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TIME SERIES REGRESSION WITH LINEAR CONSTRAINTS*

by

E.J. Hannan and R.D. Terrell¥#*

1. Introduction

We consider the regression model
(1) y(n) =Bx{n) +u(n) , n=1 ..., N,

wherein y(n) , x(n) , u{n) are vectors of, respectively, q, p and
q components and B is 8 q x p matrix. We shall be considering the
case where there are time series and shall later more fully specify their
nature. We shall be concerned with the situation where B {is, a priori,
subjected to r linear constraints. The simplest such constraint is of

the form
]
v Bw = ¢c

where v and w are known vectors and ¢ is a known constant. However
the most general form of linear constraint is of the form tr(BA') =c
where A is a q x p matrix of known constants. It is best to introduce

a different notation and we introduce the vector B8 which Is got from B

*The research described in this paper was carried out under grants from the
National Science and from the Ford Foundation.

**Apustralian National University.
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by putting the successive rows of B down 2 column of pgq entries. Thus

goes into row (i-1)p+j in B . If the linear constraints are

By

(2) tr(BAfk)"} = ¢ k=1 ..., r

I3 2

then we may rewrite these in the form

23! aik)'p = o,
k E

where ofik} is cbtained from 4{k) in precigely the same way az P wus

obtained from B . We may as well assume the Qf{k} linearly indepencent;

and shall do that.

We introduce the matrix F which projects onto the space spanned
by the vectors o(k} . Thus F§F is a4 symmetric, idempotent pg ¥ pgq marslx
which may be obtained as felicws. We replace the ik} By r new ortho-

normal vectors B(k) i.e. 30 that
BCkI'BLLY = 8L, K L=l .es T,

and each #H{k) is a linear combination of the a{j) . Thus the fik) mavy
be got from the afj) by taking those in some convenient order and ortho-

normalizing them by the Gram-Schmidt process. Since the (k) are fikely

to be rather simple vectors (consiscing largely of zeros) this will not

be a difficult procedure if r 1is not large. In any case omece the #&{k)

are formed then

T
F= ¥ 8kipik)’ .
k=1



We now have
(2)" P)'B=d o k=1, oo x

where dk is the same linear combination of the cj as @B(k) 1is of the
0{j) - Then, let us say, PP = e where e = Edkﬂ(k) R

We now rewrite {1) in the form
(H’ y o= (1 80P +y

wherein (i} y  Thasg yj(n) iz row (j=1)N+n and u has uj(n) in thg
same place: {(ii) Iq # X is the Kromecker (or tensor) product of the q
rowed unit matrix and the matrix X which has xij(n) in row n column
j » By the Kronecker product, A& B, of a px q matrix A and an

r # 8 matrix O we mean the matrix of pr x gqs rows and columng with
aijbkg in row (i-I)r+k , columno (j=1)s+§ . In particular Iﬁ 8 X
consists of the "block,"” X , repeated gq times dowm the diagonal and
with zeros elsewhere.

We may assume that the linear restrictions are homogeneous, i.e.

e 1is null;, for otherwise we form
(" y - (liq 2 Xe = (‘lq @ X)(B-e) +

and rename the left side as ¥ and the vector (B-e} as P . Since
F(f-e) = eve = 0 the linear restrictions are now homogeneous. We hence-

forth do this so that we have the linear restrictions

('*® FB = 0 ,



By way of introduction let us consider the estimation of P under
three sets of circumstances. 1In each case we take the matrix X to be
composed of fixed numbers and u to have null expectation, &fu) =0 .
The three gets of circumstances referred to are obtained by prescribing
€ u(m)u(n)') . They are obtained by taking this, successively, as (i}
czazlq s (ii) szG ;  (di1) T{(p-m) . Here G and the T{a-m) are g x g
matrices. The case (1) is rather unreal and is included for comparison
only. The case {iii) corresponds te w(m} being prescribed as generated
by a stationary vector time series. We may now write down the BLCGE (sub-
ject to the constraints) for each case. Before doing this we introduce
the form of generalized imverse we shall use below. We need this only
for symmetric matrices and indeed only for matrices of the form (ECE) .
for various nom singular pg x pqg matrices ¢, where E =1 = F »

Pq
Then we put

=1 =1
(ECE) = {(ECE + F) =~ F .

