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Abstract

Binary response index models may be affected by several forms of misspecifica-

tion, which range from pure functional form problems (e.g. incorrect specification

of the link function, neglected heterogeneity, heteroskedasticity) to various types

of sampling issues (e.g. covariate measurement error, response misclassification,

endogenous stratification, missing data). In this paper we examine the ability of

several versions of the RESET test to detect such misspecifications in an extensive

Monte Carlo simulation study. We find that: (i) the best variants of the RESET

test are clearly those based on one or two fitted powers of the response index; and

(ii) the loss of power resulting from using the RESET instead of a test directed

against a specific type of misspecification is very small in many cases.
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1 Introduction

In the econometric analysis of binary responses, parametric single index models are typ-

ically employed. These models rely on the assumption of a Bernoulli distribution with

mean  for the response  conditional on the covariates , where  =  [ ()],  (·) is a
cumulative density function and  () is an index function in  and the vector of parame-

ters of interest . Consistent estimation of  requires  to be correctly specified. However,

misspecification of  may arise for a variety of reasons. On the one hand, the assumed

cumulative density function  (·) or the index function  (·) may not describe properly
the target population. On the other hand, even in cases where the specification chosen for

 [ ()] is in fact appropriate for describing the population of interest, often  cannot

be consistently estimated from the available data set due to sampling issues of which the

practitioner is unaware (e.g. measurement error in one or more covariates, misclassifi-

cation of the outcome variable, nonignorable missing data, endogenous stratification; see

inter alia Chesher (1991), Hausman et al. (1998), Ramalho and Smith (2003) and Imbens

(1992), respectively). Therefore, when employing parametric models for binary data, it

is essential to test the correct specification of .

There are two distinct sets of tests that may be applied to assess the specification

of : (i) general tests for model misspecification, where no specific alternative hypothe-

sis is specified; and (ii) specific tests, which are usually based on the formulation of an

alternative parametric model. The former tests are sensitive to a wider variety of de-

partures from the postulated model, while the latter are potentially more powerful when

the alternative model is correctly specified but otherwise tend to have low power. Since

empirical researchers often do not have any idea about the kind of misspecification that

may affect their model and given the great variety of potential misspecification sources,

general specification tests are much more commonly applied to test the specification of 

in binary regression models.1

In the context of linear regression models, the most widely used general specification

test is Ramsey’s (1969) Regression Specification Error Test (RESET), which consists of

a mere joint significance test for some fitted powers of . As noted by Pagan and

Vella (1989) and Peters (2000), RESET-type tests may also be used in binary and other

1In fact, apart from the heteroskedasticity test proposed by Davidson and MacKinnon (1984), specific

tests for binary models are very rarely applied in empirical work.
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nonlinear single index models. Therefore, due to its simplicity and ease of implementation,

in the last decade the RESET test has also become the most popular general specification

test for binary and other parametric models.2 However, while in the linear setting the

size and power of the RESET test have been extensively investigated by Monte Carlo

methods3, in the binary response framework very little is known about its finite sample

properties. In fact, to the best of our knowledge, only Thomas (1993) has analyzed the

performance of the RESET test in the binary setting and only through a very small-scale

Monte Carlo study, which was limited to the logit model and a very specific pattern of

misspecification.

The main aim of this paper is precisely to carry out an in-depth investigation of the

finite sample behaviour of the RESET test in the binary response framework. To this

end, as tractable analytical power comparisons are not available, we perform an extensive

Monte Carlo simulation study that examines, under many different scenarios, the finite

sample performance of several versions of the RESET test that differ on the number of

powers included as test variables. We consider some of the most popular parametric

models for binary responses (logit, probit, cauchit, loglog) and a wide variety of data

generating processes in order to investigate the ability of the test variants to detect not

only pure functional form problems (misspecification of (·) or  (·)) but also the existence
of sampling problems. In each case, the finite sample power of the RESET test is compared

with that of a test specifically designed to detect the kind of misspecification simulated.

The remainder of the paper is organized as follows. Section 2 describes the notational

framework of the paper and discusses the main consequences of various forms of mis-

specification that may affect binary regression models. In section 3 some variants of the

RESET test are discussed as well as the specific tests that will be included in the Monte

Carlo simulation study described in Section 4. Finally, section 5 concludes.

