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Abstract

Selecting an estimator for the variance covariance matrix is an important step in hypoth-

esis testing. From less robust to more robust, the available choices include: Eicker/White

heteroskedasticity-robust standard errors, Newey andWest heteroskedasticity-and-autocorrela-

tion-robust standard errors, and cluster-robust standard errors. The rationale for using a less

robust covariance matrix estimator is that tests conducted using a less robust covariance

matrix estimator can have better power properties. This motivates tests that examine the

appropriate level of robustness in covariance matrix estimation. We propose a new robustness

testing strategy, and show that it can dramatically improve inference about the proper level

of robustness in covariance matrix estimation. Our main focus is on inference about clustering

although the proposed robustness testing strategy can also improve inference about parametric

assumptions in covariance matrix estimation, which we demonstrate for the case of testing for

heteroskedasticity. We also show why the existing clustering test and other applications of

the White (1980) robustness testing approach perform poorly, which to our knowledge has not

been well understood. The insight into why this existing testing approach performs poorly is

also the basis for the proposed robustness testing strategy.
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1 Introduction

Hypothesis testing about one or more parameters in a regression model is a central component

of almost any empirical research project. In addition to the selection of an estimator for the

parameters of the regression equation, hypothesis tests require that a researcher selects an estimator

for the associated variance covariance matrix. The set of available covariance matrix estimators

has grown considerably over the years, with each new estimator typically relaxing one or more of

the assumptions of the older estimators. Newer covariance matrix estimators are therefore more

robust than older estimators in the sense that while newer estimators are consistent estimators

whenever older estimators are consistent estimators, older estimators are not always consistent

estimators when newer estimators are consistent estimators. From less robust to more robust�and

simultaneously from older to newer�the set of available covariance matrix estimators include:

1. Least Squares standard errors (under the assumption of homoskedasticity)

2. Eicker/White heteroskedasticity-robust standard errors

3. Newey and West heteroskedasticity-and-autocorrocorrelation-robust standard errors

4. Cluster-robust standard errors

5. Multi-way cluster-robust standard errors.

Robustness is of course a desirable feature of any estimation strategy. However, the selection

of a covariance matrix estimator is complicated by the fact that a less robust covariance matrix

estimator can often have better �nite-sample properties than a more robust covariance matrix

estimator when both are consistent estimators. For example, when the heteroskedasticity-robust

estimator and the cluster-robust estimator are both consistent estimators and the number of clusters

is small, the (less robust) heteroskedasticity-robust estimator has better size and power properties

than the (more robust) cluster-robust estimator (see e.g. Hansen, 2007, Stock and Watson, 2008,

and below). However, a less robust estimator may not have this potential advantage in all cases.

For instance, the Least Squares covariance matrix estimator (calculated under the assumption

of homoskedasticity) may not have such potential advantage over the heteteroskedasticity-robust

1



estimator and thus the use of the Least Squares covariance matrix estimator may not be justi�ed

even in small samples (MacKinnon and White, 1985).

Nevertheless, in some cases�such as the selection between the cluster-robust estimator and the

heteroskedasticity-robust estimator�the selection of a less robust covariance matrix estimator in

favor of the more robust estimator can improve the quality of inference about regression equation

parameters. This is the motivation for �robustness tests� that examine which of two covariance

matrix estimators should be selected.

In this paper we propose a new robustness testing strategy, and show that when applied to infer-

ence about clustering the proposed approach has good �nite-sample performance unlike the existing

testing strategy. Moreover, we show why the existing approach performs poorly, which to our knowl-

edge has not been well understood. The insight into why the existing approach performs poorly is

the basis for proposed robustness testing strategy. The proposed robustness testing approach can be

adapted to improve inference also about parametric assumptions in covariance matrix estimation.

We demonstrate this for the case of testing for heteroskedasticity. Our main focus on testing for

clustering is driven by the fact that selecting between the cluster-robust covariance estimator and

a less robust covariance estimator is a central statistical issue in today�s empirical research and by

the fact that�as indicated above�inference about clustering is well-motivated as the choice of the

less robust heteroskedasticity-robust covariance matrix estimator over the cluster-robust estimator

can measurably improve the quality of inference about regression parameters.

The existing approach to testing whether the use of the cluster-robust covariance matrix es-

timator is necessary was presented in Kezdi (2003) and Hansen (2007) and is a modi�cation of

the White (1980) heteroskedasticity test. In this robustness test�as in the original White (1980)

heteroskedasticity test�the null hypothesis is that also the less robust covariance matrix estimator

is a consistent estimator. These tests are constructed as a Wald test statistic from the contrast be-

tween the more robust and the less robust covariance matrix estimates. While this existing testing

approach is �rmly grounded on an asymptotic theory, the �nite-sample performance of asymptotic
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and bootstrapped versions of this approach is poor both when applied to inference about clustering

(see Hansen, 2007, and below) and when applied to inference about heteroskedasticity (see MacK-

innon and White, 1985, and below). Speci�cally, this approach tends to have low power; it often

fails to reject the consistency of the less robust covariance matrix estimator when the less robust

estimator is an inconsistent estimator. However, to our knowledge the reason for this result has not

been previously well understood.

The underlying reason for why the existing approach to testing for clustering performs poorly is

that the construction of the Wald test statistic converts the tails of an asymmetric distribution into

one tail. How this occurs is most accessibly demonstrated in the single regressor model. In this case

the existing robustness test statistic is constructed as the square of a ratio. In the numerator in this

ratio is the contrast between the more robust cluster-robust covariance matrix estimate and the less

robust heteroskedasticity-robust estimate. In the denominator in this ratio is an estimate of the

variance of the contrast in the numerator. The two tails of the distribution the ratio are di¤erent

because the contrast in the numerator and the variance of the contrast in the denominator are

correlated. And because the existing robustness test is constructed as the square of the ratio, the

test converts the two very di¤erent tails of a distribution into one tail. As a result, this robustness

test has poor small sample properties even when bootstrap is used.

The correlation between the contrast and the estimator of its variance in turn arises because

the distribution of the variable which average forms the contrast has an asymmetric distribution.

When the more robust estimator is the cluster-robust estimator and the less robust estimator is

the heteroskedasticity-robust estimator, the distribution of the individual terms in the average

is asymmetric because�as we show in this paper�the sum of all cross-products of T independent

random variables has an asymmetric distribution even asymptotically.

In regression models with K > 1 regressors the existing robustness testing approach is based on

the construction of a one-dimensional Wald test statistic from theK+K (K � 1) =2 unique elements

of the contrast between a more robust and a less robust covariance matrix estimator. Again,
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this existing approach has poor power properties because it converts the tails of an asymmetric

distribution into one tail.

This insight into why the existing robustness tests perform poorly is the basis for our proposed

alternative robustness testing strategy. In models with a single regressor the proposed testing

strategy is to again �rst calculate the ratio of the contrast and the square root of an estimate of

the variance of the contrast and then use the ratio itself�rather than the square of the ratio�as

the test statistic. In models with multiple regressors our proposed robustness testing strategy is

to �rst partial out the e¤ect of all other explanatory variables except the variable associated with

the parameter of interest, and then calculate the ratio of the contrast and the square root of an

estimate of the variance of the contrast for this parameter and again use the ratio as the robustness

test statistic. While some information is obviously lost when this proposed dimension-reduction

approach is applied, our analysis shows that when applied to clustering the proposed approach can

still be expected to dramatically outperform the existing approach. With su¢ cient computational

resources, the proposed alternative robustness testing strategy can also be based on two (or more)

parameters of the regression model. In this case a three-dimensional test statistic and the associated

bootstrapped three (or higher) -dimensional rejection region are constructed.

Unlike the existing approach, the proposed approach does not convert the tails of an asymmetri-

cally distributed variable into one tail. Consequently, as our analysis shows, the proposed robustness

testing strategy has much better �nite-sample performance than the existing approach even when

the regression model has multiple regressors and the proposed robustness testing strategy is based

on the ratio of the contrast and the square root of an estimate of its variance only for the main

parameter of interest.

Our analysis has two main contributions. First, our analysis shows why applications of the

White (1980) robustness testing strategy often perform poorly. This analysis shares some features

with Altonji and Segal (1996) who examine the small-sample bias in Generalized Method of Mo-

ments (GMM) estimation of covariance structures. Second, we propose an alternative robustness
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testing strategy that performs well in small samples when applied to clustering. Our analysis

also demonstrates that the proposed robustness testing strategy can improve inference about het-

eroskedasticity in comparison to the White (1980) heteroskedasticity test and the Wooldridge (1991)

heteroskedasticity test, which is a heterokurtosis-robust version of the auxiliary regression based

second heteroskedasticity test in White (1980). The literature on Lagrange multipliers (LM) type

heteroskedasticity and autocorrelation tests is large, and we refer the reader to the recent contri-

butions to this literature by Baltagi et al. (2010) and Montes-Rojas and Sosa-Escudero (2010) for

the relevant references.

