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1. Intreduction
In Jennrich (196%9) the model
(1) y(n) = z(n; 0) + x(n) ; n=1l, ,,., N

is considered; where x(n) is a sequence of i.i.d. (0, 02) random
variables and z(m; 8) 1is a continuous but non-linear function of
B8 e®;, ® being a compact set in r® . We shall use & second subscript

when referring to a particular coordimate of 9@ so that B@j is the

jth coordinate. Of course z(n; 8) must also satisfy other requirements,

which we digcuss below.

Our main purpose here is to extend thege results to the cage
where x(r) is genmerated by & stationary time serfes. Our main theorems

are true under the following sssumptions.

A. The sequence x{n) is of the form

= Sl -]

x(m) = se(Dela~§) , YU’ < @
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Kational Science Foundatiom and the Ford Foundatiom.



where the a(j) are i,i.d. (0, 1), The spectrum, f(A) =

o ‘
(2“)-1| To(j)expi jhl2 , 18 a continuous functionm.

An alternative specification, which is in some ways more plausible;
is that x(n) 1is stationary with absolutely continuous spectrum and con-
tinuous spectral density function and satisfies a uniform mixing conditign
(see Rosemblatt (1956) or Rozamov (1967) p. 180. Rozanov calls a process
satisfying this condition, completely regular). We shall speak of A’
when we refer to the condition of this last sentence. Rather than state
two forms of our theorems (or complicated forms of them) we shall merely
give some comments below each theorem relating to this altermative

specification or to a weakening of A .

We have a number of examples in mind which are of the form of
(1) and are specifically of a time serieg nature. Other examples not

so closely related to time series are given in Jennrich (1969).

(1) y(n) = pRelz(a-1+x(m), |0] < 1-5, 5> 0
0

(i1) y(n) = Bz(n-8)+x(n), lo| <1

(i{1) A linear time series regressioa in which some_subset, 8,
of the regression coefficients is constrained to lie within a compact

set while the remaining coefficients, B , are not comstrained.
(iv) y(m) = Bl+62césn9+5331nn9+x(n), {o] <m
The examples (i), (ii), (iv) may be greatly gemeralised and

we have considered them in these special forms only for simplicity of

understanding. In these examples the parameter set has been divided into



a subset B and a subset O , the former occurring limearly. Such prior
information about B as exists may be too vague, in relation to the evidence
of the data, to be worth using and it may be preferable, or necessary, to
leave P unconstrained since this may reduce the calculations. To avaid
too complex a notation involved in a (rather trivally) more general treat-
ment we gshall continue to act as though 6 comprises all parameters and

lies in a compactum. However all of the theorems stated below continue

to hold if a subset does not lie in a compact set provided that subset

occursg linearly.

We adopt the following comditions, which are extemsions of those

introduced in Jeanrich (1969).

B. Uniformly 4n 9' , 8" the following limitg exist almost

surelyl and independently of the x(m) .

lim % T z(m;0")z (wn; 0%), n= 0,f1, fZ, sos o
N = m=1l

We shall call this limit 7¥(n; 8', 6") and 7(n; 8) when &' = 8" = ¢ .

These conditions on 2z(n) do not appear unreasonable in relation
to examples (i), (ii) and (ifi). For example in (i)2 if the limits,
N

lin & T z(m)zmn) = 7,(0) , o= o, 1, ...
z e
N~ = m=l

1In future we shall omit the words almost surely when we speak of this
mode of convergence.

ZWe hope to consider (ii) in more detail later. In practice only z{n)

and not z(n-9) wmay be observable and this makes necessary further
congiderations,



exist, as would be the case for a stationary ergodic process with finite

gecond moments, then

1 N ' = j k1 N
lm & T z{m, 8" )z (mtn, 8") = Llim T T(8°)~ (8") ¥ vz (m-3)z (m-k)
N 1 N~ o 1

- 2203 em (-0,
Q

by dominated convergence, and this limit is uniform in o' , @" for

fe'] , fo"] g 16, 8>0.

