
 
 
Working Paper 10-38 
Statistics and Econometrics Series 22 
September 2010 
 

Departamento de Estadística 
Universidad Carlos III de Madrid

Calle Madrid, 126
28903 Getafe (Spain)

Fax (34) 91 624-98-49

  
A SEMIPARAMETRIC BAYESIAN APPROACH TO THE ANALYSIS OF 

FINANCIAL TIME SERIES WITH APPLICATIONS TO VALUE AT RISK 

ESTIMATION 

M. Concepción Ausin1, Pedro Galeano1 and Pulak Ghosh2 
 
Abstract 
Financial time series analysis deals with the understanding of data collected on financial 
markets. Several parametric distribution models have been entertained for describing, 
estimating and predicting the dynamics of financial time series. Alternatively, this 
article considers a Bayesian semiparametric approach. In particular, the usual 
parametric distributional assumptions of the GARCH-type models are relaxed by 
entertaining the class of location-scale mixtures of Gaussian distributions with a 
Dirichlet process prior on the mixing distribution, leading to a Dirichlet process mixture 
model. The proposed specification allows for a greater exibility in capturing both the 
skewness and kurtosis frequently observed in financial returns. The Bayesian model 
provides statistical inference with finite sample validity. Furthermore, it is also possible 
to obtain predictive distributions for the Value at Risk (VaR), which has become the 
most widely used measure of market risk for practitioners. Through a simulation study, 
we demonstrate the performance of the proposed semiparametric method and compare 
results with the ones from a normal distribution assumption. We also demonstrate the 
superiority of our proposed semiparametric method using real data from the Bombay 
Stock Exchange Index (BSE-30) and the Hang Seng Index (HSI). 
 
 

Keywords: Bayesian estimation; Deviance information criterion; Dirichlet process 
mixture; Financial time series; Location-scale Gaussian mixture; Markov chain Monte 
Carlo. 
 
 
1 Departamento de Estadística, Universidad Carlos III de Madrid, C/ Madrid 126, 28903 
Getafe, Madrid, Spain, e-mail: concepcion.ausin@uc3m.es, pedro.galeano@uc3m.es  
2 Indian Institute of Management Bangalore, Bannerghatta Road, Bangalore, India, e-
mail: pulak.ghosh@iimb.ernet.in  

mailto:concepcion.ausin@uc3m.es
mailto:pedro.galeano@uc3m.es
mailto:pulak.ghosh@iimb.ernet.in


A Semiparametric Bayesian Approach to the Analysis of Financial

Time Series with Application to Value at Risk Estimation

M. Concepción Auśın, Pedro Galeano and Pulak Ghosh

Abstract

Financial time series analysis deals with the understanding of data collected on financial markets. Several

parametric distribution models have been entertained for describing, estimating and predicting the dy-

namics of financial time series. Alternatively, this article considers a Bayesian semiparametric approach.

In particular, the usual parametric distributional assumptions of the GARCH-type models are relaxed by

entertaining the class of location-scale mixtures of Gaussian distributions with a Dirichlet process prior

on the mixing distribution, leading to a Dirichlet process mixture model. The proposed specification al-

lows for a greater flexibility in capturing both the skewness and kurtosis frequently observed in financial

returns. The Bayesian model provide statistical inference with finite sample validity. Furthermore, it is

also possible to obtain predictive distributions for the Value at Risk (VaR), which has become the most

widely used measure of market risk for practitioners. Through a simulation study, we demonstrate the

performance of the proposed semiparametric method and compare results with the ones from a normal

distribution assumption. We also demonstrate the superiority of our proposed semiparametric method

using real data from the Bombay Stock Exchange Index (BSE-30) and the Hang Seng Index (HSI).
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1 Introduction

Financial time series analysis gives practical and theoretical understanding of data collected on financial

markets, such as stock and commodity prices, exchange rates or bond yields. Investors and financial managers

need to understand the behavior of asset prices to have good expectations about future prices and the risks

to which they will be exposed. Although forecasting is an essential component of any interesting activity, it

is usually very difficult to obtain accurate predictions. Since, statistically the prediction methods inherently

depends on the underlying distributions assumed, it appears to be more appropriate to gain insights into

the assumed probability distributions to obtain better predictions for future values. Correctly specifying the

distribution is also important as it provides with a measure of investment risk.

Financial data usually consists of a time series of prices of a certain asset for a given period of time.

However, most of the financial analysis consider asset returns, which measures the relative changes in prices,

as they have more attractive statistical properties. It is worth mentioning that modeling returns challenging

as it exhibits several interesting and complicated features, usually called “stylized facts”. First, returns

appear to vary around the mean levels, which are close to zero. Thus, they are mean stationary, at least at

certain periods of time. Second, the conditional volatility, which is usually measured through the conditional

variance, is not constant over time. This is because, during periods of time in which economic crises, wars

or political disorders happen, returns fluctuate strongly, while in tranquil periods, returns fluctuate weakly.

This effect is called “volatility clustering”. Third, returns usually take several large positive and negative

values. More precisely, extreme negative returns are more frequent than extreme positive returns. As a

consequence, the unconditional distribution of returns is known to be negatively skewed and heavy-tailed

and thus a precise form of the tail is difficult to determine. Finally, although the serial correlation of returns

is very small, if any, squared and absolute returns show strong serial correlation.

Engle (1982) introduced the autoregressive conditional heteroskedastic (ARCH) model to describe these

stylized facts of financial returns. Since then, many alternative specifications have been proposed including

the stochastic volatility (SV) model, proposed by Taylor (1982), the generalized autoregressive conditional

heteroskedastic (GARCH) model proposed by Bollerslev (1986), the exponential generalized autoregressive

conditional heteroskedastic (EGARCH) model proposed by Nelson (1991) and the GJR model proposed by

Glosten, Jaganathan and Runkle (1993), among others. However, the GARCH model is by far the most

popular model for estimating the dynamics of financial returns, mainly because of its ease in estimation

and the availability of useful volatility forecasts. In order to get the probability distributions of future
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returns inherited by GARCH-type models, it is necessary to specify the distribution of the innovations. The

simpler and most routinely used assumption is that these innovations are normally distributed. While this

assumption makes the model easy to implement, the accuracy of this assumption is questionable as it is well

known that GARCH-type models with Gaussian innovations are inconsistent with many of the features of

returns described before. Alternative popular approaches are the Student-t distribution (Bollerslev, 1987),

the generalized error distribution, also called exponential power distribution (Nelson, 1991), and a mixture

of two zero mean Gaussian distributions (Bai, Russell and Tiao, 2003). However, all these distributions are

symmetric, and thus unable to capture the frequently observed skewness in the unconditional distribution

of returns. Although, Gallant and Tauchen (1989) and Lee and Tse (1991) use Gram-Charlier expansions,

