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1. Introduction

In a competitive market agents take prices parametrically. This is usually justified
by saying that agents are ‘negligible’. In a dynamic game-theoretic context this can
be sometimes be formalized by assuming that there is a continuum of anonymous
agents. The equilibria of these models can be shown to coincide with the competitive
equilibria of these models under some regularity conditions. On the other hand, the
equilibria of dynamic games with a (large but) finite number of players can be shown
to be radically different from those in a model with a continuum of players. While this
paradox may seem narrow, the issue has broad economic significance. The rational
for the continuum economy is that it is useful idealization for an economy with a
large but finite number of agents. Clearly this idealization is of a limited value if
the equilibria of finite economies are radically different from those of the continuum
case. The reason for this paradox in dynamic games with a finite number of players is
that players can choose history-dependent strategies. The possibility of conditioning
behaviour on histories induces different expectations for future play depending on the
history preceding the play. This allows one to construct a large number of (history-
dependent) equilibria in which a single agent has a large effect. The best example of
this is the Folk Theorem of the repeated game, which holds for an arbitrary number
of players.! In these dynamic games a player has to consider the possible reaction
of others. As a result, these equilibria will depart from the competitive outcome
even in a frictionless market with a large but finite number of players. Thus even
in environments in which competitive outcome might appear as the natural outcome
(e.g. the case of one seller of an indivisible good who faces two buyers who bid for
the unit), one can show that in general non-competitive outcomes might emerge as
equilibria if the environment is modelled as a dynamic game.

One research strategy for dealing with the large number of equilibria in dynamic
games is to consider explicitly bounds on human computational and storage abilities
(bounded rationality). Such bounds impose restrictions on the way strategies can
depend on history in what appears to be a natural way. For example, in recent years
many have considered repeated games played by finite automata. (See Kalai (1990)
for a survey).

In this paper, I investigate the effect of introducing complexity costs in the dynamic
matching and bargaining games. In particular, I will show that complexity considera-
tions (some elements of ‘bounded rationality’) can provide a game-theoretic foundation

'With a continuum of players, the Folk Theorem remains valid if the game is non-anonymous.
With a finite number of players, Folk Theorem type results can survive even with anonymity. One
needs noise (in strong form) and/or anonymity to eliminate history-dependent equilibria in repeated
games with a large but finite number of players (see Green (1980), Sabourian (1989), Levine and
Pesendorfer (1995), Gale (forthcoming) and Al-Najjar and Smordinsky (1999)).



for the competitive behaviour in decentralized markets with a finite number of agents.
Also, I will show that in these models the introduction of complexity costs into players’
preferences ensures that in equilibrium players choose history-independent (sometimes
referred to as stationary or Markov) strategies.

There is already a large literature on dynamic matching models with explicit non-
cooperative bargaining. (For example Rubinstein and Wolinsky 1985, Binmore and
Herrero 1986, Gale 1986a and b, Mclennan and Sonnenschein 1989; also see the text
on bargaining and markets by Rubinstein and Osborne (1990a) and a forthcoming
book on the subject by Gale (2000)). By assuming a continuum of agents and/or by
restricting the strategy sets to the stationary ones, such models have been used to
provide a game-theoretic foundation to the competitive equilibrium . One of the few
papers that deals with bargaining and matching with a finite number of players and
with unrestricted set of strategies, is that of Rubinstein and Wolinsky (1990b) - hence-
forth referred to as RW. This paper considers a simple decentralized market in which
agents either meet randomly or choose their partners voluntarily and bargain over the
terms on which they are willing to trade. Intuition suggests that if there are no trans-
action costs, the outcome of bargaining should be the competitive equilibrium. This
intuition turns out to valid if players are restricted to choosing history-independent
strategies. However, RW demonstrate that if there are no restrictions on the set of
strategies and thus players can condition their behaviour on past history of plays, then
a continuum of non-competitive sequential equilibria emerges.

In sections 2 and 4 below, I shall summarise and discuss how the predictions of
RW’s model differ from that of the competitive behaviour. I shall then show that
if player’s attach some weight (lexicographically) to complexity of their strategies
then the only equilibrium outcome that survives is the competitive one, and that the
equilibrium strategies are stationary. This will be done both for the random matching
(section 2) and for the voluntary matching (section 4) models of RW. The proofs of
the results of this paper are in section 3 and Appendices A and B. Section 5 cntains
some concluding remarks.

In the literature on dynamic games, the strategy of concentrating on the history-
independent /stationary /Markov equilibria is very common. Very little justification
is usually provided for this approach except for an occasional mention that without
imposing such a restriction there is a large number of equilibria to deal with. Some-
times these Markov equilibria are proposed as “focal” points. Intuitively, one might
argue that a player concerned with the cost of implementing complex strategies would
choose a stationary strategy, where behaviour in each period is independent of payoff-
irrelevant past history.?3

2Stationarity is also often assumed in models of non-cooperative coalitional bargaining to get
results - see, for example, Chatterjee et.al. (1993). In these models, simplicity is sometimes mentioned
as a reason for selecting stationary equilibria in these models (Gul 1989).

30sborne and Rubinstein (1994) have, however, provided arguments against such intuition. They
argue that if equilibrium strategies are thought of as equilibrium in beliefs then it is not clear why



This paper, in addition to providing a justification for the competitive outcomes,
attempts to formalise this intuition, in the context of dynamic matching and bargain-
ing, by introducing complexity costs lexicographically with the standard payoff into
the players’ preference ordering as in Rubinstein (1986), Abreu and Rubinstein (1988),
Piccione and Rubinstein (1993) and others. In these papers, players are modelled as
finite-state automata involved in a two-player repeated game. Complexity is measured
by the (arbitrarily small) cost of maintaining an additional “machine” state.

Here, I will also focus on the complexity of implementation rather than of compu-
tational complexity (see Papadimitriou, 1992) and model players as automata. But,
because of the asymmetric nature of bargaining, my notion of complexity of strate-
gies is somewhat different from that in the above literature. Informally, the measure
of complexity adopted in the random matching model has the following property: if
two strategies are otherwise identical except that in some instance the first strategy
uses more information than that available in the current period of bargaining and
the second uses only the information available in the current period then the first
strategy is more complex than the second. This notion of complexity is a very weak
measure of the complexity of response rules within a period. Thus, I shall refer to
it as response-complexity. Chatterjee and Sabourian (1999, 2000) also use a similar
complexity criterion to justify stationary equilibrium in alternating n-player bargain-
ing games. This notion of complexity neither implies nor is implied by the ‘counting
states’ notion of complexity. In the voluntary matching model of section 4, I shall use
both the counting states measure together with response-complexity to select uniquely
the competitive outcome.

The RW’s dynamic matching and bargaining game is rather special. Other games
might give different results. The point, here, is not that there is a right way of
modelling competitive behaviour but to give example of what it takes, in terms of the
primitives of the model, to obtain the competitive outcome. In particular, this paper
demonstrates that complexity costs might have a role in providing a justification for
a competitive equilibrium.

Gale (2000) also discusses how the introduction of ‘bounded rationality’ can provide
a justification for the competitive equilibrium in RW’s model. He obtains his results
by either putting a bound on the complexity of the strategy profiles or by introducing
noise in the implementation of the strategies. Our motivation is similar to that of
Gale; however the approach taken in this paper is somewhat different from his.

2. Random matching model

RW has a model of a market with B identical buyers and S identical sellers. Let B
denote the set of buyers and S denote the set of sellers. Each seller has one unit of
an indivisible good. Each buyer wants to buy at most one unit of the good. The

players should believe that other players follow the same actions after histories which have involved
highly non-stationary past plays.



valuations of the buyers and the sellers for one unit of the good are one and zero
respectively. Throughout I assume that

B> S.

Time is discrete and each player has a discount factor § € [0,1]. Thus if a seller sells
one unit of the commodity to a buyer at a price p in any period t = 0, 1, 2.., the payoffs
of the seller and that of the buyer are given by 6'p and §(1 — p) respectively.

At each period t the agents remaining in the market are randomly matched in pairs
of one seller and one buyer (all possible matches are equally likely). One member of
each matched pair is then randomly chosen (with probability 1/2) to propose a price
p between 0 and 1. Then the other agent accepts (A) or rejects (R) the offer. I shall
denote such a match between a seller s and a buyer b with s as the proposer by the
ordered pair (s,b) and a match between s and b with b as the proposer by the ordered
pair (b,s). If a proposal is accepted by the responder, the parties implement it and
leave the market. Rejection dissolves the match, in which case the agents proceed to
the next matching stage. Any unmatched buyers are forced to remain inactive for the
period.

Thus the game is such that Nature effectively chooses the random matching and
the choice of proposer and responder. I shall denote a typical choice of Nature by 7.
Formally, I define the choice of Nature as follows. Let q : S — B stand for a one-to
one function and let @ = {1,...,Q} be the set of all such one-to-one functions from
S to B . Thus at any period with S sellers and B buyers a match among the players
corresponds to a choice of ¢ € @ and ¢(s) corresponds to s’s partner in this match.
Also for each match ¢, let m,(s) € {s,q(s)} and r4(s) € {s,q(s)} denote respectively
the proposer and the responder when s is matched with ¢(s). Then a choice n by
Nature corresponds to (g; {mgy(s), 74(s)}ses)-

At each period t each agent has perfect information about all the past events of
the game, including all the past play in matches in which he did not participate.
However, when they choose their actions they do not know what actions are being
simultaneously chosen by other agents.

2.1. RW’s equilibrium characterisation with random matching for the case
of 6 =1.

The competitive model corresponds to the case in which the frictions and the trans-
action costs in the market are negligible. In RW’s model this corresponds to the case
in which the players do not discount the future. The main result of RW corresponds
to this case.

Theorem 2.1. (See RW) If 6 = 1 then for every price p between 0 and 1 and for
every one to one function q from the set of sellers to the set of buyers there exists a
sequential equilibrium in which each seller s sells one unit of the good to buyer ¢(s)
for a price p.



Thus, there is a continuum of prices that can be sustained as a sequential equilibria.*
On the other hand, p = 1 is the unique competitive equilibrium because B > S. There-
fore the competitive outcome is not the unique sequential equilibria of the matching
and bargaining game with a finite number of agents (irrespective of the numbers B
and S).

The intuition behind the proof for the case of S = 1 is the following. There is
a distinguished buyer b who has the ‘right’ to buy the good of the single seller at
P ( b depends on the past history of play). The equilibrium strategies are such that
whenever the seller meets the distinguished buyer, whichever is chosen as the proposer
offers a price P and the responder accepts. Whenever the seller meets a buyer b # b,
the seller as a proposer offers the good at a price p = 1 and the buyer b # b offers
to pay a price p = 0. In both cases the responders reject the offers. The outcome of
these strategies is that the seller sells the good to buyer b at p.

To show that it does not pay players to deviate from the above, the strategies
further specify the following responses to any deviations. If the seller proposes a price
different from the equilibrium price (p to b and 1 to b # b) to any buyer b then this
buyer rejects and he has the ‘right’ to buy the good at a price p = 0. Thus, the
continuation strategy is the same as above with the price p in place of p and the buyer
b in place of b.

If one of the buyers deviates from their equilibrium strategies then the seller rejects
and another buyer b gets the right to buy the good at a price p = 1. The continuation
strategy is the same as before with the price p in place of p and the buyer b in place
of b.

