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Abstract

A pension fund has to match the portfolio of long-term liabilities with the portfolio of assets.
Key instruments in strategic Asset Liability Management (ALM) are the adjustments of the
contribution rate of the sponsor and the reallocation of the investments in several asset classes
at various points of time. We formulate a multistage mixed-integer stochastic program to model
this ALM process. Special attention is paid to the use of binary variables.
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1. Introduction

We present a multistage Asset Liability Management (ALM) model based on mixed-
integer stochastic programming. Stochastic programming can be used for supporting
decision making under uncertainty, while taking into account the probability distri-
butions of uncertain parameters. Since it is a powerful tool, stochastic programming is
used in many fields, for example in production planning, scheduling problems, location
problems and electricity generation (see Birge and Louveaux [1], Kall and Wallace [8],
Prékopa [13], Wets and Ziemba [17] and the bibliography Van der Vlerk [16]). It is also
used in financial planning models, especially in Asset Liability Management, see for
example Boender [2], Cari˜no et al. [3], Consigli and Dempster [4], Dert [5] and Mul-
vey and Ziemba [11]. In most of these models, only continuous variables appear. Only
Dert uses binary variables in a model with chance constraints. In this paper we show
that binary variables can be used to model a variety of realistic features. Next to the
chance constraints, binary variables are used to model remedial contributions made by
the sponsor of the fund after several periods of underfunding and to model conditional
constraints. In addition, we present a flexible modeling of the contribution rate.

In this paper we focus on modeling issues. However, the inclusion of integer variables
in stochastic programming models causes substantial computational difficulties, see the
surveys Klein Haneveld and Van der Vlerk [10] and Stougie and Van der Vlerk [15].
How to deal with these difficulties, for example by using the special structure of the
proposed model, will be the subject of our future research.

The contents of this paper can be summarized as follows. In Section 2, we explain
what ALM for pension funds is and we also present basic (in)equalities of an ALM
model. In Section 3, we propose extensions to these basic (in)equalities, leading to the
introduction of binary variables. After modeling the feasible region, we define an ob-
jective function. Section 4 shows the dynamic character and the corresponding special
structure of the model. In Section 5 we make some concluding remarks.

2. ALM for pension funds

A pension fund has the task of making benefit payments to participants who have ended
their active income earning career. We assume that the pension fund has three sources
of funding its liabilities: revenues from its asset portfolio, regular contributions made
by the sponsor of the fund and remedial contributions made by the sponsor. The latter
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payments may be called for if the value of the assets is too low compared to the value
of the liabilities. The pension fund has to decide periodically how to distribute the
investments over different asset classes and what the contribution rate should be in order
to meet all its obligations. This decision process is called Asset Liability Management.

A pension fund has long term obligations, up to decades, and therefore its planning
horizon is large, too. The main goal of ALM is to find acceptable investment and con-
tribution policies that guarantee that thesolvencyof the fund is sufficient during the
planning horizon. Usually, the solvency is characterized by thefunding ratioFt , de-
fined byFt := At/Lt , whereAt denotes the value of the assets andLt is the value of
the liabilities1. The subscriptt denotes timet . Underfundingoccurs when the funding
ratio is less than one. Another way of characterizing underfunding is by saying that the
surplusSt at timet is negative, whereSt := At − Lt . The funding ratio changes over
time, mainly because of uncertain developments in the liabilities and in the returns
of the assets. Therefore, a pension fund rebalances its asset portfolio and adjusts its
contribution policy regularly, in order to control the funding ratio as well as possible.

How much risk of underfunding is acceptable, depends on specific characteristics of the
fund. For instance, if the number of active participants is large compared to the number
of retired members, some temporary risk of underfunding might be acceptable since
there is a possibility to recover later by adjusting the contribution rate if needed. On
the other hand, if a limited degree of temporary underfunding is acceptable, this gives
the opportunity to increase the investment in stocks and to decrease the investment in
bonds. In the long run one may expect that this will increase the returns, since (histor-
ically) the mean return on a broadly diversified stock portfolio is higher than that on a
broadly diversified bond portfolio; however, its variability is higher too. Of course, if
the current funding ratio is much larger than one, there is less reason to worry about
promising but risky investments.

In the remainder of this section we describe the basic elements of an ALM model. In
order to be realistic we need a dynamic model, since when making decisions at one
time, it is necessary to take into account possible adjustments of decisions later, based
on observed realizations of uncertain parameters.