Hansen (1994) and Fernández and Steel (1998) proposed the skewed Student-t distribution and Premaratne

and Bera (2000) analyzed the Pearson IV distribution, skewed distributions in a GARCH model has not

been explored much. Inference on GARCH-type models has been traditionally carried out in a classical setup

by using the Gaussian quasi maximum likelihood estimator (QMLE). Despite the fact that this method has

become popular, this approach presents some limitations, including slow numerical convergence; the fact that

the sequence of parameter vectors converges to a maximum likelihood estimator only if a judicious choice of

the starting value is made; and the underlying assumption of normality for the data set. These limitations,

coupled with the non-existence of a measure of the standard errors for the estimates, serve to limit the

methods applicability severely. Instead, we consider a Bayesian approach for inference. Bayesian approach

has several advantages. The Bayesian model provide statistical inference with finite sample validity and any

constraints on the model parameters can be easily incorporated through appropriate prior specifications.

Moreover, using Markov Chain Monte Carlo (MCMC) one can get the joint posterior distributions of the

model parameters (Ardia, 2008). Despite its attractiveness, the Bayesian analysis of GARCH model is

relatively less explored. See for instance, the papers by Bauwens and Lubrano (1998), Müller and Pole

(1998), Nakatsuma (2000), Vrontos, Dellaportas and Politis (2000), Kaufmann and Frühwirth-Schnatter

(2002) and Ausin and Galeano (2007), among others.

In this article, we consider a semiparametric Bayesian approach to GARCH-type models that extends

previous work in several ways. First, the usual parametric distributional assumptions on the innovations of

GARCH-type models are relaxed by using a semiparametric Bayesian approach. In particular, instead of

assuming a Gaussian, Student-t or a Gaussian mixture distribution, we broaden the class to a location-scale

mixture of normal. The class of normal location-scale mixtures is quite broad and includes, the Gaussian,

Student-t, logistic, double exponential, Cauchy and generalized hyperbolic distributions, among others. A
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Dirichlet process (DP) prior (see, Fergusson, 1973) is assumed on the mixing distribution, resulting in

a DP mixture (DPM) model, see, for instance, Antoniak (1974), Escobar (1994) and Escobar and West

(1995). This specification, which shall be referred as GARCH-DPM model, allows for a greater flexibility in

capturing the skewness and kurtosis of financial returns. Second, inference on the GARCH-DPM model has

been developed using an MCMC algorithms which combines the ideas of retrospective sampling proposed in

Papaspiliopoulos and Roberts (2008), the slice sampling of Walker (2007) and the Griddy-Gibbs sampling of

Ritter and Tanner (1992). Data augmentation techniques and numerical integration methods are used such

that all the conditional distributions are easy to sample without the need of finite truncation approaches

nor accept/reject methods. Third, model selection among the parametric and semiparametric models is

considered using the deviance information criterion (DIC) for mixture models recently proposed by Celeux,

Forbes, Robert and Titterington (2006).

Extreme price movements in financial markets are unusual, but important. Recently, the large daily

price movements have pointed out the need of reliable investment risk measures. Value at Risk (VaR) has

become the most widely used measure of market risk. VaR indicates the potential loss associated with an

unfavorable movement in market prices over a given time period at a certain confidence level. Statistically

speaking, the VaR is a quantile of the conditional distribution of the returns. Thus, its calculation strongly

depends on the assumption made for the innovation distribution. The proposed methodology, apart from

offering a convenient specification of the innovation distribution, offers a natural way to introduce parameter

uncertainty in the estimation and prediction of volatilities and VaR, usually ignored in the QMLE approach.

Thus, the fourth contribution of this paper is to show how to obtain predictive distributions of in-sample

volatilities and VaR, which provides a measure of precision for VaR estimates via predictive intervals. Also,

predictive distributions of the future returns and volatilities can be obtained which are more informative

than simple point forecasts.

The rest of this paper is organized as follows. Section 2 presents the motivating data set based on two

Asian stock market indexes: the Bombay Stock Exchange Index (BSE-30) and the Hang Seng Index (HSI).

Section 3 introduces the GARCH-DPM model and illustrate its flexibility in capturing the patterns exhibited

by financial returns. Section 4 describes the MCMC algorithm to sample from exact posterior distribution

of quantities of interest. Section 5 explains how to compute the DIC for the proposed semiparametric model.

Section 6 addresses the problems of in-sample volatility estimation, out-of-sample return and volatility

prediction and VaR estimation. Section 7 presents a brief Monte Carlo experiment which illustrates the

accuracy in parameter estimation, prediction of volatilities and VaR estimation. Section 8 analyzes the
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BSE-30 and HSI indexes using the proposed methodology. Finally, Section 9 concludes.

2 Motivating data: Asian stock market index

With the expansion of international financial links and the continued liberalization of cross-border cash flows,

study of international stock markets have become increasingly prevalent. In particular, emerging markets

such as India and China tend to have high volatile performance and experience economic crises more frequenly

than developed economies. As an illustration of the usefulness of the proposed semiparametric approach,

we will analyze in this paper two important stock market indexes in Asia: the Bombay Stock Exchange

Index and the Hang Seng Index. However, the applications of the proposed method are clearly beyond these

examples.

The BSE-30 index is a value-weighted index composed of the 30 largest stocks, representative of various

sectors, of the Bombay Stock Exchange. The HSI index is a freefloat-adjusted market capitalization-weighted

stock market index composed of 45 companies of the Hong Kong Stock Exchange. Figures 1 and 2 show

the time plot of the daily closing prices adjusted for dividends and splits of both indexes, for the period

from January 2000 until December 2009, leading to 2474 and 2489 index levels, respectively. Note how the

BSE-30 started a sudden fall at January, 2008 from the peak level of 20873, which continued until a sudden

increase at March, 2009 from the peak level of 8160 until the end of the series. On the other hand, the HSI

started a sudden fall at October, 2007 from the peak level of 31638, which continued until a sudden increase

at October, 2008 from the peak level of 11015 until the end of the series. Figures 1 and 2 also show the time

plot of the returns of the daily closing prices of the two indexes. Observe that the returns appear to vary

more in the last part of the series, which is the period corresponding to the recent financial crisis. Also, note

a large peak in the BSE-30, which corresponds to May 18, 2009, where this index increased a 16% primarily

due to the victory of the United Progressive Alliance (UPA) in the Indian general elections. We can also

observe the large peaks in the HSI returns corresponding to October 27 and 28, 2008, where this index first

decreased and after increased around a 13.5%, primarily due to the fear of a world recession. Finally, Table

1 shows some summary statistics. Observe that both time series are left-skewed and the kurtosis are rather

larger than 3, indicating that the distributions have higher peaks and heavier tails than a normal distribution

with the same variance.

