits in production as.

_r='/r (P_ Wl, W2, W3, W4, S,)

where P is the price of the product and Wi, i = 1,2,3,4 are observed
factor prices. This profit function can be viewed as a solution to the
following constrained maximization problem

7r(P_ W,S) = max I(PY- W 1 X1 l W2 X 2 l W3X3 - W4X4"

g(v, . . x 4,s) = o).

In this formulation it is assumed that, given an exogenously determined
vector of input and output prices, farmers will choose the level of out-
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put and factor combination that maximizes profits subject to the
constraint presented by the production technology. This is the basis
of the concept of duality between maximized profits and the technical
transformation fun ction.

Given the maximized profits function, the application of the
Shephard-Hotelling lemma (Varian 1978) produces a system of equa-
tions representing the output supply and input demand functions.
According to the lemma, optimal input and output levels are obtained
by differentiation of the profits function with respect to output and
input prices, i.e.,

Y= aTr/aP

Xi = c37r] aWl, i= 1,2,3,4.

Note that the maximized profit, _r,are expressed as afunction of prices
and structure variables. The expression does not include endogenous
or choice variables such as output quantities and variable factors of
production. These are eliminated from the expression by substitution
of "first-order conditions." Consequently, the derived input demand
and output supply equations are expressed as a function of prices and
structure variables.

The methodology described above has the following useful conse-
quences. First, the procedure takes into account the nature of farmers'
production decisions whereby choices of individual factor input and
output levels are interdependent. The interrelationship among factor
and product markets is captured in the derived system so that it
provides a basis for a formal analysis of the simultaneous effects of
policy changeson product supply and factor demand decisions. Second,
the duality principle has allowed us to move from a transformation
function which is a function of endogenous variables (quantities) to a
profit function which is a function of exogenous variables (prices,
fixed factors). As a consequence, simultaneity problems are avoided.
Furthermore, multicollinearity problems are reduced since there is less
c6,variance in prices than in quantities. Lastly, the functional forms for
the Systems can be linear and economical in parameters and can still
be "flexible" in the sense that they do not impose some res-
trictions on the "curvature" of the primal functions.

Parameter estimates for the system of equations representing out-
put supply and demand for various factors may be obtained by apply-
ing iterative versions of seemingly unrelated regressions (Zellner 1962;



80 JOURNAL OF PHILIPPINE DEVELOPMENT

Gallant 1975). Each equation in the system looks like an individua
regression but the variancesof parameters are reduced by simbltaneous-
ly estimating the system of equations so.that error interdependence
is taken into account. The basic,assumption in this procedure is related
to serial independence and contemporaneous correlation of the residual

terms. If etj is the residual term corresponding to the observation
t in the regression], and et" j" is the same for observation t' in equa-
tion j" , the following implication will be true with respect to the
variance-covariancematrix

E (etj, et,j" ) =0ift = t"

ajj, if t = t"

This method is an extension of the generalized least squares procedure.
It is preferred because it permits convenient imposition of across equa-
tion restrictions.

Examples of studies that used the above methodology are Lau and
Yotopoulos (19"/2), Yotopoulos, Lau and Lin (1976), Sidhu and
Baanante (19"/9, 1982), Quizon (1980), and Kalirajan and Flinn
(1983).

The Problem of Model Selection

One issuethat immediately comes up in the empiricalapplication
of duality theory is the choice of functional form for the statistical
model of the unknown cost or profit functions. Statistically, we seek
a form which gives closeapproximations to the parametersof interest.
The problem is to determine which mathematical formulation can
provide the flexibility required on the parametersof the function. To
this end, the use of functional forms that are flexible, meaning that
the parameters can take arbitrary valuessothat it doesnot necessarily
impose restrictions on the curvature of the production technology,
is widespread.