2For some time, other popular general specification test for binary models was the information matrix

test introduced by White (1982). However, due to its poor finite sample properties, this test is now rarely

applied.
3For Monte Carlo studies on the behaviour of the RESET test in the linear framework see, for example,

Ramsey and Gilbert (1972), Godfrey and Orme (1994), Leung and Yu (2000) and Hatzinikolaou and

Stavrakoudis (2006).
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2 Some specification issues in binary models

Consider a sample of  = 1   individuals and let  = {0 1} be the response variable
of interest and  a vector of  exogenous variables. The conditional expected value of 

given  is defined as

 ≡  (| ) =  [ ()] . (1)

Consistent maximum likelihood (ML) estimation of  requires in general that the assumed

structural model  [ ()] is in fact a suitable description of the behaviour of the pop-

ulation of interest and that a data set that effectively reflects the characteristics of the

target population is available.4

Next, we give some examples of misspecification problems that commonly affect binary

models. The impact of each of these forms of misspecification in the conditional mean of

 given  is illustrated in Figure 1 for simulated samples of 10001 observations where a

probit model with a linear index, a single covariate 1 and  = 1, that is  () = 1, is

taken as a reference. 1 is a sequence on the interval [−3 3], except in the case of omission
of variables and covariate measurement error where a normal distribution with zero mean

and variance one was used for generating it. Despite the simplicity of these examples, the

diversity of possible consequences produced by the various forms of misspecification are

clearly illustrated in Figure 1.

2.1 Misspecification of the structural model

Misspecification of the structural model may be due to an incorrect choice of the ‘link’

function  (·) or to an incorrect choice of how and which explanatory variables should
appear in the index function  (·).

Example 1 Incorrect link function

Despite the popularity of the logit and the probit specifications for  (·), which are
given by, respectively, ()

£
1 + ()

¤
and Φ [ ()], in some cases there may be other

models that provide a better description of the data. For example, the cauchit (also known

as arc tangent), defined as 05+−1 arctan [ ()], is appropriate for cases where the shape

4Naturally, consistent estimation of  is also possible if the structural model is appropriately adapted

to reflect the fact that the sampled and target populations may be different.
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of  presents fatter tails, and the loglog and complementary loglog, defined as 
−()

and

1 − −
()

, are suitable for cases where asymmetric functional forms are required. The

first graph of Figure 1 shows the differences between these five link functions. Note that

while the symmetric cauchit, logit and probit models approach 0 and 1 at the same rate,

the asymmetric cloglog (loglog) model increases slowly (sharply) at small values of  (·)
and sharply (slowly) when  (·) is near 1.

Figure 1 about here

Example 2 Omission of relevant covariates

The omission of a relevant explanatory variable in models for binary data leads, in

general, to inconsistent estimation of . In effect, when some relevant variables  are

omitted from  [ (·)], the conditional mean of the response given the included covariates
 is given by

 =

Z


 [ (  )]  (|) , (2)

where  is the vector of parameters associated to  and  (|) is the conditional density
function of  given . In contrast to linear models, where the omission of  is innocuous

in cases where  and  are uncorrelated, even in such a case (2) differs in general from the

naive version of the conditional mean  [ ()].5 This case is represented in the second

graph of Figure 1, which considers an example where a relevant variable , distributed

as a displaced exponential with variance one and generated independently from 1, is

omitted. It is clear that  is no longer symmetric around zero and presents fatter tails

than the probit benchmark, the amount of dispersion depending on the weight of the

omitted variable on the index, which is determined by .

Example 3 Nonlinear index misspecified as linear due to heteroskedasticity

An obvious source of misspecification is the omission of nonlinear terms in the index.

This omission may be the result of the presence of heteroskedasticity, a problem which

again is innocuous for consistent estimation of  in linear models but not in this setting.