Thus, it seems that a Bayesian semiparametric model can be an adequate approach to better address these

issues. With this purpose in mind, the next section introduces a generalized autoregressive heteroscedastic
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Figure 1: Levels (top) and returns (bottom) of the Bombay Stock Exchange index.
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Figure 2: Levels (top) and returns (bottom) of the Hang Seng index
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Table 1: Summary statistics of the daily returns of the BSE-30 and HSI indexes.

BSE-30 HSI

Mean 0.0477 0.0093

Standard deviation 1.7904 1.7077

Skewness −0.1980 −0.0375

Kurtosis 8.7109 10.5942

model using Dirichlet Processes.

3 The Generalized Autoregressive Heterocedastic Dirichlet Pro-

cess Mixture model

Among the class of volatility models, GARCH-type models are the most popular for describing financial

returns because they are simple to estimate and provide with useful volatility forecasts. For these models,

the volatility only depends on the past observations. For instance, in the standard GARCH(p, q) model, the

return series is assumed to follow,

rt = h
1/2
t εt, (1)

where ht is the return volatility at time t, which depends on the past returns via,

ht = ω +

p∑
i=1

αir
2
t−i +

q∑
j=1

βjht−j . (2)

Here, εt is a sequence of independent and identically distributed random variables with E
[
ε2t
]

= 1 and

density function fε (·). Note that, in order to ensure that ht is positive for all time t, it is usually assumed

that

ω > 0, α1, . . . , αp−1 ≥ 0, αp > 0, β1, . . . , βq−1 ≥ 0 and βq > 0.

Note that it is not assumed that E [εt] = 0, which is a common assumption in the QMLE framework.

Relaxing the condition E [εt] = 0, will allow a more flexible structure on the innovation distribution. As a

consequence the volatility ht is interpreted as the conditional second moment of the returns instead of the

conditional variance as is usually the case. The return process rt following the model defined in Eqs. (1)
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and (2) is strictly stationary if the following condition holds (see, Bougerol and Picard, 1992),

p∑
i=1

αi +

q∑
j=1

βj < 1. (3)

A necessary and sufficient condition is also given in Bougerol and Picard (1992) but it is more complicated

and difficult to check. On the other hand, when
∑p
i=1 αi +

∑q
j=1 βj = 1, the model defined in Eqs. (1) and

(2) reduces to the IGARCH model of Engle and Bollerslev (1986).

The unconditional distribution of the returns, denoted by fr (·), is determined by the distribution of the

unobservable volatility ht, denoted by fh (·), and the distribution of the innovations, fε (·), as follows,

fr (rt) =

∞∫
0

1√
ht
fε (εt) fh (ht) dht.

Some usual assumptions on fε (·) includes the Gaussian, Student-t, Gaussian mixture, logistic, double expo-

nential, Cauchy and generalized hyperbolic distributions, among others. The aim of this paper is to construct

robust alternatives to the usual distributional assumptions on the innovations. In order to facilitate our pro-

posed model, we rewrite the GARCH model defined in Eqs. (1) and (2) as follows,

rt = h̃
1/2
t ξt, (4)

where h̃t = ht/ω is a rescaled volatility given by,

h̃t = 1 +

p∑
i=1

α̃ir
2
t−i +

q∑
j=1

βj h̃t−j , (5)

where α̃i = αi/ω and ξt = ω1/2εt is a sequence of independent and identically distributed random variables

with E
[
ξ2
t

]
= ω. We propose to assume that the rescaled innovation process ξt follows a location-scale

mixture of Gaussian distributions, which is a broad class of distributions and includes all the distributions

mentioned above. The density function of a location-scale mixture of Gaussian distributions (with respect

to Lebesgue measure) is given by,

fξ (ξt|G) =

∫
φ
(
ξt|µ, σ2

)
dG
(
µ, σ2

)
, (6)

where φ
(
ξt|µ, σ2

)
denotes the density function of the Gaussian distribution with mean µ and variance σ2
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and G is the location-scale mixing distribution. The key feature of the above semiparametric approach is

the assumption that the location-scale mixing distribution G in the density function in Eq. (6) is unknown,

and is modeled by a Dirichlet process (DP) prior, as will be described in Section 4, resulting in a DP

mixture (DPM) model. Although new to the GARCH literature, DPM models have an extensive literature

in Bayesian analysis and provide a broad and flexible class of distributions in many different settings, see,

for instance, Ishwaran and Zarepour (2002), Basu and Chib (2003) and Ghosh, Basu and Tiwari (2009) and

the references therein. In what follows, the model defined in Eqs. (4) and (5) where the innovations ξt are

assumed to follow the density function in Eq. (6) and the location-scale mixing distribution G is modeled

by a DP prior is called the Generalized Autoregressive Heteroscedastic Dirichlet Process Mixture Model

(GARCH-DPM) model.

4 Bayesian inference for the GARCH-DPM model

This section describes how to perform Bayesian inference for the GARCH-DPM model where the location-

scale mixing distribution G in Eq. (6) is modeled by a DP prior, leading to a DPM distribution for ξt.

Inference for the GARCH-DPM model is developed using an MCMC algorithm which provides with samples

from the joint posterior distribution of the model parameters. The algorithm is based on the one proposed

in Papaspiliopoulos (2008) for DPM models, which is itself a combination of the procedures developed in

Walker (2007) and Papaspiliopoulos and Roberts (2008).