Flexibility is based on approximation theory. Two methods of
approximation are usually used: Taylor series approximation and
Fourier seriesapproximation. In fact, the functional forms_arereferred
to as either locally flexible (Taylor series) or globally flexible (Fourier
series)accordingto the method of approximation used.
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The notion of "local flexibility" in production analysis origina-
ted from Diewert's (1974) suggestion of the use of a second-order
local approximation, say g, to the true function g* at some price P*
assatisfaction of the following conditions:

g (P*)= g* (P*)

_g(P) I = ag* (P)

a2 g(p) = a2 g.(p}

These conditions can be understood in two ways. In the first place, it
can be taken to mean that the first-and second-order derivatives of the

actual function, g* (P*), are equal to the derivatives of the approxima-
ting one, g (P*),, at the point P*, for example, the point of profit
maximization. The alternative criterion is that, in addition to the

equality of derivatives at point P*, the deviation between g* (P*) in
a defined neighborhood about the point P* consists of only terms of
the third or higher order. This implies that any second-order Taylor
series expansion about point P* is a second-order approximation, as
the deviation is bounded by the remainder term. In general, functions
that can be considered second-order Taylor series about the point of
profit maximization are in fact second order approximations to the
underlying flexible aggregator function at that point by either of the
two meanings of the term given above (Lau 1974, pp. 183-184; Fuss
et al. 1978, pp. 233-234).

It is important to note that Diewert's definition of flexibility does
not require a quadratic form or a Taylor approximation - only a twice
differentiable expression. The flexible forms commonly used for the
dual relationships are themselves nonlinear but have linear derivatives.
Forms with linear derivatives are not generally "globally convex,"
i.e., convex at all possible data points, but are convex over certain
ranges. In practice, however, the most commonly used locally flexible
forms are essentially quadratic forms and take a Taylor series inter-
pretation. A description of selected functional forms is given in the
appendix. For example, take the translog cost function i.e.

InC=f3 o + Zfii InW i + (112) _i Ei/3ij In Wi In Wj.
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This may be viewed as a second-order Taylor Series approximation of
some unknown cost function by comparing the above form with the,
following. ,

InC = lnC InWo + _i alnC (InWi-lnWo)

alnWi InWo

+ (1/2)zizj M (Inwj-/nWjo).

aln Wi aln Wj In Wo

The standard practice is to regress In of cost on In of prices; regression
coefficients are then interpreted as the coefficients in the Taylor

series, i.e.,

InC = _o

alnc

a/nwi
a2 Inc

.= f3ij
aln Wi _lnWj

A critique of the use of the Taylor series expansion as a basis for
the construction of flexible functional forms is made by Gallant

(1981). The argument is on two levels. In the first place, the Taylor
expansion is only an approximation over a nonspecified (unknown
and unknowable) region -- its properties as one moves away from the

point of approximation cannot be ascertained with any degree of
confidence. In the second place, the econometric properties of the

Taylor series are weak (Gallant 1981, p. 212).

Taylor's theorem fails rather miserably as a.meansof understanding the
statistical behavior of parameter estimates and test statistics. If one insists
on using Taylor's theorem as a means of understanding statistical beha-
vior one is led into an algebraic morass.The reason for this failure is that
the statistical regressionmethods essentially expand the true function in a
(general) Fourier series- not in a Taylor series. Due to this fact, Fourier
seriespermit a natural transition from demand theory to statistical theory.
The key fact which permits this transition is that the classical Fourier
sine/cosine seriesexpansion approximates not only the function to within
arbitrary accuracy.., but also its first derivatives.
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Other authors criticize the practice (White 1980 and Barnett
1976, among others) by taking issue on the actual behavior of a