The good �nite-sample performance of our proposed robustness testing strategy is important

for two reasons. First, �nite-sample performance is an especially important factor in the context

of robustness tests because typically a small sample size is a necessary condition for a less robust

covariance matrix estimator to have measurably better power properties than a more robust esti-

mator. Thus, robustness tests are typically well-motivated only if the sample size is small. Second,

use of robustness tests with better power properties in applied work would decrease the rate of false

rejections of null hypotheses about the regression equation parameters. Accordingly, in addition to

measuring the power of each robustness test, we measure the impact that applying each robustness

test has on the probability of false rejections of a null hypothesis about a regression equation parame-

ter. The latter statistics show that use of the proposed testing strategy can decrease the probability

of erroneous inference about regression equation parameters quite dramatically compared to when

the existing robustness testing approach is employed.

In the next section we �rst present the linear regression model and the cluster-robust and

heteroskedasticity-robust covariance matrix estimators, and then demonstrate the potential advan-

tage of using the less robust heteroskedasticity-robust estimator. In the third section we present

the existing clustering test and examine why it performs poorly. The proposed alternative testing

strategy and its �nite-sample performance are examined in the fourth section. In the �fth section we

apply the proposed testing strategy to testing for heteroskedasticity. The sixth section concludes.
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2 The Linear Regression Model

In the next two subsections we present the linear regression model and two covariance matrix

estimators. In the third subsection we compare the power properties of the associated hypothesis

tests to demonstrate that there can be a downside to choosing the more robust estimator.

2.1 The Linear Regression Model

We examine the linear regression model

yit = x
0
it� + "it; (1)

where observations are indexed on two dimensions i 2 f1; :::; Gg and t 2 f1; :::; Tg ; the variable

xit is a vector of K observable explanatory variables, the variable yit is the dependent variable,

and the variable "it is the error term. Let �̂ denote the Least Squares estimator of the parameter

vector �; and let "̂it denote the associated Least Squares residual "̂it = yit � �̂xit. Throughout the

analysis we assume that E ["itjxit] = 0 and that the usual conditions on the fourth moments of the

observed variables yit and xit hold, so that the Least Squares estimator �̂ is a consistent estimator.

This enables us to focus solely on issues surrounding the estimation of the covariance matrix of the

parameter estimates.

It is well-known that properties of di¤erent estimators of the covariance matrix of the parameter

estimator �̂ depend on the structure of the covariance matrix of the unobserved error terms "it.

For the sake of expositional convenience and analytical tractability, we assume that the error terms

"it are independent across the G-dimension and examine only the potential impacts of dependence

among the error terms in the T -dimension. Hence, the relationships between the error terms "it are

captured by the matrices


i � E ["i"0ijxi] , for all i 2 f1; :::; Gg ; (2)

where the elements of the matrix 
i may depend on xi:
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2.2 The Heteroskedasticity-Robust and Cluster-Robust Estimators

While the matrix

W � lim
G!1

GX
i=1

E [x0i
ixi] (3)

is not the actual covariance matrix of the estimator �̂, di¤erent estimators of the covariance matrix

of the estimator �̂ mainly di¤er in terms of how this matrix W is estimated (see e.g. Hansen,

2007 and Kezdi, 2003). Accordingly, for expositional brevity, we use the term �covariance matrix�

interchangeably in reference to the matrix W and the actual covariance matrix of the estimator �̂.

The heteroskedasticity-robust estimator of the covariance matrix of the parameter �̂ is based

on the assumption that the matrix 
i is a diagonal matrix. When this property holds, the

heteroskedasticity-robust estimator

ŴHS �
1

GT

GX
i=1

TX
t=1

"̂2itxitx
0
it; (4)

is a consistent estimator of the covariance matrix W .1

The cluster-robust estimator, in contrast, is motivated by potential within-group correlation (in

the T -dimension) in the error terms "it; and is derived without any assumptions on the matrix 
i.

The cluster-robust estimator of the covariance matrix W is given by

ŴCLUSTER �
1

GT

GX
i=1

x0i"̂i"̂
0
ixi: (5)

Unlike the heteroskedasticity-robust estimator ŴHS, the cluster-robust estimator ŴCLUSTER is a

consistent estimator of the covariance matrix W regardless of whether the matrix 
i is a diagonal

matrix.2

1As Kezdi (2003) notes, the heteroskedasticity-robust estimator is consistent also if 
i are not diagonal but each
explanatory variable xit is uncorrelated within clusters. Stock and Watson (2008) show that in �xed e¤ects models
this heteroskedasticity-robust covariance matrix estimator is inconsistent under �xed T asymptotics (with G!1);
and o¤er an alternative heteroskedasticity-robust estimator which is consistent for �xed T:

2As is well-known, the least squares residuals "̂it are typically smaller than the error terms "it due to over�tting.
Moreover, within-cluster correlation between least squares residuals is typically smaller than the within-cluster cor-
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2.3 Robustness and the Power of Hypothesis Tests

The cluster-robust estimator ŴCLUSTER relaxes one of the assumptions of the heteroskedasticity-

robust estimator ŴHS. Hence, the cluster-robust estimator is in a sense a more robust estimator

than the heteroskedaticity-robust estimator. However, the selection between the more robust and

the less robust covariance matrix estimator can involve a genuine trade-o¤as the power of hypothesis

tests about regression equation parameters can be higher when constructed using the less robust

covariance matrix estimator. We next demonstrate this argument using Monte Carlo analyses

conducted in the �xed e¤ects and random e¤ects speci�cations employed previously by Hansen

(2007). The Hansen (2007) �xed e¤ects (FE) speci�cation can be expressed as

yit = xit� + �i + "it; �i � N (0; :5)

xit = :5xit�1 + vit; vit � N (0; :75) (6)

"it = �"it + uit

q
(1� a) + ax2it; uit � N (0; 1� �) ;

whereas the Hansen (2007) random e¤ects (RE) speci�cation is given by

yit = xit� + "it

xit = zi + vit; zi � N (0; :8) ; vit � N (0; 1� :8) (7)

"it = �i + uit; �i � N (0; �) ; uit � N (0; 1� �) :

Either model can be written as (1) although for the �xed e¤ects model the variables yit, xit; and

"it then represent the �xed e¤ect demeaned versions of the corresponding original variables. When

relation between the error terms (Bell and McCa¤rey, 2002). Consequently, the heteroskedasticity-robust estimator
ŴHS and the cluster-robust estimator ŴCLUSTER are biased estimators in �nite samples. For presentational con-
venience, and because each of the many available bias-correction methods is only guaranteed to work under a very
restrictive set of circumstances (MacKinnon and White, 1985, and Bell and McCa¤rey, 2002), we do not employ
a bias-correction in the analysis in the text. However, in constructing the heteroskedasticity-robust estimator and

the cluster-robust estimator in our Monte Carlo simulations we apply the adjusted residuals "̂
q

GT
GT�K and "̂

q
G
G�1 ,

respectively, instead of the original residuals "̂: These bias-corrections are implemented in commonly used software
packages such as Stata and SAS.
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� = 0 in either model, both the heteroskedasticity-robust estimator and cluster-robust covariance

estimator are consistent variance covariance matrix estimators.3

The two panels of Table 1 show the power functions with nominal size 0:05 against the null

hypothesis H0: � = 0 for � � 0 when G = 10, T = 20 and a = 0:5 in the FE model and when

G = 10 and T = 10 in the RE model. In both the power functions for the heteroskedasticity-robust

estimator are shown in columns 1 and 3 and the power functions for the cluster-robust estimator

are shown in columns 2 and 4. Power functions calculated using bootstrapped distributions of the

test statistic are indicated in bold (columns 3-4), and power functions calculated using asymptotic

distributions of the test statistic are shown in columns 1-2.4

Comparison of row 1 of column 1 and row 1 of column 2 for the RE model demonstrates that

when tests are conducted using asymptotic distributions, use of the less robust covariance matrix

estimator can yield better size properties than use of the more robust variance covariance estimator.

When tests are conducted using bootstrapped distributions this size advantage is eliminated but

power can increase by up to 25% in the FE model (from :40 to :50 when � = 0:2) and by up to 47% in

the RE model (from .30 to :44 when � = 0:2) when the heteroskedasticity-robust variance covariance

matrix is employed instead of the cluster-robust estimator. These results do not represent the upper

bound for the potential advantage of the less robust estimator. For example, in the RE model the

di¤erence in the power of tests is increasing in within-group correlation in the observed explanatory

variable xit. When the explanatory variable is generated with xit = zi; where zi � N (0; 1) ; and

� = 0:2 power of bootstrapped tests increases by 78% (from :27 to :48) if the heteroskedasticity-

robust covariance estimator is employed instead of the cluster-robust estimator.