Given a return series, r = {r1, . . . , rT }, it is assumed that the rescaled innovation process, ξt, follows

a DPM distribution with concentration parameter ν and baseline probability measure G0, which can be

written hierarchically, for t = 1, . . . , T , as,

ξt|µt, σ2
t ∼ N

(
µt, σ

2
t

)
(
µt, σ

2
t

)
|G iid∼ G

G|ν, κ,G0 ∼ DP (ν,G0 (·|κ))

(κ, ν) ∼ π (κ)π (ν) ,

(7)

where π (κ) and π (ν) are the prior probabilities of the set of hyperparameters, κ, and the concentration

parameter, ν, respectively.
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Since the seminal work by Ferguson (1973), where the properties and theory about DP models were

developed, several characterizations for DPM models have been given in the literature. For instance, Black-

well and MacQueen (1973) proposed a Pólya urn representation which was included within a Markov chain

sampling by Escobar (1994) and Escobar and West (1995). Also, a Pólya urn structure was considered in the

collapsed cluster sampling method and the “no-gaps” algorithm for nonconjugate DPM models, proposed

respectively by MacEachern (1994) and MacEachern and Müller (1998). On the other hand, Sethuraman and

Tiwari (1982) and Sethuraman (1994) proposed an alternative characterization of Dirichlet process mixtures

in terms of a “stick-breaking” construction, which was furthermore extended by Ishwaran and Zarepour

(2002) and Ishwaran and James (2001, 2003) and, more recently, by Walker (2007) and Papaspiliopoulos

and Roberts (2008). Using this stick-breaking representation, the distribution of the auxiliary variable, ξt,

introduced above, can be described hierarchically as ,

ξt ∼ N(µzt , σ
2
zt), for t = 1, . . . , T

Pr (zt = s) = ρs, for s = 1, 2, . . .

(µs, σ
2
s) ∼ G0 (·|κ) , for s = 1, 2, . . . (8)

ρ1 = η1, ρs = (1− η1) . . . (1− ηs−1) ηs

ηs ∼ Be (1, ν)

In particular, a conjugate model is assumed where G0 (·|κ) is a normal-gamma distribution NG (m, γ, a, b) ,

with parameters κ = (m, γ, a, b), and is given by,

µs|σ2
s ∼ N

(
m,

σ2
s

γ

)
,

σ2
s ∼ IG

(
a

2
,
b

2

)
,

where IG denotes the inverse gamma distribution. The concentration parameter, ν, and the set of hyper-

parameters, κ, will be considered fixed, although hyperprior distributions could be easily incorporated. For

the illustration, it has been set ν = 1, a = 0.1, b = 0.1, m = 10−4 and γ = 0.1.

In order to complete the Bayesian formulation of the model, we also need to define prior distributions for

the parameters α̃i and βj in the volatility equations (5). Uniform prior distributions are assumed for both
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α̃i and βj , for i = 1, . . . , p and j = 1, . . . , q, restricted to the stationary region,

ω

p∑
i=1

α̃i +

q∑
j=1

βj < 1. (9)

Recall that ω = E
[
ξ2
t

]
and then, noting that the DPM model described in Eq. (8) can be seen as an infinite

mixture of Gaussian distributions given by,

f (ξt) =

∞∑
s=1

ρsφ
(
ξt | µs, σ2

s

)
, (10)

it is obtained that,

ω =

∞∑
s=1

ρs
(
µ2
s + σ2

s

)
. (11)

Finally, observe that as the stationary condition in Eq. (9) depends on ω, it is also necessary to impose a

priori the condition in Eq. (9) on the DPM parameters, (ρs, µs, σ
2
s), s = 1, 2, . . ., defined in Eq. (8).

Now, the aim is to construct an MCMC algorithm to sample from the joint posterior distribution of

the model parameters, θ =
(
η,µ, σ2, α̃, β

)
, where η = (η1, η2, . . .) , µ = (µ1, µ2, . . .) , σ

2 =
(
σ2

1 , σ
2
2 , . . .

)
,

α̃ = (α̃1, . . . , α̃p) and β = (β1, . . . , βq) and the missing data z = (z1, . . . , zT ) . It would seem that infinite

values should be sampled at each step of the MCMC algorithm. However, this will not be necessary following

the ideas proposed in Walker (2007), which are based on slice sampling schemes (Damien, Wakefield and

Walker, 1999).

Using these ideas, we introduce a latent variable ut such that,

f (ξt, ut) =

∞∑
s=1

I (ut < ρs)φ
(
ξt | µs, σ2

s

)
, (12)

where I is the indicator function. Observe that by integrating over ut, the marginal density in Eq. (10) is

obtained. Also note that Eq. (12) can be written as,

f (ξt, ut) =

∞∑
s=1

ρsU (ut | 0, ρs)φ
(
ξt | µs, σ2

s

)
,

and then, with probability ρs, ξt and ut follow a normal and a uniform distribution, respectively. With the

new set of missing data, u = (u1, . . . , uT ), the complete likelihood function for the rescaled innovation series,
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ξ = (ξ1, . . . , ξT ) , is,

f
(
ξ,u, z | η,µ,σ2

)
∝

T∏
t=1

I (ut < ρzt)φ
(
ξt | µzt , σ2

zt

)
,

and consequently, the complete likelihood function for the observed time series, r, is given by,

f
(
r,u, z | η,µ,σ2, α̃,β

)
∝

T∏
t=1

I (ut < ρzt)φ
(
rt | h̃1/2

t µzt , h̃tσ
2
zt

)
.

Now, we can obtain the conditional posterior distributions of
(
η,µ,σ2,u, z, α̃,β

)
as follows. Firstly, as

suggested in Papaspiliopoulos (2008), the conditional posterior of (η,u) can be sampled jointly using,

f (η,u|·) = f (u | η, ·) f (η|·) .

Conditionally on z, the posterior distribution of (η,u) is independent of
(
µ,σ2, α̃,β

)
. In particular, it is

easy to see that the conditional posterior distribution of ut given (η1, . . . , ηzt) follows a uniform density

on the interval (0, ρzt) , for t = 1, . . . , T, where ρzt = (1− η1) . . . (1− ηzt−1) ηzt . On the other hand, the

marginal conditional posterior of ηs given z is,

ηs ∼ Beta

(
ns + 1, T −

s∑
l=1

nl + ν

)
(13)

where,

ns =

T∑
t=1

I (zt = s)

is the number of observations assigned to the s-th mixture component.

Conditionally on (z, α̃,β) , the posterior distribution of
(
µ,σ2

)
is independent of (η,u), conjugate and

given by,

(
µs, σ

2
s

)
∼


NG (m, γ, a, b) , if zt 6= s for any t ∈ {1, . . . , T}

NG
(
m̃s, γ̃s, ãs, b̃s

)
, if zt = s for some t ∈ {1, . . . , T}

 (14)

where,

m̃s = γm+nsξ̄s
γ+ns

, γ̃s = γ + ns,

ãs = a+ ns, b̃s = b+
∑

t:zt=s

(
ξt − ξ̄s

)2
+ γns

γ+ns

(
m− ξ̄s

)2
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and,

ξ̄s =
1

ns

∑
t:zt=s

ξt.

