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Abstract

In this paper we deal with a pseudo-Boolean representation of the simple plant location
problem. We define instances of this problem that are equivalent, in the sense that each
feasible solution has the same goal function value in all such instances. We further define
a collection of polytopes whose union describes the set of instances equivalent to a given
instance. We use the concept of equivalence to develop a method by which we can extend
the set of instances that we can solve using our knowledge of polynomially solvable
special cases. We also present a new preprocessing rule that allows us to determine sites
in which facilities will not be located in an optimal solution and thereby reduce the size
of a problem instance.
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1. Introduction

In this paper, we study the Simple Plant Location Problem (SPLP). A detailed introduction to
this problem appears in Cornuejolset al.[3]. The goal of the problem is one of determining the
cheapest method of meeting the demands of a set of clients from plants that can be located at
some candidate sites. The costs involved in meeting the client demands include the fixed cost of
setting up a plant at a given site, and the per unit transportation cost of supplying a given client
from a plant located at a given site. This problem forms the underlying model in several com-
binatorial problems, like set covering, set partitioning, information retrieval, simplification of
logical Boolean expressions, airline crew scheduling, vehicle despatching (see Christofides [4]),
assortment (see Beresnevet al.[2], Goldengorin [9], Joneset al.[12], Pentico [14,15], Tripathy
et al. [17]) and is a subproblem for various location analysis problems (see Revelle and La-
porte [16]). We will assume that the capacity at each plant is sufficient to meet the demand of
all clients. We will further assume that each client has a demand of one unit, which must be met
by one of the opened plants. If a client’s demand is different from one unit, we can scale the
demand to unity by scaling the transportation costs accordingly. Conventional solution methods
for the problem are based on branch and bound techniques (see Cornuejols [3] for a detailed
treatment). However there is another approach that uses pseudo-Boolean functions.

It is easy to see that any instance of the SPLP has an optimal solution in which each customer
is satisfied by exactly one plant. In Hammer [11] this fact is used to derive a pseudo-Boolean
representation of this problem. The pseudo-Boolean function developed in that work has terms
that contain both a literal and its complement. Subsequently, in Beresnev [1] a different pseudo-
Boolean form has been developed in which each term contains only literals or only their com-
plements. We find this form easier to manipulate, and hence use Beresnev’s formulation in this
paper.

In Section 2 of this paper we use Beresnev’s pseudo-Boolean formulation of the SPLP, and
develop the concept of equivalent instances, i.e. instances that have the same goal function
values for the same solution. We then illustrate the use of the concept of equivalence in Section
3 to develop heuristics that recognize whether a given instance is solvable using our knowledge
of polynomially solvable cases. We also demonstrate the use of equivalence to develop pre-
processing rules that are stronger than the existing rules. We conclude the paper in Section 4
with a summary of the contributions of this paper, and brief remarks on possible directions for
future research.

2. A Pseudo-Boolean Formulation and Equivalent Instances

Given setsI = {1,2, . . . ,m} of sites in which plants can be located, andJ = {1,2, . . . , n} of
clients, a vectorF = (fi) of fixed costs for setting up plants at sitesi ∈ I , a matrixC = [cij ]
of transportation costs fromi ∈ I to j ∈ J , and an unit demand at each client site, the Simple
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Plant Location Problem (SPLP) is the problem of finding a setS, ∅ ⊂ S ⊆ I , at which plants
can be located so that the total cost of satisfying all client demands is minimal. An instance of
the problem is described by am-vectorF = (fi), and am × n matrixC = [cij ]. We assume
thatF andC are nonnegative and finite, i.e.F ∈ <m+, andC ∈ <mn+ . We will use them×(n+1)
augmented matrix[F |C] as a shorthand for describing an instance of the SPLP. The total cost
f[F |C](S) associated with a solutionS consists of two components, the fixed costs

∑
i∈S fi , and

the transportation costs
∑
j∈J min{ci,j |i ∈ S}, i.e.