Further deviations can be treated in exactly the same way.

It is easy to check that it does not pay any player to deviate from the above
strategy after any history. Clearly, any initial deviator is no better off from deviating
given the punishments. Also after any deviation any responder is at least as well off
rejecting the proposed deviation and following the punishments than accepting the
proposed deviation.

Notice that the strategies are quite complicated and the behaviour of each agent
at any period depends on the history play up to that period - there are potentially
an indefinite number of potential deviations and for each deviation the above strat-
egy profile specifies a tailor-made response in order to deter the deviation. Thus the
agents need a large amount of information to implement the above strategy profile.
At the other extreme, one can assume that at any period the agents only have ac-
cess to the history of play in that period and can not condition their behaviour on
the previous history of plays. Thus for the purpose of comparison, one can consider
history-independent (stationary or Markov) strategies. RW show that the only sta-

4“When there is more than one seller, there is more than one match per period. As a result
with more than one seller the game is one of imperfect information and the appropriate equilibrium
concept is sequential equilibrium (or perfect Bayesian equilibrium). When there is only one seller,
subgame perfect equilibrium will suffice.



tionary equilibrium outcome is the competitive one. In fact, their result is slightly
stronger.

Theorem 2.2. (See RW) If at any time each player’s information consists only of the
set of players that are present in the market at time t and the time itself then the
unique sequential equilibrium price is the competitive price of 1.

The above informational restriction prevents agents from punishing a deviator
since the deviator is not remembered. For example, in the proof of Theorem 2.1, any
deviation by the seller was rejected by the responder because the rejection led to a
reward for the buyer. In Theorem 2.2 with stationary strategies the buyer could not
be rewarded because the deviation of the seller could not be observed.

2.2. Complexity, equilibrium selection and the competitive outcome

Before introducing the notion of complexity used in this paper I need some further
notation.

An outcome of a match at any period is described by an ordered four-tuple (3, j, p, )
where i € BU S is the proposer in this match, j € BUS is the responder, p € [0,1]
is the proposal by i and [ € {A, R} is the response by j. I also denote a history of
outcomes in a period of the game by e. Thus e consists of outcomes of S different
matches, one for each seller; it describes everything that happens at every period of
the game. For example e could be

{q; (my(s), 14(8), ps;ls)ses}t for some ps € [0, 1] and for some I, € {A, R};

namely that each seller s was matched with buyer ¢(s), the proposer and the responder
in this match were m,(s) and r,(s), the proposal in the match involving seller s was p;
and the response was l;. Let E be the set of such outcomes. The history of outcome
at any time ¢ is denoted by e’ and the history of outcomes of the game up to the

beginning of each period ¢ consists of a sequence of outcomes h! = (€°, ..., e!"1). I shall
denote the set of such t-period history of outcomes that do not result in an agreement
by H°.

At each date t, in addition to history of the outcomes h' of the preceding periods,
players also receive information about the preceding moves by Nature and/or other
players during the current period. I also need notation to describe these partial de-
scriptions of outcomes (partial history) a player receives within a bargaining period.
I shall denote such a partial history by d and the set of such partial histories by D.
Thus d € D is either the ordered pair (i, j) describing the match between player i and
j with i as the proposer, or the ordered triplet (7, j,p) describing the match between
players ¢ and j followed by a price offer p by i. If d =(i,j) the bargaining is just
beginning and an offer has yet to be made by i to j, and if d =(i, j,p) it is player j's



turn to respond to an offer price of p by player 7. Also, I shall denote the information
sets (the sets of partial histories) for player i in any stage by D;. Thus

D; ={d € D | it is i’s turn to play after d}

Let
C=[0,1]UAUR

and denote the set of choices available to a player i, given a partial description deD;,
by C;(d). Thus

Ci(d) = [0, 1] if d is such that i is the proposer
71 {A, R} if d is such that i is the responder to some offer .

Let H* = U H' be the set of all possible finite histories of periods. (H" is
assumed to be empty). Then a strategy for player i is a function f; : H* x D; — C,
where f;(e?,..,e""! d) € C;(d) for any (€°,..,e"™!) € H(t) and for any partial history
d € D;. 1 shall denote the set of strategies for player ¢ by F;. Also for any strategy
fi and for any history h € H*, I shall define the strategy induced by f; after h by
(| B).

Given any strategy profile f = {fi}iesus, the equilibrium path is a stochas-
tic process because of Nature’s moves (the random matching and random choice of
proposers). I shall denote the expected payoff to each player i if strategy profile
f ={fi}iesus is chosen by 7;( f). Since I only allow for pure strategies the expectation
is with respect to the moves of Nature.?

2.2.1. Automata and Complexity

Any strategy in the game can be implemented by an automaton (machine) consisting
of a set of states (not necessarily finite), an initial state, a terminal state, an output
function describing the output of the machine as a function of its current state (and its
current input) and a transition function determining the next state of the machine as
a function of its current state and current input (the outcome in the current period).

In the literature on automata in repeated one-shot games, there is a natural spec-
ification of a machine. Here, we are dealing with a repeated extensive form game.
Moreover, since each player has to play a different role (of a proposer and a responder)
the extensive form bargaining game in each period has a certain degree of asymmetry
built in. As a result, I can choose to specify a machine to implement a particular
strategy in several different ways. In this paper, I shall assume

(i) the states of the machine do not change during each period of the game and
transitions from a state to another state in the same player’s machine take place at
the end of a period.

SFormally, one needs to define an underlying probability space and expectation is taken with
respect to the appropriate probability measure.



(ii) each state of the machine would specify an action for every role of the player
concerned, with the action chosen depending on d - the partial history of the period.

A referee (called ” Master of the Game” by Piccione and Rubinstein, (1993)) would
activate each player’s machine when needed.

I now set down the formal definition.

Definition 1. A machine M, is a five-tuple (Q;,q},T, X\, j1; ) , where

Q); is a set of states;

q} is a distinguished initial state belonging to Q;;

T is a distinguished terminal state (T for “Termination”);

Ai: Qi X D; — C, describes the output function of the machine given the state of
the machine and given the partial history that has occurred during the current period
of the game before i's move, such that \;(q;,d) € C;(d) ,Vq; € Q; and ¥d € D;

i - Qi x E — @Q; UT is the transition function, specifying the state of the machine
in the next period of the game as a function of the current state and the realised history
of the current period.®

The fact that the game is identical at the beginning of each period (though be-
haviour could be different depending on past histories as encapsulated in the state)
provides the basic rationale for using this specification of a machine. Thus, with this
specification, the nature of the output and transition maps remain the same in each
period. Other definitions are possible: for example the state of the machine changes
before a player has to move or player has different sub-automaton to play different
roles. But these definitions do not have the “game-stationarity” features that the
current one does.

Remark 1. If we denote the set of strategies for a player i in any period of the
bargaining game by

G, ={g9:D;— C|g(d) € Ci(d) Vd € D;}

then the output function \; in Definition 1 can be thought of as a mapping Qi — G
where X\;(q;)(d) = XNi(qi,d). Thus each g; specifies a mapping \;(¢;) € G; from the
information set within a period to the set of choices.

Next I need to define the strategy that is implemented by a given machine.
Before addressing this, with some abuse of notation, denote the state of machine
M; =(Qq, g}, T, \i, 1; ) after any history h = (e, ..., e*) by pi(q}l, h). Thus p;(ql, h) can
be defined inductively by

/’LZ(quu elu "'76T) = /’Li(:ui(qZ'17el7 ) 67_1)7 67—)) for any <7<t (21)

6Henceforth, I shall not always explicitly refer to the terminal state 7. I am assuming that if an
offer is accepted then the machine of each participant to this agreement enters state 7' and shuts off.
Thus 1y (qi,1,74,p,A) = T for any state ¢, any player | = ¢,j and any price p. Also, I shall simply
refer to the members of the set (); as the states of the machine.

9



Definition 2. For any machine M; =(Q;,q},T, )\, u; ) for player i, the strategy f; €
F; implemented by M; is defined by

fi(h,d) = \i(pi(g; , h),d) for all h € H® and for all d € D,

The complexity of a machine (or of a strategy) can be measured in many different
ways. In the literature on repeated games played by automata the number of states
of the machine is often used as a measure of complexity. Henceforth I shall refer to
this measure of complexity by state-complexity (or simply by s-complexity). This is
because the set of states of the machine can be regarded as a partition of possible
histories. (See footnote 7 below and Kalai and Stanford 1989)

Definition 3. (State-complexity) A machine M} =(Q}, ¢} , T, \,, i} ) is more s-complex
than another machine M; = (Q;,q, T, \i, ju; ), denoted by M, =* M;, if

|Qil > Q]

where, for any set W, |W| refers to the cardinality of the set W.

I shall also use MZ' =% M; to denote “MZ-' is at least as s-complex as M;”.

In terms of the underlying strategy, the number of (non-redundant) states of a
machine M; measures the number of induced of strategies |{f; | (h) |h € H*}| after
different histories. Thus, I could also define s-complexity in terms of the underlying
strategies in the game as in Kalai and Stanford (1989).

Definition 4. A strategy f! is more s-complex than f; (denoted by f, =* f;) if 7
{fi [ () |he H*} > [{fi | (h) |h € H*}|

Since, the states of a machine do not change during a period of the game, counting

the number of states does not fully measure the complexity of the machine during
a period, specifically the complexity of different choices following the same partial
history. More formally, the above definition of complexity measures for each d the
cardinality of the domain of \;(.,d) (or that of X;(.)) but it does not capture the
complexity of the range of the mapping A;(., d). To illustrate the point further consider
the following examples.

Example 1. There are two machines M; and M]. Both machines have two states q;
and 2. Both are in state g} in the odd periods and in state ¢? in the even periods (thus
they have the same transition functions). Also as a proposer, in state ¢: (I = 1,2),
both machines offer price p! to any seller. As a responder, M; always rejects all offers.
Machine M, on the other hand, responds differently to the same proposal by any
player j (by conditioning on the two states q} and ¢?). In particular, for any offer p
by j, M! rejects p in the odd periods and accept p in the even periods.

TAny f; defines a partition (call it s-partition) on H° given by an equivalence relation
h ~* W' if and only if f; | (h) = f; | (1)

S-complexity simply reflects the size of these partitions.

10



Example 2. There are two machines M; and M. Both machines have two states g}
and gF. Both are in state q¢i* in the odd periods and in state g in the even periods
(thus they have the same transition functions). Also as a responder, in state gi* both
machines accept any price offer and in state q* both machines reject any price offer.
As a proposer, M, always offers a price p. Machine M, on the other hand, makes
different proposal to any player j (by conditioning on the two states ¢i* and ¢?). In
particular, M proposes p in the odd periods and p' in the even periods.

According to s-complexity M; and M/ are of equal complexity in both examples,
despite the fact that in the first example the strategy that machine M/ implements has
the additional complexity of different responses to the same offer and in the second
example the strategy that machine M/ implements has the additional complexity of
making different proposals in different periods. This is not a desirable property.

A plausible (and minimal) way of capturing the complexity of strategy during a
period - complexity of different behaviour after the same partial history - is to assume
that the complexity criterion satisfies the following two conditions.