Conditionally on
(
η,µ,σ2,u

)
, the posterior distribution of z is independent of (α̃,β) and is given by,

Pr (zt = s) ∝ I (s ∈ Aρ (ut))φ
(
ξt | µs, σ2

s

)
(15)

where,

Aρ (ut) = {s : ρs > ut} .

Observe that Aρ (ut) is a finite set. This fact makes possible to sample from the posterior distribution of

zt, which would much more complicated without the use of the latent variables, ut, see Walker (2007) for

details. Then, we need to sample all the values of ρs which are larger than ut. For this, Walker (2007) shows

that it is enough to find the smallest s∗ such that,

s∗∑
s=1

ρs > 1− u∗, (16)

where u∗ = min{u1, . . . , uT }.

Finally, the conditional posterior distribution of α̃i, for i = 1, . . . , p, is independent of (η,u) and its

kernel is given by,

k
(
α̃i | r,µ,σ2, z,β

)
=

T∏
t=1

h̃
−1/2
t exp

−
(
rt − h̃1/2

t µzt

)2

2h̃tσ2
zt

 , (17)

restricted to the stationary region in Eq. (9). This posterior distribution is not of a standard form and then,

random values cannot be not straightforwardly generated. However, it is possible to make use of the Griddy-

Gibbs sampling algorithm, introduced by Ritter and Tanner (1992), which uses a numerical approximation

of the cumulative distribution function. The Griddy-Gibbs sampler have been previously considered to make

Bayesian inference for several financial time series models, see e.g. Bauwens and Lubrano (1998) and Ausin

and Galeano (2007). The two main steps of the Griddy-Gibbs sampler are:

1. Approximate the following integral using a numerical integration method,

Φg =

∫ xg

x1

k
(
x | r,µ,σ2, z,β

)
dx,
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for g = 1, . . . , G, where x1, . . . , xG is a grid of points in the domain of α̃i.

2. Generate u ∼ U (0,ΦG) and invert Φ (x) by numerical interpolation to obtain a draw of α̃i.

Clearly, the kernel of the conditional posterior distribution of βj , for j = 1, . . . , p, has the same expression

as the given in Eq. (17) and analogously, the Griddy-Gibbs sampling algorithm can be used to sample from

it.

Thus, the scheme of the MCMC algorithm would be as follows.

1. Set an initial allocation z = {z1, . . . , zT } .

Iterate the following steps:

2. Update ηs by simulating from the beta distribution given in Eq. (13) for s = 1, . . . , z∗,

where z∗ = max{zt}Tt=1.

3. Update ut by simulating from ut ∼ Uniform (0, ρzt) for t = 1, . . . , T.

4. Update ηs by simulating from ηt ∼ Beta (1, ν) for s = z∗ + 1, . . . , s∗, where s∗ is defined in

Eq. (16).

5. Update
(
µs, σ

2
s

)
by simulating from the normal-gamma distribution given in Eq. (14) for s =

1, . . . , s∗.

6. Update zt by simulating from the discrete distribution given in Eq. (15) for t = 1, . . . , T.

7. Update α̃i by simulating from (17) for i = 1, . . . , p, using the Griddy-Gibbs sampling.

8. Update βj by simulating from (17) for j = 1, . . . , p, using the Griddy-Gibbs sampling.

Recall that the stationary condition in Eq. (9) have been imposed in the model parameters. This restric-

tion can be incorporated in the algorithm by simply rejecting the simulated values in steps 1-5 when this

condition is not verified. Observe that Eq. (9) depends on ω, which is theoretically known given
(
η,µ,σ2

)
,

see Eq. (11). However, in practice, in order to evaluate this infinite sum, the following approximation can

be used at every iteration of the MCMC algorithm,

ω̂ =

z∗∑
s=1

ns
T

(
µs + σ2

s

)
, (18)

where z∗ = max{zt}Tt=1.
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Another important issue in the algorithm is the choice of the grids to sample from the conditional posterior

distributions of α̃i and βj . In the illustrations, an initial grid of 200 points in the interval (0, 1) have been

chosen for both αi and βi. This grid is modified in each step of the algorithm to a grid of points in the

interval (0, 1/ω̂) for α̃i. Also, in order that the stationary condition in Eq. (9) holds, the kernel in Eq. (17)

is only evaluated in those points of the grid where this condition is true for each parameter.

5 Deviance Information Criteria for model selection

In this section, the objective is to compare the proposed semiparametric model with other parametric

approaches using the Deviance Information Criteria (DIC) proposed in Spiegelhalter, Best, Carlin and Van

der Linde (2002). The smaller the DIC the better the model is. However, since the semiparametric models

that we propose use mixture structures, the original definition of DIC is not applicable. In particular, we

considered one of the modifications of the DIC recently proposed by Celeux, Forbes, Robert and Titterington

(2006) for missing data models.

Usually, the DIC is defined by,

DIC = D (θ) + pD = −4Eθ [log f (r | θ) | r] + 2 log f
(
r | θ̄

)
,

where D (θ) denotes the posterior mean of the deviance D (θ) = −2 log f (r | θ) and pD is the effective

dimension given by pD = D (θ)−D
(
θ̄
)
, where θ̄ is an estimate of θ given the data r. The usual choice for

θ̄ is the posterior mean of θ̄ = E [θ | r]. However, as pointed out in Celeux et al. (2006), in mixture models,

the parameters θ are not always identifiable and the posterior mean can then be a very poor estimator. In

fact, this choice will often lead to negative values of the effective dimension, pD. Celeux et al. (2006) define

eight different modifications of the DIC. Considering that the semiparametric model proposed here can be

viewed as an infinite mixture of Gaussian distributions, the DIC4 criterium is chosen, which is the “complete

DIC” suggested in Celeux et al. (2006) for mixture models. It is given by,

DIC4 = −4Eθ {Ez,u [log f (r, z,u | r,θ)] | r}+ 2Ez,u [log f (r, z,u | E [θ | r, z,u]) | r] .
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For the proposed GARCH-DPM model, it is obtained that,

Ez,u [log f (r, z,u | r,θ)] = −4

T∑
t=1

∑
s:ρs>ut

Pr (zt = s | r,θ) log φ
(
rt | h̃1/2

t µs, h̃tσ
2
s

)

with,

Pr (zt = s | r,θ) =
φ
(
rt | h̃1/2

t µs, h̃tσ
2
s

)
∑

s:ρs>ut

φ
(
rt | h̃1/2

t µs, h̃tσ2
s

) .
Thus, given the MCMC output, the first term of DIC4 can be approximated by,

− 4Eθ {Ez,u [log f (r, z,u | r,θ)] | r} '