f[F |C](S) =
∑
i∈S

fi +
∑
j∈J

min{ci,j |i ∈ S},

and the SPLP is problem of finding

S? ∈ arg min{f[F |C](S) : ∅ ⊂ S ⊆ I }. (1)

A m×n ordering matrix5 = [πij ] is a matrix each of whose columns5j = (π1j , . . . , πmj )
T

define a permutation of 1, . . . ,m. Given a transportation matrixC, the set of all ordering ma-
trices5 such thatcπ1j j ≤ cπ2j j ≤ · · · ≤ cπmj j , for j = 1, . . . , n, is denoted byperm(C).

Defining

yi =
{

0 if i ∈ S
1 otherwise,

for eachi = 1, . . . ,m (2)

we can indicate any solutionS by a vectory = (y1, y2, . . . , ym). The fixed cost component of
the total cost can be written as

FF (y) =
m∑
i=1

fi(1 − yi). (3)

Given a transportation cost matrixC, and an ordering matrix5 ∈ perm(C), we can denote
differences between the transportation costs for eachj ∈ J as

1c[0, j ] = cπ1j j , and

1c[l, j ] = cπ(l+1)j j − cπlj j , l = 1, . . . ,m− 1.

Then, for eachj ∈ J ,

min{ci,j |i ∈ S} = 1c[0, j ] +1c[1, j ] · yπ1j +1c[2, j ] · yπ1j · yπ2j

+ · · · +1c[m− 1, j ] · yπ1j · · · yπ(m−1)j

= 1c[0, j ] +
m−1∑
k=1

1c[k, j ] ·
k∏
r=1

yπrj ,
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so that the transportation cost component of the cost of a solutiony corresponding to an ordering
matrix5 ∈ perm(C) is

TC,5(y) =
n∑
j=1

{
1c[0, j ] +

m−1∑
k=1

1c[k, j ] ·
k∏
r=1

yπrj

}
. (4)

Lemma 2.1 TC,5(·) is identical for all5 ∈ perm(C).

PROOF. Let5 = [πij ],9 = [ψij ] ∈ perm(C), and anyy ∈ {0,1}m. It is sufficient to prove
thatTC,5(y) = TC,9(y) when

πkl = ψ(k+1)l, (5)

π(k+1)l = ψkl, (6)

πij = ψi,j if (i, j) 6= (k, l). (7)

Then

TC,5(y)− TC,9(y) = (cπ(k+1)l l − cπkl l) ·
k∏
i=1

yπil − (cψ(k+1)l l − cψkl l) ·
k∏
i=1

yψil .

But (5) and (6) imply thatcπ(k+1)l l = cπkl l and cψ(k+1)l l = cψkl l which in turn imply that
TC,5(y) = TC,9(y).

Combining (3) and (4), the total cost of a solutiony to the instance[F |C] corresponding to an
ordering matrix5 ∈ perm(C) is

f[F |C],5(y) = FF (y)+ TC,5(y)

=
m∑
i=1

fi(1 − yi)+
n∑
j=1

{
1c[0, j ] +

m−1∑
k=1

1c[k, j ] ·
k∏
r=1

yπrj

}
. (8)

Lemma 2.2 The total cost functionf[F |C],5(·) is identical for all5 ∈ perm(C).

PROOF. This is a direct consequence of Lemma 2.1.

A pseudo-Boolean polynomialof degreen is a polynomial of the form

P(y) =
∑
T ∈2n

αT ·
∏
i∈T

yi,
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where 2n is the power set of{1,2, . . . , n} and αT can assume arbitrary values. We call a
pseudo-Boolean polynomialP(y) a Beresnev functionif there exists a SPLP instance[F |C]
and5 ∈ perm(C) such thatP(y) = f[F |C],5(y) for y ∈ {0,1}m. We denote a Beresnev
function corresponding to a given SPLP instance[F |C] byB[F |C](y) and define it as

B[F |C](y) = f[F |C],5(y) where5 ∈ perm(C). (9)

Theorem 2.1 A general pseudo-Boolean function is a Beresnev function if and only if

(a) All coefficients of the pseudo-Boolean function except those of the linear terms are non-
negative.