(i) If two machines (and therefore two strategies ) M; and M, are otherwise identical
machines for player i except that as a responder to some price offer p by some player j,
M; always responds the same way (always accepts or always rejects) whereas M, some
times accepts and sometimes rejects the offer p by j, then M/ should be considered as
being more complex than M,;.

(ii) If M/ makes at least two different proposals p and p’ to some player j depending
on the history of actions before the current period and if M; is otherwise identical to
M except that as a proposer to player j it drops the offer p’ in favour of p (after all
histories at which M/ proposes p’ to j M; proposes p) , then M/ should be considered
as being more complex than M;.

I call such notion of complexity response-complexity (r-complexity). Similar defi-
nition can be found in Chatterjee and Sabourian (1999, 2000). The formal definition
of r-complexity consists of a partial order (the weakest) on the set of machines that
captures (i) and (ii) above.

Definition 5. (Response complexity) A machine M| = { Lat TN, ,u;} is more 1-

complex than another machine M; = {Q;, q!, T, \i, u;} , denoted by M; =" M;, if
the machines M; and M, are otherwise identical except that given some (non-empty)
partial history d' € D;, the response of M; to d’ is simpler than that of M;. Formally,
M, =" M; if Q; = Q;,q} = ¢V, u; = p; and there exists a (non-empty) partial history
d' € D; and a set of states Q, C Q;(= Q) such that

(i, d) = \i(g;,d) ifd#d orifg ¢ Q;

)\zngv d,) = )‘ch.da d/) VQU Q; € Qia , _ (2 2)
Ailqi, d') # A(q;, d) for some g, q; € Q; '
Nl d) # N(g,d) Vg € Qi/Q; and Vg; € Q;

I shall use MZ’ =" M; to refer to M; is not more r-complex than M.

11



The r-complexity definition is a very weak partial (local) concept -partial in the
sense that M and M, are everywhere identical except in response to some d', M;
always takes the same action in all states ¢, € Q; whereas M! does not.® Since states
of a machine encapsulate past history this is equivalent to saying that the behaviour
of M and M, are everywhere identical except that in response to some d’ machine M
is conditioning less on history than M/ does.

Remark 2. Clearly, condition (2.2) above implies that

(o d) = N(a: - !
Ni(gi,d) = N(gi.d) Vg and Vd #£ d } (2.3)

Ai(@5, d') C Xi(Qi, d)
The results of this paper on equilibrium selection remain valid if we use the stronger
condition (2.3) instead of (2.2) in the definition of r-complexity.

I could also define r-complexity in terms of the underlying strategies in the game.

Definition 6. A strategy f; is more r-complex than f;, denoted by f; =" fi, if there
exists a (non-empty) partial history d' € D; and a set of histories H C H* such that

fi(h,d) = fi(h,d) ifd#d orifh¢ H

fz(ha d/) = fz(hv d/) Vh, h e F,

fi(h,d') # f (b, d) for some h,h' € H
fi(h,d') # fi (b, d) Vh € H®/H and VW' € H

(2.4)

I shall also use f; =" f; to refer to f; is not more r-complex than f.°

Notice that, given the specification of automata adopted here and given that we are
dealing with a repeated extensive form game, s-complexity and r-complexity measure
the complexity of different aspects of behaviour - the number of induced strategies at
the beginning of each period versus the complexity of behaviour within a period.

For the results in this section with random matching, I only need to introduce this
minimal notion of response-complexity into the standard game-theoretic set-up. In
section 4, I use both complexity concepts (called response-state complexity).

8The first three conditions in (2.2) capture precisely the idea that M! and M; are everywhere
identical except in response to some d’, M; always takes the same action in all states q; € @, whereas
M does not. The fourth condition is imposed so that the partial order > is not reflexive. If the
fourth condition in (2.2) is not assumed, it is possible that M; >~* M/ and M, =* M;.

9Clearly, condition (2.4) above implies that

fi(h,d) = fl(h,d) Vh and Vd # d’ }

fi(H®,d) C f/(H*,d) (2.5)
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Definition 7. (Response-state complexity)A machine M/ is more rs-complex than M,;
(denoted by M; =" M;) if either M, =* M; or M; =" M;. Also, I shall use M; =" M;
to refer to M; is not more rs-complex than M.

Similarly, I could define rs-complexity in terms of the underlying strategies in the
game.

Definition 8. A machine f! is more rs-complex than f; (denoted by f; ="* f;) if
either f; =° f; or f, =" f;. I shall use f; ="* f; to refer to f; is not more r-complex
than f;.

Before, I define Nash equilibrium of the game with complexity cost denote, with
some abuse of notation, the expected payoff to player 7 if machine profile M is chosen

by m;(M).

Definition 9. A profile M = {M;},cpus constitutes a Nash equilibrium machine
profile with complexity cost | (denoted by NECI machine profile) if for each player i
the following two conditions hold

7TZ'(MZ', MNZ) Z 7TZ'(MZ-I, sz) \V/MZI
lfﬂ'Z(MZ, sz) = ’7'1'1(A]\4,L/7 sz) then le t] MZ

Also, a profile f constitutes a Nash equilibrium strategy profile with complexity cost
[ (denoted by NECI strategy profile) if it can be implemented by a NECI machine
profile M.

Remark 3. Clearly, one could define NECI strategy profile independently of the ma-
chine specification by appealing directly to complexity criterion defined over the strat-
egy set (Definitions 4, 6 and 8). Thus a profile f = (f;, f_:) is a NECI strategy profile

if
i (fiy fui) = mi(f], fri) Vfl e F;
if mi(fi, foi) = mi(f], fui) for some f!€ F; then f] = f;.

Complexity costs are treated lexicographically in the definition of NECI above.
I could also have introduced complexity directly into the payoff function as a small
fixed costs of choosing a more complex strategy and defined a Nash Equilibrium with
a fixed complexity cost as follows.

Definition 10. A machine profile M = {M;};cpus constitutes a Nash equilibrium
with a (small) fixed |—complexity cost ¢ > 0 if for each player i

(M, M.;) > (M}, M.;) + ey(M;, M] ) VM (2.6)

where
1 if M; =t M!
Y(M;, M) ={ —1 if M] —t M,
0 otherwise
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Such a payoff function would induce at least as much economy as the lexicographic
criterion. For any fixed complexity costs ¢ > 0, the results of this paper are also valid
if complexity costs enter the payoff functions as in (2.6) .

I shall now define formally stationary behaviour and a minimal complex machine
in the context of this model.

Definition 11. A strategy f; is stationary if

fi(h,d) = fi(W,d) Vh,h' € H* and Vd € D;

Thus the behaviour of such strategies at any time may depend on the past outcomes
in the current period but not on the previous history of the game before the current
period.

Definition 12. A machine M; is minimal l-complex (for | = r or s) if M} =' M; for
any machine M.

Clearly, a minimal /-complex machine always implements a stationary strategy.
Also a stationary strategy can be implemented by a minimal machine. Thus, a sta-
tionary Nash equilibrium strategy profile of the bargaining game is a NECI of the
game with complexity cost.

Definition 13. An automaton M, is finite if it has a finite number of states. A
strategy is finite if it can be implemented by a finite machine. A profile of machines
(strategies) is finite if each of its components is finite.

NECI strategy (machine) profiles are not necessarily ‘credible’ for the usual reasons.
To ensure credibility, I could, as in Chatterjee and Sabourian (1999,2000), introduce
noise into the system and consider extensive form trembling hand equilibrium with
complexity costs. This will ensure that strategies are optimal after all histories that
occur with a positive probability. (See also the section 5.) A more direct, and simpler,
approach of introducing credibility would be to consider NEC-/ strategy profiles that
are perfect Bayesian equilibria (subgame perfect equilibrium for the case of the one
seller) of the game without complexity costs.°

Definition 14. A profile f constitutes a perfect Bayesian equilibrium strategy profile
with complexity cost | (denoted by PBECI strategy profile) if f is both a NECI strategy
profile and a perfect Bayesian equilibrium of the underlying game. !

10Here, with more than one seller, a perfect Bayesian equilibrium refers to a profile of strategies for
each player such that, at every information set (h,d), each player’s strategy maximizes the player’s
expected continuation payoff given the strategies of the others, where expectation is with respect
the choice of nature. Of course, in this set-up, with uncertainty over the choice of nature 7, perfect
Bayesian equilibrium is equivalent to sequential equilibrium; however, I shall use the former concept
because it is easier to define.

A perfect Bayesian equilibrium with a fixed complexity cost ¢ > 0 can be defined in a similar
fashion.

14



Similarly, a profile M constitutes a perfect Bayesian equilibrium machine profile
with complexity costs [ if it is both a NECI machine profile and the strategy imple-
mented by M is a perfect Bayesian equilibrium of the underlying game.

Clearly, a PBECI strategy (machine) profile exists. Consider the following station-
ary profile of strategies (machines): all players always offer 1, seller accepts an offer if
and only if the offer is 1, buyers accept all offers. This profile induces the competitive
outcome. Trivially, it also constitutes a perfect Bayesian equilibrium and is stationary
(has minimal I-complexity). Therefore this profile is a PBECI.

The next result demonstrates that the credible equilibria of the game with r-
complexity costs induce the unique competitive outcome and are stationary.

Theorem 2.3. Consider any PBECr strategy profile f = {f;}icsus. If each strategy
fi is finite then wy(f) = 1 for all s, my(f) = 0 for all b, the unique induced price is the
competitive price of 1 and each f; is stationary.?

The proof of the above Theorem for the case of a market with one seller can be
found in the next section. The proof for markets with arbitrary number of sellers is
by induction on the number of sellers. The proof for this more general case can be
found in Appendix A.

Here, I shall first provide some intuition for the role of complexity by explaining
why the strategies used by RW in the proof of Theorem 2.1 to support non-competitive
outcomes cannot constitute a PBECr. First, notice that these strategies (machines)
are non-stationary. In particular, all those buyers who do not have any ‘rights’ to any
good (buyers who do not end up buying the goods on the equilibrium path constructed
in the proof of Theorem 2.1) also follow non-stationary (complex) strategies. But such
buyers receive zero payoff on the equilibrium path. But then these strategies could
not be an PBECr because such buyers could always obtain at least a zero payoff by
following a simpler strategy that always makes the same offer and accepts all offers.

The actual proof of Theorem 2.3 for the case of a single seller s uses a similar
reasoning, but applied to the continuation payoffs of the buyers. The proof in this
case basically consists of establishing the following three steps.

Step 1 (see Lemma 1, 2, 3): If any PBECr strategy profile results in a payoff for the
seller that is less than 1 (the outcome is non-competitive), then there does not
exist a history after which the seller reaches an agreement at a price of 1 with
some buyer (Lemma 2 and 3).

This step is demonstrated by showing that if there is an agreement at a price of 1
then there is the possibility of economizing on r-complexity.

2The finiteness of f; assumption - namely that f; can implemented by a finite automaton - in the
above Theorem is only needed because complexity costs enters the players’ preferences lexicographi-
cally in the definition of PBEC-r. If postive fixed complexity cost is assumed, as in Definition 10, it
can be shown that Theorem 2.3 holds without such an assumption (finiteness) on the set of PBECr
strategies.
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Step 2 (see Lemma 5): If any PBECTr strategy profile results in a payoff for the seller
that is less than 1 (the outcome is non-competitive), then for any buyer b and
for any history h the continuation payoff to b after the ordered triple (h,b,s) is
positive.