− 4

K

K∑
k=1

T∑
t=1

∑
s:ρ

(k)
s >u

(k)
t

Pr
(
zt = s | r,θ(k)

)
log φ

(
rt |

√
h̃

(k)
t µ(k)

s , h̃
(k)
t σ2(k)

s

)
.

while the second term in DIC4 can be approximated by,

2Ez,u [log f (r, z,u | E [θ | r, z,u]) | r] ' 2

K

K∑
k=1

T∑
t=1

log φ

(
rt |

√
h̃

(k)
t µ̄

z
(k)
t
, h̃

(k)
t σ̄2

z
(k)
t

)
,

where

µ̄(k)
s = Eθ

[
µs | r, z(k)

]
=
γm+ n

(k)
s ξ̄

(k)
s

γ + n
(k)
s

σ̄2(k)
s = Eθ

[
σ2
s | r, z(k)

]
=
b+

∑
t:z

(k)
t =s

(
ξt − ξ̄(k)

s

)2

+
γn(k)

s

γ+n
(k)
s

(
m− ξ̄(k)

s

)2

a+ ns − 1

with,

n
(k)
s =

T∑
t=1

I
(
z

(k)
t = s

)
, ξ̄

(k)
s = 1

n
(k)
s

∑
t:z

(k)
t =s

ξ
(k)
t ,

for all s such that ρ
(k)
s > u

(k)
t .

6 Volatilities and VaR estimation

In financial modeling, estimation of in-sample volatilities and prediction of future volatilities is a key feature.

Given the MCMC output, it is easy to obtain a sample from the posterior distribution of each unobserved
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in-sample volatility ht, for t = 1, . . . , T . For that, we only need to calculate the value of ht for each draw of

the MCMC sample, θ(k), which is denoted by h
(k)
t . Then, the posterior mean for each volatility is estimated

by,

E [ht | r] ' 1

K

K∑
k=1

h
(k)
t , (19)

where K is the size of the MCMC sample. Analogously, the posterior median is estimated using the sample

median of h
(1)
t , . . . , h

(K)
t and credible intervals can be obtained using the corresponding quantiles of this

sample. Using the same procedure, a sample from the posterior distribution of the one-step ahead volatility

hT+1 can be obtained, which provides with estimates of the posterior mean and median of hT+1 and credible

intervals.

On the other hand, the predictive density of rT+1,

f (rT+1 | r) = E [f (rT+1 | r,θ) | r] , (20)

can be estimated as the mean of the density functions obtained for all the draws of the MCMC sample.

Although each of these densities is an infinite mixture of Gaussians, the following approximation can be

used,

f (rT+1 | r) ' 1

K

K∑
k=1

f̂ (k) (rT+1) ,

where,

f̂ (k) (rT+1) =

z∗(k)∑
s=1

n
(k)
s

T
φ

(
rT+1 |

√
h̃

(k)
T+1µ

(k)
s , h̃

(k)
T+1σ

2(k)
s

)
, (21)

see e.g. Section 2 of Müller, Rosner, De Iorio and MacEachern (1996).

The measurement and management of risks have become one of the most challenging tasks in financial

modeling because of the existence of extreme price movements in financial markets. Several kind of financial

risk measures have been proposed including the VaR, expected shortfall and the spectral measures of risk.

However, VaR has become the most widely used measure of market risk maybe because it has been adopted

by central banks for analyzing capital adequacy. Broadly speaking, VaR indicates the potential loss of an

asset over a certain time horizon at a certain risk level associated with an unfavorable movement in market

prices. From the statistical point of view, given a certain probability level π, the t-period VaR at risk level

π of a return series is defined as the value such that the probability that the losses at time t exceed this

value is π. In other words, the t-period VaR at risk level π of a return series is given by the π-quantile of
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the distribution of the return at time t,

π = Pr (rt ≤ VaRπ,t) . (22)

Observe that calculation of the VaR in Eq. (22) strongly depends on the assumption made for the inno-

vation distribution. Thus a misspecified distribution can give a wrong estimate of VaR. Our semiparametric

approach, viz., GARCH-DPM, however, is robust to misspecified distributions and thus appropriate for ro-

bust VaR estimation. Additionally, our proposed methodology allows to calculate the predictive distributions

of the t-period VaR at risk level π, which, as a by-product, provides with a measure of precision for VaR

estimates via predictive intervals. More specifically, given the MCMC sample, the posterior mean of VaRπ,t

can be approximated using,

E [VaRπ,t | r] ≈ 1

K

K∑
k=1

VaR
(k)
π,t , (23)

where VaR
(k)
T+1 is the value of VaRπ,t at the k-th iteration of the MCMC algorithm, which is given by,

VaR
(k)
π,t =

√
h

(k)
t ξ

(k)
t,π ,

where ξ
(k)
t,π is the π-quantile of the estimated mixture,

f̂ (k) (ξt) =

z∗(k)∑
s=1

n
(k)
s

T
φ
(
ξt | µ(k)

s , σ2(k)
s

)
,

which can be obtained easily using a numerical approximation procedure such that the Newton-Raphson

method. The sample of VaR
(k)
π,t , for k = 1, . . . ,K, also allows to estimate the predictive median and Bayesian

confidence intervals using the corresponding quantiles of this sample.

7 Simulation study

In this section, the proposed methodology is illustrated using one of the many artificial time series that have

been analyzed to examine the performance of the developed procedure. A time series of size T = 3000 is

simulated from the model defined in Eqs. (1) and (2) with,

ht = 0.01 + 0.15r2
t−1 + 0.8ht−1,
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and the follwoing mixture distribution is assumed for the innovation process,

εt ∼ 0.9N (0.1, 0.5) + 0.1N (−1, 4.41) , (24)

which implies that E [εt] = −0.01 and E
[
ε2t
]

= 1. Observe that this mixture distribution leads to a non-

centered and slightly left-skewed innovation distribution, both of which are usually observed in financial time

series.

The proposed MCMC algorithm described in Section 4 is then run for a GARCH(1, 1) model using 20000

iterations. The initial 10000 iterations are discarded as burn-in iterations in order to obtain a sample of

size K = 10000 from the joint posterior distribution of the model parameters. The MCMC chains present a

good mixing performance and fast convergence, which is checked using the test proposed by Geweke (1992).

Figure 3 shows the trace plots and histograms of the posterior samples of the main model parameters: α,

β, ω and ψ, where ψ represents the expectation of εt. Observe that the posterior sample of α has been

obtained by evaluating α(k) = ω(k)α̃(k), for k = 1, . . . ,K, where ω(k) is obtained using Eq. (18) for each

MCMC iteration. Also, considering that ψ = E [εt] = ω−1/2E [ξt], the posterior sample for ψ is obtained by

evaluating,

ψ(k) =
1√
ω̂(k)

z∗(k)∑
s=1

n
(k)
s

T
µ(k)
s ,

for k = 1, . . . ,K.