Consider a linear latent model ∗ =  + , where  is a variate with zero mean and

variance  ( ) defined in such a way that when  = 0,  ( ) = 1. Define the observed

5The consistency of the ML estimator is not affected only when  = 0. See inter alia Ramalho and

Ramalho (2010).
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binary outcome as  = 1 ( = 0) if ∗  0 (∗ ≤ 0). Clearly, the functional form implied

by this formulation is

 = 

"
p
 ( )

#
(3)

and using the linear index , overlooking the nonlinearities induced by heteroskedasticity,

leads to inconsistent estimation of ; see Davidson and MacKinnon (1984) and Yatchew

and Griliches (1985).

Figure 1 contains an illustration of (3) for the case where the skedastic function is

 (1 ) = 21 . Again, the symmetric characteristic of the probit is distorted and the

variability of  given  is increased.

2.2 Misspecification due to observation problems

In some cases, the population of interest is properly described by the functional form

chosen for  [ ()] but the available data set, due to some sampling issues, provides

a distorted representation of  [ ()]. In this subsection, we briefly analyze three po-

tentially variance increasing and/or shape distorting sources of misspecification that are

related to the observation process: covariate measurement error, response misclassifica-

tion, and endogenous sampling. We focus on cases where the index is linear,  () = ,

to simplify the notation. In all the examples that follow, the functional form appropriate

for the data is written as a function of  (), so that the distortions created by the three

sampling issues become apparent and the mechanism that governs them may be analyzed

in a simple way.

Example 4 Covariate measurement error

The effects of the presence of measurement error in continuous covariates may be

examined by using Chesher’s (1991) small parameter asymptotic approximations. Assume

that we observe an error-prone version ∗ of the covariates  according to ∗ =  + ,

where  is a -dimensional vector of unobservable measurement errors, which have an

unknown continuous joint distribution  (). Assume also that  and  are independently

distributed,  () = 0, and  (0) = Σ = [], where Σ is a positive semi-definite × 

matrix. The approximation for a small error variance for  is

 =  (∗)
£
1 + 

 ( ∗)
¤
+  (Σ) , (4)

6



where  ( ∗) = 05
h



| (
∗) + 



| (
∗) | (

∗) + 2
| (

∗)  (
∗)
i
, superscripts

denote derivatives with respect to the latent covariates which are mismeasured, subscripts

indicate elements of vectors, | (∗) = ln (∗),  (∗) = ln  (∗),  (Σ) is such

that lim
max()→0

(Σ)

max()
= 0, and the Einstein summation convention from 1 to  is to

be performed over indices that appear both as superscripts and subscripts; see Chesher

(1991) for details. For the particular case where only one covariate, say , is error-

prone,  ( ∗) of (4) simplifies to 052
(∗)

h
∇2 (∗) + 2


∇ (

∗)  (∗)
i
, where

∇ denotes derivative with respect to  and  is the coefficient associated to .

It is clear from (4) that the term 
 ( ∗) reflects the distortions caused by the

presence of measurement error. Only in absence of measurement error, as  = ∗ and

 = 0, the functional form is reduced to the model  () maintained in the population

of interest. Figure 1 contains an illustration of (4) for a probit model for five different

magnitudes of the variance of the measurement error. Although the symmetric property

of the original probit curve is preserved, it is clear that covariate measurement error

induced dispersion, which becomes more substantial as the variance of the measurement

error grows.

Example 5 Response misclassification

The consequences of response misclassification may be simply formalized following

Cox and Snell (1989), p. 122-123. Define two parameters, 1 and 0, as the probability

of observing 1 (0) when the actual response is 0 (1). The probability of observing  = 1

given  may be written as Pr ( = 1|) = (1− 0) () + 1 [1− ()], which gives

rise to

 = 1 + (1− 0 − 1) () , (5)

where 0 ≤ 0,1 ≤ 1 and, for identification matters, 0 + 1 ≤ 1; see also Hausman et al.
(1998).

The functional form (5) reduces to  () only in absence of misclassification, such

that 0 = 1 = 0. Figure 1 shows that, similarly to covariate measurement error, this

kind of measurement error induces dispersion. However, now the symmetry of the probit

curve is preserved only in the case designated in the literature as randommisclassification,

which is characterized by 0 = 1. For 0 6= 1, various forms of asymmetry are created

according to the magnitude of both 0 and 1, which govern, respectively, the right and

the left tail of the curve.