These results demonstrate that the power of hypothesis tests can be considerably higher when

the less robust heteroskedasticity-robust estimator of the covariance matrix is applied, which implies

3Consistency of the heteroskedasticity-robust estimator in the FE model requires that T !1 (see footnote 1).
4Each cell in Tables 1-2 is calculated using 2000 simulated samples. In constructing the bootstrapped power

functions we impose the null hypothesis, employ the wild-bootstrap method, and obtain the distribution of the t-
statistic (see Cameron et al., 2008). For each of the 2000 simulated samples we obtain the bootstrapped estimate of
the distribution of the t-statistic using 799 samples bootstrapped from the simulated sample.
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that the selection of a more robust covariance matrix estimator can have a considerable negative

impact on the probability of correct statistical inference. This motivates the use and analysis of

�robustness tests�that examine the appropriate level of robustness in covariance matrix estimation.

FE Model
Power of Test
tasymHS tasymCL

Power of Test
tbootHS tbootCL

� = 0 :07 :07 :06 :06
� = :1 :20 :17 :19 :14
� = :2 :52 :43 :50 :40
� = :3 :85 :75 :82 :72
� = :4 :97 :94 :97 :92
� = :5 1:00 :98 1:00 :98

RE Model
Power of Test
tasymHS tasymCL

Power of Test
tbootHS tbootCL

� = 0 :06 :09 :05 :05
� = :1 :17 :19 :15 :11
� = :2 :47 :47 :44 :30
� = :3 :77 :75 :75 :55
� = :4 :94 :91 :92 :74
� = :5 :98 :97 :98 :88

Table 1: Power function in the FE and RE models.

It is also important to note that this advantage of the less robust covariance matrix estimator

decreases quickly as the number of clusters G increases. Monte Carlo simulations reported in Table

2 illustrate this result. In these simulations we set � = 0:2; a = 0:5 and T = 20 in the FE model

and � = 0:2 and T = 10 in the RE model. The original error terms are multiplied by
p
G=
p
10

so that the variance of the Least Squares estimator �̂ is approximately the same for all G. This

�nding, that the potential advantage of the less robust heteroskedasticity-robust covariance matrix

estimator decreases considerably or even disappears as G increases, implies that in selecting between

di¤erent robustness tests a strong emphasis should be based on the robustness tests�small sample

properties.

FE Model
Power of Test
tasymHS tasymCL

Power of Test
tbootHS tbootCL

G = 10 :54 :44 :52 :40
G = 15 :53 :46 :51 :43
G = 20 :50 :46 :49 :44
G = 50 :52 :47 :52 :46
G = 100 :50 :47 :50 :46

RE Model
Power of Test
tasymHS tasymCL

Power of Test
tbootHS tbootCL

G = 10 :49 :48 :46 :31
G = 15 :47 :49 :45 :37
G = 20 :49 :50 :48 :40
G = 50 :50 :52 :50 :47
G = 100 :52 :51 :51 :48

Table 2: Power as a function of the number of clusters G in the FE and RE models.
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3 The White (1980) Robustness Testing Approach

In this section we �rst show how the White (1980) robustness testing approach is applied to test

for clustering, and then explain why this test performs poorly in small samples.

3.1 The White (1980) Test Adapted to Clustering

Kezdi (2003) and Hansen (2007) have previously presented how the White (1980) heteroskedasticity

test is adapted to testing whether clustering in the error terms has an impact on the covariance

matrix. In this robustness test the null and alternative hypotheses are

H0 (no clustering): plimG!1

h
ŴCLUSTER � ŴHS

i
= 0

H1 (clustering): plimG!1

h
ŴCLUSTER � ŴHS

i
6= 0

and the test statistic is based on the contrast

ŴCLUSTER � ŴHS (8)

between the values of the two covariance matrix estimators ŴCLUSTER and ŴHS, which are de�ned

above in expressions (5) and (4), respectively. When the null hypothesis of no clustering holds

(does not hold), the K + K (K � 1) =2 unique individual elements of this contrast matrix will be

relatively small (large) in absolute value. The existing robustness test statistic, which we denote by

S�, is constructed from the contrast (8) in the form of the Wald test statistic as

S� = GT � vec
�
ŴCLUSTER � ŴHS

�
D�vec

�
ŴCLUSTER � ŴHS

�0
; (9)

where the matrix D is an estimator of the variance of vec
�
ŴCLUSTER � ŴHS

�
and D� denotes the

generalized inverse of D. We estimate the parameter matrix D using the estimator

D̂ �
 
1

GT

GX
i=1

 
vec

 
x0i"̂i"̂

0
ixi �

TX
t=1

"̂2itxitx
0
it

!! 
vec

 
x0i"̂i"̂

0
ixi �

TX
t=1

"̂2itxitx
0
it

!!0!
: (10)
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The estimator D̂ is one of two estimators of D mentioned in Hansen (2007). The existing clustering

test performs better with estimator D̂ than with the alternative variance estimator.

Hansen (2007) provides su¢ cient conditions for the result that under the null hypothesis of �no

clustering�the test statistic S� has the asymptotic distribution �2k(k+1)=2 both when G!1 and T

is �xed and when G!1 and T !1 jointly. However, as Monte Carlo results in Hansen (2007)

show, the �nite-sample performance of this test is poor when the number of clusters G is small.

3.2 Why Does the White (1980) Robustness Test Perform Poorly?

For expositional convenience we now focus on the model with just one regressor, xit. The two

covariance matrix estimators ŴHS and ŴCLUSTER can then be written simply as

ŴHS =
1

GT

GX
i=1

TX
t=1

x2it"̂
2
it (11)

and

ŴCLUSTER =
1

GT

GX
i=1

TX
t=1

TX
s=1

xit"̂it"̂isxis: (12)

Moreover, the cluster-robust estimator can be rewritten as

ŴCLUSTER =
1

GT

GX
i=1

"
TX
t=1

x2it"̂
2
it + 2

T�1X
t=1

TX
s=t+1

xit"̂it"̂isxis

#
: (13)

Substituting expressions (11) and (13) to the contrast ŴCLUSTER � ŴHS yields

ŴCLUSTER � ŴHS =
1

G

GX
i=1

2

T

T�1X
t=1

TX
s=t+1

xit"̂it"̂isxis: (14)

The contrast ŴCLUSTER � ŴHS is thus calculated as the average of G observations on the sum

2

T

T�1X
t=1

TX
s=t+1

xit"̂it"̂isxis: (15)
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Expression (15) consists of the summation of all T (T � 1) =2 cross-products of the T random

variables xi1"̂i1 through xiT "̂iT . In what follows we �rst show that the distribution of the sum of all

cross-products of T random variables is asymmetric even when the T random variables are jointly

independent as the variables xi1"̂i1 through xiT "̂iT are (asymptotically) under the null hypothesis of

�no clustering� To facilitate both �nite-sample and asymptotic analysis we conduct this analysis

in terms of the normalized sum of cross-products expressed as

p
T (T � 1) =2�

PT�1
t=1

PT
s=t+1 xit"̂it"̂isxis

T (T � 1) =2 : (16)

We then show that the asymmetric distribution of (16) implies that the contrast ŴCLUSTER� ŴHS

is positively correlated with the estimator of the variance of this contrast. In the third step we show

that, due to this positive correlation, the ratio of the contrast ŴCLUSTER � ŴHS and the square

root of an estimate of the variance of this contrast has an asymmetric distribution. In the �nal

step we show that because the existing robustness test statistic is calculated as the square of this

asymmetrically distributed ratio, the �nite-sample properties of the test are destined to be poor.

3.2.1 Distribution of All Cross-Products of Independent Variables is Asymmetric

We now show that when the null hypothesis of �no clustering�holds, both the �nite-sample and

asymptotic distributions of the sum of cross-products (16) are asymmetric.

Consider �rst the sign of the individual terms in the sum of cross-products (16). When xit"̂it

is positive for all t, the sum of cross-products (16) is of course positive because then all terms in

the sum are positive. In contrast, not all of the terms in the sum of cross-products in (16) can be

simultaneously negative. For example, when T = 3; only two of the three terms can be negative

at once.5 This result arises because the individual terms in the sum of cross-products (16) are not

jointly independent even though they are pairwise uncorrelated asymptotically (as plimG!1�̂ ! �

5If the terms xi1"̂i1"̂i2xi2 and xi1"̂i1"̂i3xi3 are negative, the term xi3"̂i3"̂i2xi2 cannot be negative, as either xi1"̂i1 <
0 and xi2"̂i2 > 0 and xi3"̂i3 > 0 hold or xi1"̂i1 > 0 and xi2"̂i2 > 0 and xi3"̂i3 < 0 hold.
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and thereby "̂it � "it) when the null hypothesis of �no clustering�holds. That all terms in the sum

of cross-products (16) can be simultaneously positive but not simultaneously negative immediately

implies that the �nite-sample distribution of the sum of cross-products (16) is asymmetric.