Table 2 shows the posterior means and standard deviations of the model parameters using the proposed

semiparametric approach and compare these estimations with those obtained using a single Gaussian dis-

tribution for the innovation distribution, which is a usual choice in financial models. Observe that the

parameter estimation results are apparently very similar. However, note that the Bayesian DIC criterion

clearly selects the semiparametric model. This is because there are important differences in the assumption

of the innovation distribution. These differences are illustrated in Figure 4, where the true innovation distri-

bution, given in Eq. (24), and the estimated densities obtained with the semiparametric and the Gaussian

model are shown. Observe that the semiparametric model captures the left-skewed shape of the true distri-

bution with a long left tail, while the Gaussian model leads to a symmetric predictive distribution. These

differences between the two estimated densities will be very important in terms of uncertainty measure and

Bayesian prediction of quantities of interests such as volatilities and VaR, as shown next.

Figure 5 illustrates the true values and posterior medians of the last 50 in-sample volatilities of the series
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Figure 3: Trace plots and histograms of the posterior samples of the model parameters for the simulated
data.

Table 2: Posterior means and standard deviations of the model parameters obtained for the simulated data
using the proposed semiparametric model and a Gaussian distribution for the innovation process.

Semiparametric Gaussian

Parameter True values Posterior Mean
posterior std.

Posterior Mean
posterior std.

α 0.15 0.1489
0.0205

0.1456
0.0182

β 0.80 0.7957
0.0209

0.8070
0.0190

ω 0.01 0.0103
0.0015

0.0091
0.0012

ψ −0.01 −0.0127
0.0167

−0.0135
0.0184

DIC 856.76 2337.09
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Figure 4: Predictive densities of the innovation distribution for the simulated data.

with the 95% credible intervals obtained as described in Section 5, using the semiparametric and the Gaussian

model. Observe that the Bayesian credible intervals always include the true generated volatilities for all time

periods using the two models. However, observe that the estimations are closer to the true values using

the semiparametric approach. Furthermore, the interval widths are slightly larger with the semiparametric

model indicating more uncertainty in the estimations. Finally, observe that using the approach described

in Section 5, it is also possible to obtain Bayesian predictions and credible intervals for the one-step ahead

volatility, hT+1 = h3001, with both the semiparametric and Gaussian model, as shown also in Figure 5, where

they are compared with its true value.

Figure 6 shows the true values, posterior medians and 95% credible intervals for the t-period VaR at risk

level π = 0.01, for t = 2900, . . . , 3001, calculated as explained in Section 5, using the GARCH-DPM and

Gaussian models. Observe that the Bayesian credible intervals obtained with the semiparametric approach

always include the true values of VaR for all time periods, while the posterior medians of VaR obtained with

the Gaussian model are far from the true values, which are never inside the credible intervals. Also, the length

of the intervals is larger for the semiparametric model. Furthermore, the values of VaR are overestimated

for all time periods. In particular, the Gaussian model predicts that the one-step ahead VaR0.01,3001 will be

larger than it turns out to be, indicating that the maximum loss of the asset will be smaller than it really
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Figure 5: Posterior medians and 95% Bayesian confidence intervals for the conditional volatilities, ht, for
t = 2950, . . . , 3001, for the simulated time series.

is.

8 Application

In this section the proposed methodology is applied to analyze the return time series of the BSE-30 and HSI

indexes introduced in Section 2.

8.1 The Bombay Stock Exchange Index

In order to develop semiparametric Bayesian inference for the BSE-30 return series, the MCMC algorithm

described in Section 3 is run for a GARCH(1,1) model using 20000 iterations and discarding the first 10000

as burnin iterations. The MCMC samples present good mixing performance (not shown to save space) and

convergence is monitorized according to Geweke’s statistic. Table 3 shows the posterior means and standard

deviations for the main model parameters using the semiparametric approach and compares these estimations

with those obtained using a simple Gaussian model for the innovation distribution. Observe that similar to

the simulated data, there are no great differences in the parameter estimations. However, the DIC criterion
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Figure 6: Posterior medians and 95% Bayesian confidence intervals for the VaR0.01,t, for t = 2950, . . . , 3001,
for the simulated time series.

clearly selects the semiparametric model. The main reasons for this choice are illustrated in Figure 7, where

the predictive densities for the innovation distribution obtained with the semiparametric and the Gaussian

model are shown. Observe that the left tail of the distribution is longer for the semiparametric model, while

the Gaussian model leads to a symmetric estimation of the innovation density.

Figure 8 illustrates the posterior means of the volatility, ht, obtained as described in (19), for the proposed

semiparameric approach and for the Gaussian model. Note that both estimations are very similar and seem

to describe properly the time-varying volatility of the BSE-30 returns shown in Figure 1. However, the

Bayesian credible intervals are wider using the semipararametric approach for all time periods. This is

illustrated in Table 4 where the posterior means, medians and 95% credible intervals for the one-step ahead

volatility obtained with the semiparametric and the Gaussian model are shown.

Figure 9 (top) shows the BSE-30 returns together with the posterior means of the VaR at level π = 0.01

for all time periods using the proposed semiparametric approach. The proportion of times that the returns

exceed the estimated VaR is 1.092%, which is very close to the theoretical value of 1%. It is important

to note that when the same calculation is done but assuming a Gaussian model for the innovations, the

proportion of times that the returns exceed the estimated VaR is 1.941%, which indicates that the estimated
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Table 3: Posterior means and standard deviations of the model parameters using the proposed semiparametric
model and a Gaussian distribution for the innovation process in the BSE-30 time series.

Semiparametric Gaussian

Parameter Posterior Mean
posterior std.

Posterior Mean
posterior std.

α 0.1460
0.0203

0.1478
0.0202

β 0.8353
0.0200

0.8346
0.0213

ω 0.0819
0.0176

0.0761
0.0180

ψ 0.0401
0.0187

0.0404
0.0202

DIC 8595.38 9132.65
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Figure 7: Predictive densities of the innovation distribution for the BSE-30 time series data.