The intuition for this step is as follows. Since there is no agreement at a price of
1 (step 1), it follows that the continuation payoff to the seller is always less than 1
(Lemma 4). This, together with the finiteness of the PBECr strategy profile, imply
that, after any history, if a buyer has the opportunity to make an offer to the seller
he can obtain a positive payoff by offering a price that is both less than 1 and more
than the continuation payoff of the seller.

Step 3 (see Lemma 7): This involves showing that for any finite subgame perfect equi-
librium, there exists a buyer b and a history A such that the buyer’s continuation
payoff after (h, b, s) is zero.

This step follows from considering histories at which the continuation payoff of the
seller is minimized. At such histories, competition between buyers ensures that the
continuation payoff of at most one buyer is positive.

Steps 2 and 3 contradict each other unless the PBECr strategy profile results in a
payoft of 1 for the seller. This establishes the result.

3. Proof of Theorem 2.3 for the case of one seller

The proof is in several Lemmas. The first Lemma, in fact, holds for an arbitrary
number of sellers.

Lemma 1. For any NECr profile of strategies f = ({f;}icsus, any buyer b € B and
any seller s € S the following holds:

fo(h,s,b,1) = fy(h',s,b,1) for all h and h' € H* (3.1)
fs(h,b,s,1) = f(W,b,s,1) forall h and h' € H>® (3.2)

Proof. To show that condition (3.1) holds, suppose otherwise. Then for some (h, s, b)
and for some (K, s,b) the following holds

fo(h,s,b,1) = A and fy(h',s,b,1) = R
Now consider another strategy f; for player b such that for all (h”,d)
fi(h",d) =R if d = (s,b,1)
fé(h”, d) = fb(hﬂu d) ifd 7é (87 b, 1)
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Clearly, the only difference between f; and f; is that in some instance f, accepts an
offer of 1 and f; does not; thus f; induces at least the same payoff as f, and moreover
it is less r-complex than f;, according to Definition 6. But, by Remark 3, this is a
contradiction.

Using a similar reasoning as above, I now show that condition (3.2) holds. Suppose
not; then for some (h,b, s) and for some (k' b, s) the following holds

fs(h,b,s,1) = A and f4(h',b,s,1) =R
Now consider another strategy f! for player s such that for all (R”,d)

Fi(h",d) = A it d = (bs,1)
FIR",d) = fo (", d) ifd# (bs,1)

Clearly, the only difference between f, and f. is that in some instance f, accepts
an offer of 1 and f; does not; thus f. induces at least the same payoff as f; and it is less
r-complex than f; according to Definition 6. But, by Remark 3, this is a contradiction.
|

The next set of results will be demonstrated for the case of a market with one
single seller s.

Lemma 2. Suppose S = 1. Then for any NECr profile f that does not result in a
payoff of 1 for the seller s we have fy(h,s,b,1) = R for all b and for all h.

Proof. Suppose not; then fy,(h,s,b,1) = A for some b and for some h. By Lemma 1
this implies that
fo(h,s,b,1) = A for all h (3.3)

Now consider any strategy f. for s that always proposes 1 and rejects all offers. Since
the ordered pair (s,b) occurs with probability 1 in a finite time, it follows from (3.3)
that f. can guarantee s a payoff of 1; but this is a contradiction. M

Lemma 3. Suppose S = 1. Consider any NECr f; if f does not result in a payoff

of 1 for the seller s then there does not exist a buyer b and a history h such that
the ordered pair (b, s) reaches an agreement at a price of 1 after h. Formally, for any
NECr f, if ms(f) < 1 then for all b and for all h

cither  fy(h,b,s)#1  or  fy(h,b,s,1)=R.

Proof. Suppose not; then there exists b and h such that f,(h,b,s) = 1 and fs(h,b,s,1) =
A. By Lemma 1 this implies that

fs(h,b,s,1) = A for all h (3.4)

Also since f results in a payoff less than 1 there exists A’ such that f,(h/,b,s) =p' # 1
(otherwise s could always obtain a payoff of 1. This can be achieved by following a
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strategy that always proposes 1 and accepts an offer if and only if b offers a price of
1; then either some buyer accepts the offer of 1 by s or by the law of large numbers s
will eventually be matched with b and will receive an offer of 1 from b). Now consider
a strategy f; such that

S0 d)=p for all (h,d) such that fy(h,d) =1
fi(h,d) = fy(h,d) otherwise

Clearly, the only difference between f, and f; is that in some instance f, proposes
an offer of 1 (and this is accepted) and f; does not; thus f, induces as much payoff as
fp» and is less r-complex than f;, according to Definition 6. But, by Remark 3, this is
a contradiction. W

Lemma 4. Suppose S = 1. Then for any NECr profile f such that 7s(f) < 1, we
have
7ws((f | h)) <1 for all h € H*

Proof. This follows from b never accepting an offer of 1 (Lemma 2) and from the
ordered pair (b, s) never reaching an agreement at a price of 1 after any history (Lemma
3. m

Lemma 5. Suppose S = 1. Then for any PBECr-r f such that 7s(f) < 1, we have
m((f | h,b,s)) > 0 for all h and for all b

Proof. Suppose not; then for some h and for some b we have m,({f | h,b,s)) = 0.
Now, since ms(f) < 1, then for all h we have, by Lemma 4, 7,((f | h)) < 1. Thus K,
defined by

K = masm((F | 1),

is less than 1 (K is well-defined because f is finite - can be implemented by a finite
automaton). Since f constitutes a subgame perfect equilibrium, if after the match
(h,b,s) the buyer b offers a price K + € for some € such that K + ¢ < 1, it will be
accepted by s (otherwise s obtains at most K). Thus b can always obtain at least
1 — K — € > 0; but this contradicts the supposition. B

Now for any strategy profile f let
me(f) = minperems((f | b, b, s))
mg(f) = minkep=ms((f | 1,0, 5))
2(b, f) = maxpem=m((f | b))
b(f) = arg miny (my(f) +m(f)) (3.6)
Note that if f is finite then z(b, f) and m:(f) are well defined for i = b, s.

For the rest of this section, I fix a profile f and refer to mi(f), mé(f), z(b; f) and
b(f) by m?, mg, z(b) and b respectively.
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Lemma 6. Suppose S = 1. Then for any finite subgame perfect equilibrium strategy
profile f we have m2 > mp.

Proof. Suppose not; then me b < 1/2(mb + m—) Now it follows from the definition of
mg that there exists a history & such that m2 = 7,((f | h,b, s)). Now suppose p is the
offer of b after (h,b, s). Now if s rejects p after (h,b, s) he can get at least 1/2(m’+m?)

next period. But this exceeds m% = 7s({f | h,b,s)). This contradicts the supposition
that f is a subgame perfect equilibrium. M

Lemma 7. Suppose S = 1. Then for any finite subgame perfect equilibrium strategy
profile f there exists a buyer b and a history h such that m({f | h,b,s)) = 0.

Proof. Consider any subgame perfect equilibrium f and let b be defined as in (3.6).
First, I establish that

z(b) > 1—m} (3.7)

To show this, suppose otherwise; then
m? < 1 — 2z(b) — ¢ for some € > 0. (3.8)

Now consider any history h and suppose that players s and b are matched and s
makes a price offer of (1 — z(b) — €) to b after (h,s,b). By the definition of z(b), given
in condition (3.5), this offer will be accepted by b. Thus m? > 1 — z(b) — €. But this
contradicts condition (3.8). Therefore, condition (3.7) holds.

Now it follows from the definition of z(b) that there exists a h such that m;(f |
h) = z(b). Therefore,

() <L {1
Soss 5 11/2

(The expression in the RHS of the above inequality gives an upper bound on z(b).
The term 1/2(1 —m?) 4+ 1/2(1 — m?) bounds b’s expected payoff in the event that he
meets the seller in the next period and it is weighted by the probability, 1/B, of that
event. The second term on the RHS of the last inequality is the weighted sum of the
payoff of b in the event that in the next period the seller meets one of the other buyers,
weighted by the probability of each such event.) Therefore, from the definitions of m?
and m? we have

/21— mb) +1/2(1 )} +
(1= ma(f | hy5,0)) = (U | By, ) + 1721 = m((F | ,bys)) = ml(f | Bibys)))}

b) < {1200 —mh) +1/2(0 - md) } +

/ﬂ—ﬂl—%“!h,,m+4ﬂﬂ—ﬂﬁ—m“ﬂhﬁﬁm}

_L
#b B
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The last condition together with condition (3.7) imply that

ml > 2; {<m§+m%> + 37 [(mh 4+ mb) + (m((f | hys,B) + m((f | Bob, s>>}}

b£b

But this together with the definition of b imply that

> o {B<mé +mg) + o (m((f | hys. b)) +m((f | AD, s>>>}
b#£b

Therefore, it follows from Lemma 6 that

7> 1
mg > ﬁ{QBm —I—%wb f\hsb))—l—wb((f\hbs)))}

Hence,

1
0> 5= {zwb«f [ s, b))+ ml(F | B b,s>>}
b£b
Since the continuation payoffs are always non-negative, it follows from the previous
inequality that
m((f | h,b,8)) <0 forall b#1b (3.9)

This completes the proof of this Lemma. W

Now Lemmas 5 and 7 imply that m(f) = 1 for any PBECr f. This implies that
for any PBECr profile f with probability 1 the seller s reaches an agreement at p =1
with some buyer and m,(f) = 0 for all b. Therefore, f, is stationary for all b (otherwise,
b could economize on complexity and obtain at least a zero payoff). Since some buyer
b accepts an offer of 1 after some history, it follows from stationarity of f, that b
accepts offer of 1 after all histories. This implies that f, is stationary (otherwise, s
could economize on r-complexity and obtain a payoff of 1 by always proposing 1 and
rejecting anything less than 1).

4. Voluntary matching, discounting and complexity

The no discounting assumption is important in establishing the existence a of con-
tinuum of sequential equilibrium prices in Theorem 2.1. Theorem 2.1 works because
after any history there are special ‘relationships’ between buyers and sellers - after
every history for each unit of the good of a seller a buyer has the right to buy it
at a particular price. Each deviation from the equilibrium strategies is deterred by
the creation of a new relationship. With random matching, with probability one, the
two sides of the new relationship will meet in a finite time. With no discounting, the
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length of the period it will take for the two sides to meet is unimportant. However,
with discounting the cost of maintaining these relationships may be high. In partic-
ular, if there is a large number of players, it can take a long time for the designated
buyers and sellers to meet each other. Thus, with discounting it may not be optimal
for players to play the appropriate punishments needed to support the equilibria in
Theorem 2.1. Therefore, discounting eliminates a large number of equilibria. For the
one seller model RW have the following result.

Theorem 4.1. (See RW) Suppose that S = 1 and § € (0,1). Then there exists a
unique subgame perfect equilibrium in which trade takes place at t = 1. Moreover, as
B — oo or as § — 1 the unique equilibrium converges to the competitive price of 1.'3

The above result (in particular the one on convergence of the equilibrium prices
to the competitive one as 6 — 1) seems to throw some doubt on the multiplicity
result in Theorem 2.1. However, RW argue that discounting imposes a cost on having
a relationship because the formation and the termination of matches are random.
But staying with one’s current partner should not be costly. Thus, they consider a
voluntary matching model with an endogenous choice of partner and demonstrate the
existence of a large number of (non-competitive) equilibria even for the case in which
o< 1.