Taylor series approximation in a regression setting. On the one hand,
Taylor series approximants apply only locally about a point or about
its neighborhood. The approximating error from Taylor series ap-
proaches zero as the point of approximation is reached but can become
quite large away from the point of approximation. On the other hand,
regression methods attempt to make errors in approximation small
over the range of data, that is, the function is usually not fitted about
a specific point, but over a domain or a constructed sample mean.
This may entail that the function in fact is not a second-order appro-
ximation at any particular point. The relationship between the real
and fitted functions, therefore, will contain an element of uncertainty
as to the interpretation of some comparative static results. So, while
the approximation method applies locally about a point, the estima-
tion procedure applies globally over the range of data. The implica-
tion is that estimates obtained in this manner do not consistently
approximate the parameters of the true function (unless the latter is
of the approximating form). Elasticities obtained are as a consequence
also inconsistent. If the true function is actually of the translog form,
for example, then there is no problem; and the procedure is straight-
forward curve fitting of the cost function. If not, then one interprets
the flexible functional form as an approximating function -- the coeffi-
cients of which are interpreted as the derivatives in Taylor seriesexpan-
sion. As pointed out by Gallant, the empirical function is constructed
to be an approximation about a certain point of the true aggregator
function, but it may not maintain that desirable property as we move
away from the original point of approximation. For other possible
sets of positive finite price vectors outside a narrow range about the
original, such crucial properties as convexity and monotonicity may
fail. Since modelling implies extrapolating outside this narrow range,
the possible loss of approximating characteristics in the empirical
analyses may weaken the quantitative and perhaps even the qualita-
tive results obtained. 1 Under certain conditions, the fitted function

1. For a discussionof thesepoints, seeLau (1978),wherehediscussesthe
problemsof convexityand monotonicity for thethreefunctionsformsusedin this
study anddevelopsteststhat canbeusedex post.The articleby DouglasCavesand
LauritsChristensen(1980) citesthe lackof theoreticaldiscussionof globalproper-
tiesof the flexible functional forms,sincethe literaturehassofar only referredto
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may in fact reject a test for the symmetry constraints, even though
the constraint may be true for the actual function (Fuss, McFadden,.
and Mundlak 1978, pp. 233-234). 2

These observations led to an alternative approach to the approxi-
mation problem: the Fourier form (Gallant 1981). It uses the Sobblev
norm as the appropriate measure of approximating error. The Sobolev
measure of the distance of an approximating function,g (x), from the

true g* (x) is

l19*-g llm, P, w = (Z f I DUg *- DUg lPdw(x) ) (lIP), I <P< oo
lul* <m

where m denotes the largest order derivative of g which is of interest, •
Du denotes partial differentiation, w(x) is a distribution function,
and u is the region of approximation. This means that, ifg approxi-
matesg* poorly or poorly approximates any of its derivatives to the
order m, then the Sobolev norm will assigna large value to the ap-
proximation error (Gallant 1984).

The relevance of the use.of the Fourier form in production analy-
sisis the interest•.in approximating not only the unknown function but
the first .and second derivatives as well. For example,.an estimate of
the measureof the following crosselasticity of substitution

a2C

awi awj
0=1+

ac aC

aWi awj

empirical tests of the variousforms now currently beingused(see,for example,
Ernst Berndt and MohammedKhaled 1979). Cavesand Christensencarry out a
discussionof thesepropertiesfor the translogand linear functionsas the regions
over which the regularity conditionshold in the two casesaredifferent. The dis-
cussion is carried out with respectto the variation in priceelasticitiesand sub-
stitution, and givea graphicalexpositionof the comparisonof theseforms in the
two andthreecommodityhometheticandnonbomotheticcases.

2. If the function is in fact fitted abouta singleon the actualfunction,and
not at an estimatedmean, then the approximatingfunctions shouldconfirm the
symmetry condition and any other constraintswhich the actualfunction fulfills.
SeeLau(1978,pp.409-I I, 418-20).
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(where C represents a cost function C = C(W) and W is a vector of
priceS) is of economic interest. One can see from this expression, that
it is not enough that the COSt function, C, approximate the true cost

function closely; the first and second derivatives of the approximating
function mustalso-appt'oximate the first-and Second derivatives of the

true cost function closely. The Sobolev-measure of approximation error
takes into account also.the need to approximat_e derivatives.

The Fourier series expansion has the global propei'ty Of approximat-
ing a function throughout its domain..This lends itself naturally to the
usual practice of running, a regression to estimate parameters because

now both the method of approximation, and estimation procedure are
global. Gallant (1981) shows l_hat estimation based on a Fourier series

produces consistent estimates of the parameters of interest.