However the example (iv) does mot satisfy the condition B
since, for example, N l5coss'ncoss"n converges to zero for B' F g“
(mod 2m), to 2 for 6' = " # 0,7 (mod 2r) and to unity otherwvise.
Nevertheless all of our theorems are true for example (iv) (and its general-
isation to more than one frequency). In order to show how the conditions
of the theorems may be generalised and also because of its importance we
shall give a separtate proof for this example, umder the slightly stronger
condition 2|a(j)| < w, (It does not seem easy to state simple conditions

which usefully generalise B; and C below; so as to include (iv)),l

1Since completing this work I have seen Walker (1969) which also treats

the estimation problem of example (iv), following Whittle (1952). {Walker does
not consider our general case). However the two treatments are substan-
tially different. Walker assumes that e¢{n) has finite fourth moment and
requires a faster rate of convergence for the a(j) . He also establishes
only convergence in probability. The problem is also somewhat differently
formulated. Walker considers the simultaneous estimation of 513 sz 533

6 and parameters specifying the «(j) . Since we show that "asymptotically
efficient estimation"” (see below) of the: B,, B,, By, @ does mnot depend

on detailed knowledge of the structure of the process generating x(n) we
do not congider this part of the problem. Of course some such knowledge
would be needed for a measure of the precision of the estimates but this
could be obtained from a “smoothed" estimate of the spectrum of x(n) at
the estim te of eo .



In connection with the proof of asymptotic normality we aleo

need to assume the following.

C. The function z(m; 8) is twice differentiable in & . Cagll

l;(n; 8) , z;k(n; 8) the derivatives with respect to 6, and to Bj, ek .

b
Then uniformly in 6 and 8' , 6" the following limite exist

N - N -

lim N 2 z'(m;0)z’ (mén;0), 1im L vz{m, 8" )z" {(ming e") .
N i k N ik

B~  m=]l N 1

It follows immediately that the first of these limits is fazy(ngeﬂ, 8")

/39339;1 evaluated at 0" = 8" = § . We shall call this ?sk(nge) .

Again these conditions are not met in example {(iv) but again we

ghall establigh separately the validity of the theorem.

The generalised nature of =x(n) leads to the need to use a
generalised form of least squares estimation, givem that estimation is to
be based on a gquadratic function of the data. Experienc@_suggests that
a moretractable formulationwill be achieved if the data is first Fourier

trangformed. We thus introduce

NG it

1 2]
-3 N {vp N immt

wylog) = (i) © Zy(nye IR ARDERC LD

wt = 2ﬂt/H F] t = 03 15; 068y N"’Jl o
2 R e . -
We put Iy(wt) = lwy(mt)l . Iyz(mt,e) = wy(wt)wz{wtge)g I {w,;0)

Iwz(uat;e)l2 . We shall omit the argumemt variable ¢ _ or the argument

t

variable 6 if this will not cause confusion,



We introduce the gquadratic functien

1 o) D
Q@ = 5 T {1 G, G002 (Iyz(wt,e)EJ 5o, )

where &(A) iz a comtinucus ever functior of A esatisfying &(%) >

0, A ¢ [0, m]. Of course &{\)

(il

1 leads to
1 ¥ 2
Q(8) = 375 ?(y(n)mz{nse)) .
If £0) >0, M e [0,n] then £()°), if known, could be used and
evidently this will be an optimal choice. However the need firsgt to
estimate O in order to estimate £{(i) makes it necessary to consider

more general cases. We ghall show that, subject te A amd B, and

uniformly in 8 we have

B
3) Lim Qu (8) = 3= [ 8(A)E(MAA +
Neso ‘

i
%}‘;‘ ‘rm:@')d Ek; O)+F(h; 9@)~2F(}%;ey 90)}

where F(A;0',08") and F(Xh;8) = F(A:6,8) are defined by

™
y(n;8',8") = r @i
=TT

"RiF(r 0", 8%) .

We call the right side of (3} Q{8) . The existence and essgential

uniqueness of these functions follow from Bochmver'’s theorem. The matrix

——

F(a;0") F{»;8%,8")

FO;0,0')  F(X,07)




has Hermitian non-negative increments over any interval of A wvalues.