Theorem 4.2. (See RW) If S =1 and the seller can choose in each period the buyer

with whom he wishes to bargain then for each buyer b and any price 1%6 <p<l1
there exists a subgame perfect equilibrium in which b receives the good at the price
equal to either p or 2—6}6, according to whether the seller or the buyer b is the proposer
in their first encounter.

Thus the indeterminacy and non-competitive outcomes are present in the model
with discounting as well, irrespective of the number of buyers. But the strategies
needed to implement the above equilibria for any p < 1 turn out to be unnecessarily
complex. To establish the above result, for any price ﬁ < p <1, RW construct the
following subgame perfect equilibrium strategy profile. The seller s always offers p
and agrees to accept % or more. A buyer always offers % and accepts p or less. In
the first period s picks buyer b and in the case of disagreement s continues with the
same buyer only if the same buyer did not deviate. If a buyer deviates at any period
from the above strategy the seller discontinues the bargaining with him and picks a
new buyer.

The above strategy, clearly, results in an agreement between the seller and buyer
b at price p in the first period. But then why should the seller choose a strategy
that involves selecting different partners depending on the previous history of moves?

Consider a simpler strategy for the seller that always chooses buyer b, always offers p

3No equivalent result is known for the case of more than one seller.
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to b and agrees to an offer if and only if the offer is 2_6%3' Clearly, if all buyers follow
the above strategies, this simple strategy results in the same payoff as before but with
less complexity.

In this section I extend the result of the previous section by showing that with
complexity costs the only sequential (perfect Bayesian) equilibrium of the above game
with endogenous choice of partners is also the competitive outcome. However, as
was mentioned before, I obtain this result by using the stronger rs-complexity (both
r-complexity and s-complexity) criterion.

The notation in this section is the same as in the previous section. In particular,
e,h and d refer respectively to the history of actions in a period, histories of finite
number of periods and the partial history of actions within a period. The definition of
strategy in this section is the same as that in the case of random matching case except
that here, with an endogenous choice of partners, a seller has to choose a partner at
the beginning of each period. Formally, I represent the beginning of each period at
which the seller has to choose a buyer by the null set ® and define a strategy for seller
s by a function

fs: H® x (D;U®) - CUB

where f,(h,d) € Cs(d) and fy(h,®) € B for any h € H* and for any d € D,.!*
Similarly, the automaton representing a seller’s strategy M, = {Qs,ql, T, \s, ps}
has the same structure as before except that the output function of any seller is now
defined by
As 1 Qs X (DsUD) - CUB

where \(g;,d) € Cs(d) and As(gs, ) € B for any ¢; € Qs and for any d € D;.

In the previous section with random matching, r-complexity (measuring the com-
plexity of responses during a period) was sufficient to select uniquely the Walrasian
outcome. In this section, we have an additional element of complexity of behaviour
- the complexity of the sellers’ decisions at the beginning of each period (at the null
set @). I need to strengthen the definition of complexity to capture the complexity of
conditioning the choice of the buyer at any period on the history of the game prior to
that period.

One way of capturing the complexity of sellers’ behaviour at the beginning of a
period is to strengthen r-complexity definition to allow for responses to the null set
®. Thus, in addition to r-complexity, I could require the complexity criterion to rank
strategies (machines) for seller s according to the following complexity criterion.

/ 1

Definition 15. Machine M = { nq; TN, ,u;} is more null-complex than another
machine M; = {Q;,q},T, M\, ;} , denoted by M; =™ M;, if the machines M; and M;
are otherwise identical except that the choice of M; to at the beginning of each period
is simpler than that of M. Formally, M; =" M; if Q; = Q;,q} = ¢, i = p;, Ni(qs,d) =

14 (Clearly, the strategy of a buyer is defined in the same way as in the previous section.
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N\i(qi, d) for all d and for all q;, and there exists a set of states Q, C Q;(= Q}) such

that ) . o
Ai(gi, @) = Ni(qi, @) if g; % Qi_
Ni(qi, @) # (), @) for some g;,q; € Q; '
Ailqi, @) # Ai(q;, ®) Vg € Qi/Q; and Vq; € Q;

However, it turns out that r-complexity together with n-complexity are not suffi-
cient to select the competitive outcome. (I have a counter-example demonstrating the
existence of a non-competitive outcome with this stronger complexity criterion'® for
the no discounting case.)

Another candidate for measuring the complexity of seller’s choice of partners at
the beginning of each period is the number of states of the machine. Clearly, a seller’s
machine needs to have as many states as the number of possible partners he chooses

in the game. Putting it differently, if two machines for seller s are otherwise identical
except that the first chooses fewer partners than the second, then the second machine
must have more states than the first. I shall demonstrate below that s-complexity (a
measure the number of induced rules at the beginning of each period) together with
r-complexity (a measure of the complexity within a period) are sufficient to give us
the selection result.

The main result of this section is stated for the no discounting case since this
appears to be most amenable to indeterminacy type results.

Theorem 4.3. Suppose the seller can choose in each period the buyer with whom
he wishes to bargain (voluntary matching) and 6 = 1. Then, consider any PBECrs
strategy profile f = {fi}iepus. If each strategy f; is finite then 7s(f) = 1 for all s,
mp(f) = 0 for all b, the unique induced price is the competitive price of 1 and each f;
is stationary.'®

The proof of the above Theorem can be found in Appendix B for the case of the
single seller. The result can be established for more than one seller by applying an
induction argument on the set of sellers as in the proof of Theorem 2.3 in Appendix
A.

A very brief sketch of the proof of Theorem 4.3 for the case of the single seller
(Appendix B) is as follows. Fix a PBECrs profile f and let M be the PBECrs machine

15This stronger definition of complexity (r-complexity together with n-complexity) is used in Chat-
terjee and Sabourian (1999).

16As in the proof of Theorem 2.3, the finiteness of f; is only needed because complexity costs
enters the players’ preferences lexicographically in the definition of PBEC-rs. If postive fixed cost
is assumed, as in Definition 10, I do not need to assume that each f; is finite; Theorem 4.3 holds
without this assumption because the positive cost of each state implies that in equilibrium players
use finite machines (strategies).
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profile that implements f. For any b, let
2(b) = mascm ({7 | B)).

First, it is shown that z(b) is the same for all b (this is because the seller selects a
buyer at each period). Denote z(b) by z. Next consider the set of histories

H(b) ={h e H* [m((f | h)) = z}.

The proof of the Theorem considers two separate cases:

(i) For all b and for all h, € H(b) the probability that the seller s chooses another
buyer O’ # b after hy, is zero (I call this property « in Appendix B).

(ii) There exists b, h, € H(b) and another buyer ' # b such that the probability
that the seller s chooses b’ after hy, is positive.

Case (ii) is like the random matching model (there is a positive probability of
choosing another buyer) and the proof that f results in a payoff of 1 for the seller is
similar to that of Theorem 2.3 in Section 3.

When f satisfies case (i), I show that if 7,(f) < 1 then it is possible to construct an-
other machine for the seller that generates the same payoff as the equilibrium machine
M, and economizes on s-complexity. This is done by first showing that if 7,(f) < 1
then s selects at least two buyers b and b’ with a positive probability.. (Otherwise,
there is a buyer that is never chosen on the equilibrium path and thus by r-complexity
he will accept any positive price; this contradicts ms(f) < 1).

Next, let ¢® and ¢” be the states of the equilibrium machine of s after any histories
hy € H(b) and hy € H(V') respectively. Since after any history h; € H(i), i = b,V, the
seller selects only buyer ¢, it can be shown that s obtains the minimum continuation
payoff of 1 — z any time the equilibrium machine of s is in state ¢'. Now consider
another machine M| for s that is otherwise identical to the equilibrium machine of s
except that the two states ¢° and ¢” are replaced by a single absorbing state!” ¢’ that
always chooses buyer b, always offers 1 — z(b) and always accepts an offer if and only
if the offer is not less than 1 — z. Using r-complexity, it is also shown that for any b
the equilibrium machine M, either always accepts an offer of 1 — z or always offers
1 — z. Therefore, (M, My, M_;;) result in an immediate agreement at a price 1 — z
after any history that changes the state of the machine M to ¢’. Thus M/ induces the
same payoff as the equilibrium machine M, and has less states than the latter. But
this results in a contradiction.

5. Concluding Remarks

Finally, I would like to conclude this paper with some remarks and conjectures on the
various ways of extending and expanding the results of this paper.

ITA state is absorbing if once in it the state of the machine in the next period remains the same
for all possible inputs.
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5.1. Equal number of buyers and sellers

The selection result in this paper shows that those on the short side of the market (the
sellers in the model presented) receive all the surplus generated by exchange in any
equilibrium with complexity costs. What if the number of buyers equals the number of
sellers? In this case, complexity considerations do not select among the set of possible
equilibrium prices. But notice that this is consistent with the competitive outcome;
when B = S, any price between 0 and 1 is a competitive price.

5.2. Complexity criterion and alternative machine specification

R~complexity used to obtain the competitive outcome in the random matching model
is a very weak concept. In the voluntary matching model, I use r-complexity together
with s-complexity. Clearly, this division between the two notions of complexity reflects
the machine specification I have adopted in this paper. It is possible that with a
different machine specification (e.g. states of the machines changing within a period)
one may be able to establish the selection results of this paper with a different notion
of complexity.

5.3. Equilibrium concept

In this paper, the equilibrium concept adopted is PBECI. Any profile of strategies
f = (fi)iesus is PBECI if it is both a perfect Bayesian equilibrium and is such that
for all ¢

if some strategy f/ is a best responses to f_; then f = f;

As I mentioned before, PBECI imposes the notion of credibility directly on the set
of NECI profiles. Another way of ensuring that NECI strategy profiles are credible is to
allow strategies (machines) to tremble and consider the limit of Nash equilibrium with
trembles and [-complexity as the trembles become small. This approach is adopted
by Chatterjee and Sabourian (1999, 2000). My conjecture is that the results of this
paper remain valid with this alternative formulation of credibility, irrespective of the
order in which complexity costs and trembles enter the limiting arguments.

There are several different ways of weakening PBECII concept. First, one could
consider the following weaker equilibrium concept (Kalai and Neme (1992) use a sim-
ilar notion of equilibrium).

A strategy profile f is weakly PBECI if it is both a sequential equilibrium and is
such that for all ¢

if some strategy f; is s.t. (f] | h,d) is a best responses to (f ; | h,d) for all (h,d) then f; > f;

This is a weaker concept than PBECII because complexity costs enter lexicograph-
ically among strategies that are best responses at every information sets. Here, I also
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conjecture that the results obtained in this paper remains valid if the weakly PBECI
equilibrium concept is adopted.'®

Another way of weakening the equilibrium concept in this paper is to use solution
concepts based on the notion of strict dominance rather than NECI or PBECII, which
are based on the idea of Nash equilibrium.!® For example, the concept of NECI
strategy profile could be replaced by the following solution concepts.