There have been questions about how good are the approximations
that these .flexible forms provide.. Guilkey and Lovell (1980) and Gull-
key, I_ovell andSickles (1982) have shown that, if a tranSlog approxi-
mation has elasticities of substitution that depart fi-om unity, the
quality of the form deteriorates markedly. Guilkey and associates ex-
plain that there is a tradeoff between flexibility and global behavior:

•When selecting a functional form for use in empirical work, one is con-
fronted by a choice between forms that exhibit global behavior and
those that possessflexibility.

The use .of flexible functional forms based on Taylor's expansions im-

plies the possibility of not satisfying, the regularity conditions globally
unless the true function is identical to the chosen representation. If one •
wants models that are flexible, there is the risk ofhaving forms that do
not obey those conditions over all Observations. Onegood example of
this tradeoff can be demonstratedby the translog specification. A suffi-
cient condition for global convexity is to have all second-order coeffi-

cients equal zero; however, this leads to an inflexible Cobb-Douglas
functional form.

With respect to the use.of Fourier forms, substantial tradeoffs
between bias and instability have been indicated. Chalfant (1984)
shows that the Fourier form, with desirable properties concerning bias,
features much greater oscillation in estimated elasticities t.han does the

generalized Box-Cox (which nests the generalized leontief and gene-
ralized square-root quadratic forms as special cases and the translog
as a limiting case). Further research is called for to adjust estimation
procedures and model specification to improve the attainable levels of
unbiasedness and stability,
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On the Useof Panel Data

A data base that uses time-series and cross-sectioninformation is

oftentimes useful in production analysis.They are important tO analysts
because they contain information that is necessarytodeal with both
intertemporal dynamics and individual effects Of entities being in-
vestigated. In addition, time-series information alone or cross-section
information alone may not provide enough variation or is insufficient
to provide enough degrees of freedom for fitting especially in cases
where more complicated flexible functional forms are involved. Pooled
time-series and cross-sectioninformation (panel data) may thus make
econometric estimation feasible.

The most common approach in the analysis of panel data is the
use of the covariance or dummy variable model. The basic approach
is to identify cross-sectionsby dummy variables and then to apply
the generalized least squares estimation method (Zellner 1962) to
obtain the parameter estimates.This method is computationally appeal_
ing and yields asymptotically unbiased and consistent estimators
(Wallace and Hussain 1969). In principle, the weaknessof covariance,
approach lies in the fact that inter-cross-section variation is ignored, i

leading to inefficient estimation when this variation is known (Fuss, I
1977). For a complete review,of the current statistical methodology l
on dealing with pooled cross-secti0nand time-series data, see Dielman
(1983).

One item of serious concern in empirical work is the problem of
errorsin variables.Consider the equation,

Yit = i_i + ([JXit- {Jvit) + nit = I_i + {JXit + eit . (1)

where #i 's are unobserved individual effects;

vit is an i.i.d, measurementerror;

and nit are the standard best case disturbance term --- (0, as i).

Parameter estimates obtained from using OLS estimation of the above
equation which involves erroneously measured right-hand variables will

be biased for two reasons: (1).because of the correlation of the )(it with
• the left-out variable effects; and (2) becauseof the negative correlation

between the observed Xit and the composite disturbance term (nit-
 vit).
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Griliches and Hausman (1984) proposed a clever way of identify-
ing the magnitude of the "true" parameter in a panel data context. The
key idea is that there are different ways of transforming the data to
eliminate the first source of bias; and that different transformations
imply different and deducible changesfor the magnitudes for the
second type of bias. Such changes can be used in identifying the mag-
nitude of the true parameters. They propose the use of difference
models of the form.

dy = d X fl- dvfl + d n = d X fl + de (2)

= d2y=d2X(3-d2v_+d2n = d 2 Xfl + d 2 e

d my = d taxI3 - d m v8 + dmn = d m X_ + dm e

where

d nyt = Yit _ Yit-n

to obtain implicit estimates of the bias..For panel data with a time
series of length T, one can construct 7-/2 difference models from which
there are 7-/2 independent consistent estimates. The strategy is to take
advantage of these alternative consistent estimates, they are compared
to obtain estimates of bias.