When C ig satisfied then

kil

¥ dF . (n:8)
jk - jk

where
'ir’jk(x;m = azF(x;eﬂ, e")/ae;ae“

k -
8t = g" = g

Finally we require the following.
D, 7,(0;8)+y,(0;8 )-27,(0,8,8.) >0 ; 0 %86 .

This condition seems rather unimportant inm the senge that if it
fails for some o % Go then one can hardly expect effectively to distinguish

between 6 and C by means of a quadratic criterion. If we call Ri(e)
the second term on the right im (3) then D evidently implies RQ(B) >
R, (8))=0, IR o, if ¥(\) >0, xe¢ [0,n]. Of course D fails in

example (iv) if 5§+B§ = 0 , so that our theorems give no information

about this case.

2. The Strong Law of Large Numbers

We first point out that under A and B
1]

¢ (n:8) = N&I T x{m)z (min; Q)
xz m=1

convergeg, uniformly in 6 , to zero. Indeed uniform convergence will
follow from peointwise convergence and the equicontinuity in n of the

sequence cxz(nge) . The latter follows, as in Jenmrich (1969), frem

the evaluation



N 2
T2(mn: 0’ )" +
1

N , . n

K1 so(ming 69 wzw'lmqm;eg)z(m;ej

. :
chz(n;e')-=<:m(t!=;e“)l2 <N L sxamy? {n1
i

1
S K)e+ 7,(0;8° Hy, (0;0")-27(0;07,0%)

for any ¢ > 0 and N sufficiently large. To establish the poimtwise
convergence we prove the more general Theorem 1 below; which is of some

independent interest,1

eorem 1, Let x(n) be weakly statiomary with zero mean, sbsolutely
continuous spectrum and uniformly bounded spectral density. If

N

E%W(R)2=a<e
N 1
then
lN
lim N Zy(n)x(n) = 0, a.s.
Mo 1

Proof. We first observe that the condition on the y(n) implies that

o
Zgn)zlnlﬁ <w, §>0 .
1

N

Indeed 1f we put s(N) = Nul zy(n)2 then
1
2 =1
s(n)~s(m=1) = y(n) " /n-n “s{n=-1)

and the result follows from the convergence of E{s(n~1)/nl+8] and of

1The required regult follows from Hannan (197Q), Chapter IV, Theorem 9.

However the proof of that theorem is faulty. The statement of that theorem
appears to need modification though ite essential content is valid as can
be seen from Theorem 1 below and the comments following its proof.



® ]sgnzm {n 12[
p > :
1 n
N =8
(the latter because TI(s(n)~s(n-1)) remains bounded and n converges
1

monotonically to zero).

.In the second place the variance of c(N) = Hmlry(;n)x(n) iz,

putting" y(n) = E{x(@m)x(min)? ,

N ' AL ]
T Iym)y(n)y(n-m) = N zf |5y (m)e ™ 2¢ (73an
1 -1t

mmlﬁlm(nﬂ e

Now consider c(M?) s M=1, 2, ,.. . Then by Chebyshev's inequality and

N~2

A

the Borel-Cantelli lemma this converges to zero. Moreover

————

2
sp |- (/M) M) |

2
MENS (1)

L 1)’ 2
<E M T |x(n)y(n)|
M2+1

2 2
- (M+1) .3 (1) ‘
< KM b Eml,)z-lf’ £y ! 375 ym?,

w1 w1

td

where K may be taken independent of M .
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However

2
= (b+1) e 2
EM3 b y(r.l)2 <K E%(w
M=1 M2+1 o=l n :

so that, again by Chebyshev's inequality and the Borel-Cantelli lemma

(and the fact that ((MF1)/M = 1)

lim{;z sup 2]c(N)mc(M2)| =0 ,
M- Y\ M QNI=<=(H+1)

Thus the theorem is established.