(i) A strategy f; is strictly dominated with complexity costs | (denoted by SDI) if for
all f] and for all f;

either m;(fi, f—:) > m(fl, f-i)
or mi(fi, f=i) = mi(fi, f=i) and f; - Ji

(ii) Iterated strict dominant solution with complexity costs [ (denoted by ISDI) is
defined as the set of strategies that survive the process of iteratively deleting, at
each round, every SDI strategies.

I could also replace PBECI criterion with some thing like Pearce’s(1984) extensive
form rationalizability together with [—complexity (or with strategies that survive it-
erated conditional dominance together with [—complexity; see Fudenberg and Tirole
(1991) section 4.6 for the definition of conditional dominance). It is my conjecture
that one may obtain the selection results in this paper with these weaker solution
concepts.?’

5.4. Richer models of trade

RW’s model considered in this paper is very simple. It is my conjecture that the results
of this paper hold if one introduces a different matching/bargaining arrangement into
RW’s model. A more interesting issue would be to consider complexity costs in richer
models of exchange than that considered by RW. For example, one could address the
issues considered in this paper with a heterogeneous set of buyers and sellers and/or
models when trade decision is not restricted to a single unit of a good. Or one could
look at exchange economy with many goods where agents trade their endowments se-
quentially. (For example, Gale 1986, 2000.) It is an open question whether complexity
costs allow one to select the competitive outcomes among the set of equilibria in these
richer models of exchange as well.

18Tn contrast to Abreu and Rubinstein’s (1988) selection results with NECs in 2-player repeated
games, Kalai and Neme (1992) demonstrate a Folk Theorem type result for the weakly PBECs
strategies in the repeated prisoner’s dilemma.

9The equilibrium concepts based on the strict dominance criterion are more attrative than those
based on Nash equilibrium because it is easier to justify them in terms of either rationality arguments
or in terms of evolutionary/learning stories.

20In fact, in the proof of the two selection results of this paper (Theorem 2.3 and 4.3), there are
many results (Lemmas) characterising properties of NECr strategy profiles. It is reasonably easy to
show that these characterisation results apply equally well to the set of ISDI strategy profiles.
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5.5. Complexity and the properties of bargaining games

Chatterjee and Sabourian (1999,2000) and Sabourian (1999) also use complexity costs
to select (uniquely) among the large number of equilibria in n-person complete infor-
mation alternating bargaining game and in 2-person one-sided incomplete information
bargaining game, respectively. In particular, these papers try to provide a justifica-
tion for stationary equilibria in these class of dynamic games. Complexity costs,
however, do not always select a unique equilibrium or provide a justification for sta-
tionary /Markov strategies in dynamic games (for example repeated games; see Abreu
and Rubinstein (1988) and Bloise (1998)). This paper, together with Chatterjee and
Sabourian (1999, 2000) and Sabourian (1999) demonstrate that non-stationary equi-
libria of the dynamic models involving bargaining are not always robust to the in-
troduction of complexity considerations. Bargaining games have the following two
properties:

(i) the (last) responder can always end the game by accepting an offer;

(i) the payoffs the players receive depend on the value and the time of the final
agreement and not on the history of play up to the final agreement.

These two features give complexity considerations a role in selecting among a large
number of equilibria in these class of dynamic games.

6. Appendix A: Proof of Theorem 2.3 with an arbitrary num-

ber of sellers

The proof for the case of more than one seller is by induction on the number of sellers
S in the market. In section 3, it was shown that the result holds for the case of S = 1.
To complete the proof of Theorem 2.3 with an arbitrary number of sellers, I need to
show that if any PBECr with less than S sellers results in a payoff of 1 for each seller
then any PBECr profile with S sellers also results in a payoff of 1 for each seller. This
is done by repeating some of the arguments for the case of S = 1.

I shall now provide a brief sketch of the induction argument that follows. The first
four Lemmas in this appendix establish that if Theorem 2.3 holds when the number
of sellers is less than S then in a market with exactly S sellers and for any PBECr
strategy profile that results in a payoft of less than 1 for some of the S sellers, we can
not have an agreement at a price of 1 in any match between a seller and a buyer after
any history. This implies (Lemma 12) that if Theorem 2.3 holds when the number of
sellers is less than S then for any PBECr profile f in a market with exactly S sellers
the following holds

if m5(f) < 1 for some s then 7s((f | h)) < 1 for all s. (6.1)

Finally, the proof of Lemma 14 demonstrates that if Theorem 2.3 holds when the
number of sellers is less than S, then for any PBECr profile with S sellers there exits
a history such that the continuation payoff of some seller is one. (Intuitively, this is
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because at some point a pair of a buyer and a seller will leave the market and by
assumption the remaining sellers will receive a continuation payoff of 1.) But this
contradicts (6.1) unless the PBECr strategy profile results in a payoff of 1 for each of
the S sellers. Thus if Theorem 2.3 holds when the number of the sellers is less than .S
it also holds when there are exactly S sellers.

Now I turn to the formal proof of the above.

Lemma 8. Consider any NECr strategy profile f in a market with exactly S sellers
then if my(f) = 1 for some seller s; then

either there exists a buyer b such that after every history if s and b are matched
with s as the proposer then they will agree on a price of 1 (3 b such that fs(h,s,b) =1
and fy(h,s,b,1) = A for all h)

or there exists a buyer b such that after every history if s and b are matched with
b as the proposer then they will agree on a price of 1 (3 b such that f,(h,b,s) =1 and
fs(h,b,s,1) = A for all h).

Proof. Since 7 (f) =1 for some seller s it follows that

(i) either fs(h,s,b) =1 and fy(h,s,b,1) = A for some h and for some buyer b

(ii) or fy(h,b,s) =1 and fs(h,b,s,1) = A for some h and for some buyer b.

Now consider each of the possibilities in turn. In the first case, by Lemma 1,
fo(h,s,b,1) = A for some h implies that

fo(h,s,b,1) = A for all h (6.2)

But this implies that
fs(h,s,b) =1 for all h. (6.3)

(Otherwise, fs(h,s,b) = p # 1 for some h. But then s could obtain a payoff of 1 and
reduce r-complexity by following a strategy that is otherwise identical to f, except it
always offers 1 to b. Such a strategy guarantees a payoff of 1, given that other players
are following f_, because if the ordered pair (s,b) does not occur then the payoff to
s would be the same as that s obtains if it follows f,, namely 7,(f) = 1, and if the
ordered match (s,b) does occur after some history then, by condition (6.2) s and b
will agree on a price of 1.)

Now consider the second possibility in which there exists b and h such that f,(h, b, s)
1 and f(h,b,s,1) = A. By Lemma 1 this implies that

fs(h,b,s,1) = A for all h (6.4)
But then
fo(h,b,s) =1 for all h. (6.5)
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(If fo(h,b,s) = p # 1 for some h then b could economize on r-complexity and obtain
at least the same payoff, given f_,, as he would obtain with strategy f, by following
another strategy f; that is otherwise identical to f, except that fj(h,b,s) = p for all
h such that f,(h,b,s) = 1. Since, by condition (6.4), s always accepts an offer of 1 by
b, it follows that Wb(fl;, f—b) Z 7Tb(fb7 f—b)-)

Thus it follows from the above two possibilities that either there exists a buyer b
such that conditions (6.2) and (6.3) hold or there exists a buyer b such that conditions
(6.4) and (6.5) hold. m

Lemma 9. Suppose that all PBECr strategy profiles in markets with less than S > 1
sellers result in a payoff of 1 for each seller. Then for any PBECT strategy profile f in
a market with exactly S sellers the following holds:

if me(f) < 1 for some seller s' then 7(f) < 1 for all sellers s

Proof. Suppose not; then 7y (f) < 1 and m4(f) = 1 for some s’ and for some s. Now
consider a strategy f., for s’ such that

fli(h,d) = fy(h,d) V¥ h such that there are less than S sellers
fl(h,s',b) =1 V b and V h such that there are S sellers
fl(h,b,s';p) =R ¥ b,V handV psuch that there are S sellers

Since 7s(f) = 1, by the previous Lemma, we have

either 3b such that fs(h,s,b) =1 and f,(h,s,b,1) = A for all h

or 3b such that fy(h,b.s) = 1 and f,(h, b,s,1) = A for all h (6.6)

Therefore, it follows from (6.6) that if the players choose the profile (f., f o) then
with probability one some seller is going to reach an agreement with a buyer in finite
time. (Otherwise, by the law of large numbers, seller s will meet each buyer b both as
a proposer and as a responder; but then by (6.6) an agreement will be reached.)

Given that (f., f_s) results in an agreement in finite time, there are two possible
set of outcome paths.

Case A: s’ reaches an agreement with a buyer no later than any other seller reaches
an agreement. In this case given the definition of fy the agreement must involve
a price of 1.

Case B: some seller s” # s’ reaches an agreement with a buyer and leaves the market
in some finite time (before s’ reaches an agreement). Since (f,, f_s) is identical
to (fs, f—s), when there are less than S sellers in the market, and since (fy, f_s)
constitutes a PBECTr, it follows from the supposition of the induction argument
that if (fl, f &) is implemented then all the remaining sellers will receive a

payoff of 1 after s” leaves the market.
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Therefore, in both cases (fl, f_s) results in a payoff of 1 for player s'. Since
(fs, f—s) is a PBECT, it follows that 7y (fs, f_s) > ms(fl, f—s) = 1. But this con-
tradicts the assumption that 7y (fy, f &) < 1. W

Lemma 10. Suppose that all PBECT strategy profiles in markets with less than .S > 1
sellers result in a payoff of 1 for each seller. Then for any PBECr strategy profile f
in a market with exactly S sellers the following holds: if 7y (f) < 1 for some seller s
then we have fy(h,s,b,1) = R for all h, for all b and for all s.

Proof. Suppose not; then f,(h,s,b, 1) = A for some b, for some s and for some h. By
Lemma 1 this implies that

fo(h,s,b,1) = A for all h (6.7)
Now consider any strategy f. for s such that

fi(h,d) = fs(h,d) ¥ h such that there are less than S sellers
fi(h,s,b) =1 V b and V h such that there are S sellers
fi(h,b,s,p) =R Vb,V hand V p such that there are S sellers

Clearly, if the strategy profile (f., f_s) is chosen there are two possible set of outcomes.

Case A: some seller s’ # s reaches an agreement with a buyer and leaves the market
in some finite time (before s reaches an agreement). Since when there are less
than S sellers in the market (f!, f_s) is identical to (fs, f—s) and since (fs, f—s)
constitutes a PBECr, it follows from the supposition of the induction argument
that if (f., f s) is implemented then all the remaining sellers, including s, will
receive a payoff of 1 after s’ leaves the market.

Case B: there does not exists a seller s’ # s reaches an agreement with a buyer
and leaves the market before s reaches an agreement (This case can includes
outcomes in which no player leaves the market.) But this implies, conditional
on no agent leaving the market before s, that the match given by the ordered pair
(s,b) occurs with probability 1. But, if (s, b) occurs it follows from the definition
of f! and condition (6.7) that f. can guarantee s a payoff of 1. Therefore, if f!
is chosen the expected payoff to s (conditional on no agent leaving the market
before s) is 1.