7



Example 6 Endogenous sampling

Endogenous or response-based sampling is common when the variable of interest is

binary, either as a consequence of an endogenous stratified (or a choice-based) sampling

design, where the proportion of each response in the sample is fixed by design, or due to the

presence of missing data on both  and  (case usually designated as unit nonresponse)

governed by a nonignorable response mechanism that depends on . Define  and 

as the proportion of individuals for which  = 1 in the sample and in the population,

respectively. The sampling conditional probability of observing 1 given  is

 =




∙
1−

1−
+

µ



− 1−

1−

¶
 ()

¸−1
 () ; (6)

see inter alia Manski and McFadden (1981).

The functional form that describes the observed data, (6), only reduces to  () in

two cases: (i) the data is self-weighting or missing completely at random, that is  = ;

and (ii)  () is a logit (although in this case (6) is a logit with an intercept displaced in

ln
³



1−
1−

´
). The distortions imposed by this sampling problem are illustrated in Figure

1. Clearly,  becomes asymmetric in all cases. When    (  ), the proportion of

1’s is inflated (depressed) in the sample, relative to the population. Therefore, the curve

is shifted to the left (right), which implies that  goes more rapidly (slowly) to one than

 ().

3 Specification tests for binary regression models

This section briefly discusses some alternative specification tests suitable to test the null

hypotheses that  [ ()] is an appropriate specification for  (|). For simplicity,

assume that  () =  under the null hypothesis, i.e. 0 :  (|) =  (). All tests

described next are implemented as Lagrange Multiplier (LM) statistics for the omission

of a set of artificial regressors  from  (·). We compute these statistics from auxiliary

regressions of the type proposed by Davidson and MacKinnon (1984), who showed that,

in the binary response framework, an LM statistic for the omission of  with good small

sample properties is given by  = , where  is the explained sum of squares of

the auxiliary regression

̃ = ̃∗ + , (7)
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where  = ∇ (), ̂ =  − ̂, ̃ = ̂̂, ̃ = ̂̂, ̂ =
h
̂
³
1− ̂

´i−05
, ∗ = (0 0)

and ·̂ indicates evaluation under 0 at ̂ =
³
̂ 0
´
.

Following Wooldridge (2002), we suggest an integrated approach to construct the

artificial regressor , which may be applied both in tests against general and specific

alternatives. Let  =  [ ()  ] be the model maintained under 1, which reduces to

 () for some particular value of the vector . As shown in Wooldridge (2002), p. 464,

the artificial regressors can be straightforwardly calculated as  = ∇̂̂
−1.

In the next two sections, for each of the test in analysis, the three features required

for its implementation are described: the null hypothesis in test, the alternative model,

and the composition of the vector . Section 3.1 describes the alternative versions of

the RESET, while section 3.2 examines tests designed to be sensitive to each of the

misspecification problems considered in section 2.

3.1 The RESET

The RESET, instead of being derived to test against a particular alternative model, is

based on the idea that any index model of the form  (|) =  () can be arbitrarily

approximated by 
h
 +

P

=1  ()
+1
i
for  large enough. Therefore, testing the

hypothesis 0 :  (|) =  () is equivalent to test for 0 :  = 0 in the augmented

model  (| ) =  ( + ), where  =

∙³
̂
´2

 
³
̂
´+1¸

. As the first few terms

in the expansion are the most important, in practice, the more popular versions of the test

use  ≤ 3. According to the number of test variables included, different is the variant of
the RESET.6 In this paper we consider five variants of the test, designated as RESET ,

for  = {1 2 3 4 5}.

3.2 Some specific tests

In contrast to the RESET, the tests based on specific alternative models are designed to

be sensitive to particular forms of misspecification. Therefore, they are expected to be

more powerful than those derived against general alternatives and, thus, suitable to be

6A well known alternative version of the RESET for linear models where the test variables are

different from the ones considered here is that of Thursby and Schmidt (1977), where  =
£
21 

2
 

+11  +1

¤
for cases where the regressors do not include dummy variables.
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used as benchmarks for the finite sample power behaviour of the general RESET test.

The information required to implement these tests is summarized in Table 1.