Consider next the sum of cross-products (16) for large T . In Appendix 1.1 we show that in the

limit, as G ! 1 (so that P ("̂it < 0) is arbitrarily close to P ("it < 0) independent of the cluster

size T ) and T ! 1, the probability that the sum of T (T � 1) =2 cross-products (16) has more

negative terms than positive terms is more than two thirds, provided that for the error term "it

negative and positive values are equally likely. Formally, we show that

lim
G;T!1

P

 PT�1
t=1

PT
s=t+1 Ixit"̂it"̂isxis>0 +

PT�1
t=1

PT
s=t+1 (Ixit"̂it"̂isxis>0 � 1)p

T (T � 1) =2
< 0

!
� 0:6823; (17)

where Ixit"̂it"̂isxis>0 = 1 if xit"̂it"̂isxis > 0 and zero otherwise.

If xit and "it have symmetric discrete distributions with P (xit = 1) = 0:5 and P ("it = 1) = 0:5,

so that limG!1 P ("̂it < 0) = P ("it < 0) and plimG!1 jxit"̂it"̂isxisj = 1, the above result (17)

immediately implies that in the limit (as G ! 1 and T ! 1) also the probability that the

value of the sum-of cross-products (16) itself is positive is less than one third. Obtaining analytical

asymptotic results for other distributions is complicated by the dependence between terms in the

sum of cross-products. However, that similar results apply to other distributions for the variables

xit and "it is easily veri�ed using Monte Carlo simulations.

Table 3 reports such Monte Carlo results for the FE and RE models (6) and (7), with the

sum of cross-products (16) denoted by �wi. Column 1 reports the empirical probability that

the sum of cross-products (16) is negative.6 Columns 2 and 3, respectively, report the empirical

probability that the sum of cross-products (16) is less than c0:75 and c:975, where cp is de�ned as

the empirical critical value that satis�es P (�wi > cp) = 1� p: Thus, for a symmetric distribution
6Each entry in Table 3 is constructed using the observation on the sum of cross-products (16) for one cluster

in 1000 simulated samples. In these simulations the number of clusters G is set relatively high so that the bias
of the estimators ŴHS and ŴCLUSTER is small and, consequently, E (�wi) is close to zero. In all other reported
simulations we apply the bias-corrections (see the end of Section 2.2) in estimating ŴHS and ŴCLUSTER.
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P (�wi < �c0:75) = 0:25 and P (�wi < �c0:975) = 0:025. The results show that the distribution of

the sum of cross-products (16) remains highly asymmetric as T increases. Moreover, for large T

the probability that the sum of cross-products (16) is negative is again around two thirds.

P (�wi< 0) P (�wi< �c0:75) P (�wi< �c0:975)

FE Model, � = 0, a = 0; G = 100 T = 20 :61 :37 :00
T = 100 :67 :55 :00
T = 200 :69 :63 :00

FE Model, � = 0, a = :5; G = 100 T = 20 :61 :31 :03
T = 100 :66 :47 :04
T = 200 :70 :65 :00

RE Model, � = 0, G = 100 T = 20 :68 :56 :04
T = 100 :67 :53 :00
T = 200 :67 :50 :06

Table 3: Distribution of the sum of cross-products (16).

3.2.2 Variables ŴCLUSTER � ŴHS anddvar(ŴCLUSTER � ŴHS) are Correlated

The right-skewed distribution of the sum of cross-products (15) implies that the contrast ŴCLUSTER�

ŴHS is positively correlated with the estimator of the variance of this contrast. We prove this result

in Appendix 1.2. The proof is similar to the proof of a related result in Altonji and Segal (1996) who

examine bias in the GMM estimation of covariance structures and in which the variable for which

the average is calculated has an asymmetric distribution because it is the second sample moment

of a random variable.

Figure 1 illustrates the correlation between the contrast ŴCLUSTER� ŴHS and the estimator of

its variance. Here each sub-�gure depicts 5000 observations on
p
GT (ŴCLUSTER�ŴHS)=

p
2(T � 1)

(vertical axis) and
qdvar(ŴCLUSTER � ŴHS)=

p
2 (T � 1) (horizontal axis) in the FE model when

T = 100; a = 0 and � = 0.7 Depicting
p
GT (ŴCLUSTER�ŴHS)=

p
2(T � 1) rather than (ŴCLUSTER�

7Estimates shown in Figures 1-3 are calculated using the bias-corrections mentioned in footnote 2. In these
simulations we set a = 0 and T = 100 so that the two conditions�homoskedastic error terms and (x0x)�1 (x0ixi)

constant across clusters�under which the bias-correction
q

G
G�1 eliminates the bias of ŴCLUSTER approximately

hold (see Theorem 1 in Bell and McCa¤rey, 2002).
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ŴHS) or
p
GT (ŴCLUSTER � ŴHS) on the vertical axis in Figure 1 keeps the variance of the mea-

sured variable roughly constant across di¤erent G as the contrast ŴCLUSTER� ŴHS consists of the

summation of 2GT (T �1) terms. Figure 1 shows that the contrast and the estimator of its variance

are correlated and that this result is not limited to the case when the number of clusters G is small.

However, because the variance estimatordvar(ŴCLUSTER�ŴHS) approaches var(ŴCLUSTER�ŴHS)

in probability as the number of clusters G increases, the variance of the variance estimator decreases

as G increases. Consequently, when the number of clusters G is large, the impact of correlation

between the contrast and the estimator of its variance on the ratio of the contrast and the square

root of an estimate of its variance�which we examine next�is small.
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Figure 1: Scatterplot of ŴCLUSTER � ŴHS and
qdvar(ŴCLUSTER � ŴHS) in the FE model.
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3.2.3 Distribution of the Ratio of ŴCLUSTER � ŴHS and
qdvar(ŴCLUSTER � ŴHS) is

Asymmetric in Small Samples

We now examine the implications of the positive correlation between the contrast ŴCLUSTER�ŴHS

and the estimator of its variance,dvar(ŴCLUSTER � ŴHS), on the ratio

tR �
p
GT

ŴCLUSTER � ŴHSqdvar(ŴCLUSTER � ŴHS)
(18)

when the null hypothesis of �no clustering�holds.

The positive correlation between the contrast ŴCLUSTER � ŴHS anddvar �ŴCLUSTER � ŴHS

�
implies that in constructing the ratio tR a positive estimate of the contrast is generally divided by a

larger estimate of its variance than the corresponding negative estimate of the contrast. When the

expected value of the contrast itself is zero, E(ŴCLUSTER� ŴHS) = 0, this in turn implies that the

expected value of the the ratio tR is generally negative (Altonji and Segal, 1996, present a related

informal argument). Formally,

E

0@pGT ŴCLUSTER � ŴHSqdvar(ŴCLUSTER � ŴHS)

1A < 0: (19)

When the result (19) holds, then P (tR < �c) > P (tR > c) at least for some critical values c: In

other words, the two tails of the distribution of the ratio tR are di¤erent and, more speci�cally, the

distribution of the ratio tR has more probability mass in the left tail than in the right tail. Even

if the condition E(ŴCLUSTER � ŴHS) = 0 holds, this property does not necessarily hold for all

critical values c because�due to the asymmetric distribution of the sum of cross-products (16)�for

the contrast ŴCLUSTER � ŴHS itself large positive values can be more likely than corresponding

negative values. Moreover, the condition E(ŴCLUSTER � ŴHS) = 0 does not usually hold exactly

as the estimators ŴHS and ŴCLUSTER are generally biased (see footnote 2). However, the result

(19) generally continues to hold if this bias is small enough for both estimators. And even when
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these biases are large enough for the result (19) not to hold, the ratio tR still has an asymmetric

distribution because larger values of the contrast are divided by larger estimates of the variance,

and because the distribution of the contrast is asymmetric.