1 It is not trivial to calculateLt from the liability portfolio of the fund. We will not go into details on
this aspect here.
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2.1 ALM model for pension funds: scenarios and decisions

In this section we discuss basic ingredients of an ALM model. Extensions of this model,
motivated by the need to incorporate realistic and flexible ways to deal with the risk of
underfunding, follow in Section 3.

We split the planning horizon inT subperiods and denote the resulting time stages by
an indext . Time t = 0 is the current time andt = T is the length of the horizon. By
periodt (t = 1, . . . , T ), we mean the span of time[t − 1, t). At each timet ∈ T0 :=
{0, 1, . . . , T − 1}, the pension fund is allowed to make some decisions, for example it
may change its asset mix.

One way of modeling uncertainty is through a large but finite numberS of scenar-
ios. Each scenario represents a possible realization of all uncertain parameters in the
model. To be specific, letωt represent the vector of random parameters whose val-
ues are revealed in periodt . Then the set of all scenarios is the set of all realizations
(ωs

1, . . . , ω
s
T ), s ∈ S := {1, 2, . . . , S}, of (ω1, . . . , ωT ). Each scenarios has a probabil-

ity ps , whereps > 0 and
∑S

s=1 ps = 1. Since in a dynamic model information on the
actual value of the uncertain parameters is revealed in stages, a suitable representation
of the set of scenarios is given by a scenario tree, such as in Figure 2.1. In this case,
T = 3 andS = 12. Each path fromt = 0 to t = T represents one scenario. Any node
of the tree, corresponding to timet , symbolizes a possible state of the world at time
t , represented by the observed values ofω1, . . . , ωt . The branches directly to the right
of it symbolize the various values ofωt+1 (and their corresponding conditional proba-
bilities) given the realization ofω1, . . . , ωt . Obviously, all scenarios passing this node
have the same history in periods 1, . . . , t. The status of the decision variables is related
to the scenario tree, too. Basically, a decision at timet may depend on the observed part
of the scenario at that time, but not on unknown values of future periods. That is, for
each possible history (i.e. for each node at timet in the scenario tree) there is precisely
one vector of decision variables representing the decisions at hand.

However, in our model formulation it is convenient to introduce a complete set of de-
cision variables for each scenario separately. Therefore, so-callednonanticipativityor
information constraintshave to be added, in order to guarantee that decisions do not
depend on values of random parameters that will be revealed in later periods.

Let us now introduce the random parameters and the decision variables of the ALM
model. Fort ∈ T1 := {1, 2, . . . , T }, we define

ωt = (r1t , r2t , . . . , rNt ,Wt , Pt , Lt),
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Figure 2.1: Example of a scenario tree

where

rit = return on asset classi in periodt, i = 1, . . . , N,

Wt = total wages of active participants in periodt,

Pt = total benefit payments in periodt,

Lt = total value of liabilities after periodt.

Their realizations in scenarioss ∈ S are denoted by

ωs
t = (rs

1t , r
s
2t , . . . , r

s
Nt ,W

s
t , P s

t , Ls
t ).

Obviously,ωs
t = ω

q
t if the scenarioss andq coincide up to and including periodt .

The decisions at timet ∈ T0 are denoted by the vector

xt = (Vt , Zt ,1
+X1t , . . . ,1

+XNt ,1
−X1t , . . . ,1

−XNt , ct+1),
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where

Vt = restitution to the sponsor at timet,

Zt = remedial contribution by the sponsor at timet,

1+Xit = value of assets in classi bought at timet, i = 1, . . . , N,

1−Xit = value of assets in classi sold at timet, i = 1, . . . , N,

ct+1 = contribution rate for periodt + 1.

At the time horizont = T , only the decisionsVT andZT occur. The precise meaning
of the variablesVT andZT will be explained in the next section. Since we introduce
decision variables for the same decision in different scenarios, we have the following
set of decision variables: fors ∈ S andt ∈ T0 (or T1),

xs
t = (V s

t , Zs
t ,1

+Xs
1t , . . . ,1

+Xs
Nt ,1

−Xs
1t , . . . ,1

−Xs
Nt , c

s
t+1).

The corresponding nonanticipativity constraints are, fort ∈ T0,

xs
τ = xq

τ τ = 0, 1, . . . , t,

for all scenarioss andq that coincide up to time t.