(b) The sum of the constant term and the coefficients of all the negative linear terms in the
pseudo-Boolean function is non-negative.

PROOF. The “if” statement is trivial. In order to prove the “only if” statement, consider a
SPLP instance[F |C], an ordering matrix5 ∈ perm(C), and a Beresnev functionB[F |C](y) in
which there is a non-linear term of degreek with a negative coefficient. Since non-linear terms
are contributed by the transportation costs only, a non-linear term with a negative coefficient
implies that1[k, j ] for somej ∈ {1, . . . , n} is negative. But this contradicts the fact that
5 ∈ perm(C). Next suppose that inB[F |C](y), the sum of the constant term and the coefficients
of the negative linear terms is negative. This implies that the coefficient of some linear term in
the transportation cost function is negative. But this also contradicts the fact that5 ∈ perm(C).
The logic above holds true for all members ofperm(C) as a consequence of Lemma 2.1.

We can formulate (1) in terms of Beresnev functions as

y? ∈ arg min{B[F |C](y) : y ∈ {0,1}m, y 6= 1}. (10)

As an example, consider the SPLP instance:

[F |C] =




7 7 15 10 7 10
3 10 17 4 11 22
3 16 7 6 18 14
6 11 7 6 12 8


 . (11)

Two of the four possible ordering matrices corresponding toC are

51 =




1 3 2 1 4
2 4 3 2 1
4 1 4 4 3
3 2 1 3 2


 and52 =




1 4 2 1 4
2 3 4 2 1
4 1 3 4 3
3 2 1 3 2


 . (12)
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The Beresnev function isB[F |C](y) = [7(1− y1)+ 3(1− y2)+ 3(1− y3)+ 6(1− y4)] + [7+
3y1 + 1y1y2 + 5y1y2y4] + [7+ 0y3+ 8y3y4 + 2y1y3y4] + [4+ 2y2+ 0y2y3 + 4y2y3y4] + [7+
4y1 + 1y1y2 + 6y1y2y4] + [8 + 2y4 + 4y1y4 + 8y1y3y4]
= 52− y2 − 3y3 − 4y4 + 2y1y2 + 8y3y4 + 4y1y4 + 11y1y2y4 + 10y1y3y4 + 4y2y3y4.

In general, there are many different SPLP instances that yield the same Beresnev function.
This is due to the fact that we can aggregate terms in the Beresnev function. If two SPLP
instances of the same size have the same Beresnev function, then any solutiony has the same
objective function value in both instances. Therefore, a solution that is optimal to one of the
instances is optimal to the other as well. We call such instances equivalent. Formally defined,
two SPLP instances[F |C] and [S|D] are calledequivalentif they are of the same size and
if B[F |C] = B[S|D]. Beresnev functions of SPLP instances can be generated in polynomial
time, and have a number of terms that is polynomial in the size of the instance. Therefore it is
possible to check the equivalence of two instances in polynomial time, even though the SPLP
is aNP-hard problem.

Note however that the condition of equivalence is only a sufficient condition for two SPLP
instances to have the same optimal solution. For instance the two instances

[F |C] =
[

1 3 3
2 5 5

]
and[S|D] =

[
1 1 1
3 2 2

]

have different Beresnev functions (B[F |C](y) = 9 + 3y1 − 2y2 andB[S|D](y) = 6 + y1 − 3y2)
but the same (and unique) optimal solution,(0,1).