Table 1 about here

To test two alternative specifications for the link function, say  (·) and  (·), one
against the other, we consider the  test developed by Davidson and MacKinnon’s (1981)

for testing non-nested hypothesis. For all the other examples of misspecifications, we

consider specific tests based on the general models of section 2, except for the case of

omitted variables, where certainly a good benchmark for the RESET test is provided

by a direct LM test for the relevancy of the omitted variable . The tests considered

for heteroskedasticity, covariate measurement error, and response misclassification were

originally proposed by, respectively, Davidson and MacKinnon (1984), Chesher (1991)

and Copas (1988), while the test for endogenous sampling is new.7

4 A Monte Carlo simulation study

This section presents an extensive Monte Carlo simulation study on the finite sample

performance of five versions of the RESET test that differ in the number of test variables,

which ranges from one (RESET1) to five (RESET5). In the power analysis, in each

example, we consider also a specific LM test, derived from the parametric model that

governs the simulated data, as a benchmark for the performance of the RESET test.8

The finite sample properties of the tests are expected to differ according to the struc-

tural model from which the data are generated. Additionally, the power of the test

certainly will depend also on the mechanism responsible by the deviations from the pos-

tulated model. Therefore, in all the examples simulated, we consider four alternative

7Note that Ramalho and Smith (2003) had already proposed a test to detect nonignorable discrete

choice nonresponse. However, while their test was derived in the generalized method of moments frame-

work, the test proposed in this paper is a simple LM test constructed in the ML setup based on model

(6). The major difference is that the former test is derived from the sampling joint density function of

the response and the covariates and the latter is based on the sampling density function of the response

conditional on the covariates.
8Note that these specific tests are expected to have low or no power in cases where the alternative

specification is incorrect but the investigation of their robustness in these cases is out of the scope of this

paper.
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links for binary data (cauchit, logit, probit and loglog) and assume a linear index with

two covariates,  () = 0 + 11 + 22, in most cases. As in Santos Silva (2001), 1

is generated as a standard normal variate (with one exception, see section 4.2.2) and 2

is generated as a Bernoulli variate with mean 23. We set 2 = 1 and consider several

values for both 0 or 1 in order to control the percentage of zeros and ones of  and the

contribution of 1 for the variance of the index, respectively. We consider also several val-

ues for the parameters that define the misspecification mechanisms, as explained below.

Given the substantial amount of results produced, we summarize them in Figures 2-11.

All experiments are based on 10000 replications. In most cases, we consider samples sizes

of  = 500 and  = 5000.

4.1 Size properties of alternative RESET tests

In this section we examine the size performance of the different RESET variants in analy-

sis. Figures 2 and 3 display the percentage of rejections of 0 for a nominal level of

5% when this hypothesis is indeed true (the horizontal lines represent the limits of

a 95% confidence interval for the nominal size). In Figure 2, we consider  = 500,

0 = {−2−15  2} and 1 = {−25−2  25}, while in Figure 3, for four different 
vectors, we represent the empirical size of the tests for  = {500 1000  4500 5000}.

Figure 2 about here

Figure 3 about here

Figure 2 suggests that, in general, the empirical sizes of RESET1 and RESET2 are not

significantly different from the nominal level of 5% (most cases) or are slightly undersized

(e.g. loglog model for 1 = 1). In contrast, the remaining RESET variants appear to

be unreliable in many cases, especially in cauchit and logit models or when the model is

poorly identified (1 is close to zero): in the former case they tend to be oversized, while

in the latter they are clearly undersized. These findings are corroborated by Figure 3:

while the RESET versions based on 3 or more powers are still oversized in many cases

even when  = 5000, both RESET1 and RESET2 display an appropriate behaviour for

almost all of the sample sizes simulated. Thus, in which regards the size properties of

RESET tests, it is clearly preferable to compute versions that use only one or two fitted

powers of the response index.
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4.2 Power properties of alternative RESET tests

In this section we investigate the power properties of the five RESET variants using

simulated data for each one of the six types of misspecification sources described in section

2.