Since in both cases the expected payoft to s if (f], f—s) is chosen is 1 and the strategy
profile f is a PBECr it follows that m4(f) = 1. But given the previous Lemma, this
contradicts the hypothesis that 7y (f) < 1. B

Lemma 11. Suppose that all PBECT strategy profiles in markets with less than S > 1
sellers result in a payoff of 1 for each seller. Then for any PBECT strategy profile f
in a market with exactly S sellers the following holds: if wg(f) < 1 for some seller ',
then we have for all s, for all b and for all h

cither  fy(h,b,s)#1  or  fy(h,bs,1)=R.
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Proof. Suppose not; then there exists s, b and h such that f,(h,b,s) = 1 and
fs(h,b,s,1) = A. By Lemma 1 this implies that

fs(hyb,s,1) = A for all h (6.8)
Also since f results in a payoff less than 1 for s’, by Lemma 9, it follows that
ms(f) <1 (6.9)

The next step is to show that there exists A’ such that f,(h', b, s) = p’ # 1. Suppose
not; then s could always obtain a payoff of 1 by choosing strategy f. such that for any
(h,d) € H® x D

1 if h s.t. there are S sellers & d = (s,b") for some b’
F(hd) = A if h is s.t. there are S sellers & d = (V/, s, 1) for some ¥/
SO ) R if h is s.t. there are S sellers, & d = (V/,s,p) for some V' & p < 1

fs(h,d) otherwise.

This is because if the strategy profile (f!, f_s) is chosen, as in the proof of the previous
Lemma, there are two possible set of outcomes.

Case A: some seller s’ # s is going to reach an agreement with a buyer and leaves
the market in some finite time before s reaches an agreement. Since (f%, f ;)
is identical to (fs, f_s), when there are less than S sellers in the market, and
(fs, f—s) constitutes a PBECr, it follows from the supposition of the induction
argument that if (f., f_s) is implemented then all the remaining sellers, including

s, will receive a payoff of 1 after s’ leaves the market.

Case B: there does not exist a seller s’ # s who reaches an agreement with a buyer and
leaves the market before s leaves the market. (This case can include outcomes
in which no player leaves the market.) But this implies that there are three
possibilities: some buyer accepts the offer of 1 by s, some buyer & # b makes
an offer of 1 or by the law of large numbers s will eventually be matched with
b and will receive an offer of 1 (by assumption) from b. Clearly, in all the three
cases s receives a payoff of 1.

Since (f!, f_s) result in a payoff of 1 in both above cases and the strategy profile
f is a PBECr it follows that 7,(f) = 1. But this contradicts (6.9). Therefore, there
exists b’ such that f,(h',b,s) =p' # 1.

Now consider a strategy f; such that

fy(W,d)=p for all (h,d) such that f,(h,d) =1
fi(h,d) = fy(h,d) otherwise
Clearly, the only difference between f;, and f] is that in some instance f, proposes an

offer of 1 (and by (6.8) this is accepted) and f; does not; thus f, induces as much
payoff as f, and it is also less r-complex than fs according to Definition 6. But, by
Remark 3, this is a contradiction. W
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Lemma 12. Suppose that all PBECT strategy profiles in markets with less than .S > 1
sellers result in a payoff of 1 for each seller. Then for any PBECT strategy profile f
in a market with exactly S sellers the following holds: if 7y (f) < 1 for some seller s
then for all s, for all b and for all h we have that 7s(f | h,s,b) <1, m(f | h,b,s) <1
and thus 7s(f | h) < 1.

Proof. This follows from no buyer accepts an offer of 1 (Lemma 10) and from the
ordered pair (b, s) never reaching an agreement at a price of 1 (Lemma 11). W

Lemma 13. For any perfect Bayesian equilibrium strategy profile f in a market with
exactly S sellers the following holds: there exists a history h, a move by nature n (a
match q(.), and a choice of a proposer m,(s) for each match between s and q(s)) such
that some s and some buyer b reach an agreement after history h and after 1.

Proof. Suppose not; then for all h, for all  and for all s no agreement is reached.
Therefore, ;(f) = 0 for every player i. Now consider any s, any b any price offer p > 0
by b to s at t = 1. Clearly, s’s optimal response to any such p is to accept (otherwise,
s will receive zero by the supposition). But then b could obtain a positive payoft by
offering any price 0 < p < 1. But this contradicts m,(f)=0. ®

Lemma 14. Suppose that all PBECT strategy profiles in markets with less than S > 1
sellers result in a payoff of 1 for each seller. Then any PBECr strategy profile f in a
market with exactly S sellers results in a payoff of 1 for each seller.

Proof. Suppose not; then there exists a PBECr strategy profile f in a market with
exactly S sellers that results in a payoff of less than 1 for some seller. Thus, by the
Lemma 12 we have that

ms(f | h) <1 for all s and for all h (6.10)

By the previous Lemma, there exists a h', some move by Nature n and some s’
and some buyer V' such that s’ and ¢’ reach an agreement after h and 7. Now consider
any player s # s’ and a new strategy f. for s such that for all h and for all d

1 if h=~A and if d = (s,b) for some b
F(hd) = A if h=~h and if d = (b, s, 1) for some b
SO Y R if h="n" and if d = (b, s,p) for some b and for some p < 1

fo(,d) ifh£HN

Now let e be the outcome of the period after A', given that Nature has chosen 7
and given that the players follow the strategy profile (f, f s). Then if s plays the
game according to f after history h” = (h', e) then he will receive a payoff of 1. This
is because if e results in an agreement between s and some buyer b then it follows
from the definition of f, that the agreement will be at price 1. Also, since there are
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at most S — 1 sellers in the market after h”, it follows from the supposition and from
the definition of f! (namely that f.(h,d) = fs(h,d) at every h that follows h”), that
all those sellers remaining in the market after h” have a continuation payoff of 1.
Therefore, in either case

ms(fo f-s [ B7) = 1.

But since f is a perfect Bayesian equilibrium it follows that

ms(f | h") 2 7l f5, fs | B).

But the last two conditions contradict condition (6.10). W

Now note that, by induction on the number of sellers, it follows from the last
Lemma together with the proof of Theorem 2.3 for the case of a single seller (in
section 3) that for any PBECT profile strategy f in a market with S sellers 74(f) =1
for every s and thus m,(f) = 0 for every b. This implies that the unique induced
price is 1 and, by the same arguments as that in the last paragraph of section 3, f is
stationary.

7. Appendix B: Proof of Theorem 4.3 for the case of a single
seller s

Lemmas 1, 2, 3, 4, 5 also hold for the voluntary matching model and the proofs of
these Lemmas with in this case with deterministic endogenous matching arrangement
are similar to those found in section 3. In fact, the proofs of 1, 4 and 5 are identical
to those in section 3 and I will not repeat the arguments. Here, I shall only provide
the proofs for Lemmas 2 and 3 when the trading arrangement is voluntary.

Proof of Lemma 2 for the voluntary matching model: Suppose not; then

fo(h,s,b,1) = A for some b and for some h. By Lemma 1 this implies that
fo(h,s,b,1) = A for all h (7.1)

Now consider any strategy f. for s that always chooses player b and proposes 1 and
rejects all offers. Since, with probability 1, s will have the opportunity to make a
proposal to player b in finite time, it follows from (7.1) that f] can guarantee s a
payoff of 1; but this is a contradiction. M

Proof of Lemma 3 for the voluntary matching model: Suppose not; then
there exists b and h such that fy(h,b,s) = 1 and fs(h,b,s,1) = A. Therefore, by
Lemma 1

fs(h,b,s,1) = A for all h.

Also, since f results in a payoff less than 1 there exists A’ such that f,(h',b,s) =p' # 1
(otherwise s could always obtain 1 by always choosing b, always making an offer of 1
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and only accepting an offer of 1; following this strategy results eventually in b making
an offer of 1 to s). Now consider a strategy f; such that

fo (W, d) =p/ for all (h,d) such that fy(h,d) = 1
fi(h,d) = fy(h,d) otherwise

Clearly, f, induces as much payoff as f, and is less r-complex than f, according to
Definition 6. But, by Remark 3, this is a contradiction. W
Now, as in Section 3, for any f, let

me(f) = minpenems((f | (h, 5,0))

my(f) = minpepems((f | 2, b, 5))
b(f) = arg min, (mg(f) +mg(f)) (7.2)
z(b; f) = maxpep=m((f | h))
H(b; f) ={h € H*|m((f | b)) = z(b; f) }

Note also that if f is finite then z(b; f) and mé(f) are well defined for i = b, s, and
H(b; f) is not empty.

Any strategy profile f defines a probability distribution on the set of outcome
paths in this game. From this, one can compute the probability of any finite history
h € H*, given that the players choose a given strategy profile f. I shall denote such
a probability by 6(h; f). Also, with some abuse of notation, let

0(h,d; f) = probability of (h,d) € H* x D given that the players choose strategy profile f

0(h,b; f) = probability of (h,b) given that the players choose strategy profile f

where (h, b) refers to history h followed by the seller choosing b as the partner in the
next period. Finally, for any strategy profile f, I denote the set of histories that occur
with a positive probability and the probability that s chooses a buyer b for the first
time after history h by Q(f) and ((h, b; f), respectively. Thus,

Q(f) = {h € H*[0(h; f) > 0} }
Bhb, f) = > 0(h, N b; f)

h'cxb

where

¥ = {h = (e!,...,e") € H* |e” does not involve a match between s and b for all 7 < t}
Henceforth, I fix a strategy profile f and refer to m%(f), mi(f), b(f), z(b; f),

H(b, f), 0(h,d; f), Q(f) and B(h,b; f) by m?, m{, b, z(b), H(b), 0(h,d), Q and B(h,b)
respectively.
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Lemma 15. Suppose S = 1. Then for any finite subgame perfect equilibrium strategy
profile f we have z(b) = z(V') for all b and ¥'.

Proof. Suppose not; then
z(b') > z(b) + €

for some b, for some b’ and for some € > 0.
Consider any hy € H(V'). Since m,((f | hy)) = 2(b') it follows that

Ts((f | hpr)) <1—2(b') <1—2(b) —¢ (7.3)

Now consider a strategy f. for s that always chooses buyer b, rejects all offers and
always makes the proposal 1—z(b)—e. Clearly, b always accepts the proposal 1—z(b)—e.
Therefore (f!, f ) guarantees a payoff of 1 — z(b) — € after history hy. Since f is a
subgame perfect equilibrium we have 7ws((f | hy)) > ms((fl, f-s | b)) > 1 — 2(b) — €.
But this contradicts condition (7.3). W

Since z(b) = z(¥') for all b and V' henceforth, for any strategy profile f, I shall refer

to z(b) by z.

Lemma 16. Suppose S = 1. Then for any finite subgame perfect equilibrium strategy
profile f with voluntary matching we have mg > mb.

Lemma 16 is a restatement of Lemma 6 for the voluntary matching model. The
steps of the proofs of the two Lemmas are identical and therefore I will omit stating
the proof of Lemma 16.

Definition 16. A strategy profile f is said to satisfy property « if for all b, for all
hy € H(b) and for all b/ # b the probability that s chooses b after hy, is zero. Formally,
f satistfies property « if for all b, for all h, € H(b)

B(hy,b') =0 for all ' #b

Lemma 17. Suppose S = 1. Then for any finite PBECT strategy profile f that does
not satisfy property o we have my(f) = 1.