The following additional variables are important too. For each scenarios, and fort ∈
T1 :
As

t = total asset value at timet
Xs

it = value of investments in asset classi, at the beginning of periodt.

These are state variables (together withLs
t ). They are determined by the parameters

and the decision variables, but from an optimization point of view they are decision
variables too, if one includes their definitions as constraints in the model, as we shall
do. Next, we have to explain in more detail what we mean by ‘timet ’ in the definition
of As

t . We assume that at the end of periodt , i.e., just before timet , the contribution of
periodt comes in and the benefit obligations of periodt are paid. At the same time, the
revenues of the assets of periodt are revealed. After carrying over a possible restitution
to the sponsorVt , or receiving a remedial contribution from the sponsorZt , the total
asset valueAs

t is calculated. In Table 1 we give an overview of incoming and outgoing
cash flows at timet in scenarios.

Transaction costs, arising from the adjustment of the asset portfolio at timet , do not
affectAs

t (but they do influenceXs
i,t+1, as we will see). Therefore, the total value of the
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assets at timet in scenarios is given by

As
t =

N∑
i=1

(1 + rs
it )X

s
it + cs

t W
s
t − P s

t + Zs
t − V s

t ,

for s ∈ S andt ∈ T1. The value of the investments in asset classi, at the beginning of
periodt + 1 in scenarios, is recursively defined by

Xs
i,t+1 = (1 + rs

it )X
s
it − 1−Xs

it + 1+Xs
it − ki(1

−Xs
it + 1+Xs

it ), t ∈ T0,

whereki denotes the proportional transaction cost for asset classi. The initial position
in each asset classi is given by the parameterXi1 (so thatXs

i1 = Xi1 for each scenario
s ∈ S). Moreover, all assets should be allocated:

N∑
i=1

Xs
i,t+1 = As

t , s ∈ S, t ∈ T0.

Realistic scenarios have to satisfy some characteristics. They should for example be
consistent with macroeconomic and financial theory. Another aspect is that they should
be arbitrage free. That is, it should not be possible to construct a portfolio with zero
value such that the payoff in all possible future states is nonnegative and strictly positive
in at least one future state.

3. ALM model for pension funds: constraints and objective

In the previous section we defined the scenarios and the decision variables of the model.
Now we will introduce a variety of possible constraints and the objective function.
Some constraints are already mentioned before: the nonanticipativity constraints and
the definitions of the state variables. In addition, nonnegativity is required for the value

incoming cash flows outgoing cash flows

cs
t W

s
t P s

t∑N
i=1 rs

itX
s
it V s

t

Zs
t

Table 2.1: Incoming and outgoing cash flows at timet in scenarios
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of each asset classi and for restitutions and remedial contributions

1+Xs
it ≥ 0,1−Xs

it ≥ 0, V s
t ≥ 0, Zs

t ≥ 0, s ∈ S, t ∈ T0.

There are also fund-dependent lower and upper bounds for the asset mix:

wl
i

N∑
j=1

Xs
jt ≤ Xs

it ≤ wu
i

N∑
j=1

Xs
jt s ∈ S, t ∈ T1,

wherewl
i andwu

i are parameters that specify upper and lower bounds on the value of
asset classi as a fraction of the total asset portfolio.

Moreover, usually policy constraints are included. For instance, upper and lower bounds
on the contribution rate are given by

cl ≤ cs
t ≤ cu, s ∈ S, t ∈ T1,

where the numberscl andcu are fund dependent.

The most important constraints, of course, deal with the goal of the pension fund: in all
circumstances the funding ratio must be sufficiently high. An obvious way to incorpo-
rate this goal in the model, is to add the constraints

As
t ≥ αLs

t , s ∈ S, t ∈ T1,

whereα is a policy parameter, usually greater than or equal to one. For example, if
α = 1, the condition asks for nonnegative surplusesSs