The matrix ECE + F is non singular. 1Tt is not difficult to shew that
this result is the same as would be got by diagonmalizing ECE by an orthogonal
transformation, taking the recipreocal of each non zero diagonal element and

reversing the diagomalization., Let us call Fq the Ng x Ng matrix of Nz

blocks of q rows and columms, the (m, n)th block being TI'(n-m) . Thus

under {(iii} Fq ﬂseiuu“) . Now we have the BLUE as

(3.1) {E(Iq @ x'x)E?"l(Iq @ x")y

-1

(3.i1) rEe” T & X' Ne 8 X'y



: -1 -1, =1
3,iii E(I_ 8 X' T RXEY (I @Xx"y .
(3.1i1) {(q )1’“51(q ).(q ,r“qy

We do not mean these to be taken to be formulae from which to compute,
and shall deal with computations later. Indeed (3.iii) involves a very large
computation, 1f g and N are large, since Fq is then a very large matrix,
In any case G and Fq are unknown. The formula (3.i) becames trivial

when E = E1 8 E2 where E., and E are (respectively) g xq and p x p

L 2

symmetric idempotents, for then our restrictions are EXBE2 = B and we have
E;yin) = (E;BE,ixi{n) + Egu(n) .

We may now change to new x and y variables, some of each of which may
then be eliminated, so thaé we reach an unconstrained situation and the

BLUE is got rather trivially. A4s is shown in [9] the formula (3.ii) reduces
to (3.1 if and enly if G & Ip commutes with E and that the two are

. Even then

the same for all non negative ¢ if and only if E = Ié 8 E2
(3,1i11) will not reduce to {i).

We skall in the next section deal with a procedure for estimating
B under conditions (3.iii} which is computationally practicable and asymp-
totically efficient. {For more precise specifications see the next sectiom.)
Indeed we shall essentially reduce {3.iii) te (3.11). These methods are
large sample methods but we feel that they should be adequate for samples
of 100 or even fewer observaticns under many circumstances. We discuss
the point again later. Before going on to these considerations we quote
the covariance matrices of the BLUE of P under conditiens (3.1;ii,iii)

respectively, These are



(i) GZ{E(T.& e X'0)E1 T,
‘=‘1, [] ""1
(ii) {E(G ~ & X'X)E}
(iii) (E(L @ XD NI @ ET!
q q g ’

2. The Estimation of B8 wusing Spectral Methods

One technique1 which migh* be used to estimate B 1ig the following.

We model u{n) as an autoregression, for example

u{n) = Ru(n=1} + ¢(n)

where S(cimie(n)’) = 52(3 . Then

y{n) = Ry{n-1) + Bx(m) = RBx{n~1} + ¢(n) , m =2, ...; N.

Now R, B and RB are estimated by direct least squares regressiom.

The constraints on B will have to be allowed for so that (3.ii} above

will be used with x(n) 1in (1) now replaced by a new set vector composed

of y(n-1) , =x(n) and x(n~l) and B in {1) replaced by a new matrix
composed of R, B and =<RB . The influence of the constraints cn RB
would be neglected, Of course a more general specification of wu{n} could
also be ugsed. If N is small (< 503 then this seems the best available
method. We shail not go into further details but shall devote the remainder
of this section to describing a computational procedure which we shall show
leads to estimates with desirable properties in the next section. The basic
idea is simple. We replace the original observations by their finite

Fourier tramnsforms. Thus we introduce

lThis technique is due to J. Durbin.



N ' N : ‘
(4) a_.(t) = ¥ y.(n)cosny_, b _.{t) = T y. (n)sinny w, = 2mt/N
¥3 tml 3 t ¥1 ral J t’ Tt '

1
t:l,, va g [EN} s

Here [a] is the largest integer not greater than & . We have excluded
t =0 from the set of values of t for the following reason. Among the
xj(n) will be one which wiil be identically unity. If, as is rather likelw,
the linear constraints de not involve the elements of the corresponding

row of B then we may proceed by working entirely with mean corrected

data, using § - Bx to estimate the vector of constant terms in the system

of regressions (where B is our yet to be defined estimate). Working with
mean corrected data ig the same ag excliuding t = 0 , We shall later destribe
how to carry over our procedure te the case where the constraints do involve
the vector of constant terms.

Now we have, using ay(t) for the vector with ayj(t) in the jth

place, and similarly for by(t) 5

{3 ay(_t) = Bax(t) + au(t) P by(t) = Bbx(t) + bu(t)
where

. N N
{4} axj(t) = tilxj(n)cosnwt 5 bxj(t) = tilxj(n)sinnwt

and au(t) is, ¢f course, similarly defined though unobservable. Moreover
au(t) s bu(t) have, approximately, a simpler covariance structure so that
any two componments are approximately uncorrelated if they correspond to

different values of t . For example



Ela, ()b (D) =0, s #¢t.