Figure 2 depicts the distribution of the ratio tR in the FE model for di¤erent numbers of clusters

G, with each distribution estimated using 5000 simulations, when � = 0; a = 0, and T = 100. As

expected, the left tail of the distribution of tR has more probability mass than the left tail of the

distribution when G is small. And, also as expected, this asymmetry disappears as G becomes

large.
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Figure 2: Distribution of the ratio tR in the FE model as a function of the number of clusters G.
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3.2.4 Power of the White (1980) Robustness Test

We now consider the implications of the asymmetry in the distribution of the ratio tR on using the

existing clustering test statistic S� as written in (9). Because the model under consideration has

only one regressor, the test statistic S� can be rewritten simply as the square of the ratio tR,

S� =

24pGT ŴCLUSTER � ŴHSqdvar(ŴCLUSTER � ŴHS)

352 : (20)

Suppose �rst that the null hypothesis �no clustering�holds. As was discussed in Section 3.2.3,

under the null hypothesis the left tail of the distribution of the ratio tR tends to have more probability

mass than the right tail of the distribution. The construction of the test statistic S� as the square

of the ratio tR ignores this asymmetry in the distribution of the ratio tR by converting the two tails

of its distribution into one tail. Consequently, when the null hypothesis holds, observations on the

test statistic S� that fall into the constructed rejection region mostly correspond to the negative

values of the ratio tR. Importantly, this occurs even if the bootstrapped distribution of S� is used

to construct the rejection region for the test statistic S�.

Suppose next that the null hypothesis does not hold. And, more speci�cally, consider the

case of positive clustering, which is arguably the empirically more relevant part of the alternative

hypothesis. Positive clustering shifts the distribution of the ratio tR to the right and thus increases

its expected value. Yet, because the expected value of the ratio tR is negative under the null

hypothesis, positive clustering initially decreases the absolute value of the expected value of the

ratio tR. And because both the asymptotic and bootstrapped rejection regions of the test statistic

S� mostly correspond to the negative values of the ratio tR under the null hypothesis, a shift in the

distribution of the ratio tR to the right initially does not necessarily increase the probability that

an observation on S� is in the constructed rejection region for S�.

With weak positive clustering the distribution of the test statistic S� therefore does not neces-

sarily overlap much with the relevant rejection region; the power of the test may even be lower than
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its size, as can be seen from some of our Monte Carlo simulations below. The power of the test will

only exceed its size when positive clustering is strong enough to shift also the distribution of the

test statistic S� to the right in comparison to its distribution under the null hypothesis.

Figure 3 illustrates the distribution of the ratio tR and the test statistic S� under null and

alternative hypotheses in the FE model, with each distribution estimated using 5000 simulations,

when G = 10; T = 100 and a = 0. Under the null hypothesis (� = 0) the distribution of the ratio

tR is right-skewed. While positive clustering (� > 0) shifts the distribution of the ratio tR to the

right, it does not initially increase the probability mass in the right tail of the distribution of the

test statistic S�. Consequently, the power of the existing clustering test can be lower than its size.
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Figure 3: Distribution of tR and S� under null and alternative hypotheses in the FE model.
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The two panels of Table 4 demonstrate the size and power properties of the asymptotic and

bootstrapped versions of this existing clustering test in the FE and RE models (6) and (7). In these

Monte Carlo simulations we set a = 0:5 for the FE model, G = 10 for both models, and vary the

parameters � and T: In both panels of Table 4 columns 1 and 3 (columns 2 and 4) show the power

function for the asymptotic (bootstrapped) version of the existing robustness test. Results for the

asymptotic version of the test are based on 1000 replications. Results for the bootstrapped version

of this robustness test are generated as in Table 5 below (see footnote 8 for the details).

As expected, the results show that for small values of � the power of the existing robustness test

is smaller than the size of the test. This occurs both for the asymptotic and bootstrapped versions

of the test. When T = 50 the size of the asymptotic version of the test exceeds the nominal size.

The bootstrapped version of the test eliminates this size distortion but has only little power in the

RE model and no power in the FE model.

FE Model
Power of Robustness Test S�

T = 20 T = 50
Asym. Boot. Asym. Boot.

�= 0 :05 :06 :10 :04
�= :1 :04 :02 :08 :04
�= :2 :04 :02 :06 :04
�= :3 :03 :03 :05 :01
�= :6 :05 :03 :05 :01
�= :9 :04 :03 :06 :03

RE Model
Power of Robustness Test S�

T = 10 T = 50
Asym. Boot. Asym. Boot.

�= 0 :06 :04 :11 :05
�= :1 :01 :03 :08 :01
�= :2 :02 :03 :10 :02
�= :3 :06 :02 :18 :05
�= :6 :12 :05 :26 :04
�= :9 :18 :14 :26 :12

Table 4: Asymptotic and bootstrapped power functions for the White (1980) robustness testing
strategy when applied to testing for clustering.

In summary, in this section we have shown why even the bootstrapped versions of the existing

clustering test perform poorly against positive clustering when the number of clusters G is small.

This �nding is important since clustering tests are only well-motivated when the number of clusters

G is small and positive clustering arguably forms the important part of the alternative hypothesis.
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4 An Alternative Robustness Testing Strategy

The alternative robustness testing strategy that we propose in this paper is based on the insight in

the previous section on why the White (1980) robustness testing approach performs poorly when

applied to inference about clustering. In the case of one explanatory variable, the problems arise

because construction of the existing test statistic S� as the square of the ratio (18) converts the two

very di¤erent tails of the distribution of the ratio tR into one tail. As a solution, in the case of one

explanatory variable, we propose using this ratio tR itself as a test statistic. Hence, the proposed

robustness test statistic, which we denote by ~S, is

~S �
p
GT

ŴCLUSTER � ŴHSqdvar(ŴCLUSTER � ŴHS)
: (21)

In principle, in models withK multiple regressors, this same approach can be applied through the

construction of the corresponding K +K(K � 1)=2-dimensional test statistic, which is constructed

by dividing each element of
p
GTvec(ŴCLUSTER � ŴHS) by the square root of the corresponding

element ofdvar(vec(ŴCLUSTER � ŴHS)), and the construction of the associated bootstrapped K +

K(K � 1)=2-dimensional rejection region. In practice, however, calculating the multi-dimensional

bootstrapped rejection region is likely to be computationally too burdensome except in the case of

K = 2; in which case the test statistic and the rejection region are three-dimensional. Consequently,

in models with multiple regressors a more practical version of the proposed robustness testing

approach consists of �rst partialling out the impact of all other regressors except the variables

corresponding to the one or two main parameters of interest, and then constructing a one or three

dimensional test statistic ~S and the associated bootstrapped rejection region. This dimension

reduction approach obviously has its disadvantages. Thus, it is important to show that even when

the proposed robustness testing strategy involves such a dimension reduction it can be expected to

outperform the existing approach.

In the next two subsections we present results on Monte Carlo simulations that examine the
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performance of the proposed robustness testing strategy and how it compares with the performance

of the White (1980) robustness testing approach when applied to inference about clustering. We

�rst focus on the case of one regressor and then examine the case of multiple regressors. We only

report results for the bootstrapped version of the existing test because it performs better than the

asymptotic version of this test when the number of clusters G is small (see Section 3.2.4).

The main purpose of robustness tests is to enable researchers to avoid false rejections of null

hypotheses about regression equation parameters. In most cases such null hypothesis is H0: �1 =

0; and thus the performance of robustness tests in the case �1 = 0 is particularly important.

Accordingly, for the parameter of interest �1 we set �1 = 0. Moreover, in addition to calculating

the size and power of each robustness test, we calculate for each robustness test the associated

probability that the null hypothesis H0: �1 = 0 about the parameter of interest �1 is rejected when

the researcher follows the following three-step hypothesis testing strategy:

Step 1. Test if the null hypothesis H0: � = 0 is rejected using the more robust

cluster-robust estimator of var(�̂).

Step 2. If the null hypoothesis H0: � = 0 was not rejected in Step 1, use a

robustness test to test whether also the less robust heteroskedasticity-

robust estimator of var(�̂) is a consistent estimator.

Step 3. If the consistency of the less robust heteroskedasticity-robust estimator

was not rejected in Step 2, test the null hypothesis H0: � = 0 using the

less robust heteroskedasticity-robust estimator of var(�̂).

This three-step testing strategy is common in applied work although it is not always explicitly

stated and in many contexts its use has been limited by the poor power of existing robustness

tests. We refer to the probability that the null hypothesis H0: �1 = 0 is rejected (either in Step 1

or in Step 3) as a �conditional �-size� of a robustness test when the null hypothesis H0: �1 = 0

holds and this three-step research strategy is followed. Comparison of the conditional �-size of the

existing robustness testing strategy and the conditional �-size of the proposed robustness testing
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strategy yields an indication of the how much the proposed testing strategy can improve the quality

of inference about regression parameters.

4.1 Comparisons of Robustness Tests: One Explanatory Variable

Tables 5 and 6 report Monte Carlo results comparing the properties of the White (1980) robustness

tests and the properties of the proposed alternative robustness testing strategy in the FE and RE

models (6) and (7) with one explanatory variable.8 In the FE model we set a = 0:5. We vary

the parameter �, which captures the within-cluster dependence in the error terms, the number of

clusters G and the number of observations T within each cluster. Properties of the two robustness

tests are reported in columns 1-4. The properties of the proposed alternative testing strategy

are indicated in bold (columns 2 and 4). Columns 1 and 2 report the power function for each

robustness test, and columns 3 and 4 report the associated probability of false rejections of the

null hypothesis H0: � = 0 when researchers follow the three-step research strategy discussed above.

