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Abstract 
 
Most of the studies about industrial clusters and innovation stress the importance of firms’ 

geographical proximity and their embeddedness in local business networks, as factors that 

positively affect their learning and innovation processes. More recently, scholars have 

started to claim that firm-specific characteristics should be considered to be central in the 

process of learning and innovation in clusters. This paper contributes to this latter direction 

of research. It applies social network analysis to explore the structural properties of 

knowledge networks in three wine clusters in Italy and Chile. The results show that in spite of 

firms’ geographical proximity and the pervasiveness of local business networks, innovation-

related knowledge is diffused in clusters in a highly selective and uneven way. This pattern is 

found to be related to the heterogeneous and asymmetric distribution of firm knowledge 

bases in the clusters. 
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The uneven and selective nature of cluster knowledge networks: evidence from 

the wine industry 

 

Abstract  

Most of the studies about industrial clusters and innovation stress the importance of firms’ 

geographical proximity and their embeddedness in local business networks, as factors that positively 

affect their learning and innovation processes. More recently, scholars have started to claim that 

firm-specific characteristics should be considered to be central in the process of learning and 

innovation in clusters. This paper contributes to this latter direction of research. It applies social 

network analysis to explore the structural properties of knowledge networks in three wine clusters in 

Italy and Chile. The results show that in spite of firms’ geographical proximity and the 

pervasiveness of local business networks, innovation-related knowledge is diffused in clusters in a 

highly selective and uneven way. This pattern is found to be related to the heterogeneous and 

asymmetric distribution of firm knowledge bases in the clusters.  
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1 Introduction 

 

Studies of industrial clustering date back to at least Alfred Marshall’s contribution on economies of 

localisation (1920). However, interest in spatially agglomerated industrial firms has risen mainly 

during the past thirty years, when the dominant model of the Fordist firm came to be questioned 

(Piore and Sabel, 1984) and geographical clusters of firms were seen as drivers of national 

competitiveness and growth (e.g. Porter, 1990; Krugman, 1991). 1 Among the directions of research 

in this field, the relationship between industrial clustering, localised learning and innovation has 

received rising consideration (e.g. Maskell, 2001a; Pinch et al. 2003). A vast majority of the 

empirical studies have found that clustered firms show a higher innovative capacity than isolated 

firms (Porter, 1990; Baptista and Swann, 1998; Baptista, 2000), with only a few exceptions 

questioning this view (e.g. Beaudry and Breschi, 2003) .  

 

The interpretation that is often given to the higher innovativeness of clustered firms is twofold: on 

the one hand, economists stress the public nature of knowledge (Arrow, 1962; Jaffe, 1989) and 

argue that geographical proximity is conducive to innovation because of localised knowledge 

spillovers (e.g. Jaffe et al., 1993). On the other, scholars of economic geography emphasise that it is 

not geography per se that matters for innovation, but it is the embeddedness of firms in localised 

networks that facilitate the diffusion of knowledge and enhance collective learning in clusters 

(Maskell and Malmberg, 1999; Capello and Faggian, 2005). In particular, the presence of local 

business networks is often associated with the capability of a cluster to promote localised learning 

(Keeble and Wilkinson, 1999) both vertically, between clients and suppliers, and horizontally, 

among rival firms. In spite of their differences, both views promote the idea that innovation-related 

                                                 
1 An industrial cluster is defined here as a  geographical agglomeration of firms operating in the same industry, in line 

with the definition given by Humphrey and Schmitz (1996). Sometimes scholars have defined this type of industrial 
agglomeration as industrial district. Throughout the paper terms like clusters and districts will be used 
interchangeably.  
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knowledge is diffused in clusters in a pervasive and unstructured way, very much consistent with 

the Marshallian idea of ‘industrial atmosphere’.  

 

More recently, however, scholars have started to highlight the need to understand the process of 

localised learning and innovation, looking at the role played by firms, considered as private profit-

maximising agents, rather than at the institutional, meso-level characteristics of territories (e.g. 

Lazerson and Lorenzoni, 1999; Maskell, 2001b; Martin and Sunley, 2003). This paper contributes 

to this stream of studies; it considers a specific micro-level dimension, the knowledge base of firms, 

and explores the relationship that exists between this dimension and the structural characteristics of 

cluster knowledge networks. Drawing on the evolutionary economists’ view of the firm, this paper 

explores whether and how the heterogeneous and asymmetric distribution of firm knowledge bases 

(Nelson and Winter, 1982; Dosi, 1988) in clusters influences the way innovation-related knowledge 

is  transferred and absorbed at the local level (Cohen and Levinthal, 1990). The paper  raises 

questions about the widespread view that the diffusion of knowledge in clusters is pervasive and 

tied to local meso-level conditions, such as the geographical proximity of firms and the presence of 

business networks.  

 

These issues are explored here using empirical evidence collected in the specific context of the wine 

industry. The study is based on firm-level data for three wine clusters in Italy (Colline Pisane and 

Bolgheri/Val di Cornia) and Chile (Valle de Colchagua) and it uses a combination of social network 

analysis and econometric methods. In line with a number of studies that have begun to emphasise 

the role of firms in cluster innovation processes (e.g. Bell and Albu, 199; Lazerson and Lorenzoni, 

1999; Beaudry and Breschi, 2003; Maskell, 2001b; Markusen, 2003), this paper shows that 

innovation-related knowledge is diffused in the three clusters in a selective and uneven way, a 

property that reflects the different internal capabilities of firms to transfer and absorb knowledge at 

the local level. Moreover, this study finds no empirical support for views that describe the process 
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of diffusion of knowledge in clusters as pervasive and driven mainly by the geographical proximity 

of cluster firms and their participation in local business networks.  

 

The paper is structured as follows. Section 2 provides a review of the literature. Section 3 outlines 

the conceptual framework and defines the research hypotheses of this paper. Section 4 explains the 

methodology applied in this research and the operationalisation of concepts. Section 5 presents the 

empirical evidence and Section 6 discusses the results and the limitations of this study, providing 

suggestions for future research. 

 

2 Knowledge diffusion in industrial clusters 
 

The description of the process of knowledge diffusion and generation in clusters of firms has 

traditionally been based on several re-interpretations of the Marshallian, externality-driven world of 

industrial districts. Empirical studies have elaborated on the Marshallian notion of knowledge 

spillovers;2 this paper considers two widely influential views: the economists’ perspective on 

localised knowledge spillovers and the economic geographers’ view of learning in clusters. 

 

2.1 The economists’ view of localised knowledge spillovers  

 

A view maintained by many economists is that knowledge spillovers, which are by definition a 

public good (Arrow, 1962; Jaffe, 1989), tend to be highly localised (Jaffe et al., 1993), a property 

that links conceptually geography and innovation. Within this stream of studies, robust empirical 

evidence has shown that a relationship exists between spatial clustering, knowledge spillovers, and 

firms’ innovative output. Audretsch and Feldman (1996) use US micro-level data and find that, in 

                                                 
2 Marshall (1920) described the industrial district as a place where “mysteries of trade become no mysteries; but are as 

it were in the air.” (p. 225) 
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knowledge-intensive industries, innovative activities tend to cluster spatially even after controlling 

for the agglomeration of productive activities. This is considered to be due to the fact that, in such 

industries, the transmission of tacit knowledge is important to foster innovation, so that “innovative 

activity is more likely to occur within close geographic proximity to the source of that knowledge, 

be it a university research laboratory, the research and development of a corporation, or the 

exposure to the knowledge embodied in a skilled worker” (Audretsch and Feldman, 1996, p. 638).  

 

Quite in line with this, using UK data, Baptista and Swann (1998) find that a firm is more likely to 

innovate if it is located in a region where the presence of firms in its own industry is strong, which 

is to say that the geographic proximity of firms operating within the same industry positively affects 

their innovation. One of the interpretations given for this is related to “the pervasiveness of 

knowledge externalities or spillovers. It seems likely that spillovers, particularly those associated 

with new technological knowledge, tend to be geographically localised. Certain regions accumulate 

sources of spillovers, which in turn attract or support innovators” (p. 538). Similarly, Baptista 

(2000), still using UK data, finds evidence that the geographic proximity of previous adopters of a 

given technology facilitates the probability of adoption by other firms. This result thus provides 

support for “the existence of a significant positive regional learning effect influencing diffusion” 

(Baptista, 2000, p. 530).  

 

Finally, Feldman (1999) suggests that the several economic approaches used to investigate the 

relationship between geography and innovation “demonstrate the existence of geographically-

mediated knowledge spillovers, [and] the persistence and importance of localized knowledge” (p. 