The general procedure suggested is given in three steps. First,
estimateequation (1) by generalized least squares (variance compo--
nents) and by within estimation. Do a test for equality of the estimates
using a Hausman (1978) or Hausman-Taylor (1981) type test.Second,
if you reject the hypothesis regarding the equality of estimates, then
calculate some differenced estimates by OLS. If they differ signifi-
cantly, errors in measurement may well be present.' A joint test of all
the differenced estimates can be made by using GLS on the system of
equations in (2). Lastly, estimate the equations in (2) using the ins-
trumental variable technique. In this respect, the X's provide the
instrumental variables for each equation where all X's not involved
in the difference are used as instruments. Then do a specification
test of the no correlation assumption in the errors in measurement.
If the different instruments of fl do not differ significantly, then the
magnitude of the true parameter estimate is obtained. If they do
differ significantly, one of the following is called for: the specification
of specific correlated errors in measurement process, the useof out-
side instruments, or the respecification of the original model.
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Bias from Non-Random Sampling

Randomization in the selection of sample units ensures two things.
It eliminates subjective selection bias and provides a basis for statistical
inference. This process, however, is oftentimes not realiZed in the

implementation of practical survey work. In some cases, sampling units.
are Simply selected for convenience without randomization. In other

cases, as in the case of complex surveys, it is economical to select exist-
ing natural groupings of observations. These are characterized by rela-
tive homogeneities within the groups that negate the assumption of
independence of sample elements.

In a regression setting, the situation is equivalent to the failure of
satisfying the assumption of independence betweeen observationsand
the bias in parameter estimates that followS. Consider a View of the

problem taken by Kish .and Frankel (1974):

(i) Consider a finite population of sizeN. Associatedwith each of these

elementsis a vector of h + i values YI' X/i, S2it "", )(hi.; P(fYi'

Xli, X2i , ... , )(hi) ). (ii) Our parametersare numbers Bj such that _i N

(Yi " _ _ Xj_ = is minimum subject to Zy (Yi" _jh _j)_._ ---0, (iii) Gi-
ven a sample of N vectors from the population of N vectorS,our desire is

to estimate the parameter _..
The regressionmodel stated in (ii)' does not in practice correspond

exactly (or'.even closely) to the complex, relationship among the actual
population'of'vectors. The error term measures(usually in aleast-squares
sense)the extent to which the model departs from the actual complex
relations amongthe population of vectors.

Statistical theory of regressionassumesa basic,structure of rela-

tionships. Letting XI = (Xli. , .... )(hi) and _ = (_1, "", _h), it. usesthe

model YI =X_ +e i andthen makesseveralstrong assumptions:
A. linearity
B. homosce.dasticity
C. independence between observations

D. normality for the ei.

Assumptions (A)., (B); and (D) concern the basic.structure of the
universeof the model, whereas(C) involvesindependent selections from it.
This (or a similar) well-specified model yields desirable results; the stan-
dard least-squares b are minimum variance, linear, unbiased, normal,
etc. Literature and textbooks are written about this pretty model; this is
what researchersfind but they find very little to reconcile this model
with the real population they are investigating.
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Specifically, assumption (C) fails to hold when correlation bet-
ween observations is induced by the sampling scheme or sampling.
implementation.

Recognizing the problem as such, it looks like the correction for
bias may be implemented by standard econometric methodology.

Directions in tackling the problem are indicated by the studies
of Holt, Smith and Winter (1980) and Kish and Frankel (1974). In
Holt, Smith and Winter, they assume Y = X_ + e ,'l Ere/X) = 0; B =

(X'X) "I (X'Y) = _8 + 0 (]/_/N)inafinitepopulationofsizeN,
where/_ is the corresponding parameter on the infinite population from
which N came. If (Tri, i = 1, . . .,..N) denote the inclusion probabilities,

they find that an element of YlVi Xij Xik of X" X and Z;N XI] Yi

of X" Y have probability weighted estimates,F,XiiXik /Tri and F,Xij Yi/
7rpHence a probability weighted estimator of fl is

b* = (X'D'X') '-i fX'D -1 y)

where D= 1

7r2 0

0

In the caseof Kish and Frankel, the_/ ,,16

_.,jsXjYj/ 7rj
b

Z,jsXy2 / _rj

where _/ is defined as selection probabilities instead of inclusion pro-
babilities.