Let us now consider the set of all SPLP instances[S|D] that are equivalent to a given SPLP
instance[F |C]. This set can be defined as

P[F |C] =
{
[S|D] ∈ <m×(n+1)

+ : B[F |C] = B[S|D]
}
. (13)

P[F |C] can be rewritten as

P[F |C] =
⋃

5∈perm(E)
P[F |C],5,

whereE is them× (n+ 1) all-unit matrix and

P[F |C],5 =
{
[S|D] ∈ <m×(n+1)

+ : B[F |C] = B[S|D],5 ∈ perm(D)
}
. (14)

We show below that each of the setsP[F |C],5 can be described by a system of linear ineqalities.
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Let us assume that9 ∈ perm(C) and5 ∈ perm(D). The Beresnev function for[F |C] is

B[F |C](y) =
m∑
i=1

fi(1 − yi)+
n∑
j=1

1c[0, j ] +
n∑
j=1

1c[1, j ]yψ1j +

m−1∑
k=2

n∑
j=1

1c[k, j ]
k∏
r=1

yψrj . (15)

The Beresnev function for[S|D] is

B[S|D](y) =
m∑
i=1

si (1 − yi)+
n∑
j=1

1d[0, j ] +
n∑
j=1

1d[1, j ]yπ1j +

m−1∑
k=2

n∑
j=1

1d[k, j ]
k∏
r=1

yψrj . (16)

Since[F |C] and[S|D] are identical, we can equate like terms.

Equating the coefficients of the constant and linear terms in (15) and (16) yields

m∑
i=1

si +
n∑
j=1

1d[0, j ] =
m∑
i=1

fi +
n∑
j=1

1c[0, j ] (17)

∑
j :π1j=k

1d[1, j ] − sk =
∑

j :ψ1j=k
1c[1, j ] − fk k = 1, . . . ,m. (18)

Equating the non-linear terms we get the equations

∑
{ψ1j ,... ,ψkj }={π1j ,... ,πkj }

1d[k, j ] −1c[k, j ] = 0 k = 2, . . .m− 1, j = 1, . . . n. (19)

Finally, sinceψ ∈ perm(C) and5 ∈ perm(D), and since all entries in the instances are
assumed to be non-negative, we have that

1d[k, j ] ≥ 0 k = 0, . . . ,m− 1; j = 1, . . . , n. (20)

si , dij ≥ 0 i = 1, . . . ,m; j = 1, . . . , n; (21)

Consider the instance in (11). ThenP[F |C],51 (where51 is defined in (12)) is defined by the
following system.

Equations corresponding to (17):

s1 + s2 + s3 + s4 + d11 + d32 + d23 + d14 + d45 = 52.

7



Equations corresponding to (18):

s1 − (d21 − d11)− (d24 − d14) = 0,

s2 − (d33 − d23) = 1,

s3 − (d42 − d32) = 3,

s4 − (d15 − d45) = 4.

Equations corresponding to (19):

(d41 − d21)+ (d44 − d24) = 2,

(d12 − d42) = 8,

(d43 − d33) = 0,

(d35 − d15) = 4,

(d31 − d41)+ (d34 − d44) = 11,

(d22 − d12)+ (d25 − d35) = 10,

(d13 − d43) = 4.

Inequalities corresponding to (20):

d21 − d11, d42 − d32, d33 − d23, d24 − d14, d15 − d45 ≥ 0

d41 − d21, d12 − d42, d43 − d33, d44 − d24, d35 − d15 ≥ 0

d31 − d41, d22 − d12, d13 − d43, d34 − d44, d25 − d35 ≥ 0

Inequalities corresponding to (21):

s1, s2, s3, s4, d11, d12, . . . , d44, d45 ≥ 0.

Note that there may exist5 ∈ perm(E) for which P[F |C],5 is empty. For example, for the
instance in (11),P[F |C],5 corresponding to

5 =




1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4




is empty.

Lemma 2.3 Given a SPLP instance[F |C] of sizem× (n+1), a lower bound to the number
of non-empty polytopesP[F |C],5,5 ∈ perm(E) is a Stirling number of the second kind,

S(n, k) = nk∏k
j=1(1 − j · n)
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wherek is the maximum number of distinct terms of the same degree inB[F |C](y).