13). Within the economics literature, however, the mechanisms by which geographic proximity is 

likely to generate innovation are not directly explored (Jaffe et al., 1993; Feldman, 1999; Anselin et 

al., 2000) and what tends to predominate is the conception of knowledge as a public good, which 

spreads pervasively within a spatially-bounded area, as in  the case of a cluster.  
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2.2 Economic geographers’ view of learning in clusters 

 

Over the past two decades, economic geographers have increasingly acknowledged the fact that 

geographic proximity per se is not sufficient to explain processes of localised learning and 

innovation (Boschma, 2005). They have undertaken what Boggs and Rantisi (2003) call a 

‘relational turn,’ an expression used to indicate the fact that the relational dimension among 

economic actors has progressively become the unit of analysis in the study of economic geography. 

In this vein, the emergence of successful clusters or districts has become increasingly associated 

with the presence of localised networks, based on market and socio-institutional relationships 

among cluster firms. As Storper (1997) put it: “the status of the region is now not merely a locus of 

true pecuniary externalities, but – for the lucky regions – as a site of important stocks or relational 

assets.” (p. 44) Several authors have emphasised that industrial clusters are places where market-

based relationships, which Storper (1995) calls “traded interdependencies” among cluster firms, are 

strongly intertwined with socio-institutional ties (see e.g. Scott, 1988; Maillat, 1990; Becattini, 

1990; Camagni, 1991; Saxenian, 1994; Storper, 1995; Porter, 1998; Morgan, 1999).  

 

Both market and socio-institutional relationships are then considered to be important vehicles for 

the diffusion of knowledge at the intra-cluster level. First, the presence of stable and intense client-

supplier linkages are considered to be “essential to information exchange” (Morgan, 1999, p. 495). 

Moreover, the existence of a local labour market and the mobility of skilled workers, including 

spin-off initiatives, is considered to be among the important vehicles for the transfer of knowledge 

and local know-how (Camagni, 1991; Capello, 1999; Capello and Faggian, 2005).  

 

Second, the process of knowledge transfer is considered to be smoothed when firms are embedded 

in a similar socio-institutional context. As an example, Scott (1988) stresses that districts may host a 
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community of life, characterised by “tangled informal networks of useful knowledge about 

production methods, business conditions, and employment practices [which] are an intrinsic 

element of community consciousness and help to keep the whole system functioning smoothly” 

(Scott, 1988, p. 39). As Keeble and Wilkinson (1999) remark contemporary analysis of industrial 

districts places emphasis on the influence of the local community, defined as family and other social 

relationships, and rules of behaviour embedded in those relationships, “in guaranteeing standards of 

behaviour which engender trust and cooperation and thereby strengthen inter-firm networks.” 

(Keeble-Wilkinson, 1999, p. 289). As said, these social linkages are often associated with the 

transfer of knowledge. For example, Saxenian (1994) describes the formation of a technical 

community in Silicon Valley, formed by technician entrepreneurs with high collective identity, as a 

critical element to generate an environment of informal socialisation that boosts innovation. By the 

same token, formal institutions, such as business associations, consortia and similar cooperative 

initiatives, are considered to be another important element, which contributes to generate an intra-

cluster “institutional thickness” (Amin and Thrift, 1994, p. 102), which favours inter-firm 

networking and the diffusion of knowledge.  

 

In industrial clusters, market-based and socio-institutional relationships of the types described 

above are often considered to be highly overlapping. Scholars have considered that the coexistence 

of these different relationships leads to the formation of intra-cluster business networks, defined by 

Keeble and Wilkinson (1999), quoting Yeung (1994), as “an integrated and co-ordinated set of 

ongoing economic and non-economic relations embedded within, among and outside business 

firms” (p. 299). In turn, business networks are seen to favour collective learning (among many 

others: Capello, 1999; Keeble and Wilkinson, 1999; Lawson and Lorenz, 1999; Capello and 

Faggian, 2005).  
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Furthermore, a view maintained by many economic geographers is that business networks are able 

to generate a learning environment in which knowledge is diffused pervasively, as a club good 

within the boundaries of the cluster. This comes as the result of the fact that the formation of intra-

cluster networks is often guided by unstructured decision processes, and by the fact that 

geographical proximity leads entrepreneurs and professionals to meet and interact almost by 

chance. The so called “cafeteria effects” are a nice metaphor for this (Camagni, 1991). In this vein, 

Malmberg (2003) defines intra-cluster interactions as being “not just…unstructured and unplanned, 

but also relatively broad and diffuse, sometimes unwanted and often seemingly of little immediate 

use” (p. 157). Similarly, Saxenian (1994) describes the informal conversations among engineers in 

Silicon Valley as “pervasive” (p. 33) and states that “this decentralised and fluid environment 

accelerated the diffusion of technological capabilities and know-how within the region” (p. 37). 

These views have promoted the idea that both firms’  geographical proximity and their 

embeddedness in business networks are important factors that lead cluster firms to innovate.  

 

More recently, a number of economic geographers have begun to question a part of this story. They 

have started to claim that firms should be considered central actors in the process of economic 

development since their individual behaviour influences the meso-level conditions that eventually 

lead to innovation. In this direction Lazerson and Lorenzoni (1999) suggest that:  

 

Throughout most of the literature there is a tacit assumption that all district firms are relatively homogeneous 

and that they do not merit attention in their own right. While local institutions and broader social-structural 

features undoubtedly shape and constrain economic behaviour within industrial districts, we want to emphasise 

that industrial districts continue to be very much shaped by individual agency (pp. 237-238).  

 

Likewise, Ann Markusen (2003) claims that it is not the space that “self-organizes” following 

meso-level rules, but it is the decision-making of firms, as private, profit-maximising agents, that 

shapes the territory and its development process. In line with these studies, others have suggested 
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that to understand the process of localised learning and innovation there is a need to place firm-level 

learning at the centre of cluster analyses with the objective of understanding how firm-level and 

cluster-level learning processes interact (Bell and Albu, 1999; Maskell, 2001b; Taylor and Asheim, 

2001; Martin and Sunley, 2003; Bathelt and Glückler, 2003; Asheim and Coenen, 2005; Boschma 

and Frenken, 2006). In this direction, Martin and Sunley (2003) argue that:  

   

‘The cluster literature’ lacks any serious analysis or theory of the internal organization of business enterprises 

(Best and Forrant, 1996). Instead it emphasizes the importance of factors external to firms and somehow 

residing in the local environment. In too many accounts local ‘territorial learning’ is privileged, yet what this 

process actually is remains ambiguous and its interactions with firm-based learning are left completely 

unexamined (Hudson, 1999). (p. 17) 

 

Using the expression ‘territorial learning’, Martin and Sunley clearly refer here to the ‘collective 

learning’ process occurring at the cluster level (see Martin and Sunley, 2003, p. 17) and stress the 

need to understand how such a process interacts with firm-level learning. This paper builds on this 

literature, proposing a conceptual framework that allows this interaction to be explored, as 

discussed in Section 3.  

 

3 A firm-level interpretation of cluster learning and innovation  

 

3.1 Heterogeneous firm knowledge bases and cluster knowledge networks 

 

Drawing on Nelson and Winter’s (1982) evolutionary theory of the firm, the view maintained here 

is that firms in industrial clusters are likely to be characterised by heterogeneous and 

asymmetrically distributed knowledge bases, a fact that has also been observed empirically by 

several cluster scholars (Schmitz, 1995; Rabellotti and Schmitz, 1999; Lazerson and Lorenzoni, 

1999; Camison, 2004). A firm’s knowledge base is defined here as the “set of information inputs, 
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knowledge and capabilities that inventors draw on when looking for innovative solutions” (Dosi, 

1988, p. 1126). Knowledge is seen as residing in skilled knowledge workers in the firms and it is 

accrued and generated through their experimentation effort, both to exploit and to explore new ways 

to solve problems (Nelson and Winter, 1982; March, 1991).The process of accumulation of 

knowledge at the intra-firm level is, moreover, inherently imperfect, complex and path-dependent, 

resulting in persistent firm heterogeneity (Dosi, 1997).  