The theorem may be considerably extended. For example if
x(n) 1is weakly stationmary, c¢(N) has variance B(NTG) , a > 0; it
continues to hold; by much the same proof. Altermatively if x(n) 1is an

in the theorem and Nl-as M<K, a> % , then N

l-":'!(‘J' (R) converges to

zero, again by much the same proof,
We may now egtablish (3) . Consider

-1
(4) LI

where Ixz = wx(mt)wm(wt;e) . For any ¢ > 0 we may find M sguch that

M
sup[3(0) - 201+ 12lysiet™ < ¢,
A -M

where 8(n) is the nth Fourier coefficient of &(A) , since that function

is continuous. Thus (4) is dominated by

R P Ez‘ @) 1-'Bhe ms0)
eN T xZ 2 -MGB M /Cxz '\ N
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The second term now converges to zero uniformly in & while by

[

Schwartz's inequality the first is dominated by e(cx(o)cz(o;e))2 )
Thus (4) converges to zero uniformly in ¢ .

In almost the same way we may show that, uniformly in & ;

1 oy <8 ) < Lopt :
(5) Iliim § T8 (w38 50 ) = ZWF $(A)dF(A;9,8 )
—n =T

while if x(n) 1is ergodic (with finite variance)

1

(6) lim N

N~

L
DT (w.) = 5= r_,ﬁw‘)f("’)d"’ :

Thus the validity of (3) is established. Now we have the following result.

Theorem 2. If x(n) is as in Theorem 1 and B, D are satisfied,

3(N) >0, e [0, W] and B minimises an(e) then 8 converges

N 3N

Bo . If A is satisfied Q@N(e converges to Q(eo) .

QN)

23

(9@) <0. Let 8 be a subsequence con-

&m

Proof. Consider Q@N{GQN)UQQN

verging to ©' + eo . From the convergence of (4) and the left hand side

of (5), uniformly in 6 , it follows that Q§m(e@m>=Q@m(eo) converges to
Q(e‘)~Q(eo) >0 , This shows that 8' = o, and establighes the first

part of the theorem. If A holds =x(n) 1is ergodic and (6) holds also

and asince QQN(eo) then converges to Q(eo) the second part of the
theorem follows also.

Of course it is only the ergodicity of x(n) which is required

for the second part of the theorem and this is certainly implied by the
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uniform mixing condition mentioned in the imtroductiom. For the truth

of the theorem it may also be observed that it {s only the uniformity of
convergence of lezz(m;en)zﬁm+n,6“) in any compact subset of @ x @,
excluding the diagonal &' = % , which is used so far as (5) is con;e;‘nedo
Thus for example (iv) the failure of the uniformity of the convergence“of
this quantity at 6' = 8" ig not of concern im relatiom to (5). However

the proof givem above that cxz(nze) converges uniformly to zero does

now break down since the failure of B prevents us from using the methed
of proof adopted above of the equicoantinuity of the cxz(n;e) . However,

under A , and T|a(j)| < © we now establish that

N
1
€3] sup  |% x(n)el ™|
|n|em T 1
converges to zero and this will establish the truth of Theorem 2 for

example (iv) also.

Now
IR T S B gy 1{n=)A
N tx(n)e =N T afje Te(n-jle .
1 - 1
Thue
1 1
‘ N 2 » N 2
@) {Eeup|N ! m@e™?r < Wl g)agi)] { Esup|sela-get (BT 2
A 1 =0 A 1
1
g ® N=1 2
<® glap] w0 E<|>;ne(m)e(m+n>D
- m=11

where the sum ¥°' omits the term for n = 0 and the term EE iz over
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N~|n| terms (dependent om § ). Since E'E(Ezme(m)e(m-l-n)[) <
1

! [E():‘me(m)e(m-!-n))2'}2 = 0(113/2) {(uniformly in j ) we see that (8) is

-1/4

o(N ) . Now choose B >2 and put N(M) equal to the smallest integer

not greater than M5 . Then ag N proceeds through the sequence N(M) ,
M=1, 2, ... the expression (7) couverges to zero, However also