Columns 5 and 6 report the probability of false rejections of the null hypothesis H0: �1 = 0 when

the test is conducted using the cluster-robust and the heteroskedasticity-robust variance estimator,

respectively. Comparison of entries in columns 5 and 6 thus give a rough measure of the importance

of using the cluster-robust variance estimator in cases with within-cluster dependence in the error

terms (i.e. cases with � > 0).9

8The Monte Carlo results reported in each cell of Tables 5-8 are based on 400 simulated samples. The rejection
frequencies for the test statistics S� and ~S are constructed from the bootstrapped distribution of each test statistic.
The bootstrapped distribution of the test statistic is constructed using 399 bootstrapped samples from the original
sample. We use the wild bootstrap method with the relevant weight (�1 or 1) independently drawn for each
observation. This approach imposes the null hypothesis that the errors are not clustered.
In constructing the test statistics for the RE model we �rst de-mean the data so that the constant is not treated

as a regressor when the relevant contrast for the existing clustering test is constructed. The results for the existing
test are worse when the constant is included. Moreover, when the constant is omitted from the construction of the
contrast for the existing test statistic (and thus the contrast is one-dimensional) the di¤erence in the performance of
the two robustness testing approaches can be solely attributed to the asymmetric nature of the distribution of the
ratio of the contrast and the estimator of its variance.

9To limit the computational burden we rely on the asymptotic rejection region to calculate the probability of
false rejections of the null hypothesis H0: �1 = 0 for each covariance matrix estimator, although in applied work the
asymptotic rejection region should not be employed when the number of clusters is as small as 10 (see Cameron et
al., 2008, and Table 1 above).
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Power of Robustness Test
S� ~S

Conditional �-Size
S� ~S

�-Size
Cluster-Robust

�-Size
HS-Robust

T = 20; G = 10
� = :0 :06 :06 :10 :10 :07 :08
� = :3 :03 :13 :13 :11 :08 :11
� = :6 :03 :19 :16 :14 :04 :16
� = :9 :03 :25 :23 :19 :08 :23

T = 50; G = 10
� = :0 :04 :07 :07 :07 :05 :05
� = :3 :01 :10 :08 :07 :04 :08
� = :6 :01 :25 :16 :13 :06 :16
� = :9 :03 :36 :18 :13 :06 :19

T = 20; G = 50
� = :0 :04 :07 :05 :05 :04 :04
� = :3 :14 :41 :07 :05 :04 :08
� = :6 :40 :76 :10 :06 :04 :17
� = :9 :56 :92 :09 :04 :03 :18

Table 5: Power and the associated conditional �-Size of robustness tests in the FE Model.

Power of Robustness Test
S� ~S

Conditional �-Size
S� ~S

�-Size
Cluster-Robust

�-Size
HS-Robust

T = 10; G = 10
� = :0 :04 :04 :12 :12 :11 :07
� = :3 :02 :41 :29 :19 :10 :28
� = :6 :05 :71 :40 :19 :09 :41
� = :9 :14 :75 :45 :20 :12 :51

T = 50; G = 10
� = :0 :05 :05 :11 :11 :08 :05
� = :3 :05 :86 :54 :16 :12 :57
� = :6 :04 :90 :66 :16 :09 :69
� = :9 :12 :87 :69 :17 :08 :76

T = 10; G = 50
� = :0 :05 :06 :09 :09 :08 :06
� = :3 :65 1:00 :17 :09 :09 :30
� = :6 :91 1:00 :09 :07 :07 :39
� = :9 1:00 1:00 :07 :07 :07 :45

Table 6: Power and the associated conditional �-Size of robustness tests in the RE Model.

25



The �rst two columns in Tables 5 and 6 reveal that in both models the proposed alternative

robustness testing strategy performs much better than the existing robustness testing strategy.

When the number of clusters is small, G = 10, the existing approach has no power. In stark

contrast, when G = 10; the power of the proposed approach is as high as 0:36 in the FE model

and as high as 0:90 in the RE model. When the number of clusters is larger, G = 50; the both

approaches have power. However, as was demonstrated in Section 2.2, robustness tests are only

well-motivated when the number of clusters G is small. Hence, the selection between two robustness

testing approaches should be mainly based on their small-sample performance.

The good performance of the proposed robustness testing strategy is also re�ected in columns

3 and 4. For example, when G = 10 and T = 50 and researchers follow the three-step hypothesis

testing strategy, the application of the proposed robustness testing strategy instead of the existing

robustness testing can decrease the probability of false rejections of the null hypothesis H0: � = 0

by 30% in the FE model (from 0:18 to 0:13) and by 75% (from 0:69 to 0:17) in the RE model.

4.2 Comparisons of Robustness Tests: Multiple Explanatory Variables

The multiple regressor models that we examine are modi�cations of the single regressor FE and

RE models (6) and (7). Let xit = (x1;it; x2;it; :::; xK;it) denote the vector of K regressors, and let

� = (�1; �2; :::; �K) denote the associated parameter vector. We introduce a new parameter �x

that governs correlation between regressors. Denoting the sign function by sgn(�) ; the modi�ed FE

model with K regressors plus a constant is

yit = x0it� + �i + "it; �i � N (0; :5)

xk;it = :5xk;it�1 + sgn
h
(�x)

k
i
�
p
j�xj � !it +

p
1� j�xj � vk;it; (22)

!it � N (0; :75) vk;it � N (0; :75) ;

"it = �"it + uit

r
(1� a) + a 1

K

PK
k=1 x

2
k;t; uit � N (0; 1� �) ;
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and the modi�ed RE model with K regressors plus a constant is

yit = �0 + x
0
it� + "it (23)

xk;it = sgn
h
(�x)

k
i
�
p
j�xj � (�i + !it) +

p
1� j�xj � (zk;i + vk;it) ; (24)

�i � N (0; :8) ; !it � N (0; 1� :8) ; zk;i � N (0; :8) ; vk;it � N (0; 1� :8) ;

"it = �i + uit; �i � N (0; �) ; uit � N (0; 1� �) :

If �x = 0; the K regressors are uncorrelated in both models. If �x = 0 and K = 1; models (22) and

(24) correspond to the single regressor FE and RE models (6) and (7). If �x > 0; allK regressors are

positively correlated. If �x < 0; each odd-numbered regressor is positively (negatively) correlated

with each odd-numbered (even-numbered) regressor.

Monte Carlo results are reported in Tables 7 and 8. In these simulations we again set �0 = 0

and �1 = 0, and we set �i = 1 for all i > 1: Moreover, we set G = 10, T = 20 and a = 0:5 in the

FE model and G = 10 and T = 10 in the RE model. In both models we set � = 0:6. We vary the

number of regressors K and the parameter �x which governs correlation between regressors.
10 The

proposed alternative robustness test statistic ~S is constructed by �rst partialling out the e¤ect all

variables except the variable x1;it associated with the parameter of interest �1:

Results in Tables 7 and 8 demonstrate that the superior performance of the proposed robustness

testing strategy in comparison with the existing robustness testing approach extends to the case of

multiple regressors. This occurs in spite of the fact that the proposed alternative robustness test

statistic ~S is constructed using the partialling out approach.

The only case in which the existing clustering test should be expected to outperform the proposed

clustering test is the case in which within-cluster dependence has only a small impact on the variance

of the estimator of the parameter of interest �1 but a large impact on the variance of the estimators of

10The rank of the variance estimator D̂ applied in the construction of the existing test statistic is limited by
the number of clusters G: This limits the number of regressors K to those that satisfy K (K + 1) =2 < G (without
constant as regressor) and K (K + 1) =2� 1 < G (with constant as regressor).
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other regression parameters �0 and �2 through �K . However, whenever within-cluster dependence

has only a small impact on the variance of the estimator of the parameter of interest �1, the

(incorrect) use of the less robust heteroskedasticity-robust estimator has only a small impact on the

probability false rejections of the null hypothesis H0: �1 = 0. Thus, while the potential advantage

from using the proposed alternative testing strategy instead of the existing approach is often quite

large�as the Monte Carlo analyses in this section have shown�the potential advantage from using

the existing robustness testing approach instead of the proposed approach appears relatively small.

Power of Robustness Test
S� ~S

Conditional �-Size
S� ~S

�-Size
Cluster-Robust

�-Size
HS-Robust

K = 2
�x = �:9 :01 :22 :17 :13 :06 :16
�x = �:5 :02 :19 :15 :14 :06 :15
�x = 0 :00 :19 :17 :13 :06 :17
�x = :5 :01 :18 :11 :14 :05 :13
�x = :9 :03 :22 :17 :14 :05 :17

K = 3
�x = �:9 :02 :19 :15 :13 :06 :15
�x = �:5 :02 :16 :14 :13 :06 :14
�x = 0 :02 :20 :18 :14 :07 :17
�x = :5 :01 :25 :17 :15 :07 :16
�x = :9 :02 :20 :12 :11 :04 :11

Table 7: Properties of robustness tests in the FE Model with multiple regressors.