 

The question here is whether and how this heterogeneity influences the structural characteristics of 

a cluster knowledge network, defined as the network that links firms through the transfer of 

innovation-related knowledge, aiming at the solution of complex technical problems. The claim 

here is that the intra-cluster knowledge network has structural properties that are shaped by the 

relative strength of firm knowledge bases in the cluster.3 This is related to the fact that, since 

networking is a time-consuming and costly process, firms looking for an informal technical advice 

will deliberately target and select the firms, which are the most likely to offer a better solution to a 

problem (Schrader, 1991). The formation of innovation-related knowledge linkages will therefore 

be the result of a  purposeful behaviour rather than a random leakage of knowledge. This is in line 

with Coe and Bunnel (2003), who state that “innovation should not be considered in the context of 

an anarchic, placeless ‘space of flows’ (Castells, 1996), but rather in terms of situated social 

relations between appropriate actors, in turn embedded in particular places” (p. 439).  

 

An implication of this is that firms with particularly strong knowledge bases will be likely to be 

perceived by other cluster firms as ‘technological leaders’ in the local area, leading to them being 

sought out as sources of advice and knowledge more often than firms with weaker knowledge bases 

                                                 
3 The structure of networks in districts has also been previously explored by other scholars. A pioneering study is that of  

Markusen (1996), who focused on the division of labour and on the organisation of production in industrial districts. 
This paper focuses on a different dimension, that of knowledge transfer, and it is novel in applying methods of 
network analysis (Wasserman and Faust, 1994), still poorly utilised in economic geography, as remarked by Boggs 
and Rantisi (2003).   
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(Giuliani and Bell, 2005). In contrast, the knowledge base of some other firms may be so weak that 

neither do they offer anything of value to other firms nor do they have the internal capacity to 

absorb the stock of knowledge that is available in other cluster firms (Cohen and Levinthal, 1990). 

In view of this, some firms will be more central than others in the intra-cluster knowledge network.  

 

Moreover, firms with stronger knowledge bases will be more likely targeted by those cluster firms 

that are able to decode and absorb the knowledge that is potentially transferred (Lane and Lubatkin, 

1998), and whose ‘cognitive distance’ from the technological leaders is not too high to inhibit 

communication (Boschma, 2005). A consequence of this is that firms with similarly strong 

knowledge bases will exchange knowledge more intensively. From an economic viewpoint, firms 

with stronger knowledge bases have incentives to transfer knowledge to other organisations when 

these have equally advanced knowledge bases and are therefore in a condition to reciprocate with 

valuable knowledge. In line with von Hippel (1987) and Schrader, (1991), reciprocation constitutes 

the expected pay-off for the transferred knowledge.4 These considerations lead to the formulation of 

the following hypothesis:   

 

Hypothesis 1 Firms with stronger knowledge bases are likely to be more central in the 

cluster knowledge network. 

 

3.2 Business networks and the diffusion of knowledge in clusters 

 

This section explores the extent to which the knowledge networks formed within clusters are 

entangled with local business networks. As already noted in Section 2, business networks are “an 

integrated and co-ordinated set of ongoing economic and non-economic relations embedded within, 

                                                 
4 In Giuliani and Bell (2005), the authors find that knowledge transfer needs not to be reciprocated to occur, as firms 

may transfer knowledge also in an unbalanced way (on this, see also Bouty, 2000). However, they also illustrate the 
emergence of knowledge communities in the cluster, formed by actors with similarly advanced knowledge bases, 
which have an interest in exchanging knowledge in a balanced way.  
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among and outside business firms” (Keeble and Wilkinson, 1999, p. 299). Accordingly, the 

formation of business networks is based on the coexistence of market, social and institutional 

relationships, which occur almost routinely in a cluster context. In contrast to the knowledge 

network, the business network is more likely to be shaped by pervasive and unplanned local 

interactions. This is in line with Becattini (1990), Pyke at al. (1990), and Malmberg (2003), among 

many others, who suggest that professionals or entrepreneurs who work within the same cluster 

meet by chance and interact on issues related to their jobs, from market transactions to other 

informal professional interactions. Obviously, business networks may be channels for the transfer of 

several assets, among which knowledge and information. What follows is that, if business networks 

were a relevant channel for the diffusion of innovation-related knowledge among cluster firms, then 

this knowledge would become distributed quite pervasively in the cluster, consistent with the views 

of economists and economic geographers discussed in Section 2.  

 

However, the argument of this paper is that it is the heterogeneity and the asymmetric distribution 

of cluster firms’ knowledge bases that shapes the way innovation-related knowledge is diffused in 

clusters, as described in Section 3.1. Accordingly, when looking for technical advice, firms 

deliberately target and select the firms that are the most likely to offer better solutions to problems, 

no matter whether they are connected to the local business network. In other terms, firms with weak 

knowledge bases, because they neither offer anything of value to other firms nor have the internal 

capacity to absorb external knowledge, will have at best a marginal position in the knowledge 

network, even if they are centrally positioned in the business network. In effect, the two networks 

are formed by differing underlying motivations, so that it is reasonable to believe that their 

structural characteristics will differ widely. This leads to the formulation of the following 

hypothesis:   
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Hypothesis 2: The structure of the knowledge network differs significantly from that of the 

business network.  

 

Exploring the difference between the business and the knowledge network is relevant as it may help 

to understand the extent to which innovation in clusters is related to meso-level factors (e.g. firms’ 

geographical and sectoral proximity and firms’ connectedness to the local business network) or to 

firm-specific factors (e.g. their knowledge bases), an issue that has been recently debated by 

scholars in economic geography (Section 2.2). This in turn could illuminate on the nature of the 

innovative process at the intra-cluster level. In effect, whereas business networks are likely to be 

formed by the pervasive and unstructured interactions occurring almost by chance between cluster 

firms, as cited above, the knowledge network is structured by the heterogeneity of firm knowledge 

bases and it may be formed on a more selective basis. In the presence of an asymmetric distribution 

of firms’ knowledge bases, the diffusion of innovation-related knowledge among cluster firms will 

occur in a rather uneven way, with some firms evidently central in the cluster knowledge network 

and others completely isolated. This leads innovation-related knowledge in clusters to be diffused 

more unevenly than one would expect if it were to flow through the business network. Accordingly, 

the following hypothesis is formulated:  

 

Hypothesis 3: The diffusion of innovation-related knowledge among firms with 

heterogeneous knowledge bases will be more uneven than would be expected if this 

knowledge were to flow primarily through the business network.  
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4 Methodology 

4.1 The context 

 

This empirical study is contextualised in the wine industry. Known for being a traditional industry, 

wine production has recently emerged as a dynamic and fairly knowledge-intensive activity 

(Loubere, 1990; Paul, 1996). In the last two decades, wine consumption has dramatically changed, 

shifting market preferences from quantity, non-premium wines to quality, premium wines. On the 

side of production, technology and techniques of grape-growing and wine making have undergone 

processes of increased codification of knowledge. As suggested by Paul (1996): “Instrumentation, 

statistical analysis, and comparisons of various methods of analysis have become much more 

important than they were in the old oenology.… Oenology is done with high-tech research tools” 

(p. 338). Technical change has been strong in the industry and the key competitive asset of wine 

producers is now the capacity to absorb and manage new techniques of production. In this context, 

the presence of qualified oenologists and agronomists have become necessary to produce high 

quality wines, and many firms have hired external consultants (the ‘flying winemakers’) to cope 

with the continuous upgrading in wine production techniques.  

 

The codification of knowledge in this industry has allowed countries which were not traditional ‘old 

world’ wine producers to catch up and emerge as exporters of fine wines. Hence, during the past 

two decades, particularly in the 1990s, countries like Australia, New Zealand, South Africa, Chile 

and Argentina have become competitive in the international market of premium wines, challenging 

old producers. Subsequently, the shares of world wine total exports for traditional producing 

countries like France, Italy, Spain and Portugal have been eroded over time in favour of new world 

exporters, such as Chile and Argentina (Anderson and Norman, 2001).  
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This study has been carried out in two countries, Italy and Chile, which differ historically but have 

recently undergone a similar process of wine industry growth and modernisation. In both cases, 

what has sparked growth is a process of technological change aimed at improving the quality of 

wines. Based on this, new and successful wine clusters have developed in both countries since the 

1980s. This study considers two clusters in Italy (Colline Pisane and Bolgheri/Val di Cornia) and 

one in Chile (Valle de Colchagua). The boundaries of these wine clusters are given by their natural 

conditions. These types of clusters are therefore easily identifiable economic entities, whose 

boundaries are nowadays set by the Denomination of Origin regulations applied internationally by 

wine producing countries. All three clusters are territories densely populated by fine wine producers 

and by grape growers. The degree of vertical division of labour is rather low, with no other relevant 

suppliers located within the cluster territory.5 A business association is also present in each cluster. 