The direction that is suggestedby the above studies is to correct
the bias analytically by incorporating known or assumedprobabilities
of selection of samplingunits. Econometrically, this may be implement-
ed •in two ways: (1) reparameterize the model to integrate the available
information; and (2) incorporate the information into the error struc-
ture of the model.

For example, for the model Y = X_ + e, use the fact that, for every
positive semidefinite matrix D, there exists a matrix P such that
(p'p)-l=D. Thus, one can construct a reparameterization matrix P
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which integrates information about the sampling scheme, e.g., •known
or assumed selection probabilities. In the problem considered by Holt
et el. (1980) and Kish and Frankel (i974), the matrix P may be cons-
tructed as

1

_/_I 0

p ._- 1

_/_2
1

0 v'_n

so that the model may be reparameterized as

Y*= X*_ + e*
where Y* = PY

X* = PX

In effect, the observation matrix is weighted by the inclusion probabi-
lities. With the reparameterized model, GLS estimation would give

O--(x'Dx)-' (x"o Y).

•The author notes that, in the studies cited, no explicit derivations or
explanations were given. The results, however, are consistent with such
reparameterization.

APPENDIX

Themostcommonlyusedflexiblefunctionalformsusedinstudiesto dateare
the transcendentallogarithmic• function (translog),the normalizedhomogenous
quadraticfunction,the generalizedLeontiefor linearfunction,the Generalized
Box-Cox,andthe Fourierflexibleform.
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A. The Tmn$/ogFunction

This function wasfirst introduced by Christensen. )orgenson and tau (1973)
-and developed further by Lau (1978) "1.The unrestricted profit function form is
written as

InTr= _,i bi InPi + El _j bij InPi /nPj

Sincewe are concernedwith the short-run profit maximizing behaviorof farmers,
we want to use the restricted form. In addition, certain restrictions have to be
imposed to attain the property of linear homogeneity in prices. It hasbeenshown
that the translog function is linearly homogeneous if and only if (Diewert 1974, p.
139):

_lb i = 1, and

_,ibij = 0 (and by extension _l_ij = O)

The restricted translog function is then given by

InTr -- _,ibilnt_ + _,i_/bl/In Piln_ +

_,iZhbl, lnPiZh + T_ibittlnP i

It turns out that thisfunction isgloballyconvex only if all bij = O, that is, the func.
tion degeneratesto a Cobb-Douglasform with unitary elasticity of substitution and
constant returns to scale(Lau 1974, pp. 182-83; Lau 1978, p. 240; Diewert 1974,
p. 115). In most cases,however, it is possible to obtain a set of constraints on the

bij coefficients which leavesthe function locally convex.
When deriving the input demand and output supply functions in the translog

case,the functions are expressedin value-shareform, since

alnl alnpi =ximil =si

The sum of the value shares comes to zero since both inputs and outputs are
included so only (rJ4) equations are linearly independent. Using the homogeneity
constraint we therefore have:

a/n_/alnP i = si = a�, _jn-]bij(/nPi-/nP/)_'t_bi/_ Z_ +. bitt

1. In some instances,all the three functional forms given here are written
with a constantterm. This is, strictly, not correct, sincethe functions then are no
longer linearly homogeneouswith respect to prices - someexogenousincome is
assumed.



92 JOURNALOF PHILIPPINEDEVELOPMENT

The coefficients bij do not have any explicit economic interpretation l but allow for
easycomputation of the price elasticites we want. In generalwe have=:

. ij = mix)

In the translog case, the cross price elasticities (CPE) and own price elasticities
(OPE) therefore become:

n ij = bij/Si + Sj (CPE)

n ij = bii/ Si + Si- 1 (OPE)

Becauseof the fact that value sharesmust sum to zero, S must be estimated resi-

dually.