PROOF. Consider anym × n ordering matrix5. It is clear that any two columns of5 will
give rise to distinct terms in a Beresnev function only if the two columns are distinct. So in
order for an instance[S|D] to have a Beresnev function identical to that of[F |C], the number
of distinct columns in an ordering matrix5D ∈ perm(D) must be at least as large as the
maximum number of distinct terms of any degree inB[F |C](y). Let there bek distinct columns
in5D ∈ perm(D). If F(n, k) denotes the number of ordering matrices that can be formed with
this stipulation, then

F(n, k) = k · (F (n− 1, k − 1)+ F(n− 1), k),

with boundary conditions

F(k, k) = k!,
F (k − 1, k) = 0.

The solution to this set of recurrence equations is

F(n, k) = S(n, k),

(refer Davidet al.[5], Lindquist and Sierksma [13]), which proves the desired result.

3. Solving the SPLP

In this section we address the problem of solving a given instance of SPLP. Solution procedures
to NP-hard optimization problems generally first try to see if the problem is of a form known to
be polynomially solvable. If it is, then the problem is solved using a polynomial time algorithm.
Otherwise, pre-processing operations are carried out to reduce the size of the instance. If the
reduced instance is also not polynomilally solvable, then a general (exponential time) algorithm,
or a heuristic is employed to solve the reduced instance. In this section we will discuss the use
of Beresnev functions for recognizing whether a problem is polynomially solvable and for
performing pre-processing operations.

3.1 Solving SPLP instances using Polynomially Solvable Cases

The conventional method of using our knowledge of polynomially solvable cases ofNP-hard
optimization is the following. Given an instance of the problem, we check, using a polynomial
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recognition algorithm, whether the problem data corresponds to that of a pre-defined polyno-
mially solvable case. If it does, (for example, for instanceI1 in Figure 3.1(a)) then an optimal
solution to the instance is obtained using a polynomial time algorithm. If it does not, (for ex-
ample, for instanceI2 in Figure 3.1(a)) then conventional approaches terminate reporting that
the instance is not polynomially solvable.

Our approach to the problem of solving simple plant location problems through knowledge
about polynomially solvable special cases is different. If we recognize, using a polynomial
recognition algorithm, that the data in a given instance matches that of a pre-specified polyno-
mially solvable case (for example,I1 in Figure 3.1(b)), then we obtain an optimal solution to
the instance using a polynomial time algorithm. In case the instance data does not correspond
to that of a polynomially solvable case, (for example,I2 in Figure 3.1(b)), we use the concept of
equivalence in order to attempt to solve the instance polynomially. In case the set of instances
equivalent to the given instance has a non-empty intersection with the pre-defined set of poly-
nomially solvable instances, then we could solve an instance in the intersection of the two sets
(for example, instanceI3 in Figure 3.1(b)), to obtain a solution to the given instance. However,
finding an instance in the intersection of the set of equivalent instances and the set of polyno-
mially solvable instances usually takes exponential time, so in our approach, the checking is
carried out in an inexact but polynomial time manner. The set of instances that are solved poly-
nomially using our approach is therefore a superset of the set of instances solved polynomially
using the conventional approach.

Many polynomially solvable special cases of the SPLP have been reported in the literature (see
Beresnevet al.[2], Goldengorin [9]) and references within, Joneset al.[12]). Most of these are
obtained by imposing certain conditions on the transportation cost matrix. In this subsection we
show how we can use the concept of equivalence to solve the recognition problem mentioned
above for the special case ofquasiconcavematrices.

A m × n matrix A = [aij ] is called quasiconcaveif there exists a permutation of rows
〈r[1], . . . , r[m]〉, and an indexkj , 1 ≤ kj ≤ m, for each columnj ∈ J , such that

ar[1]j ≤ · · · ≤ ar[kj ]j ≥ · · · ≥ ar[m]j .

Let A(k) be the set of all elements in the firstk rows of am × n matrix A. A is said to be
2-compactiff

|A(k+1) − A(k)| ≤ 2 for k = 1, . . . ,m− 1.