On a global scale, these clusters can be classified as ‘followers,’ with Bolgheri/Val di Cornia and 

Valle de Colchagua being more dynamic than Colline Pisane.  

 

4.2 Data collection 

 

This study is based on micro level data, collected at the firm level in the three wine clusters on the 

basis of interviews, carried out with the firms’ skilled workers (i.e. oenologists or agronomists) in 

charge of the production process at the firm level. The survey was carried out between September 

2002 and July 2003 and was directed to producers of fine wines in each of the three clusters. The 

survey was not based on a sample. Instead data were gathered on the universe of fine wine 

                                                 
5  The three wine clusters studied here are rural territories with a specialisation in wine production and grape-growing. 

With the exception of other crops or agricultural activities not connected to wine, no other industries are located 
within the clusters’ boundaries, as input producers, e.g. of chemicals, machinery, or other materials, are located 
elsewhere. The shift from quantity- to quality-oriented wine production, moreover, has recently changed the yet 
limited division of labour between grape-growers and wine producers. The latter, in fact, have vertically integrated 
the phase of grape-growing, in order to have direct control over the quality of grapes. As a result, grape-growers have 
shrunk in number and have progressively become marginal actors in the production of fine wines.   
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producers populating the three clusters, which is 32 in Colline Pisane, 41 in Bolgheri/Val di Cornia 

and 32 in Valle de Colchagua, summing up to a total of 105 firms.6  

 

Table 1 reports descriptive statistics on firm-level characteristics, such as their size, the ownership 

(i.e. whether they are foreign or domestic), and the decade of localisation in the cluster. Finally, the 

table includes information about the organisational structure, distinguishing between four types. 

The first are independent, vertically integrated firms, comprising firms that are not part of a larger 

corporation and that perform all the phases of the productive chain within the cluster. This type, 

which constitutes the vast majority of firms in the sample, differs from the cases in which local 

firms or plants are part of a group or a larger corporation and are either vertically integrated locally, 

thus performing all the phases of the productive chain within the cluster, or they are vertically 

disintegrated, in which case only a part of the production process is undertaken locally (e.g. grape-

growing). Finally, a fourth type includes residual forms of organizational structure (e.g. firms 

forming part of a cooperative).  

 

[Table 1here]  

 

4.3 Operationalisation of variables and analysis 

 

Apart from general background and contextual information, the interviews were designed to obtain 

information that would permit the development of quantitative indicators in three key areas: (i) the 

knowledge base of firms, (ii) the knowledge network and (iii) the business network.  

 

                                                 
6 The lists of firms are drawn from official sources: the S.A.G. (Servicio Agricola y Ganadero) for Chile and the 

Provinces and Chambers of Commerce in Pisa and Livorno for Italy. Further screening by key informants has also 
been performed. The collection of data on the universe of fine wine producers in each cluster is desirable to achieve a 
robust network analysis (Wasserman and Faust, 1994).    
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(i) The knowledge base of firms (KB) 

In the literature, the knowledge base of the firm is often associated with training, human resources 

and R&D. Correspondingly, the structured interviews sought detailed information about: (i) the 

number of technically qualified personnel in the firm and their level of education and training 

(Human resources), (ii) the experience of technically qualified personnel – in terms of months in the 

industry (Months of experience); and (iii) the intensity and nature of the firms’ experimentation 

activities (Experimentation intensity). Experimentation intensity is a proxy for knowledge creation 

efforts. This has been measured on a scale ranging from 0 to 4, according to the number of areas in 

which the experimentation is carried out by a firm: for example, if a firm experiments in all the 

production phases, from the introduction of different clones or varieties in the vineyard ‘terroir’, the 

management of the irrigation and vine training systems, and the fermentation techniques and 

enzyme and yeast analysis, to, finally, the ageing period analysis, this firm will get a score of four in 

its experimentation intensity. In contrast, a firm with no in-house experimentation will have a zero. 

The three variables were transformed into a scalar value via Principal Component Analysis.  

 

(ii) The knowledge network (KN) 

In the questionnaire-based interview, this kind of relational data was collected through a roster 

recall method (Wasserman and Faust, 1994), which means each firm was presented with a complete 

list (roster) of the other wine producing firms in the cluster, and was asked questions related to the 

transfer of innovation-related knowledge. The questions are reported below:  
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Q1 If you are in a critical situation and need technical advice, to which of the local firms 

mentioned in the roster do you turn? 

 [Please rate the importance you attach to the knowledge linkage established with each of the firms 

according to its persistence and quality, on the basis of the following scale: 0= none; 1= low; 2= medium; 

3= high]. 

  

Q2 Which of the following firms do you think have benefited from technical support from this 

firm? 

 [Please rate the importance you attach to the knowledge linkage established with each of the firms 

according to its persistence and quality, on the basis of the following scale: 0= none; 1= low; 2= medium; 

3= high]. 

 

These network data are expressed in matrix form. A matrix is composed by n rows and n columns, 

corresponding to the number n of firms in each cluster. Each cell in the matrix reports the existence 

of knowledge being transferred from firm i in the row to firm j in the column. Since the relational 

questions (questions Q1 and Q2 above) allowed for the collection of valued data about the 

importance of innovation-related knowledge linkages (‘valued data’), it was possible to construct a 

valued matrix for each cluster knowledge network.  

  

The matrices resulting from these data have specific important characteristics. Firstly, they only 

include knowledge linkages, which are internal to the cluster. Other questions in the survey 

identified linkages that connected cluster firms with extra-cluster sources of knowledge (e.g. clients, 

suppliers, public organisations, etc.). However, given the focus here on intra-cluster knowledge 

networks, these types of external linkages are not explored in this paper, although they are 

obviously important in explaining cluster learning and innovation processes (Amin and Thrift, 

1992; Bell and Albu, 1999; Coe and Bunnel, 2003). Secondly, the transfer of inter-firm knowledge 

that is analysed in this study is specifically directed to the solution of technical problems or to the 
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transfer of technical know-how a la von Hippel (1987). 7 This is because the paper focuses on 

technological innovation,  which is a key asset to compete in high-end international markets, as 

highlighted in Section 4.1. Thirdly, as a consequence of the limited division of labour within the 

clusters, discussed in Section 4.1, only horizontal linkages among fine wine producers are mapped 

by this survey. Wine producers reported to have established vertical linkages, e.g. with suppliers of 

machineries, enzymes, chemicals, etc., but all these run outside the cluster. Moreover, vertical 

linkages with grape-growers within the clusters were not relevant channels of knowledge, as grape-

growers appeared not to play a critical role in the process of innovation in the three clusters. For this 

reason, they are not included in this present study. The same applies to the local business 

associations, which do not play a relevant role in the process of technological innovation. This 

focus on horizontal knowledge linkages is consistent with numerous other studies that have 

highlighted their importance in innovation (e.g. von Hippel, 1987; Carter, 1989; Schrader, 1991; 

Powell et al., 1996; Porter, 1998; Bouty, 2000; Lissoni, 2001; Maskell, 2001a;  Amin and 

Cohendet, 2004; Dahl and Pedersen, 2004; Håkanson, 2005).  

 

(iii) The business network (BN) 

The concept of business networks has been operationalised in terms of the set of relationships 

established by the technical professionals, when they interact with other firms on a wide range of 

business issues. Examples of such interactions that give rise to the formation of a business network 

are the trade of inputs or services, the membership in the same local consortium, or the meeting at 

local industry events, which imply a personal direct interaction about, for example, their productive 

activities, the local labour market, international markets, etc. A business interaction occurs also 

when two firms borrow each other’s machinery or tools for production, or their technical employees 

                                                 
7 The questionnaire included questions on inter-firm joint experimentation and on the mobility of skilled workers. 

However, none of these two channels of knowledge transfer resulted to occur at a significant level in any of the three 
clusters.  
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meet and discuss their appropriate use or, finally, when firms buy each other’s grapes or bulk wine 

or when entrepreneurs gather together to fund a new oenotourism initiative in the area.  

 

Consequently, they include market-based transactions as well as many other types of interactions 

that are done on a cooperative basis among local professionals or, on the basis of a common 

institutional affiliation. Relational data of this type have been collected through a roster recall 

method, so that each respondent was presented with a complete list (roster) of the other firms in the 

cluster. The wide ranging nature of the relationship was explained as a basis for the question below:  

 

Q3 With which of the cluster firms mentioned in the roster do you interact for business matters? 