Power of Robustness Test
S� ~S

Conditional �-Size
S� ~S

�-Size
Cluster-Robust

�-Size
HS-Robust

K = 2
�x = �:9 :02 :65 :41 :19 :11 :41
�x = �:5 :02 :64 :45 :23 :13 :46
�x = 0 :03 :61 :41 :22 :12 :42
�x = :5 :02 :64 :42 :20 :12 :42
�x = :9 :02 :63 :44 :24 :14 :45

K = 3
�x = �:9 :05 :54 :42 :28 :17 :44
�x = �:5 :05 :57 :41 :22 :13 :42
�x = 0 :04 :58 :44 :24 :14 :46
�x = :5 :03 :56 :42 :23 :14 :42
�x = :9 :04 :56 :45 :28 :16 :46

Table 8: Properties of robustness tests in the RE Model with multiple regressors.
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5 Application to Testing for Heteroskedasticity

We now examine how the proposed robustness testing strategy performs when applied to testing

for heteroskedasticity, and compare the results with the corresponding results for the White (1980)

heteroskedasticity test.11 We employ the cross-sectional version of the linear regression model (1).

The N independent observations are indexed by i: We assume that the matrix 
 � E (""0jx) is a

diagonal matrix so that the heteroskedasticity-robust covariance matrix estimator is a consistent

estimator.

The White (1980) heteroskedasticity test is constructed from the contrast

ŴHS � ŴLS; (25)

where ŴHS and ŴLS, respectively, are the heteroskedasticity-robust estimator (4) and the �Least

Squares�estimator (calculated under the assumption of homoskedasticity) of the covariance matrix

W � E [x0
x]. With K + 1 regressors the Least Squares covariance estimator ŴLS is de�ned as

ŴLS = �̂
2
"

1

N

NX
t=1

x0ixi; (26)

where �̂2" � 1
N�K�1

PN
i=1 "̂

2
i . Thus, for the model with a single regressor xi the contrast (25) is

ŴHS � ŴLS =
1

N

NX
t=1

�
"̂2i � �̂2"

�
x2i : (27)

The presence of the factor
�
"̂2i � �̂2"

�
in this contrast (27) implies that the contrast is again�as

in Section 3.2�constructed as the average of asymmetrically distributed random variables. In the

analysis of the clustering test in Section 3.2, the asymmetric distribution of the variables that enter

the average in the contrast was discovered as the cause for the poor performance of the existing

11Results for the bootstrapped version of the Wooldridge (1991) heteroskedasticity test, which is a homokurtosis-
robust version of the second heteroskedasticity test o¤ered in White (1980), were similar to the results for the
bootstrapped version of the White (1980) heteroskedasticity reported in this section.
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clustering test which is an application of the same robustness testing strategy. Accordingly, the same

reasoning reveals why the White (1980) heteroskedasticity test has poor small-sample performance.

The asymmetric distribution of the variables that enter the average in the contrast (27) implies that

the contrast and the estimator of the variance of this contrast are correlated (see White (1980) for

the estimator of the variance of the contrast). This in turn implies that the ratio of the contrast

and the square root of the estimate of the variance of the contrast is asymmetrically distributed. In

the single regressor model, the White (1980) heteroskedasticity test is constructed as the square of

this ratio. The construction of the test thus converts two very di¤erent tails of a distribution into

one tail which explains the poor small-sample performance of the test.

Application of the proposed alternative testing strategy for inference about hetereroskedasticity

is straightforward. Impact of all other regressors except the variable associated with the parameter

of interest is �rst partialled out. The contrast ŴHS � ŴLS and the estimator of the variance of

the contrast are then constructed for the parameter of interest and their ratio is used as the test

statistic. This test statistic is analogous to the proposed test statistic in expression (21) constructed

for the case of testing for clustering. The only di¤erence is that ŴCLUSTER� ŴHS is replaced with

ŴHS � ŴLS:

We now compare the performance of these heteroskedasticity tests in the regression model

yt = �0 + �1xt + "t, "t = ut

q
(1� a) + ax2t , xt � N (0; 1) and "t � N (0; 1) (28)

with only one regressor plus a constant. The parameter a governs the extent of heteroskedasticity.

When a = 0 (when a > 0) the error terms are homoskedastic (heteroskedastic). Again, we set

�1 = 0 for the parameter of interest �1, and we set �0 = 0: We vary the parameter a and the

number of observations N . Monte Carlo results are reported in Table 9.12 Results for the proposed

12In constructing both robustness test statistics, we �rst de-mean the data. Omission of the constant in the con-
struction of the White (1980) heteroskedasticity test improves the performance of the test. The results reported in
each cell of Tables 9-10 are calculated using 400 simulated samples. The rejection frequencies for the test statistics
S� and ~S are constructed from the bootstrapped distribution of each test statistic. The bootstrapped distribution of
the test statistic is constructed using 399 bootstrapped samples from the original sample. We use the standard un-
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testing strategy are indicated in bold in columns 2 and 4. Results for the bootstrapped version of

the White (1980) heteroskedasticity test are reported in columns 1 and 3.

Power of Robustness Test
S� ~S

Conditional �-Size
S� ~S

�-Size
HS-Robust

�-Size
OLS

N = 20
a = 0 :03 :06 :09 :09 :09 :06
a = :5 :06 :17 :14 :13 :11 :13
a = 1 :21 :40 :25 :23 :15 :28

N = 50
a = 0 :06 :06 :05 :04 :04 :03
a = :5 :13 :41 :15 :11 :07 :16
a = 1 :51 :82 :18 :13 :08 :24

N = 100
a = 0 :05 :04 :08 :08 :08 :07
a = :5 :37 :76 :11 :07 :05 :15
a = 1 :70 :93 :12 :08 :06 :23

Table 9: Properties of heteroskedasticity tests with a single regressor.

Results in Table 9 show that when the number of observations is small, N = 20, the proposed

testing strategy performs better than the White (1980) heteroskedasticity test but neither approach

performs well. When the number of observations is larger, N = 50 or N = 100; the proposed testing

approach outperforms the White (1990) robustness testing approach in terms of power as well as

the impact that the robustness tests have on the quality of inference about the regression parameter

of interest �1 as measured by the reported conditional �-size for these robustness tests.

We next examine the performance of these robustness tests in the multiple regression model

yt = �0 + x
0
t� + "t; "t = ut

r
(1� a) + a 1

K

PK
k=1 x

2
k;t, ut � N (0; 1) ;

xk;t = sign
h
(�x)

k
i
�
p
j�xj � !t +

p
1� j�xj � vk;t; !t � N (0; 1) ; vk;t � N (0; 1)

with K > 1 regressors plus a constant. The parameter �x re�ects the dependence between the

K regressors. If �x = 0, the regressors are uncorrelated. If �x > 0, the regressors are positively

weighted non-parametric bootstrap (the residuals are randomly sampled with replacement (see Hodoshima and Ando
(2008) for an application of this approach to heteroskedasticity tests). This approach imposes the null hypothesis
that the errors are homoskedastic.
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correlated. If �x < 0, odd-numbered regressors are negatively (positively) correlated with even-

numbered (other odd-numbered) regressors. We set �0 = 0; �1 = 0; and �i = 1 for all i > 1, and

we set a = 0:5; and N = 50: We vary the parameter �x and the number of regressors K:

Monte Carlo results are reported in Table 10. A comparison of the results for the case of

uncorrelated regressors (�x = 0) with the results in Table 9 for the single regressor model shows

that power of both robustness tests decreases as the number of regressors increases, and the proposed

robustness testing strategy continues to maintain its advantage over the existing approach. However,

additional simulations not reported here in detail show that when K = 3, �x = 0 and a = 1 so that

the extent of heteroskedasticity is more severe than in the case for which results are shown in Table

10, the existing robustness testing approach performs better than the proposed robustness testing

approach. Results in Table 10 also indicate that in this regression model both robustness tests have

poor power when the regressors are correlated (�x 6= 0):

Power of Robustness Test
S� ~S

Conditional �-Size
S� ~S

�-Size
HS-Robust

�-Size
OLS

k = 2
�x = �:9 :10 :08 :11 :11 :09 :09
�x = �:5 :06 :14 :11 :10 :09 :11
�x = 0 :08 :18 :08 :08 :06 :07
�x = :5 :07 :12 :08 :08 :06 :07
�x = :9 :08 :05 :07 :07 :06 :06

k = 3
�x = �:9 :07 :05 :09 :09 :08 :07
�x = �:5 :07 :05 :10 :10 :07 :09
�x = 0 :05 :08 :11 :10 :08 :10
�x = :5 :07 :07 :11 :10 :08 :09
�x = :9 :07 :05 :07 :07 :05 :06

Table 10: Power of heteroskedasticity tests with multiple regressors.