t = As
t − Ls

t for all scenarios
s ∈ S and timest ∈ T1. However, such an implementation might be too strict: it is quite
possible that, due to unfavorable developments in the stock market, underfunding is un-
avoidable, or that underfunding can only be avoided at unrealistic funding costs. For
this reason, we relax these conditions in the next subsections. In the first one, chance
constraints are explained. They model so-called Surplus at Risk and some variants of
it. Next, we model the possibility of remedial cash flows from or to the sponsor to re-
act on a situation of repeated underfunding or overfunding. This is a novelty in ALM
modeling; as for chance constraints, binary variables are needed to model it. Similarly,
binary variables are used in the third subsection to model the possibility, that certain
actions (e.g. taking a position in derivative securities) are allowed, but only in precisely
described circumstances. In Section 3.4 flexible goal constraints are formulated with
respect to the contribution policy of the pension fund. In the last subsection the ob-
jective function is defined: given the constraints, the expected discounted contributions
are minimized, together with artificial penalty costs for undesirable decisions such as
remedial contributions or rapidly changing contribution rates. We note that the most
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important goals of the pension fund are represented in the constraints, as is the case in
many other models. The objective function acts as a criterion, which enables the use
of optimization algorithms to find a good strategy. Penalty parameters in the objective
function do not necessarily have an exact financial interpretation. By varying them, one
may try to find feasible solutions that are appreciated by the management of the pension
fund.

3.1 Chance constraints

The management of a pension fund wishes to satisfy the goal constraintsAs
t ≥ αLs

t at
all timest and for all scenarioss, for someα ≥ 1. As explained above, this should not
be modeled as a hard constraint. A more realistic model states that the funding ratio in
the next period should be sufficiently large with a certain prescribed probabilityφt :

P(As
t ≥ αLs

t ) ≥ φt , t ∈ T1. (1)

In these chance constraints, the probability distribution used is the conditional distribu-
tion of ωt given the observed values ofω1, . . . , ωt−1. The value of the parameterφt , the
minimum required reliability at timet , is set by the decision makers. It should not be
set too low, because then it will lose its meaning of modeling a goal. On the other hand,
solving models withφt = 1 leads to expensive solutions or to infeasibilities. Also note
thatφt may be time dependent. In earlier periods, it may be even less desirable to have
a low funding ratio.

In formulation (1),P(As
t ≥ αLs

t ) is called the reliability and 1− P(As
t ≥ αLs

t ) is
called the risk of infeasibility. Decisions that are insufficiently reliable (with respect to
the next decision moment) are not accepted. This restricts the feasible region.

The above formulation is closely related to Surplus at Risk (SaR). This can be seen as
follows. SaR is defined as the estimate of the maximum amount that could be lost in one
time period with a prespecified probability due to unfavorable market circumstances.
The amount is calculated on the basis of the surplus of the pension fund. Therefore,
for any timet the chance constraints in (1) withα = 1, describe the condition that the
probability that at that time the SaR is negative is at most 1− φt .

In the optimization model, condition (1) acts as a constraint on the decisions at timet ,
in terms of consequences at timet + 1. As a matter of fact, although the representation
in (1) does not show this explicitly, there are many chance constraints of this type
at time t . Basically, there is a chance constraint for every node in the scenario tree
corresponding to timet ∈ T0. Since inequalities (1) cannot be handled directly in a
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linear programming framework, they have to be rewritten. This can be done as follows.
At time t , we observe the realization ofωt , and therefore know the actual state of affairs
sk
t = (ω1, . . . , ωt). The set of all posible states of affairs at timet will be denoted by

Kt . Defining pt+1(s|sk
t ) as the conditional probability that scenarios occurs at time

t + 1 given the state of affairssk
t , we can write the chance constraints as

S∑
s=1

pt+1(s|sk
t )I{As

t+1<αLs
t+1}(s) ≤ 1 − φt , k ∈ Kt, t ∈ T0

whereI{As
t <αLs

t }(s) = 1 if As
t < αLs

t and 0 otherwise. Now, we are able to write in-
equalities (1) in a mixed-integer linear programming formulation. We introduce binary
variablesδs

1t , s ∈ S, t ∈ T1. They play the role of shortfall indicators:δs
1t must get the

value 1 at timet in scenarios if it holds thatAs
t < αLs

t , and it must be 0 otherwise.
From an optimization point of view, these binary variables are decisions at timet , so
they must satisfy the corresponding nonanticipativity constraints. In terms of these ad-
ditional decision variables, the chance constraints can be written as linear inequalities:

M1δ
s
1,t+1 ≥ αLs

t+1 − As
t+1, s ∈ S, t ∈ T0 (2)

S∑
s=1

pt+1(s|sk
t )δ

s
1,t+1 ≤ 1 − φt , k ∈ Kt, t ∈ T0.

Here,M1 is a sufficiently large number.