In Goldengorin [9] it is shown that if the transportation cost matrix of a given SPLP instance is
quasiconcave then there exists an optimal solution in which there are at most two opened plants.
It is also shown that a transportation cost matrixC is quasiconcave if there is a5 ∈ perm(C)
such that5 is 2-compact.
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Polynomially Solvable Instances

I1

I2

Polynomially Solvable Instances

I1

I2

I3
Set of

Equivalent
Instances

�

(a) Conventional Approach

(b) Our Extended Approach

Figure 3.1: Handling polynomially solvable special cases

The RECOGNIZE heuristic (see Figure 3.2) uses the concept of equivalence and the observa-
tion in Goldengorin [9] to recognize whether a given transportation matrixC is quasiconcave.

RECOGNIZE accepts a SPLP instance[F |C], and creates an ordering matrix5 ∈ perm(C). It
then attempts to transform this ordering matrix to a 2-compact matrix so that in all intermediate
steps it is certain that there exists a SPLP instance equivalent to[F |C] for which the interme-
diate ordering matrix corresponds to the transportation cost matrix. For any given rowr, the
heuristic tries to generate an ordering matrix5′ for which |5(r)′ −5

(r−1)
′ | ≤ 2. In order to do

this, it tries to create permutations (Statements 8 through 22) containing at most two indices not
present in rows 1 through(r − 1). If it fails to achieve this, then it returns “NO”, meaning that
it could not recognize the given instance as equivalent to a polynomially solvable special case.
If the heuristic can create a 2-compact ordering matrix, then it returns a “YES” signifying that
there indeed exists a polynomially solvable instance equivalent to[F |C].
Note that RECOGNIZE is a heuristic. If it returns “YES” then there surely exists a polynomially
solvable instance equivalent to the instance input. However if it returns “NO”, then there is no
guarantee that a polynomially solvable instance equivalent to the instance input does not exist.
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Heuristic RECOGNIZE.

Input:
SPLP instance[F |C].

Output:
“YES” if RECOGNIZE recognizes an polynomially solvable instance
equivalent to[F |C];
“NO” otherwise.

Parameters:
C : Transportation matrix (m× n)
5 : Ordering matrix (m× n)
unused : Set of indices (m)
r : Counter for rows
k : Counter for columns
i, j, t : Temporary indices

begin
1 create an ordering matrix5 ∈ perm(C);
2 unused := {1,2, . . . , m};
3 for (r := 1 to m) do
4 begin /* iteration */
5 if (row r in5 has not more than two indices fromunused) then
6 remove these two indices from unused;
7 else
8 begin
9 choose a pair of indicesi, j from unused that have
10 not been chosen in this iteration;
11 for (k := 1 to n) do
12 begin
13 if (πrk 6∈ unused \ {i, j}) then
14 begin
15 t := πrk;
16 πrk := i;
17 if (P[F |C],5 = ∅) then
18 πrk := j ;
19 if (P[F |C],5 = ∅) then
20 go toStatement 9;
21 end
22 end
23 end
24 if (|5(r) −5(r−1)| > 2) then /* Assume that5(0) = ∅ */
25 return “NO”;
26 end /* Iteration */
27 return “YES”;
end

Figure 3.2: Pseudocode for RECOGNIZE

12



Consider the ordering matrix51 (defined in (12) ) corresponding to the SPLP instance of
(11). Since the first row of51 contains three different indices, it is not 2-compact. However,
RECOGNIZE can transform51 to

5′ =




1 4 4 1 4
2 3 2 2 1
4 1 3 4 3
3 2 1 3 2




which is 2-compact. We can therefore constructP[F |C],5′ and obtain the following equivalent
instance by transferring 2 units from the fixed cost of the second site to the cost of transporting
a unit from site 2 to client 3.

[S|D] =




7 7 15 10 7 10
1 10 17 6 11 22
3 16 7 6 18 14
6 11 7 6 12 8


 .