We reiterate (from the introduction) that unlike clustering tests, heteroskedasticity tests may not

be well-motivated because the use of the less robust Least Squares covariance matrix ŴLS estimator

in favor of the more robust heteroskedasticity-robust estimator ŴHS may not be justi�ed. Results

in this section therefore merely serve as a demonstration that in principle our insight into why the
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existing clustering test performs poorly allso explains why other applications of the White (1980)

robustness testing approach perform poorly and that, accordingly, application of the proposed

alternative robustness testing strategy can improve also inference about parametric assumptions in

covariance matrix estimation.

6 Conclusion

In this paper we have examined �robustness tests� that help researchers select between di¤erent

covariance matrix estimators in the ever-expanding set of available covariance matrix estimators.

Our main focus has been on clustering tests that examine the choice between the cluster-robust

covariance matrix estimator and a less robust covariance matrix estimator.

We have proposed a new robustness testing strategy, which implementation is straightforward.

We have also shown why the existing clustering test and other applications of the White (1980)

robustness testing strategy perform poorly in small samples. Moreover, we have shown that when

applied to inference about clustering the proposed robustness testing strategy performs well in small

samples. As we have argued in this paper, the small-sample performance is especially important in

the context of robustness tests: these tests are well-motivated only when the less robust estimator

has a potential advantage over the more robust estimator for which a small number of observations

is typically a necessary condition. For the clustering tests examined here�in which the alternative

covariance matrix estimator is the heteroskedasticity-robust estimator�this principle implies that

the tests are only well-motivated when the number of clusters is small.

An important topic for future research is the performance of the proposed robustness testing

strategy in relation to more complex covariance matrix estimators such as the multi-way cluster-

robust estimator. Another worthy topic for future research is whether and to what extent the

construction of a multi-dimensional bootstrapped rejection region or the application of the Bonfer-

roni method can improve the performance of the proposed robustness testing strategy in models

with multiple explanatory variables relative to the dimension reduction approach applied here.
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APPENDIX 1: Proofs

Appendix 1.1. Sign of Terms in the Sum of Cross-Products

In this appendix we prove the result (17). Let P denote the number positive factors among the

T factors fxi1"̂i1; xi1"̂i1; :::; xiT "̂iTg. The number of negative cross-products among the T (T � 1) =2
cross-products in the sum (16) is P (T � 1� (P � 1)) =2 + (T � 1� (P � 1))P=2, which can be
rewritten as �PP + PT: Hence, the share of negative terms in the sum of cross-products (16) is

greater than c if (PP � PT ) = (T (T � 1) =2) > c; which can be rewritten as

�
�
P

T

�2
+
P

T
� c (T � 1)

2T
> 0 (29)

Solving for the roots of this quadratic equation yields

�
P

T

��
=
1�

q
1� 2c(T�1)

T

2
; (30)

and substituting c = 1
2
yields �

P

T

��
=
1�

q
1
T

2
: (31)

Hence, the sum of cross products (16) has more negative terms than positive terms if the share P
T
of

positive factors among the T factors fxi1"̂i1; xi1"̂i1; :::; xiT "̂iTg is in the interval
�
1
2
� 1

2

q
1
T
; 1
2
+ 1

2

q
1
T

�
:

By de�nition P =
P

t Ixit"̂it"̂isxis>0, where Ixit"̂it"̂isxis>0 is the indicator function in the text. Pro-

vided that positive and negative values are equally likely for the error terms "it, so that P ("it > 0) =

P ("it < 0) = 0:5 (modi�cation of the proof to the P ("it > 0) = P ("it < 0) < 0:5 is straightforward

and omitted), the variable Iit has the Bernoulli distribution with parameter p arbitrarily close to
1
2
.13 By the central limit theorem the asymptotic distribution of

p
T
P
t Ixit"̂it"̂isxis>0��I

T

�I
; (32)

where �I =
1
2
and �I = 1

2
; is the standard normal distribution. Thus, in the limit (as G; T !

1), the probability that the share of positive factors, P
T
, is within the distance 1

2

q
1
T
from 1

2
is

13As the number of clusters G ! 1; the least squares estimate �̂ and the associated least squares residuals "̂it
approach � and "it, respectively. Thus, positive and negative values are also equally likely for the least squares
residual "̂it so that P ("̂it > 0) and P ("̂it < 0) are arbitrarily close to 0:5 for large enough G.
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2� (� (1)� 0:5) � 0:6823. Consequently, in the limit (as G; T !1), also the probability that the
sum of cross-products (16) has more negative terms than positive terms is approximately 0:6823.

Appendix 1.2: ŴCLUSTER�ŴHS anddvar �ŴCLUSTER � ŴHS

�
are Correlated

This appendix shows that Cov(ŴCLUSTER � ŴHS; ^V ar(ŴCLUSTER � ŴHS)) is positive provided

that the distribution of
PT�1

t=1

PT
s=t+1 xit"̂it"̂isxis is skewed to the right.

Using expression (14) the contrast can be written as

ŴCLUSTER � ŴHS =
1

G

GX
i=1

2

T

T�1X
t=1

TX
s=t+1

xit"̂it"̂isxis: (33)

Applying the formula (10) a consistent estimate of the variance of the contrast (ŴCLUSTER� ŴHS)

is given by

^V ar(ŴCLUSTER � ŴHS) =
1

G2

GX
i=1

2

[T (T � 1)=2]2

"
T�1X
t=1

TX
s=t+1

xit"̂it"̂isxis

#2
; (34)

which can be rewritten simply as

^V ar(ŴCLUSTER � ŴHS) =
8

[GT (T � 1)]2
GX
i=1

"
T�1X
t=1

TX
s=t+1

xit"̂it"̂isxis

#2
: (35)

To prove the claim, we introduce several convenient notations. Let d = ŴCLUSTER � ŴHS. Let

! = ^V ar(d) . Then we want to show thatCov(d; !) depends on the skewness of
PT�1

t=1

PT
s=t+1 xit"̂it"̂isxis.

which we denote as Di. Next we write d and ! as d = 2
GT

PG
i=1Di and ! = 8

[GT (T�1)]2
PG

i=1D
2
i

respectively.

Now, from the covariance formula, we have that

Cov(d; !) = E(d!)� E(d)E(!); (36)

where

E(d!) = E

" 
1

G

2

T

GX
i=1

Di

! 
1

G2
8

T 2(T � 1)2
GX
i=1

D2
i

!#
(37)

and

E(d)E(!) = E

"
1

G

2

T

GX
i=1

Di

#
E

"
1

G2
8

T 2(T � 1)2
GX
i=1

D2
i

#
: (38)
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But we note that

E

"
GX
i=1

Di

GX
i=1

D2
i

#
= E

"
GX
i=1

D3
i +

GX
i=1

GX
j=1;j 6=i

D2
iDj

#
: (39)

Next let us denote m1 =
1
T

PG
i=1Di(� D), m2 =

1
[T (T�1)]2

PG
i=1D

2
i , and m3 =

1
T 3(T�1)2

PG
i=1D

3
i ,

where E(mj) = �j for j = 1; 2; 3. Then we have

Cov(d; !) =
16

G3
[E(m3) + E(m1m2)� E(m1)E(m2)] ; (40)

which can be rewritten as

Cov(d; !) =
16

G3
[�3 + E(m1m2)� �1�2]: (41)

A little bit of algebras then show that

Cov(d; !) =
16

G3
[�3 + 2�1(�2 � �1)� �1�3]: (42)

In the remaining steps, we work with the right�hand side bracketed expression of the above equation

�3 + 3�2�1 + 2�
3
1 = �3 + 3�2�1 + 2�1�

2
1 � �21�1 + �31

= E(m3) + 3E(m2�1) + 2E(m1)�
2
1 � �21E(m1) + �

3
1

= E(m3 � 2m2�1 �m2�1 + 2m1�
2
1)� E(�21m1) + E(�

3
1) (43)

= E(m3 � 2m1�1)(m1 � �1)� E(�21(m1 � �1))
= E[(m2 � 2m1�1 + �

2
1)(m1 � �1)]

= E[(m1 � �1)2(m1 � �1)]
= E[(m1 � �1)3:

Thus,

Cov(d; !) =
16

G3
E (D � �1)

3 : (44)

In other words, Cov(d; !) is positive when the distribution of Di �
PT�1

t=1

PT
s=t+1 xit"̂it"̂isxis is

skewed to the right.
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