4.2.1 Misspecification of the link function

Figures 4 and 5 show the ability of both RESET and  non-nested tests to detect de-

partures from the true link function. In each case, the null hypothesis corresponds to an

incorrect link function, which in the case of the  test is assessed against the true specifi-

cation. Clearly, the estimated power of the tests reflects the degree of similarity between

the shapes of the assumed and the true link functions, see the first graph of Figure 1. For

example, when the choice is between the three symmetric models, the tests, in general:

(i) have more power to distinguish between the heavy-tailed cauchit and the other models

than for distinguishing between logit and probit models; and (ii) have lower power when

0 approaches −23 (the mean of  () approaches zero), since around this value of 0
the three functions are very similar.

Figure 4 about here

Figure 5 about here

In all cases, a more powerful RESET test is obtained if we use in their computation

two instead of a higher number of powers. The RESET1 version, on the other hand, does

not display an uniform behaviour. Indeed, while in some cases its power is larger than

that of RESET2, in other cases its power is the lowest of all versions (e.g. when the

cauchit is one of the alternative links and the mean of  () is not far away from zero).

Comparing the RESET and the  tests, we find that in some cases the latter is much

more powerful (e.g. 0: cauchit) but in others it occurs the opposite (e.g. 0: loglog).

4.2.2 Misspecification of the index function

In Figures 6 and 7 we analyze the power of the tests when some relevant covariates are

omitted from the index model. In Figure 6, the omitted variable, 3, is uncorrelated with

the included regressors, being generated as a displaced exponential variate with variance

one. In Figure 7, the nonlinear variable 21 is omitted and 1 is generated as a displaced

12



exponential variate with variance one.9 In both cases, we set  = (0 1 1) and compute

the percentage of rejections of the null hypothesis for different values of the parameter 3

associated to either 3 or 
2
1. In the former case we consider 3 = {0 025  25}, while

in the latter 3 = {−025−02  025}.

Figure 6 about here

Figure 7 about here

Again, in general, increasing the number of test variables in the computation of the

RESET test diminishes its power. This conclusion is now valid even when RESET1

is included in the comparison. In fact, in these examples, this is the most powerful

RESET version in most cases (the only exceptions occur when misspecification is due to

the omission of a quadratic term and 3 is negative). Unlike the previous experiments,

the loss of power resulting from using the RESET test instead of a specific test may

be enormous, especially in the case of uncorrelated covariates. Nevertheless, note that

even in this case the RESET test is consistent, unlike what happens in linear regression

models where it has no power against this type of misspecification. On the other hand,

the lower power displayed by the RESET test in the logit case is certainly related to

the robustness of this model to the omission of uncorrelated covariates; see Ramalho and

Ramalho (2010).10

In Figure 8 we consider another type of misspecification of the index model, which

is now due to heteroskedasticity of the form  (1 ) = 21 , with  = {0 005  03}.
The conclusions are very similar to those obtained in the previous experiments since an

identical ranking of the RESET versions was achieved. The main difference is that now

the loss of power relative to the specific test is less important.

Figure 8 about here

9In this case, we cannot generate 1 as a standard normal variate as we do in all the other experiments

carried out in this paper. In fact, as noted by a referee, in that case 1 and 21 would be uncorrelated

and, hence, the omitted variable would be uncorrelated with the included predictors in both setups of

this section.
10Note also that, as some graphs of Figure 6 suggest, the power of the tests decreases for high values

of 3. See Savin and Wurtz (1999) for an explanation of this peculiar feature of binary response models

that arises when the probability of all outcomes zero or all outcomes one approaches the unity.
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4.2.3 Misspecification due to observation problems

Finally, we analyze the power of the RESET alternatives when the misspecification re-

sults from some sampling problems. First, in Figure 9, we consider the case of covariate

measurement error. We consider a data generating process where only the observation

of 1 is affected by the measurement error , so the data is generated using  () =

0+ 11+ 22 but estimation is based on  (
∗) = 0+ 1

∗
1+ 22, where 

∗
1 = 1+ 

and  = (0 1 1). We generate  from a Student- distribution with five degrees of freedom

and consider several values for the variance of the measurement error, 2 = {0 025  2}.

Figure 9 about here

In this case, the results obtained are very different from those of previous experiments.