B. The Normalized Homogenous Quadratic Function

The normalized homogeneous quadratic function has the homogeneity
constraint imposed by normalizing profits on the nth commodity. This commodity
can be either an input or output - the normalization does not affect the optimum
levels of inputs and outputs derived via Shephard's lemma. The function in its
unrestricted form reads:

fr/ Ptl = _n_, bt(Pi/ Pn) +(1/2" ) _v_-/,_-I bij(Pi/ Pn) (pj/ Pn)

If we use the convention that the tilde "_-_'abovea symbol indicatesnormalization
on commodity n, the normalized homogenous quadratic function in its restricted
form is

Xn-1 bitt p P_

The necessaryand sufficient condition for global convexity is that the symmetric

matrix is positive semidefinite (Lau ] 974, p. 182). This property canbe tested for
using Lau's approach (Lau 1978).

Becauseof the normalization, this form also has only (n--l) independent
supply and demand equations of the form

Xi = a_l_ -- bi + _n-ibij_ j 4- _'hbikZk 4- bltt

2. Note that sincewe in fact have random (estimated)variables,both nume-
rator and denominator, we can strictly speakingopt not to usemethods basedon
linear estimation techniquesfor testing the significanceof the elasticities(t.statis-
tics,F-statistics).

_;
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The nth equation must becomputed residually, setting Xn = _" - _, n-, Xi _i'
sothat it becomes i

x. = - =";'oij55
The elasticities for the normalized homogenousquadratic function are thus

nij = bij (_j / X i ) i =/=j, i =/=n (CPE)

0#=bii _lX; i _ n (OPE)
The elasticitiesfor the nth equation are estimatedresidually, using the homogeneity

constraint T.,jnij = ]_inl/ = O:

nnn = __ _, n-1
j nn) (OPE)

C. The (Truncated) Linear/Leontief Function

The General Linear/Leontief Function is written in the following form: 3

_= T',_iPI(I/2)= +T'iZjbijOi(1/2) Pj(1/2)

The General Linear/Leontief function poses a problem, as it is a Taylor
seriesexpansion in the squareroot of prices, and hencedoesnot exhibit the linear
homogeneity done with the homogeneousquadratiC.Here we will usethe truncated
version instead, by setting all b=0, as this function still exhibits the second order
approximation conditions (Diewert 1971, 1973). The derived demand and supply
equationsare then:

Xl= _r /aPl_ bU+Z,jbij (Pj/Pi) (I/2)+ T.kbikZk+bitt

by imposingthe sideconditionsfor the restrictedprofit functionas for the other
two functions. The elasticitiesin this casebecome:

3. See Lau (1974, p. 184). Diewert (1973, pp. 295-300) between the gent:
ralized linear, which he writes in a form similarto the oneusedhere,and the gene-
ralized Leontief, which he writes as/r = _i_"bi 'P'Y2P:½'IIn this 1971 article, Die-J
wert representsboth of them in the trunca_e_verslon (Diewert 1971, pp. 497-
505). Lau gives the more generalversion, as do Fuss, McFadden, and Mundlak
(1978, p. 238) andit is only this generalizedversionwhich isa properTaylor Series
form.
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nij = (bii/2Xi) (_/Pi)'/2 j=/=i (CPE)

nij = - _j (bq/2Xt) (P//Pi) _ j=/=i (OPE)
because of the homogeneity constraint, N is estimated residually, as no independent
means of calculating it are available.

D. The Generalized Box--Cox

Of the class of second-order polynomial flexible functional forms, the gen-

eralized Box-Cox is the most general to date. It includes the generalized Leontief

and generalized square root quadratic forms as special cases, and the translog
appears as a limiting case. In various forms it has been applied by Denny (1974),

Kiefer (1976), and Berndt and Khaled (1979). The presentation here is taken from
Berndt and Khaled.