 
 [Please indicate the frequency of interaction according to the following scale: 0= none; 1= low; 2= 

medium; 3=  high] 

 

When asked this question, professionals were requested to mention only firms with which any 

linkage was formed for a business-related matter, independent of the underlying reasons that led to 

the formation of that linkage – e.g. whether it was based on the existence of a solid friendship 

among the parties or on a pure arms’ length relations. This measure of business network thus  

captures the existence of inter-firm business relationships, which can be built both through market 

and socio-institutional motivations. For the sake of simplicity in data collection, this question does 

not allow market-based relationships to be disentangled from socio-institutional relationships. 

Business relationships are expressed in matrix form. Each cell in the matrix reports the existence of 

a business relationship between firm i and firm j. Also in this case, a valued matrix could be 

constructed.  

 

The methods of analysis applied to test the hypotheses of research are reported in Table 2 and 

briefly summarised in the rest of this section. Table 2 (A) reports the measures and methods of 
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analysis used to test Hypothesis 1 about the relationship between the strength of a firm’s knowledge 

base and its centrality in the cluster knowledge network. This hypothesis is tested adopting a 

negative binomial regression model with cluster fixed effects (Cameron and Trivedi, 1986). As 

dependent variable it uses an indicator of centrality of each wine producing firm in the knowledge 

network, which measures the number of direct knowledge linkages established with other firms in 

the network. As independent variable, it uses a measure of the knowledge base, which is an index 

derived from the application of the Principal Component Analysis of the three indicators Human 

resources, Months of experience and Experimentation intensity, discussed previously. Table 2 (A) 

also lists the regression control variables. The test of Hypothesis 1 is accompanied by a descriptive 

analysis of the structural characteristics of the knowledge networks, based on several measures of 

network cohesion (i.e. clique, n-clique, core-periphery models, factions), explained in the table. 

These measures are used to identify the presence of densely connected subgroups of firms within 

the network and to explore whether firms that are more densely connected have stronger knowledge 

bases.  

 

Table 2 (B) reports the measures and methods used to test Hypothesis 2 about the existence of a 

structural difference between the knowledge and the business networks. The structure of the two 

networks is measured by a simple graph-theoretical indicator, the network density (ND), that 

measures the intensity of inter-firm networking in the clusters. The statistical significance of the 

differences among the knowledge and business networks’ densities is analysed using the bootstrap 

t-test developed by Snijders and Borgatti (1999).  

 

Finally, Table 2 (C) reports the measures and methods used to test Hypothesis 3 about the 

unevenness in the distribution of business and knowledge linkages. This analysis is carried out in 

two steps. First, business and knowledge networks are compared with respect to the concentration 

indexes (Gini and Hirschman/Herfindahl) of ‘actor coreness’, a measure of network centrality, 
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explained in Table 2 (C). Second, the statistical distribution of firms’ degree centrality of the two 

networks are compared for the pooled data of all the three clusters.  

  

 [Table 2 about here] 

 

5 Empirical results 

 

5.1 Knowledge networks and the knowledge base of firms 

 

This section tests Hypothesis 1, which predicts that firms with stronger knowledge bases will be 

more central in the knowledge network. Table 3 reports the descriptive statistics and the correlation 

matrix between the relevant variables and Table 4 reports the results of the estimations.  

 

[Table 3 here] 

[Table 4 here] 

 

The results are discussed into two steps. First, column 1 in Table 4 reports the estimations for the 

pooled dataset, showing that the firm knowledge base (KB) influences the extent to which a firm is 

central in the cluster knowledge network (the normalised degree centrality indicator - KN_nDC). 

The coefficient is positive and significant at 5%, controlling for all the firm-level variables (SIZE, 

OWNER, ORG1-4, YEAR70-00). This result provides support to Hypothesis 1. It clearly indicates 

that firms with stronger knowledge bases tend to be more centrally positioned in the cluster 

knowledge network. This follows the argument raised in Section 3 that firms with strong internal 

capabilities are likely to (a) be perceived by other cluster firms as ‘technological leaders’ and 

sought out as sources of knowledge, and (b) have high absorptive capacity, to search for and exploit 

relevant knowledge in other cluster firms.  
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The rest of the section explores this relationship in greater detail at the level of the three separate 

clusters. As shown in columns 2-4 in Table 4, the relationship differs between them. As for the 

pooled data, significant and positive results are found for both Bolgheri/Val di Cornia and Valle de 

Colchagua. In contrast, however, the results for Colline Pisane show that the KB does not 

significantly influence the centrality of firms in the cluster knowledge network. In order to 

understand what underpins this difference, a descriptive analysis of the knowledge networks of the 

three clusters is offered here.  

 

(i) Colline Pisane 

The visualisation of the knowledge network in Figure 1 shows that Colline Pisane has a strikingly 

high number of isolated firms that are cognitively disconnected from the rest of the firms in the 

cluster. Even the number that are linked to other firms (16) are in only a weakly connected network 

structure (formed by five weak cliques8 and one 2-clique). In other words, there is very little 

difference between firms with absent or very weak knowledge links. At the same time, as Table 5 

indicates, most of the firms have similarly weak knowledge bases across the isolates and weakly 

linked cliques (0.03 and -0.09 respectively) (see also Table 3 for statistics on the means’ value of 

firm knowledge bases across the cluster). These values mean that firms do not employ skilled 

knowledge workers and that they carry out barely any in-house experimentation. As suggested in 

Section 3, firms with such weak internal knowledge bases are unlikely to seek external advice. In 

other words, the weak knowledge bases of the firms in this cluster are likely to be associated with 

weak knowledge links – hence the absence of any significant association between differences in 

firms’ knowledge bases and differences in the centrality of firms in the network as reported in Table 

4.  

 

                                                 
8 Scott (2000) defines weak cliques as those in which all ties are not reciprocated. The presence of weak cliques is 

particularly common in directed graphs as in this specific case of knowledge transfer. 
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A further interesting feature of this cluster is shown by the major exception to the general pattern of 

weak knowledge bases among the firms. The firm with strongest knowledge base, indicated by the 

largest node size in Figure 1, is entirely disconnected from the knowledge network. The interviews 

suggested that the methods of production adopted by this firm are very different than those 

commonly adopted by the other cluster firms. This is likely to result in a wide cognitive distance 

from other cluster firms that constitutes a barrier to knowledge exchange (Boschma, 2005). This 

firm is however strongly connected with sources of knowledge which are external to the cluster  

(Giuliani, 2004), a condition that allows the firm’s internal knowledge stock to be rejuvenated and 

improved over time.  

 

[Figure 1 here] 

[Table 5 here] 

 

(b) Bolgheri/Val di Cornia 

Bolgheri/Val di Cornia is characterised by a faction-shaped knowledge network, visualised in 

Figure 2. This means that there are two non-overlapping sub-groups of firms (factions), which differ 

in many respects. As indicated by Table 6, one of the two factions (the ‘advanced faction’), is 

characterised by densely inter-connected firms, whose knowledge base is higher than that of the rest 

of the cluster firms, reaching an average value of 0.61. In contrast, the other faction, indicated in 

Figure 2 as the ‘laggard faction’,  is composed of firms which are both poorly connected and 

characterised by weak knowledge bases (-0.53). Finally, the average knowledge base of firms which 

are entirely disconnected from the cluster knowledge network is -0.34. This result is consistent with 

the fact firms with stronger knowledge bases are more capable of generating a densely connected 

knowledge network at the local level.   

 

[Figure 2 here] 
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[Table 6 here] 

 

(c) Valle de Colchagua 

The knowledge network in the Valle de Colchagua is characterised by a core-periphery structure 

(Figure 3). This means that it is possible to identify a ‘core’ of firms that are densely interconnected 

among themselves and a ‘periphery’ of firms that tend to establish loose linkages with the core 

firms and virtually no interconnections with other peripheral  firms. As reported by Table 7, the 

density of knowledge linkages within the ‘core’ is higher than the density of knowledge linkages 

observed among ‘peripheral’ firms, both considering dichotomous and valued linkages. More 

importantly, firms in the ‘core’ have, on average, stronger knowledge bases (0.58) than firms in the 

‘periphery’ (-0.45). This result is in line with the one for Bolgheri/Val di Cornia indicating that 

firms with stronger knowledge bases tend to connect more intensively to each other, potentially 

leading to the formation of a local community of knowledge.  