Now, the ranking of the RESET tests is completely reversed: inclusion of more test vari-

ables gives rise to a more powerful statistic. In particular, the RESET1 version exhibits

much lower power than the other variants. Moreover, the power of RESET tests (apart

from RESET1) is clearly superior to that of the specific test, which suggests that the test

that we are using as benchmark for RESET tests is of poor quality, at least when applied

to binary regression models.11 Note that, unlike all the other cases analyzed in this pa-

per, this is the only experimental design where the alternative hypothesis underlying the

specific test does not correspond exactly to the true data generating process, but merely

to the small error variance approximation given by (4).

In Figure 10 we analyze two patterns of response misclassification. Again, we set

 = (0 1 1). In the first set of experiments only ones are misclassified as zeros (1 = 0

and 0 6= 0) and in the second the probability of misclassifying a one or a zero is identical
(0 = 1). As in the previous case, there is no clear superiority of the specific test relative

to the best RESET variants, particularly when the probabilities of misclassification are

11To the best of our knowledge, the test proposed by Chesher (1991) is the only inference procedure

sensitive to measurement error that: (i) it is sufficiently general to be applied to any nonlinear model and,

consequently, to all binary models considered in this paper; and (ii) it does not require additional infor-

mation on, for example, the variance or the distribution of the measurement error and/or the existence

of a validation sample. Our Monte Carlo results suggest that this greater flexibility may compromise

the power of the test in such a serious way that it is preferable to apply omnibus tests like the RE-

SET. Clearly, the derivation of more powerful tests for detecting covariate measurement error in binary

regression models is an important issue for future research.
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identical. On the other hand, the characteristics of RESET1 and RESET2 identified in

most of the previous experiments are again apparent. Indeed, while RESET2 exhibits in

most cases a superior performance relative to alternatives based on a higher number of

test variables, RESET1 is sometimes the most powerful test (1 = 0) and other times the

least powerful of all RESET versions (0 = 1).

Figure 10 about here

The problem of endogenous sampling is examined in Figure 11. For two different

proportions of ones in the population,  = 05 and  = 09, we simulate cases where the

corresponding proportion in the sample, , takes several values:  = {01 02  09}
and  = {05 055  09}, respectively. We set 1 = 2 = 1 and choose 0 in order to

produce the values fixed for . Naturally, in these final experiments we do not consider

the logit case, given its robustness to the problem in analysis. Now, using a higher number

of test variables in the computation of the RESET test leads to a decrease of its power.

The specific test is clearly the most powerful test but the difference to the best RESET

versions is unimportant.

Figure 11 about here

5 Concluding remarks

In this paper we examined the ability of several versions of the RESET test to detect var-

ious types of misspecification in binary regression models. In terms of size performance,

we found that both RESET1 and RESET2 have in general suitable size properties, while

the other RESET variants display actual sizes which are too often significantly different

from the nominal ones. In terms of power, RESET2 exhibits in all cases but one (covari-

ate measurement error) a superior power performance than other alternatives based on

a higher number of test variables. Moreover, even in the case of covariate measurement

error, the loss of power of RESET2 relative to the other versions is minimal in most cases.

On the other hand, the power behaviour of RESET1 is not uniform at all. Indeed, while

in most cases its power is the largest of all RESET versions (e.g. misspecification of

the index function, endogenous stratified sampling and some cases of misspecification of

the link function and misclassification), in others its power is much lower than the other
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RESET variants (e.g. other cases of misspecification of the link function and misclassi-

fication, covariate measurement error). Overall, our results show that there is no reason

for empirical researchers to employ other RESET statistics besides RESET1 or RESET2.

In comparison with tests specifically constructed to assess a particular type of mis-

specification, the loss of power suffered by RESET1 and RESET2 is very small in many

cases (e.g. heteroskedasticity, all sampling problems). The only cases where the loss of

power may be substantial occur when the misspecification is due to the omission of co-

variates, especially when they are uncorrelated with the included regressors, and in some

cases of misspecification of the link function. Thus, in the absence of reliable information

about a plausible alternative model, RESET1 and RESET2 are clearly good alternatives

for testing the specification of binary regression models.

Given that the power performance of the RESET1 and RESET2 statistics is often very

distinct, it would be very useful to have a single RESET statistic combining the sometimes

very powerful performance of RESET1 with the more uniform behaviour of RESET2.