A o1 500

@] R in inA
sup sup 8" mx(a)e -N T x(nle |
A N(QM)<NCN(MFL) 1 1

. NOsD)
< N T |x(o)]
W(M)+1

whoge mean square is dominated by mm)"z[nwl)mnmﬂz = O(Hﬂﬁ) .
Since also NM)/N(Q41) = 1 we see that (7) converges to zero and the

following theorem is established.
Theorem 2'., If A 1is satisfied, Q(eo) >0 and e@‘N ; Pgy minimise

QQN(Q’B) for example (iv) then GE»N s B@H converges to (?90S Bo and
an-(eﬁn, B@N) Converges to Q(eoﬁ B@> i

The condition A could be replaced by A’ but in this case a
fourth moment condition seems also to be needed. Thus if k(n,p,q) 1is the

fourth cumulamt between x(m), x(mn), x{wip), x(whq) we might require that

- ‘
E. TZZ kin;psg) <o,
npq

=g

(If A is satisfied and ¢(n) has finite fourth moment then E 1is
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satisfied also). If A’ + E bolds (in place of A) then Theorem 2°

continues to hold also. We omit the proef.

3. The Asymptotic Normality of the Estimate

We consider first the quantities

N
R | i), .
d@j =N f@lxz (wt, 8)

where the j superscript indicates differentiation with respect to Bj s

Now if A and C are satisfied and &()\) has an absolutely convergent

1/2d sre jointly asymptotically normal with zero

83

Fourier series the N

means and covariance matrix with typical element,

kil .
9 [ 2rE 800 T, (s0)
=T

Indeed

N =t

1 N )
= ¥ /2n z cxij)(n;e) s slmi2kN)l .
=N+1 k=<

This follows from the orthogonality of the expinwt under summation over

t = 0’ 1, 089 N’l o We have

2
E Gii’(n;(;)) =0, {((j)(n e))}g ke (050)

where cij)(o;e) iz the sample mean square of z!(m;8)} . Om the other

3

hand for any ¢ > 0 there ig¢ an M sc that

a
] T &(ut2kN)| < €
|n|>n k==
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D=

The covariance of the N dQ may be shown to converge to (3) precisely

3
as in Hannan (1970) Chapter 7. Thus the asymptotic normality follows from

that of the Hllzcii)(ﬂse)y a] <M, and this €follows from Hamman (1970)
Theorem 10. We now have the following theorem.

Theorem 3, If A, B, C;, D are satisfied for eo interier to @& and $(\)

L

is as in Theorem 2 and has an absolutely convergent Fourier series then N2

(9§H~eo) iz asymptotically normal with zero mean and covariance matrix

1

A BA"’1 where B has typical element (9), for 6 = 8, s and A Thas

typical element

v ~
jﬁﬂ@(m)d i 8g) -

The proof of this theorem is now virtually the same as that in Jennrich

(1969) Theorem 7 and will not be repeated.

If £(\) has an absolutely convergent Fourier series and is
never null in f{-m, w] then f(k)wl also has an abgolutely convergent
Fourier series. (This will be so if T|0(3)| < w and £(A) $ 0, A ¢ [~mml.)

In this case we may put & = £ ' which will minimise A 'BA’"" (in the

usual ordering of symmetric matrices). For example in example (ii) with

this choice of & the variance in the limiting distribution will be

=]
1 2 =1
o Fafo) fz(;\,)d;x,

~F
Q

—_—
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1f the condition A 1is replaced by A" together with E thgw

theorem will again hold provided the z;(n;e) are either generated by an

ergodic process with finite variance or satisfy the condition (b)°’ of
Hannan (1970) p. 219. Again we shall not discuss this in detail. Instead

we consider example (iv) once more. We then have the following theorem.

Theorem 3'., If, for example (iv), A and D hold, % satisfies the

conditions of Theorem 3 and T|Q(i)| < » then the partitioned vector

1

Nz (E -B )
5N "o

3/2 0

N (e@N eo)

is asymptotically normal with zero mean vector and covariance matrix

1 0 0 0
0 1/2 0 503/4

0 1/2 "Boz/‘a s 90 * Oj T

2nf(90) 0
2 2
0 303/& °B°2/4 (Boz+503)/6

For eo = 0, m when there is no 603 , the factors 1/2;, 1/4 are to be

replaced by unity.