 

[Figure 3 here] 

[Table 7 here] 

 

These data about the three clusters allow two considerations to be raised. Firstly, a general 

tendency, observed in both Valle de Colchagua and Bolgheri/Val di Cornia as well as the pooled 

dataset, indicates that firms with stronger knowledge bases tend to be more central in the knowledge 

network, thus validating Hypothesis 1. Where a significant result was not found – i.e. in Colline 

Pisane – this was due to the fact that  the majority of firms are characterised by very weak 

knowledge bases, an aspect that hinders inter-firm knowledge flows altogether. More interestingly, 

the only firm with a relatively strong knowledge base, although strongly linked to extra-cluster 

sources of knowledge, is entirely disconnected from the local network, because of the cognitive 
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distance existing with other cluster firms. This feature clearly contributes to the overall 

fragmentation of the knowledge network in Colline Pisane.  

 

Secondly, in the clusters where knowledge was diffused more intensively, it appeared to be 

transferred in a highly polarised and uneven fashion. Knowledge is diffused primarily within the 

boundaries of one or more cohesive subgroups of firms, such as the ‘advanced faction’ in 

Bolgheri/Val di Cornia and the ‘core’ in the Valle de Colchagua. The presence of these subgroups is 

likely to be influenced by the formation of local communities of knowledge, formed by technical 

professionals who share common language and technical background, and seek advice from other 

peers of the same community and in so doing may boost processes of knowledge exchange and 

generation (von Hippel, 1987; Lissoni, 2001;  Dahl and Pedersen, 2004; Giuliani and Bell, 2005). 

These communities, however, let very limited knowledge spill over to the rest of the cluster firms, 

to the ‘laggard faction’ in Bolgheri/Val di Cornia and the ‘periphery’ in Valle de Colchagua, while 

no knowledge spills over to isolated firms. This results is interesting since it indicates that, in the 

three clusters studied here, innovation-related knowledge is certainly not diffused pervasively 

among cluster firms. This aspect is explored in more detail in the section that follows.  

 

5.2 The differences between business networks and knowledge networks 

 

The argument here is that business and knowledge networks are formed by differing underlying 

motivations, as discussed in Section 3. This section tests Hypotheses 2 and 3, which are directed to 

explore the differences existing between the structural properties of knowledge networks and those 

of the business networks. The visualisation of the business networks and the knowledge networks 

for the three clusters is presented in Figures 4 to 6. These figures show two striking features: first, 

that the shape of the business networks are visibly very similar across the three clusters and, second, 
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that a much smaller number of firms are connected through the knowledge network, as also 

visualised in Figures 1 to 3.  

 

[Figures 4-6 here] 

 

These properties are reflected more precisely in the networks’ density values reported in Table 8,  

showing significantly higher density values in the business networks than in the knowledge 

networks: in Colline Pisane the density of the business network is 0.32, it is 0.20 in Bolgheri/Val di 

Cornia and 0.30 in Valle de Colchagua. In contrast, the density of knowledge networks is 

significantly lower in all cases, ranging from 0.04 in Colline Pisane to 0.05 in Bolgheri/Val di 

Cornia and to 0.09 in Valle de Colchagua. This result thus supports Hypothesis 2.  

 

 [Table 8 here] 

 

The test of Hypothesis 3 explores whether knowledge linkages are formed in a more uneven way 

than business linkages. This comparison is carried out looking at two inequality indexes of actor 

‘coreness’ (Borgatti and Everett, 1999) for both the business and the knowledge networks. Results 

are shown in Table 9, which reports significant higher values for both indexes (higher concentration 

of linkages) of the knowledge network. In the knowledge network the distribution of linkages is 

thus more uneven than in the business network.  

 

[Table 9 here] 

 

This aspect is further explored by analysing the distribution of the normalised degree centrality of 

firms using the pooled dataset for both knowledge and business networks. A first test is performed 

to see whether the normalised degree centrality of firms, for each of the two networks, follows a 
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Normal distribution. In the case of the business network, the Kolmogorov-Smirnov test for 

Normality gives a p-value of 0.158, thus not rejecting the null hypothesis of normality. In contrast, 

the distribution of the knowledge network’s normalised degree centrality is statistically different 

from the Normal (p-value=0.002). A narrower inspection of the structural characteristics of the 

knowledge network (Figure 7) finds that the distribution of the knowledge network’s degree 

centrality is highly skewed. This skewed distribution suggests that the network is characterised by 

few nodes with extraordinarily high connectivity, whereas the majority of nodes have poor 

interconnection. This means that only a small number of firms are ‘hubs’ of knowledge in the 

network, whereas the rest tend to play more marginal roles in the diffusion and absorption of 

innovation-related knowledge. This leads to accept Hypothesis 3.  

 

 

[Figure 7 here]  

 

To conclude, this section has shown that the business and the knowledge networks are structurally 

different, as the former is more densely connected than the latter (Hypothesis 2) and, also, that 

business linkages are more homogeneously distributed than knowledge linkages (Hypothesis 3). 

More broadly, the empirical results presented in this section suggest a clear contrast. On the one 

hand, the geographical co-localisation of firms in a cluster may generate similar chances for firms to 

interact on business matters, as indicated by the higher density of business linkages and the Normal 

distribution of the business networks’ degree centrality. This behaviour may thus be associated with 

a pervasive pattern of business interaction in the cluster, in line with most of the cluster literature. 

On the other hand, the skewed distribution observed in the case of the innovation-related knowledge 

network could be considered the result of a selective process over time, which reinforces the 

position of some firms, while progressively weakening that of others. This is observable by the 

emergence of largely interconnected ‘hub’ firms in the knowledge network. 
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These results raise an important issue about the process of innovation in clusters. If, as suggested by 

part of the cluster literature (discussed in Section 2), innovation-related knowledge is transferred in 

a pervasive way in the cluster, similarly to the pattern observed in the formation of business 

linkages, then it would be reasonable to expect the innovation process to be the result of the effort 

of the whole collectivity of firms in the cluster. Accordingly, both the geographical proximity of 

firms and the presence of inter-firm business linkages could be considered to contribute to such a 

collective effort. This in turn would imply that “factors external to firms” (Martin and Sunley, 2003, 

p. 17) residing in the local clusters, such as the geographical, sectoral and relational proximity of 

firms, matter for firm innovation. In line with certain other studies (Lazerson and Lorenzoni, 1999; 

Bell and Albu, 1999; Taylor and Asheim, 2001; Maskell, 2001b; Martin and Sunley, 2003; Bathelt 

and Glückler, 2003; Markusen, 2003; Boschma and Frenken, 2006), this empirical work has instead 

illustrated that innovation-related knowledge is transferred in clusters in a strikingly uneven and 

selective way, and that indeed this property differs from the Marshallian idea of ‘industrial 

atmosphere’. In effect, the evidence presented here is consistent with the view that it is the firm’s 

internal accumulation of knowledge that shapes the local knowledge network and the potential for 

generating innovation at the local level.  

 

6 Conclusion 

 

Cluster studies have become very popular. Among the different directions of research on clusters, 

increasing consideration has been given to the relationship between industrial clustering, localised 

learning and innovation (e.g. Maskell, 2001a; Pinch et al., 2003). In particular, several empirical 

studies have found clustered firms to be more innovative than isolated firms (Porter, 1990; Baptista 

and Swann, 1998; Baptista, 2000), while a few have recently debated this view (e.g. Beaudry and 

Breschi, 2003). A view maintained by many economists is that the higher innovativeness of 
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clustered firms is due to firms’ geographical proximity, which generates localised knowledge 

spillovers (e.g. Jaffe et al., 1993); while economic geographers emphasise the importance of a wide 

range of relational proximities, commonly defined as ‘business networks’ in the industrial cluster 

literature, for the promotion of localised learning and innovation. According to these views, the 

transfer of knowledge in clusters is often described as being diffused pervasively and almost 

randomly in the cluster, thus enhancing the likelihood of firms to learn and innovate.   

 

More recently, economic geographers have advanced a different view. The have started to claim 

that firms should be considered central actors in the process of economic development and they 

influence the meso-level conditions that eventually lead to innovation (e.g. Lazerson and Lorenzoni, 

1999; Maskell, 2001b; Martin and Sunley, 2003). This paper has contributed to this latter direction 

of research and has argued that knowledge is diffused in clusters on the basis of a purposeful and 

highly selective search process, rather than pervasively or randomly. 

 

The conceptual framework developed in this paper considers the structural properties of knowledge 

networks in clusters to be related to the heterogeneous and asymmetric distribution of cluster firms’ 

knowledge bases (Dosi, 1988; Rabellotti and Schmitz, 1999). Using micro-level data on fine wine 

producers in three wine clusters located in Italy and Chile and a combination of social network 

analysis and econometrics, this paper has illustrated that firms with stronger knowledge bases are 

indeed more likely to exchange innovation-related knowledge with other firms in the cluster. This is 

because  these firms may be perceived by other cluster firms as ‘technological leaders’ in the local 

area, leading to their being sought out as sources of innovation-related advice and knowledge more 

often than firms with weaker knowledge bases. However, this is likely to occur only among firms 

whose cognitive distance is not too high, which are therefore characterised by similarly strong 

knowledge bases and find beneficial a reciprocal knowledge exchange. This may explain the 
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formation of densely connected cohesive subgroups and the emergence of local knowledge 

communities.  