There is an area of econometrics where the issue of combining different versions of one

test into a single statistic is frequently addressed. Indeed, when a nuisance parameter is

present only under the alternative hypothesis, as each value of the nuisance parameter

gives rise to a different test statistic, it is usual to use a single test statistic that summarizes

the information provided by all possible test versions according to a suitable criterion

(e.g. the supremum of the test variants); see inter alia Andrews and Ploberger (1994)

and Hansen (1996). As the choice of the number of powers to include in the RESET

procedure may be seen as an analogous problem to that of the choice of an arbitrary

value for the nuisance parameter, we are currently examining the use of supremum-type

RESET tests. Some preliminary Monte Carlo analysis revealed a very promising finite

sample performance for a bootstrap-based supremum-RESET test.

Another approach for combining variants of general specification tests into a single

statistic is that proposed by Aerts, Claeskens and Hart (1999). These authors developed

a test statistic that, similarly to the RESET case, uses sequences of nested orthogonal se-

ries estimators to detect departures from the null model but, in contrast to RESET tests,

does not require the number of terms used in the approximation to be set a priori, being

defined by some model selection criteria (e.g. the Akaike Information Criterion). Aerts,

Claeskens and Hart (1999) were able to derive the asymptotic distribution of their test sta-
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tistic, which may be an important advantage relative to the application of supremum-type

RESET statistics. Indeed, our preliminary research suggests that bootstrap methods will

be typically required to approximate the distribution of the supremum statistics. However,

a problem with the tests proposed by Aerts, Claeskens and Hart (1999), which explains

why, to the best of our knowledge, they have never been applied in the econometrics lit-

erature, is that there is no natural way to choose the sequence of nested models required

to implement the test when the base model has more than one covariate (the expansion

is based on  and not on ̂ as in the RESET case). Hence, an effective comparison of

the performance of their test with some supremum variant of the RESET test will also

imply the investigation of what kind of sequences deliver best power properties for the

Aerts, Claeskens and Hart (1999) test.

Another avenue for future research is the possibility of using different expansions in

the construction of the RESET test. In fact, the test by Aerts, Claeskens and Hart (1999)

is based on Fourier instead of polynomial expansions. However, in the RESET case, to

the best of our knowledge, only DeBenedictis and Giles (1998, 1999) have considered such

hypothesis, proposing a Fourier-based RESET test. In a small Monte Carlo simulation

study, they found promising results for their RESET version in the linear regression

framework. Given the limited evidence provided so far, none of which is for binary

parametric models, the investigation of the finite sample performance of such RESET

variant is clearly another interesting research topic.
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Figure 1: Examples of misspecification of binary regression models (base model: probit)
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Figure 2: Empirical size (N = 500)
θθ1 == 1,,  θθ2 == 1

θθ0 == 0,,  θθ2 == 1
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Figure 3: Empirical size for different sample sizes
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Figure 4: Empirical power − misspecification of the link function (θθ1 == 1,,  θθ2 == 1; N = 500)

True model: Cauchit

True model: Logit

True model: Probit

True model: Loglog
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Figure 5: Empirical power − misspecification of the link function (θθ1 == 1,,  θθ2 == 1; N = 5000)

True model: Cauchit

True model: Logit

True model: Probit

True model: Loglog
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Figure 6: Empirical power − omission of an uncorrelated covariate
N = 500

N = 5000
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Figure 7: Empirical power − omission of a quadratic term of an included covariate
N = 500

N = 5000
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Figure 8: Empirical power − heteroskedasticity
N = 500

N = 5000
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Figure 9: Empirical power − covariate measurement error
N = 500

N = 5000
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Figure 10: Empirical power − response misclassification

δδ1 == 0 (N = 500)

δδ1 == 0 (N = 5000)

δδ0 == δδ1 (N = 500)

δδ0 == δδ1 (N = 5000)
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Figure 11: Empirical power − endogenous stratified sampling

Q = 0.5 (N = 500)

Q = 0.5 (N = 5000)

Q = 0.9 (N = 500)

Q = 0.9 (N = 5000)