This formulation was introduced by Dert [5]. He developed a heuristic which first ob-
tains a feasible solution of an ALM model satisfying such chance constraints. Next,
this solution is improved, while staying feasible. It is not guaranteed, however, that the
heuristic finds an optimal solution.

3.2 Remedial contribution after several periods of underfunding

Pension funds want to avoid situations of underfunding, since these are a highly unde-
sirable: not all future benefit payments can be guaranteed. One possibility to deal with
underfunding is that the sponsor immediately has to pay a remedial contribution, such
that the funding ratio is at leastα again. However, it is quite possible, that such a radical
measure is not really necessary. For instance, if there is a quick recovery in the stock
market after a correction, it may not be necessary to have a remedial contribution from
the sponsor to the fund. If no remedial contribution needs to be paid, the total cost of
funding will be reduced.
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Instead of requiring a remedial contribution as soon asAs
t < αLs

t , we propose to base
this decision on the funding ratios of the lastb periods, whereb is a natural number
chosen by the management of the pension fund or stipulated by the supervisor of the
fund. If in at leasta of these periods the funding ratio is less thanα, the situation of
the pension fund is weak and the sponsor has to pay a remedial contribution to restore
the funding ratio. Obviously, a direct payment in case of a funding ratio less thanα is
a special case of our more general formulation. Requiring a remedial contribution as
soon asAs

t < αLs
t is achieved by settinga = b = 1. This new modeling is important

for at least two reasons. The supervisor of pension funds in the Netherlands seems to
judge the solvency position of funds partly on the basis of the chance of underfunding
in three successive years ([9]). A second advantage of the above modeling is that it may
lead to a lower total cost of funding, which is positive for all active participants, since
it may lead to a lower contribution rate.

Next we model the payment of a remedial contribution after several periods of under-
funding as mixed-integer restrictions. We introduce binary variablesδs

1t andδs
2t , which

are used (and needed) to count events. The binary variables in the first inequalities,
which are the same as in inequalities (2), indicate whetherF s

t < α, in which case
δs

1t = 1. The latter inequalities below forceδs
2t to equal 1 if in the lastb periods the

funding ratio is at leasta times less thanα.

The modeling of remedial contributions as proposed above can be modeled by mixed-
integer restrictions as follows:

M1δ
s
1t ≥ αLs

t − As
t

bδs
2t ≥

t∑
u=(t−b)++1

δs
1u − a + 1.

As before,M1 is a sufficiently large number, and(x)+ := max{x, 0} for everyx ∈ R.

The sponsor has to pay a remedial contribution ifδs
2t = 1:

Zs
t ≥ αLs

t − As
t − M2(1 − δs

2t ),

whereM2 is a sufficiently large number.

If the sponsor has to pay a remedial contribution at timet , we still count periodt as a
period of underfunding(δs

1t = 1). Therefore, it is possible that the sponsor has to pay
remedial contributions in successive periods. For the time being, we have chosen this
formulation, since it is easier to model and – from a practical point of view – it is more
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cautious.

If the funding ratioF s
t is greater than or equal toβ, the pension fund may make a

restitutionV s
t to the sponsor. In this situation, we can use a reasoning similar to the one

given above. Instead of a direct restitution as soon asAs
t > βLs

t , the pension fund may
make a restitution only after several periods in whichAs

t > βLs
t . If in these periods

the funding ratio falls belowβ again, no restitution will be made. Otherwise it will be
made immediately after these periods.

3.3 Conditional constraints

Conditional constraints are of the form: only if a certain event happens, it is allowed
to undertake certain actions. To model conditional constraints, binary variables are
needed: they take the value 1 if the condition is satisfied and 0 otherwise. The following
example illustrates how such conditional constraints can be useful in ALM modeling.

From research on returns on stocks and stock indices, Drijver and Otter [7] found that
if there is a large negative return in one period, the probability that in the next period
there is also a large negative return is statistically greater than would be expected under
the assumption that returns are independent and identically distributed.

In an ALM model, this information can be exploited as follows. Since the planning
horizon of a pension fund is large, there is usually no reason to consider short-term in-
struments, although according to Dert [6], pension funds should invest more in deriva-
tive securities. However, if a large drop in returns is observed, it appears to be desirable
to allow the fund to take a position in derivative securities, in order to protect the asset
portfolio from a further decline.