This instance is polynomially solvable using the observation in Goldengorin [9], and the optimal
solution is to set up plants at 1 and 3 with a total cost of 47 units. Again since[S|D] is equivalent
to [F |C], we can conclude that an optimal solution to[F |C] would be to set up plants at 1 and
3, and the total cost for the solution would be 47 units.

3.2 A New Pre-processing Rule

Suppose that the given instance is not recognized to correspond to a known polynomially solv-
able special case. Then we have to use an exact algorithm for solving this instance. The execu-
tion times of exact algorithms for the SPLP are exponential in the parametersm andn. So any
preprocessing rules, i.e. quick methods of reducing the size of the given instance, are of much
practical importance. There are two rules available in the literature. These are the following.

The first one, due to Beresnev [1], states that if there are two clients that have the same sub-
permutations of the transportation costs in any ordering matrix, then they can be aggregated
into a single virtual client.

The second rule is due to Cornuejolset al. [3], and Dearinget al. [6]. It states that if there is
a site where a plant can be opened with zero fixed cost, and if there is any client that can be
served from that site at zero cost, then there exists an optimal solution in which a plant will be
opened in that site.

In the remainder of this section we will show that these two rules are special cases of a more
general rule, formed using Beresnev functions. In Beresnev [1], Cornuejolset al.[3], Dearinget
al. [6], and Veselovsky [18] it is observed that terms can be aggregated in the Beresnev function
corresponding to a SPLP instance. If two clients have the same sub-permutation, then each of
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the terms inTC,5(y) for any5 ∈ perm(C) corresponding to these clients can be aggregated.
This shows that the existing first rule is automatically applied when we construct a Beresnev
function.

We will now state a theorem that forms the basis of our strong pre-processing rule for SPLP
instances.

Theorem 3.1 Let B[F |C](y) be the Beresnev function corresponding to the SPLP instance
[F |C] andy ∈ {0,1}m. Then the following statements are true.

(a) If the coefficient of the linear term involvingyk is zero, then for any optimal solution
with yk = 1, there exists an optimal solution withyk = 0.

(b) Let the coefficient of the linear term inyk be negative and its magnitude befk. Let the
sum of the coefficients of all non-linear terms involvingyk be tk. Thenyk = 1 in an
optimal solution iffk ≥ tk.

PROOF. (a) Let us consider a vectory corresponding to an optimal solution in whichyk = 1.
Let us construct a vectory′ in which yi = y ′

i ∀i 6= k, y ′
k = 0. NowB[F |C](y′) − B[F |C](y) ≤

fk = 0. Hence ify is optimal, so isy′. The proof of (b) is similar to that of (a).

This theorem leads us to the following new rule.

Let B[F |C](y) be the Beresnev function corresponding to a SPLP instance[F |C] in which like
terms have been aggregated. Letfk be the coefficient of the linear term corresponding toyk and
let tk correspond to the sum of all non-linear terms containingyk. Then

(a) If fk = 0 then there is an optimal solution in whichyk = 0.
(b) If fk < 0, and|fk| ≥ tk then there is an optimal solution withyk = 1.

Notice that the first part of this rule covers the existing second rule and extends it using the
concept of equivalence. The second part of this rule is absolutely new. The two parts of the new
rule can be used to pre-process a given instance.

Consider the SPLP instance

[F |C] =




7 7 15 10 7 10
3 10 17 8 11 22
3 16 7 6 18 14
6 11 7 6 12 8


 .