The expression for total cost is

C = [1 + X G(P)] I lXyB(Y,P)
with

n =1 nG(P) = % + T.i=inoliPi ( ) + (i/2)Zi=I _' _j P/ (X)Pj(X),

P =vector of input prices,

andB(Y,P) =/_ +(e/2) In Y+ _:i=1n _i InPi,

Pi (X) = Pi?_/2" ,!

X/2
with the restriction that the cost function is linearly homogenous in input prices,

the following restrictions are introduced:

_-'i= ln _i = 1 �Xe_O,

T.j = 1 n3' ij = (;k/2) ei

and

_,j=l n _i = O.

The cost function then reduces to

n x/2 x/2] 1/x_B (Y,P).
C = [ (2/X) _;/.= 1 _'j=ln'Yij Pi Pi

The term B (Y, P) involves interactions between prices and output, thereby pro-

ducing a nonhomothetic technology. Homotheticity requires that each 6i be
zero as in the translog case, and homogeneity, of degree (1/_ a_ih follows when

O equals zero.
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To introduce technical change into the generalized Box-Cox cost function,
Berndt and Khaled multiply by the term

eT (?, P)
where

T (t, P) = _ * ZI= In ri inPi t.

The analogy to the translog specification is evident; t i represents technical change
bias and so on.

Special cases of the generalized Box-Cox are obtained by fixing the Box-

Cox parameter _. When ;k equals one, the Berndt and Khaled specification reduces

to the generalized Leontief. The generalized square root quadratic is obtained by

setting _kequal to two. Finally, the translog is a limiting case as :k approaches zero.

Expressions for factor shares in the generalized Box-Cox cost function are

produced by differentiation according to Shephard's lemma.. The share of factor

i is given by

Si= Pi X/2 [Y'j=ln_ij pj )'/21 + 8 i InY + r i t.

[y:i=ln __,j=lnijP i h/2/_. X/2]

Substitution elasticities given by Berndt and Khaled (1979) can be obtained by

differentiating once more and rescaling:

all = 1 -- 2_ "7ij (PIP/) X/2 F j (% t)+ C-X +_

ss/ s�

I _'<-;(l';")Sj _ Si ' iw

Setting _t equal to zero, this reduces to the translog expressions for elasticities of
su bstitu tion.

E. Fourier Flexible Form

The logarithmic version of the Fourier flexible form introduced in Gallant
(1982) takes a cost function of the form.

g#(Xle)= %+b'X+ (ll2)X'CX+ Z;e=1{ "oe+ ]cj= 1

•X , X ,
[#jc_COS (i sk_ x)- Vj_sin(j sk_ X)I}
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P1

whereX = P2

Y

k " _C=-XS2 _;<x= 1 #oO_ _

Kt = number of parameters,possibly a function of the sample size deter-
mined by choiceA and J

X = vectorof exogenousvariable
8 = vectorof parameters
b = vectorof ownelasticities
C = matrix of crosspriceelasticities
A = numberof multi-indices

Prior to estimation,it is necessaryto rescale4 the data becausethe Fourier func-
tion isperiodic,sodata mustfall within (0, 2 _r).

Differentiation of the logarithmic Fourier flexible form producesshareequa-
tionsof the form

v qkt_(x/o_ b - xs _A •( _o_Xs k(_x

+2Z/= 1 J[l_jotsin(jXsko_X)

+vj_cos (JXs_x) 1_ks
where _7 denotes the gradient vector representing factor shares formed by dif-

• ferentiating with respect to the logged input prices. With the cost function and
n- 1 share equations formed, parameters may be estimated with the seemingly
unrelated regressionstechnique.

4. Recalling is to be accomplished by the following procedure: First, from
each member of the logged seriesof exogenousvariables, subtract the minimum of

5
that seriesand then add some _ say 10" . Next rescaleany covariatesuchasoutput

by a scalar max. rescatedprice + EE

½= InYrnax- InYmJn+_"

Finally, all dataare rescaledby

6

maximum rescaledprice = + E_
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