 

In contrast, when a cluster is populated almost exclusively by firms with particularly weak 

knowledge bases, which have poor capabilities to both transfer and absorb knowledge, there is a 

high chance that the intra-cluster knowledge network will be poorly connected. In this case, 

moreover, the most advanced firms may have no interest in forming knowledge linkages with the 

rest of the cluster firms and may therefore entirely disconnect from the intra-cluster knowledge 

network, possibly strengthening their connection to sources of knowledge external to the cluster, as 

shown in Giuliani and Bell (2005).  

 

The interesting result here is that this is likely to occur even when firms are connected to the local 

business network. The structural differences, observed in this paper, between the knowledge and the 

business networks, indicate that the formation of these two networks may be driven by differing 

underlying motivations. This empirical evidence has shown that, in spite of the presence of 

pervasive business interactions, innovation-related knowledge is exchanged in a rather uneven and 

selective way. As a result, a question arises about the importance of both the geographical 

proximity of firms and their embeddedness in local business networks, as factors that drive the 

diffusion of knowledge and positively affects firms’ innovation processes.  

 

This analysis was set within specific empirical and methodological limits. The first is that this is a 

single industry study. The generalisation of its results is therefore bounded by the specificities of the 

wine industry. In particular, this industry is characterised by rather incremental innovation by 

cluster firms, which allow proprietary  knowledge to be diffused without problematic competitive 

backlash effects (Carter, 1989). It is conceivable that in industries where the pace of innovation is 

higher and the relevant knowledge is protected by patents or other appropriability devices, the 
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horizontal transfer of knowledge will be even more limited, or subject to even higher selectivity  

among equally advanced firms (Appleyard, 1996).  

 

The second limitation refers to the operationalisation of the network variables. The underlying 

motivations for the selection of the measures for knowledge and business networks have been 

discussed in Section 4. It is probable that the focus on innovation-related knowledge networks has 

been biased toward the more technological forms of innovation and other studies might want to 

pursue innovation-related knowledge in other areas (e.g. financial, markets, or clients, etc.) and also 

include other channels of intra-cluster knowledge diffusion (e.g. mobility of skilled workers, 

imitation, etc.).  

 

Two further limitations are particularly important and raise interesting questions: first, the cross-

sectional nature of this analysis and, second, its focus on intra-cluster linkages only. Relaxing these 

limitations prompts interesting speculation, particularly in relation to the central conclusion about 

selectivity in the knowledge network formation process. In more detail, although, in the context of 

this analysis, the patterns observed in the formation of knowledge networks are strictly cross-

sectional, their characteristics may tell an interesting underlying dynamics. The distribution of 

firms’ degree centrality may be associated with the idea of ‘preferential attachment’ (Barabasi and 

Albert, 1999), which suggests that knowledge networks grow by way of a reinforcing mechanisms 

that leads the more central firms to become progressively more central over time (also known as the 

“rich-get-richer” phenomenon). This condition helps to explain the formation of largely 

interconnected ‘hub’ firms, characterised by extraordinarily high degree centrality values (Barabasi 

and Bonabeau, 2003). In this analysis, such ‘hub’ firms correspond to firms with stronger 

knowledge bases, which, over time, may have endogenously reinforced their position in the 

knowledge network, even at the detriment of other more marginal firms.  
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Furthermore, this selectivity may, on the one hand, guarantee a certain degree of quality in the 

content of the knowledge transferred, since most of the firms involved in the transfer of knowledge 

will be characterised by strong knowledge bases and, therefore, they may be more able to boost 

local processes of innovation. On the other hand, selectivity exposes the local knowledge network 

to a certain degree of vulnerability to disruption (Barabasi, 2003). This is because, as noted in 

Section 5, it is only a minority of ‘hub’ firms that keep the whole intra-cluster knowledge network 

connected, an aspect that, in line with Lazerson and Lorenzoni (1999), may render the cluster 

development process dependent on the behaviour of a few individual firms.  

 

It is at this point that the limitation of this study to intra-cluster linkages becomes particularly 

important. From the previous discussion, it is reasonable to believe that ‘hub’ firms will keep the 

intra-cluster knowledge network connected as long as they have an interest to tap into local 

knowledge (Cantwell and Iammarino, 2003), an interest that is conditioned by the strength of other 

cluster firms’ knowledge bases. Thus, if none of the local firms is able to offer good technical 

advice, ‘hub’ firms will look for solutions to their internal problems outside the cluster. This aspect 

raises but leaves open interesting questions about the role of intra-cluster linkages in a globalising 

economy, where knowledge is becoming increasingly codified, and where firms in clusters have 

easy access also to geographically distant national or international sources of learning (Coe and 

Bunnel, 2003).  
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Figures  
 
Figure 1 Structure of knowledge network in Colline Pisane 
 

 
Note: The size of the nodes is proportional to the measure of their knowledge base.  

 
Figure 2 Structure of knowledge network in Bolgheri/Val di Cornia 
 

 
Note: The size of the nodes is proportional to the measure of their knowledge base.  
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Figure 3 Structure of knowledge network in Valle de Colchagua 
 

 
Note: The size of the nodes is proportional to the measure of their knowledge base.  
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Figure 4(a) Business network in Colline Pisane Figure 4(b) Knowledge network in Colline 
Pisane 

Figure 5(a) Business network in Bolgheri/Val 
di Cornia 

Figure 5(b) Knowledge network in 
Bolgheri/Val di Cornia 

Figure 6(a) Business network in  
Valle de Colchagua 

Figure 6(b) Knowledge network in  
Valle de Colchagua 

 

Figure 7 Distribution of firm degree centrality in the knowledge network  
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Note: Empirical density of the knowledge network’s degree centrality together with a linear fit and a non-parametric 
local estimate, obtained with a smoothing kernel method (Pagan and Ullah, 1999). The kernel function used is the 
Epanenchnikov density with 0.371 as bandwidth. The estimate has been performed by a software package called 
gbutils developed by G.  Bottazzi and available at www.sssup.it/\simbottazzi/. A strongly significant slope is 
obtained (beta=-0.94), with a standard error of 0.12. 
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Tables  
 
Table 1 Firm characteristics by cluster 

  Cluster 

Characteristics of firms by: Colline Pisane 

(N= 32) 

Valle de Colchagua 

(N= 32) 

Bolgheri/Val di Cornia 

(N= 41) 

(a) Size (no. employees)     

 Small (1-19) 91 28 90 

 Medium (20-99) 9 66 4 

 Large (≥100) 0 6 6 

(b) Ownership      

 Domestic  100 81 95 

 Foreign 0 19 5 

 (c) Year of localisation    

 Up to 1970s 53 24 24 

 1980s 9 16 22 

 1990s 31 38 23 

 2000s 6 19 15 

    (d) Organisational Structure    

1 Independent, vertically integrated 88 66 93 

2 Part of a group, vertically 

integrated firms  

3 22 7 

3 Part of a group, vertically 

disintegrated firms 

- 13 - 

4 Other (e.g. cooperatives) 9 - - 

Note: The numbers refer to percentages within the respective cluster. 
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Table 2: Method of analysis and measures  

A. Hypothesis 1  
Firms with stronger knowledge bases are likely to be more central in the cluster knowledge network. 
 
(i) Negative binomial regression model with fixed effects. The baseline specification assumes that the dependent variable 

follows a Poisson distribution. The choice of the negative binomial specification is due to overdispersion in the 
dependent variable.  
 

 Dependent variable: Normalised degree centrality (KN_nDCi): measures the extent to which a firm is connected to the 
knowledge network. Due to the different size of the networks across clusters, an actor-level normalised degree 
centrality is used here. This is measured as the sum of linkages of firm i with other j actors of the network (degree 
centrality, DCi) and standardised by g, with g being the number of nodes in the network:  
 
KN_nDCi = DCi/ (g − 1) 
 
The indicator is computed on dichotomous undirected data. 

  
 Independent variable: the knowledge base of the firms (KB), derived from the application of Principal Component 

Analysis of Human resources, Months of experience and Experimentation intensity.  
  