This extension can be modeled using binary variables in linear constraints. In our ex-
ample, the binary variableδ3it equals 1 if and only if a drop of at leastξit× 100% occurs
in asset classi in periodt .

M3δ
s
3it ≥ (1 − ξit )X

s
i,t−1 − Xs

it

M4(1 − δs
3it ) ≥ Xs

it − (1 − ξit )X
s
i,t−1

δs
3it ∈ {0, 1}

with M3 andM4 sufficiently large numbers. In that case, a position in derivative se-
curitiesDs

it is allowed (of at mostDmax
i ), which is modeled by the constraintsDs

it ≤
Dmax

i δs
3it .
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3.4 Flexible modeling of the contribution rate

In the introduction of this section, hard upper and lower boundscl andcu on the con-
tribution ratecs

t were given. Here, we consider a refinement. Not only the level of the
contribution rate is important, pension funds (and the sponsor of the fund) also take into
account the stability of the contribution rate, since too much variability is undesirable.
We can model this as

−ρ ≤ cs
t − cs

t−1 ≤ ρ (3)

for a sufficiently small value ofρ, a parameter to be specified by the decision makers.
When the value ofρ is too large, it loses its meaning in modeling a contribution rate
which does not change too fast.

On the other hand, if the funding ratio is relatively low for a longer period, it may
be better to increase the contribution rate than to ask for remedial contributions for a
number of successive periods. This may lead to an increase which is greater thanρ.
Hence, it would be better to specify (3) as a goal constraint: changes greater thanρ are
allowed, but they are penalized in the objective function.

We can model this in a linear programming formulation by the introduction of ad-
ditional decision variablescs

t+, representing the amount by which the increase in the
contribution rate exceedsρ at timet . The second inequality in (3) is replaced by

cs
t+ ≥ cs

t − cs
t−1 − ρ

cs
t+ ≥ 0.

In the objective function, we penalizecs
t+ = (cs

t − cs
t−1 − ρ)+, which is positive if

cs
t > cs

t−1 + ρ.

We can use an analogous reasoning in the situation if the funding ratio is relatively
high for a number of successive periods. In this situation it may be desirable to lower
the contribution rate in two successive periods by more thanρ instead of making resti-
tutions to the sponsor in several consecutive periods.

We can model this by the introduction of additional decision variablescs
t−, representing

the amount by which the decrease of the contribution rate in time periodt exceedsρ:

cs
t− ≥ cs

t−1 − cs
t − ρ

cs
t− ≥ 0.
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−ρ ρ0

(λ+)

(−λ− )

Figure 3.1: Penalization for the change in the contribution rate in two successive peri-
ods.

In the objective function, we penalizecs
t− = (cs

t−1 − cs
t − ρ)+, which is positive if

cs
t < cs

t−1 − ρ.

We penalizecs
t+ andcs

t− by positive parametersλ+ andλ− (usuallyλ− ≤ λ+), whereas
no penalty is imposed if|cs

t −cs
t−1| ≤ ρ. Figure 3.1 shows an example of such a penalty

function.

In stochastic programming, this structure, that models piecewise linear increasing costs
for shortages and surpluses, is known as multiple simple recourse.

3.5 Objective function

A pension fund wants to minimize the total cost of funding, i.e., the contribution rate for
the active participants. Moreover, penalty costs are assigned to the undesirable events
discussed above: remedial contributions, large increases and decreases in the contribu-
tion rate, and restitutions to the sponsor. The latter penalty can also be interpreted as
a cost: a lower contribution rate would have been sufficient for a healthy position (in
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terms of the funding ratio) of the pension fund.

All these components together constitute the objective function

S∑
s=1

( T∑
t=0

psγ s
t (cs

t W
s
t + λZZs

t + λV V s
t + λ+cs

t+Ws
t + λ−cs

t−Ws
t )

)
, (4)

whereps is the probability of scenarios, γ s
t is the discount factor for a cash flow in pe-

riod t in scenarios, andλZ, λV , λ+ andλ− are penalty parameters. The definition of the
objective function reflects that the pension fund seeks to minimize the total discounted
funding costs.

4. Solving the ALM model

We will use stochastic programming to find a good feasible solution of the ALM model
described in Sections 2 and 3. The reason is the following. The ALM model is described
with linear (in)equalities and a linear objective function. Since stochastic parameters,
like returns on the different asset classes, inflation rates and the total wages of the
participants, play a crucial role in the ALM model, we need a solution technique that
explicitly takes into account these uncertainties. Stochastic programming models are
well-suited for our problem, since they allow for progressive revelation of information
through time matched by multiple decision stages, where each decision is adapted to
the information available at that time. The pension fund will update the portfolio as
information about the random parameters becomes available.