This is, of course, the regult obtained by Walker (1969), under
gomewhat stronger conditions on x(n) and for § =1 . Of course the

limiting distribution is independent of & .
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For simplicity we give the proof for the_glightly different

case where Bl =0, B2 =1, 63 = 0, and this 1is known, and 90 0, m.

#

» We call this 9

since the only essential difficulty is with GQN

N 7
for short; and shall use Eﬁ for a random variable; such that |3§=0°[ <
|GN~8°] ; for which we have the following relation, at least for N

large enough,

Xz

N3/2 261(3)(%;90) - {3 T8 E“(mtgﬁu)w“(mt;gn)
t t
W (o, i 8w (w, 38 " (w3 B W (w0, 38)

w"(mt;E,,)wx(mt):B w/2(e 8 )

This 1is got by expanding dqgn(e)/de in the first two terms of its

Taylor series about 6 = GN . The existence of the random variable Eﬁ

follows as in Jennrich (1969), lemma 3 .

The proofs that the first two terms in the bracket on the right
produce contributions which cancel and that the fourth produces a comn-
tribupien converging to zero are not difficult and we omit them,l Before
turning to the third term we point out that the left hand side is

asymptotically normal with zerc mean and variance (12ﬁ)ﬁ1§(90)2f(0°) .

This follows from Hannan (1970) Chapter IV Theorems 10 exactly as in

the proof of Theorem 3.

1The convergence of the fourth term to zero is proved in almost precisely
the same way as the proof given in Theorem 2°.
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We now first observe that N(BNEQO) converges to zero. We know that

Quy(8y) = Q(8,) so that

N & ‘ “
%f@(mt) Iz(mt;eo)'FIz(wt:en)'zR Ez(mt;BN)Wz(mt;Bﬂ

converges to zero. Now it is eagily geen that the sum of the first two

terms converges to @(90)/2ﬂ . Alge

(11)

=2 i

N -
%é(mt)wz(mt;eu)wz(mt;eo)

1 N"’ 1; | ‘1 "~ - -}
= on ¥ R Z&cosmeﬂcosﬁm+n)§;}--Es(n+2kN)

n=i+1 ®

where the inner sum is over m such that m and win lie between 1

and N , inclusive. Replacing cos(m+n)eD by cosmeocosno-sinmeosinneo

and recalling that

- -]
7| TH(MH2KN)| <

n -
while
=1
N Ecosmesinneo

converges to zero uniformly in 9§ we see that (11) may be replaced by

N A
(3(e )Y/2m) N! © cosmd cosmd
< m=l N o
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which may be replaced in turn by

N o~
(8(0_)/2m) Kl oy cosm(8y-6, )
m=1

However the second factor is

1

sin{ (H2) (6, -8 )?
(: — N "o i) . (2N)‘1
2Ns1nfiken-eo)1

so that the first term must converge to unity. This can happen only if

N(BN-GO) converges to zero.

Next congider (10). We need to show that
(12) N s (35w, ;6. )
£ t’ "N t* o
converges to a non zerc limit and to evaluate that limit. However in
almost the same way as in the proof that N(BN-SO) converges to zero
we see that (12) may be replaced by
N

2
T, cosmeﬂcosmeo -

(#(6_)/2m) ¥
° m=1

We know that N(Eﬁﬂeo) converges to zero. The second factor is easily
evaluated as asymptotically equivalent to

sinNBN
N8

NeNcnsNeumsinNBN
3 3
N

+ 2

1
z N "o

where we have put = (E&«eo) . Now as NBN - 0 this converges to

Oy

1/6 . 'Thus we have proved we require, namely that N3/2(9N-9°) is

asymptotically normal with zero mean and variance 12ﬂf(e°) .
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The theoremgives, incidentally, the almost obvious result that
at least asymptotically we may as well use 3{A) =1 in the case of

example (iv).