The Beresnev function for this instance isB[F |C]((y1, y2, y3, y4)) = 54+ 0y1 − 3y2 − 3y3 −
4y4 + 2y1y2 + 4y1y4 + 10y3y4 + 11y1y2y4 + 10y1y3y4 + 2y2y3y4. Since the coefficient of
y1 is zero we can sety1 = 0. The Beresnev function then becomesB[F |C]((0, y2, y3, y4)) =
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54− 3y2 − 3y3 − 4y4 + 10y3y4 + 2y2y3y4. The coefficient of the linear term involvingy2 is
negative and its magnitude in the revised Beresnev polynomial is 3 while the sum of all terms
containingy2 in the transportation cost component is 2. So we can sety2 = 1. The Beresnev
function then changes toB[F |C]((0,1, y3, y4)) = 51−3y3−4y4+12y3y4. One of the instances
that such a Beresnev function corresponds to is the following one (with rows corresponding to
y1, y3 andy4, respectively, since we have deleted the row corresponding toy2).

[S|D] =

 0 56

3 44
4 44


 .

It is easy to see that an optimal solution to this instance isy1 = y3 = 0 andy4 = 1. So an
optimal solution to the SPLP instance isy1 = y3 = 0 andy2 = y4 = 1, i.e. to set up plants at
sites 1 and 3.

Hence we have reduced the size of the instance at hand, and in this case, arrive at an optimal
solution to the original instance using the preprocessing rules described above.

Notice that if at any preprocessing step, we can determine thatyk = 1 for a certain sitek, then
we need not include the row corresponding to sitek in our calculations, and can therefore drop
this row from the extended matrix in the succeeding steps. This deletion of rows is not possible
if yk = 0, since we do not know beforehand the whole set of clients that be served by a plant
located at this site in any equivalent instance of the SPLP.

4. Summary and Directions for Future Research

In this paper we consider a pseudo-Boolean representation of the SPLP. There are two such rep-
resentations available in the literature. The one described in Hammer [11] is the oldest and has a
form in which terms contain both literals and complements of literals. The one that we use is de-
scribed in Beresnev [1]. The terms in this representation contain either literals or complements
of literals but not both. Using Beresnev’s pseudo-Boolean formulation, we first describe the
concept of equivalence. We call two instances equivalent if they share the same goal function
values for every solution. We show that it is possible to check the equivalence of two instances
in time polynomial in the size of the problems. We next define the set of all instances equivalent
to a given instance and show that it can be represented as a union of polytopes. We show that
the number of non-empty polytopes, the union of which describes the whole set of equivalent
instances, is exponential and bounded below by a Stirling number of the second kind. Finally
we show how we can use the concept of equivalence to recognize whether an instance at hand
is polynomially solvable, and to perform pre-processing operations that can reduce the size of
the problem before it is solved using exact methods.
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One clear extension of this paper is in algorithm development. The RECOGNIZE heuristic is a
simple, and not particularly efficient heuristic to check whether a given instance is equivalent
to an instance with quasiconcave transportation cost matrices. There is a need for systematic
development of faster and more powerful recognition algorithms to check if a given instance is
equivalent to a known polynomially solvable special case of the SPLP. One can also develop
pre-processing rules that are stronger than the one developed in this paper. The second important
direction in this type of research is to exploit equivalences to develop exact algorithms. The
data-correcting algorithm (see Goldengorinet al. [10]) is a strong candidate algorithm for this
type of research.

Another extension of this research is to examine the polyhedral properties ofP[F |C]. It is in-
teresting that this set can be represented as a union of polytopes. However, the topology of the
set, i.e. the intersection amongP[F |C],5’s for various ordering matrices5 has not been studied.
A study of the tightness of the bound for the number of non-empty polytopes inP[F |C] is also
interesting.

A third direction of research, and one that we plan to pursue in the immediate future is to use of
the properties ofP[F |C] for post-optimality analysis. Since the polytopes are defined in terms of
the coefficients in equivalent instances, it is easy to use these with various objective functions
to perform heuristic sensitivity and stability analysis. The analyses are of a heuristic nature
since each polytope represents only a part of the full set of equivalent instances. An important
advantage of using this approach for post-optimality analysis is that we can use information
regarding inter-connections of the various coefficients (contrary to conventional post-optimality
analysis where the variations of various problem coefficients are assumed to be independent of
each other).
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