Note that, although we are modeling a multistage decision problem, only the first-
stage decisions will be implemented. The outcomes of the model for later stages are
scenario dependent, and therefore not implementable. Moreover, new information be-
comes available before decisions on second-stage variables need to be taken. At that
time an adapted version of the model is solved; this process is repeated, resulting in a
rolling horizon approach.

As a first step towards solving our multistage mixed-integer stochastic program, it can
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be written as a (very) large-scale mixed-integer linear program:

min
S∑

s=1

ps(ds
0x

s
0 + . . . + ds

T xs
T )

s.t. G0x
s
0 = b0

Hs
t xs

t−1 + Gs
t x

s
t = bs

t , s ∈ S, t ∈ T1

Cxt = 0, t ∈ T0

xs
t ∈ Xt , s ∈ S, t ∈ T0.

(5)

The objective function in (5) is a reformulation of (4). The matrixG0 and vectorb0 de-
fine deterministic constraints on the first-stage decisionx0. For t ∈ T1, Gt ,Ht andbt

define feasible regions for the recourse decisionsxs
1, . . . , x

s
T . Of course, here the vector

xs
t is larger than has been defined in Section 2: also decision variables that are in-

troduced later, such as the binary decision variables, are supposted to be included. The
matricesGt andHt and vectorbt may depend on(ω1, . . . , ωt) but not on(ωt+1, . . . ωT ).
The equalitiesCxt = 0, t ∈ T0, wherext = (x1

t , . . . , x
S
t ), define the nonanticipativity

constraints. Upper and lower bounds on the decision variablesxt , and also integrality
restrictions for the binary decision variables, are modeled byXt = Xt (ω1, . . . , ωt), t ∈
T0.

This model embodies the main features of a decision problem under uncertainty. At
time t = 0, the decision makers have to select a decision, taking into account fu-
ture realizations of the underlying multidimensional stochastic process. Aftert = 0,
decisions are allowed to be functions of the observed realization of the stochastic pa-
rameters and the past decisions. At each time stage, previous decisions affect current
problems through the stochastic matricesHt .

Problem (5) is a large-scale structured mixed-integer linear program. Since the decision
makers are faced with uncertainties at each time stage, the number of scenarios (and
the number of variables) grows exponentially with the time horizon if in each node the
number of successors is at least two. This means that ALM models of realistic size
are too large to solve by means of standard solution techniques. It is well known that
mixed-integer programming problems are NP-hard (see e.g. [14]); therefore we need
to exploit the special structure in (5) even to solve the model approximately.

Because of the size of the problem and the integrality restrictions, the ALM model
cannot be solved in reasonable time by standard solution techniques. Therefore, re-
search is needed to get a good feasible solution for the ALM model. We will work
on this problem and see how for example valid inequalities, Benders decomposition
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and (stochastic) branch and bound (see [12]) can be used (in a heuristic) to get a good
feasible solution for the ALM model with binary variables.

5. Conclusions

We developed an Asset Liability Management (ALM) model which contains some new
and important aspects which we did not encounter in other ALM models, thus allowing
more realistic models of the ALM process for pension funds. The first new aspect
is the flexible modeling remedial contributions after several periods of underfunding.
This new modeling feature is important, since according to Klein Haneveld [9] the
superivisor of pension funds in The Netherlands uses this criterion to judge the solvency
position of a pension fund.

Also new in ALM modeling is the introduction of conditional constraints. For example,
only if a certain drop in the asset portfolio is observed, a position in derivative securities
may be taken.

Both modeling issues require the introduction of binary variables. These variables are
also needed in modeling chance constraints in a linear programming formulation. We
used chance constraints, which are not new in ALM, to impose the condition that the
probability of underfunding in the next time period is less than a prespecified parameter.

ALM is concerned with making all promised payments at minimum costs. In the ob-
jective function these costs appear, together with penalties of undesirable events.

Since binary variables appear in the model, it is very difficult to obtain even a feasible
solution for ALM models of realistic size. In future research we will try to obtain a
good feasible solution for the multistage mixed-integer stochastic program.
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