4. Estimation of f£())

Theorem 2 shows that 3(A\) = ’f()s‘,)m1 is optimal. (As before we
now assume that f(A) > 0, A ¢ [=m,n] and that it has an absolutely
convergent Fourier seriesz). We do mot need g0 much to consider the
primed theorems because of the comment at the end of section 3 and we

regtrict ourselves to the other case.

It follows from the proof of Theorem 2 that Q?N(GQN) converges

to
1 [\n
P . Y{A)E(A)AA

Thus taking V¥(A) = cosn\ we see that we may obtain estimates converging
to the autocovariances of the x(n) sequence. Hence if f£f(A) is pre-

scribed ag having a rational spectrum (of prescribed degree for numerator

3

and denominator) then we may obtain, from an initial estimate e@ﬂ s an

estimate, fN(h) , converging uniformly te £(A\) . If QN(B) 5 QN(B)

are Q@N(e) for & respectively fal and f;l then it is almost

-~

immediate that QN(G)-QN(B) converges upiformly to zero. 1If BN
minimises QN(G) it follows that 6, converges to 8 by almost the

same argument as was used to prove Theorem 2 . Non parametric estimates
of f(A) converging almost surely have not beer widely discussed (see;

however, Parthagarathy (1960)). It is much eagier to find conditions
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under which we shall have, for such an estimate,

lim P supJ;N(h)*f(h)l >:1;0 e>0 .

N A 'J

Insofar as that can be eatablished then
sgplQN(e)“QN(e)l

will converge in probability to zero and 6, will converge in probability

N
to B

0
Sp far as Theorem 3 is concerned we consider only
L
2 =Ly, .
N Ef (mt ) I'Kz (wt » 60)

for the remainder of the proof of Theorem 3 would not be affected by the

&

replacement of 1t by fN . Let us arrange the W, into 2M sets, Su 3

of approximately @ = [N/2M] adjacent values centred around 2M frequencies

Ku,With hOHO, 7\M:TT, }&,u’:mhmujugl’ creg M"l: We 88}7

approximately since some of these sets might need to contain mtl values.

-1, -1 -1 S
Then, if w_e S , |£(mt) £O) <l . Call £ 7(N 58)
the average of the I(j)(m 28 ) for w e S . Then this has mean zero
zx Tt 0 t u
1/2

and standard deviation dominated by Km Thus

-l 1
12

a2y ¥ % pee) 1 w0 )0 2w men ) O 0
t a
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1 1
has standard deviation dominated by (KNzlm)u Now agsume that M = o(Nz)

in which case (12) converges in probability to zero. Now replace f(?gu)m1

- -1
by fN(hu) . By a suitable choice of M as a function of N we may

ensyre that this has mean square error which is Oomml) . (See Hannan
(1970) Chapter V). Then

1
(13) ®/2M) £ LEO)

u

=1 1

of - e

fH(h’u) fz‘x (A’u’ 9@)

will converge in probability to zero, Indeed outside of & set; S, in
the space of all histories of =x(n) , dependent on N ; whose probability

contant may be made arbitrarily small for N sufficiently large,
fN(?\“)“1 >a >0 since fN(h) converges (either almost surely or im

probability) uniformly to £(A) . Conditional upon the history being

within S then the root mean squre error of (13) will be dominated by
1 1

szml since {E{(2M)m12[§ii)(kh)|2]?2 iz O(M/N) . (See for example
u

1
Hann (1970), first appendix to Chapter 7). Since Nzlm converges to

zero the replacement of f(A) by fN(A) does not affect the conclugion

of Theorem 3.

Correspondingly, of course; these results indicate how the
covariance matrix needed for the application of Theorem 3 may be estimated.

The replacement of the imdividual I{w ;90) by averages of them over the

gets Sn would reduce the calculations materially amd our just preceding
digcussion shows that this is permissible. For that matter smoothed
estimates of spectra might replace these averages (gsee Hanman {1970)
thapter v) leading to a further reduction in caleulations but we do not

consider that here.
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