Table 4: Posterior means, medians and 95% credible intervals for the one-step ahead volatility, hT+1, as-
suming a semiparametric and a Gaussian model for the innovation process in the BSE-30 time series.

hT+1 Posterior Mean Posterior Median 95% Interval Interval width

Semiparametric 1.6932 1.6873 (1.5430, 1.8760) 0.3330

Gaussian 1.6621 1.6637 (1.5167, 1.8010) 0.2843
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Figure 8: Posterior means of the volatility, ht, for the BSE-30 time series data assuming the proposed
semiparametric approach (top) and a Gaussian model (bottom) for the innovation distribution.

maximum loss is exceeded considerably more than 1% of times. Furthermore, as for the simulated data, the

95% credible intervals for VaR0.01,t assuming the Gaussian model do not overlap those obtained with the

semiparametric approach, which are always wider, and the posterior medians are always larger under the

Gaussian model. This is illustrated in Figure 9 (bottom) where the Bayesian confidence intervals for the

VaR at 1% level obtained with the two approaches are shown for the last three months of the time series.

Consequently, all these results lead us to think that the Gaussian model is underestimating the maximum

loss for all time periods.

8.2 The Hang Seng Index

For the HSI time series data, the MCMC algorithm described in Section 3 is run for a GARCH(1,1) model

assuming a semiparametric Bayesian model for the innovation distribution. As for the previous data sets,

a standard Bayesian inference assuming a Gaussian innovation distribution is also developed in order to

examine the benefits of the proposed semiparametric approach. In both cases, 10000 burnin iterations are

used followed by another 10000 iterations “in equilibrium”. The traces of the MCMC samples present good

mixing performance (not shown to save space) and convergence is checked using Geweke’s statistic. Table 5
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Figure 9: BSE-30 returns and posterior means of the VaR0.01,t obtained with the proposed semiparametric
approach (top) and comparison of the posterior medians and 95% credible intervals of the VaR0.01,t for the
last three months of the BSE-30 time series data using the semiparametric and Gaussian model (bottom).

shows the posterior means and standard deviations obtained with the two procedures. Observe that in this

case there are more differences between the parameter estimation results obtained with the two approaches.

Nevertheless, again for these data, the DIC criterion selects the semiparametric model. Figure 10 illustrates

the estimated densities of the innovation distribution obtained with both approaches. Note that in this

case the two predictive densities are symmetric, but the shape of the distributions are rather different. In

particular, although it is hardly seen in the graph, we have observed that the tails of the distribution are

slightly longer for the semiparametric model.

Figure 11 (top) shows the posterior means of the volatilities, ht, using the proposed semiparametric

approach. Observe that it seems to describe properly the time-varying volatility observed in the HSI returns

shown in Figure 2. When these estimators are compared to those obtained using the Gaussian model, it

is observed that they are similar, but there are more differences than those observed for the previous data

sets. This is illustrated also in Figure 11 (bottom), where the posterior medians and credible intervals of

the estimated volatilities with the semiparametric and the Gaussian approach are shown. Note that the

posterior medians are slightly different and that, as in the previous examples, the credible intervals are wider

for the semiparametric model.
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Table 5: Posterior means and standard deviations of the model parameters using the proposed semiparametric
model and a Gaussian distribution for the innovation process in the HSI time series.

Semiparametric Gaussian

Parameter Posterior Mean
posterior std.

Posterior Mean
posterior std.

α 0.0895
0.0165

0.1321
0.0180

β 0.9009
0.0168

0.8534
0.0171

ω 0.0373
0.0091

0.0558
0.0110

ψ 0.0055
0.0195

0.0042
0.0199

DIC 8083.85 8811.31
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Figure 10: Predictive densities of the innovation distribution for the HSI time series data.
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Figure 11: Posterior means f the volatility, ht, for the HSI time series data assuming the proposed semipara-
metric approach (top) and comparison of the posterior medians and 95% credible intervals of ht for the last
three months of the HSI time series data using the semiparametric and Gaussian model (bottom).

Finally, the VaRt,π is estimated for all time periods and for π = 0.1, 0.05 and 0.01 using the semipara-

metric and the Gaussian approach. Table 6 shows the proportion of times that the HSI returns exceed

the estimated VaR in each case. It is also shown the difference in absolute value between this estimation

and the theoretical value π. Observe that for π = 0.1 and 0.01, these differences are considerably smaller

using the semiparametric approach and then, the VaR estimation is more accurate. For π = 0.05 the two

differences are close indicating a similar VaR estimation. Then it seems that our proposed semiparametric

GARCH-DPM model provides better estimations of VaR than those obtained with the Gaussian assumption.

Table 6: Proportion of times that the HSI returns exceed the estimated VaRt,π at different levels of π and
differences in absolute value between these estimations and the true value π.

π = 0.1 π = 0.05 π = 0.01

Semiparametric 0.1005
5.22×10−4

0.0539
0.0039

0.0092
7.52×10−4

Gaussian 0.0949
0.0051

0.0531
0.0031

0.0117
0.0017
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9 Conclusions

In this article, a semiparametric Bayesian approach has been developed to make inference and prediction for

univariate GARCH models. A location-scale mixture Gaussian model has been proposed for the innovation

distribution using a Dirichlet process prior for the mixing distribution. An MCMC algorithm based on

the combination of retrospective, slice and Griddy-Gibbs sampling have been constructed to obtain samples

from posterior distributions of quantities of interest. It has been described how to compute the DIC criterion

for this mixture data model which have been used for model selection among the proposed semiparametric

approach and the usual Gaussian distribution. Furthermore, Bayesian prediction for volatilities and VaR

has been carried out, obtaining Bayesian confidence intervals which are much more informative than simple

point estimations.

The proposed methodology have been illustrated using a simulated data and two real financial times

series: the Bombay Stock Exchange Index and the Hang Seng Index. In order to analyze the benefits of

the proposed semiparametric approach, the obtained results has been compared to those obtained using

a Gaussian model for the innovation distribution. The parameter estimation results are in general rather

similar. However, there are important differences in the uncertainty measure of volatilities since, in general,

credible intervals are wider using the semiparametric approach. More importantly, there are strong differences

in the VaR estimation results. The Gaussian model usually underestimate the maximum loss of an asset due

to an inadequate estimation of the tail of the distribution, while the semiparametric model seems to describe

properly the asymmetric and long-tailed shape of the innovation distribution. Besides, Bayesian confidence

intervals of VaR are wider with the semiparametric approach and the proportion of times that the VaR is

exceed is in general closer to the true theoretical level.

It would be very interesting to generalize the proposed approach to the multivariate setting. An adequate

description of the multivariate innovation distribution is essential in multivariate GARCH models. For

example, it is well known that the VaR of a portfolio of assets strongly depends on the multiviate distribution

of the innovation process. The theory and implementation of these issues are currently under research.
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