 Control variables:  

- Size (SIZE): measured by the log of the number of employees.  
- Ownership (OWNER): Foreign (1), Domestic (0). 
- Organisation structure (ORG 1-4): corresponding to the four types indicated by  Table 1 (d).  
- Year range of a firm’s localisation in the cluster (YEAR70-00): corresponding to the four decades indicated by  

Table 1 (c). 
  
(ii) Descriptive analysis of cohesive subgroups of the knowledge networks based on the following measures:  
  
 (a) Clique: a maximal subgraph of three or more nodes. It represents a subgroup of firms all connected to each other. 

(b) n-clique: a maximal subgraph in which the largest geodesic distance between any two nodes is no greater than n. 
Formally, an n-clique is a subgraph with node set N such that  d (i, j) <= n for all n(i) and n(j) belongs to N. This is 
considered to be a loosely defined clique.  

(c) Core-periphery models: core-periphery analysis allows the identification of a cohesive subgroup of core firms and a 
set of peripheral firms that are loosely interconnected with the core (Borgatti and Everett, 1999). 
(d) Factions: partitions of the network done by grouping together actors on the basis of similarity to whom they are tied 
(Hanneman, 2001). 

  
B. Hypothesis 2 
The structure of the knowledge network differs significantly from that of the business network. 
 
(i) Test of density. It uses Snijders and Borgatti's (1999) bootstrap-assisted paired sample t-test to test whether the density 

of the knowledge and business networks are statistically different.  
 
Network density (ND) is defined as the proportion of possible linkages that are actually present in a graph. ND is 
calculated as the ratio of the number of linkages present, L, to its theoretical maximum, g(g-1)/2, with g being the 
number of nodes in the network (Wasserman and Faust, 1994): 
 
ND = L / [g(g-1)/2] 
 

  
 
C. Hypothesis 3 
The diffusion of innovation-related knowledge among firms with heterogeneous knowledge bases will be more uneven than would 
be expected if this knowledge were to flow primarily through the business network. 
 
(i)  Comparison of business and knowledge centrality with respect to two indexes of heterogeneity, Gini (G) and 

Hirschman/Herfindahl (HH), applied to actor ‘coreness’,  a measure of centrality, defined as the degree of closeness of 
each node to a core of densely connected nodes observable in the network, as described by Borgatti and Everett (1999). 
 

(ii)  Comparison of the statistical properties of the distribution of both knowledge network and business network’s 
normalised degree centrality (KN_nDCi and BN_nDCi), a measure described above.  
 

Note: Network measures are computed using UCINET 6.51 (Borgatti et al., 2002). 
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Table 3 Descriptive statistics and correlation matrix 

 Descriptive statistics by cluster 

Mean (SD) 

Correlation matrix 

 Colline 

Pisane 

Bolgheri/ 

Val di Cornia 

Valle de 

Colchagua 

KN_nDC KB SIZE OWNER ORG1 ORG2 ORG3 ORG4 YEAR70 YEAR80 YEAR90 YEAR00

KN_nDC 4.43 (5.60) 7.11 (6.24) 12.59 (10.24) 1            

KB -0.42 (0.58) -0.16 (0.80) 0.67 (1.26) 0.304*** 1           

SIZE 1.25 (0.92) 1.38 (0.92) 3.44 (1.13) 0.429*** 0.420*** 1          

OWNER - - 0.19 (0.40) 0.216** 0.023 0.183 1         

ORG1 0.03 (0.177) 0.08 (0.27) 0.23 (0.42) 0.170 0.413*** 0.340*** 0.407*** 1        

ORG2 - - 0.10 (0.30) 0.349*** 0.000 0.226*** -0.053 -0.068 1       

ORG3 0.88 (0.33) 0.92 (0.27) 0.68 (0.47) -0.260***-0.340***-0.424*** -0.284*** -0.752***-0.438*** 1      

ORG4 0.09 (0.29) - - -0.124 0.009 0.075 -0.046 -0.059 -0.034 -0.377*** 1     

YEAR70 0.53 (0.50) 0.28 (0.20) 0.26 (0.44) 0.018 0.091 0.045 -0.185 -0.124 -0.007 0.055 0.114 1    

YEAR80 0.09 (0.29) 0.23 (0.42) 0.16 (0.37) 0.020 -0.044 -0.043 0.000 0.099 0.078 -0.082 -0.078 -0.330*** 1   

YEAR90 0.31 (0.47) 0.33 (0.47) 0.31 (0.47) -0.021 -0.133 -0.015 0.170 0.015 -0.004 -0.009 -0.004 -0.534*** -0.323*** 1  

YEAR00 0.06 (0.24) 0.15 (0.36) 0.19 (0.40) -0.017 0.105 0.005 0.021 0.045 -0.069 0.025 -0.069 -0.295*** -0.178 -0.288*** 1 

Note: ***  Correlation is significant at 1%. **  Correlation is significant at 5%. 
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Table 4 Relationship between centrality in the cluster knowledge network and firm 
knowledge bases 
 
 Results by cluster: 

Model 

 

(1) 

Pooled dataset 

(2) 

Colline Pisane 

(3) 

Bolgheri/VdiCornia 

(4) 

Valle de Colchagua 

     

Intercept 1.33 (0.63)** -2.73 (1.64)* 0.76 (0.40)* 1.55 (0.64)** 

KB 0.33 (0.12)** -0.10 (0.46) 0.35 (0.17)** 0.57 (0.18)*** 

SIZE 0.02 (0.12) 0.49 (0.35) -0.04 (0.18) -0.08 (0.15) 

OWNER 0.44 (0.43) - - 0.44 (0.43) 

ORG1 -0,66 (0.58) - 0.38 (0.47) -0.80 (0.59) 

ORG3 -0.41 (0.51) 1.53 (0.95) - -0.45 (0.45) 

ORG4 -1.29 (0.99) - - - 

YEAR70 0.35 (0.31) 1.62 (1.17) 0.46 (0.41) 0.43 (0.50) 

YEAR80 0.24 (0.34) 0.88 (1.34) 0.52 (0.45) - 

YEAR90 0.20 (0.31) 1.14 (1.19) -0.13 (0.47) 0.42 (0.46) 

YEAR00 - - - 0.27 (0.51) 

CLUSTER- BVC 0.67 (0.25)**    

CLUSTER-CV 0.83 (0.40)**    

     

Log-likelihood -206.09 - 48.54 -79.18 -70.06 

LR Chi Square 28.38 6.36 11.80 12.41 

Pseudo R2 0.06 0.06 0.06 0.08 

Note: *** The coefficient is significant at 1%. **  The coefficient is significant at 5%. *  Correlation is 
significant at 10%.  
 

Table 5 Density of linkages and firm knowledge bases in Colline Pisane 
 Density of linkages 

 Dichotomous Valued 

Average firm knowledge base 

by subgroup 

Cliques 0.10/ 0.12 -0.09 

Isolates 0.00 0.00 0.03 

 
Table 6 Density of linkages and firm knowledge bases in Bolgheri/Val di Cornia 

 Density of linkages 

 Dichotomous Valued 

Average firm knowledge base 

by subgroup 

Advanced faction 0.17 0.53 0.61 

Laggard faction 0.07 0.20 -0.53 

Isolates 0.00 0.00 -0.34 
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Table 7 Density of linkages and firm knowledge bases in Valle de Colchagua 
 
 

 Density of linkages 

 Dichotomous Valued 

Average firm knowledge base 

by subgroup 

Core 0.32 0.57 0.58 

Periphery 0.02 0.26 -0.45 

Isolates 0.00 0.00 -0.76 

 
 
 
 
Table 8 Differences in the density of business and knowledge networks 
 

 Colline Pisane Bolgheri /Val di 

Cornia 

Valle de Colchagua 

Density of:     

Business network 0.32 0.20 0.30 

Knowledge network  0.04 0.051 0.09 

    

Significance of the differences 

between densities: 

   

Bootstrap paired sample t-test 7.77** 5.57** 4.48** 

    

Note: ** The coefficient is significant at 5%. 

 

Table 9 The distribution of business and knowledge linkages 

 Colline Pisane Bolgheri /Val di Cornia Valle de Colchagua 

Business Network:    

Gini 0.324 0.410 0.345 
Hirschman/Herfindahl 0.010 0.014 0.012 

Knowledge network:    

Gini 0.871 0.806 0.609 
Hirschman/Herfindahl 0.311 0.091 0.046 

Note: The unevenness in the distribution of linkages in the business and knowledge networks is measured 
by two concentration indexes: the Gini and the Hirschman/Herfindahl.  
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