Proof. Suppose not; then 7,(f) < 1. Now let

€= beBI,I}ngHW 7Tb(<f ’ ha bv 8>) (74)
Since f is finite € is well defined. Also, by 7,(f) < 1 and Lemma 5, we have € > 0.
Now since f does not satisfy property a there exists b, hy, € H(b) and b’ # b such
that
B(hy,b') > 0.
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By the definition of z(b) and Lemma 15 we have that z = 2(b) = m((f | hs)).
Therefore, since the seller’s minimum continuation payoff is at least 1/2(m%+ m%), we
can write an upper bound on z as follows

2 < 1—1/2(mf+mb)—

e 0o, b 0L/ ((F | B b, 0)) + 12 (F | s b)) )

(The third terms on the RHS of the last inequality is simply the sum of the expected
continuation payoff of &' s b after history hy.)
Therefore, it follows from (7.4)

2 < 1—1/2(mb + mb) — % S 0(hy, b V) (7.6)

hext

Thus it follows from (7.6) and from the definition of 3(hs, b") that

_ 8(hs, V)
2

Now, by the same argument as that which follows (3.7) in the proof of Lemma 7, I
now show that

2 <1—1/2(md +md) (7.7)

z>1-—mb (7.8)

8

To show this, suppose otherwise; then

mg<1—z—ef0rsomee>0. (7.9)

Now consider any history h and suppose that s makes a price offer of (1 — 2(b) — ¢)
to b after (h,s,b). Since z = z(b) is the maximum continuation payoff of b, it follows

that this offer will be accepted by b. Thus m? > 1 — z(b) — e. But this contradicts

condition (7.9). Therefore, condition (7.8) holds.
But (7.8), together with condition (7.7), imply that

Eﬁ(hbv blv M)

mfz 1/2(m§+m§)+ 5

Therefore, it follows from Lemma 16 that
— — = /
Tng227n2%—€ﬁ(hb§)’A{)

But since € > 0 and [(hy, b’) > 0 this is a contradiction. Therefore, ws(f) = 1. H

Lemma 18. Consider any subgame perfect equilibrium strategy profile f. Then ms({f |
(h)) > 1— z for all h.
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Proof. Suppose not; then there exists h such that ms((f | (h)) <1 — z — € for some
¢ > 0. Now consider a strategy f, that always chooses the same buyer, always offers
1 —z—e€ and rejects all offers. Since everyl6 buyer always accepts any offer below 1—z
it follows that m,(f., f s | (h)) =1 — 2z — € > m,(f | (h)). But this is a contradiction.
|

Lemma 19. For any NECr strategy profile f we have
fs(h,b,s,1—2) = fo(h',b,s,1—z) for all b, h and h' € H*

Proof. Suppose not; then there exists b, h and b’ € H* such that fs(h,b,s,1—2) = A
and fs(h',b,s,1 — z) = R. Now consider another strategy f! that is defined by

[(h,d) =R ifd=(b,s,1—2)
!(h,d) = fs(h,d) otherwise

Clearly, fs is more r-complex than f! according to Definition 6. Thus, by Remark 3,
to obtain a contradiction I need to show that 7s(fs, f—s) < ms(fL, f—s). But note that
fs and f! differ only on the set H = {(h,b,s,1 — 2) | fs(h,b,s,1 — 2z) = A}. Since,
after any h, f, always rejects (b, s, 1 — z), it follows from the previous lemma that
Ts(fos fos | yb, s, 1 —2) > 1 — 2.
Moreover, by the definition of H, we have
7s(fs, fs | h,b, 8,1 —2) =1— 2 for any (h,b,s,1—z) € H.
Therefore, my(fs, f-s) < ms(fl, f_s). But this results in a contradiction. W
Lemma 20. For any NECr strategy profile f and for any b we have
fo(h,s,b,1 — 2) = fo(h',5,b,1 — 2) for all h and h' € H*®

Proof. Suppose not; there exists b, h and h’ such that fy(h,s,b,1—2) # f,(h',s,b,1—
z). Now consider f; € F}, that is otherwise identical to f, except that f;(h,s,b,1—z) =
A. Clearly, f] is less r-complex than f, according to Definition 6. Moreover, after every
history f] induces at least the same payoff as f, (this is because f, by rejecting 1 — z
can guarantee at most a payoff of z). But, by Remark 3, this is a contradiction. W

Lemma 21. For any NECr profile f and for any b
either for all h we have fy(h,s,b,1 —z) = A (7.10)

or for all h we have f,(h,b,s) =1—z (7.11)
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Proof. Since for any b we have m,((f | h)) = z for some h and m,((f | h)) < z for all
h, it follows that for any b

either (i) there exists A’ such that fs(h',s,0) =1— z and f,(h',s,b0,1—2) = A
or (ii) there exists A’ such that f,(h',b,s) =1 — z and fs(h,b,s,1 —2)=A

If (i) then condition (7.10) follows from Lemma 20. If (ii) then it follows from Lemma
19 that fy(h,b,s,1 — z) = A for all h. But then after any (h,b, s) buyer b can obtain
a payoff of z by offering 1 — z. Since z is the maximum payoff that b can obtain after
any history it follows that b always offers 1 — z (otherwise b could always economize
on r-complexity according to Definition 6 and obtain the same maximum payoff of
1—2). |

Now I need to define some further notation. For any such M; = {Q;, ¢!, T, \i, pi}
and for any state of the machine q € Q;, let M;(q) = {Q:,q,T, i, p;}. Thus M;(q)
is otherwise identical to the machine M; except that the initial state of M;(q) is ¢
whereas the initial state of M; is q}.

Also, denote the machine induced by M; = {Q;,q}, T, \;, p;} after a history h by
(M; | h). Thus (M; | h) = M(u;(g},h)), where, as in Section 2 condition (2.1), with
some abuse of the notation, j1;(¢}, h) denotes the state of machine M; after any history
h. Similarly, denote the profile of machines induced by M = (M;, M_;) after a history
h by (M | h).

Lemma 22. Suppose f is a PBECrs. If m4(f) < 1 then there are at least two buyers
b and b/ such that if players follow the strategy profile f then s is matched with both
buyers with a positive probability.

Proof. Suppose not; then given f, after every history that occurs with a positive
probability s chooses some fixed b as his partner. Let M = {M;};cpus be any NECrs
machine profile that implements f, where M;={Q;,q}, T, \;, j1; }. Then it follows from
the definition of NECrs that A\;(¢) = b for all ¢ € @Q; (otherwise, s could save the
states that choose partners other than b and obtain the same payoff). Thus

fs(h) =bfor all h

Now, consider any history (h,s,b,p) for any p < 1 and for any & # b. Since
f constitutes a subgame perfect equilibrium and s always chooses b as a partner, it
follows that fy(h,s,t/,p) = A (otherwise, b receive a zero payoff). Thus

7s((f | h,s,b")) =1 for all h and for all &' # b. (7.12)

(If ms((f | h,s,b')) < 1 for some h and for some V' # b, then s can always obtain
a payoff greater than ms((f | h,s,t')) after (h,s,t') by offering a price p such that
1 >p>mn((f|h,s,b)); by the previous argument this will be accepted by ¥'.) But
condition (7.12) contradicts Lemma 4. W
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Lemma 23. Consider any finite PBECrs strategy profile f that satisfies property
a. Let M = {M,};,epus be any NECrs machine profile that implements f, where
M;={Qi,q}, T, \;, i} Suppose that f is such that b is selected as a partner at some
period with a positive probability (3(®,b) > 0). Also for any h, € H(b), let ¢® =
ps(ql, hy). Then

m((M | h)) =z for any h such that ps(qt,h) = ¢’ (7.13)

Proof. By property a, we have that (fs | hy) (and thus (M | hy)) always chooses
buyer b after any history A’ such that 6(h'; (f | hy)) > 0. Therefore, since m,((M |
hy)) = z, it follows that (M, | hy) and (M | hy) result in a payoff of z for player b
irrespective of what machines (strategies) the other players adopt. Thus

T ((My | hw), (M | hy), M’ ) = z for all M', (7.14)
Note that by assumption ¢° = p,(qt, hy). Therefore,
(M, | hy) = Mi(q7) (7.15)
Also, it follows from (7.13) that
(M, | h) = My(q) (7.16)
Conditions (7.14), (7.15) and (7.16) together imply

m((My | hy), (M | h)) =

7.17

mo((My | A, M), (M | 1Y) = ({0 | B, (M | ), (M [ ) =2 (74D
But since f is a subgame perfect equilibrium, it follows from (7.17) that

(M | b)) > m((My | ho), (M | b)) = 2 (7.18)

By definition of z, the continuation payoff of b is less or equal to z. This, together
with (7.18), imply that m,((M | h)) = 2. B

Lemma 24. For any finite PBECrs profile f that satisfies property a we have 7y (f) =
1.

Proof. Suppose not; then m,(f) < 1. Then by Lemma 22 there exist at least two
buyers b and ¥’ such that s is going to be matched with both b and o' with positive
probability.

Let M = {M,}icsus be any NECrs machine profile that implements f, where
M;={Q;,q}, \i, u; }. Consider any h; € H(i) for any i = b,b. Let qs(i) = ps(qs, hi).
Now define another machine M for s that is otherwise identical to M, except that
the pair of states Q, = {qs(b), ¢;(V')} is replaced by a single absorbing state ¢’ that
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always chooses b, always offers 1 — z and accepts a price offer if and only if the price
offer is no less than 1 — z. Thus M, is defined by {Q,/Q,,q", \,, i1, } where

7' =qlif ¢! ¢ Q, and ¢V = ¢ otherwise

for all ¢ € Q,/Q, and for all d € D, U ®, X.(q,d) = \s(q,d)

No(q', D) =b, N,(¢',s,b) =1—zand N,(¢',b,s,p) =Aifandonlyif p>1—2

Ve € E and Yq € Q,/Q, (q,e) = ps(g e) if p15(q,¢) ¢ Q, and (g, d) = ¢’ otherwise
Ve € B, y(dre) =

Clearly, M, is more s-complex than M. Now I demonstrate a contradiction by showing
that 7s(Ms, M_,) = mws(ML, M_y).
First, let
H, = {h € H*®

Now, note that by Lemma 23 we have

n(as,h) €Q, }

if h € H, then m,((My, M _, | h))=1—z (7.19)
Also, from the definition of M, and Lemma 21 we have
if h € H, then m,((M. | h), (M _, | h)) = ms(ML(¢), (M 4 | h)) =1 — z. (7.20)

The first equality in (7.20) follows from M, being in state ¢’ after any h such that
ps(qt, h) € Q. The second equality in (7.20) follows from M!(q') always selecting b,
always offering 1 — z and always accepting an offer if the price offer is no less than
1 — z, and from Lemma 21 (b either always accepting 1 — z or always offering 1 — z).

If, on the other hand , h such that if b ¢ H, then by the definition of M the profiles
(Mg, M ) and (M., M) behave in exactly the same way at any period following such
h. This, together with (7.19) and (7.20) imply that 7, ((M., M_g | h)) = ms((Ms, M_g |
h)) for all h. But this is a contradiction because M, has a fewer states than M, and
yields the same payoff as M,. B

Now Lemma 17 and 24 imply that for any PBECrs profile f we have 75(f) = 0 for
all s and thus m,(f) = 0 for all b. This implies that the unique equilibrium price is one
and, by the same arguments as that in the last paragraph of section 3, f is stationary.
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