(These are not precise statements and are inserted here only to make intel-
ligible the procedure, by heuristic arguments.) The covariance matrix of
the auj(t) s buj(t) , for fixed t , will depend upon t but for N
large and for a set of adjacent W this dependence will be weak so that
{5) may be used to estimate B , via (3,ii) above, for each of a mumber
of sets {“frequency bands") of adjacent we ° The remaining problem is
that of optimally combining these different estimates. To do this we need
to estimate the covariance structure of the au(t) s bu(t) and for this
we need an estimate of B . We may obtain this from {3.1i) for example,

- r
or even by means of unconstrained least squares regression. We call B

the estimate got from (3.1i). Then we put

2ﬁ(c) = ay(t) - "ﬁax(t) , %u(t) by(t) - ﬁbx(t) .

We next group the w, inte (M+1) sets of adjacent values. We shall state
a theorem in the next section concerning the asymptotic behavior of the
estimate we shall construct. This will assume that the smalliest number,

m let us say, of W, in any set increases with N at a rate faster than
1

N2 . Thus these sets cannot be too small. If fhe sets are too large the
procedure will have reduced efficiency since a sub-optimal weighting will

be used within the set because in fact the covariance structure of the

au(t) s bu(t) will vary across the set. Thus a compromise must be reached.

The sets need not be all of the same size and indeed one might wich to make



then amaller near t = 0 since here it might be expected that this covariance
structure will be varying relatively rapidly with t . One has in -igd, as

a roughfguide dravn from limited experience, values such as = = 6 for
¥=3, m=l2 for N=200, m=15 for N = 500 . We shall use the
symbol E(j) for gummation over the jth set of adjacent t values, thereg

being m, of the (_ 1in that set. Then we define the following matrices.
t :

i
We allot to j the index values ~j =0, 1, ..., M with § = 0 cerresponding

to the lowest frequency set and j = M to the highest.
= ! ' »m
H (3 z(j){ax(t)ax(t) +b ()b ()Y, 3 =0, 1, ..., H.

Hu(j) is the same as Hx(j) but with a bu replacing &, bx .

-l ' ! - oo-l -~ s
B () = 5(5yfa,(0)a (£)" + B ()b (£)"Y , § =1, ..., M1
K (3) = 2ogy{a (e)b ()" - b (t)a ()", §=1, ..., ¥-1.

Ku(j) is the same as Kx(j) but with a Bu replacing L bx .

= ‘ - ' = LR ] - o
Ko (31) = Z(4y{a (0B (£)7 - bo(B)a ()™}, § =1, ..., M1
Next put, taking ku as null for j =0, M,

~ ~ rs 'S -1a =1
c(i) "ﬂjgnu(j) +Ku(j)Hu(j) Ku(j)) y i=0 1 ..., M

a9 =B DTRWED , F=L ., el

We put {(o) = Q(M) = O .
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We now form the matrices

M
| A
W= J_Eomj) 8 B (§) +Q() & K (D)

M
1 . aL
Vg B IEHL ) - QDR

j=0
again treating Kx B ny as null for j =0, M. From V we form the
vector v in exactly the same way as we formed P from B i.,e. with

vij in row (i=1)p+j . Finally we put
e -1
(6) B = (EWE) v .

Then E is our "efficient" estimate. We have already described how to
invert EWE , namely as (EWE + F)-1 -« F . We shall in the next section
indicate a fairly general set of circumstances under which it will be possible,
for N sufficiently large, to treat E as normal with mean vector £ and
covariance matrix an(EWE)pl .

We close this section with a number of comments.
(a) If the linear comstraints involve the constant term we may proceed by

simply including (let us say) xl(n) =1 among the x.(n) amnd t = 0 among

A
the t wvalues for ay(t) s ax(t) . (Of course ay(O) = N; s ax(O) = Nx .)

These enter only into the sums for j = 0 and they emter with weight 1/2,

so that the additional term in HX(O) ig, for example, 1/2 Nzax(O)ax(O)' .

(b) The matrix inversions involved are of matrices of ¢q rows save for
(EWE + F) which {8 pq rowed. Thus the computational effort here is not

large unless q 1is large. The major effort is in the computation of ay(t) »
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by(t) s ax(t) s bx(t) + Each component of these requires N operations
of multiplication followed by addition and there are (p+q)N components
in all so that there are (p+q)H2 such operations. It is well known that
when N 1s highly composite this effort may be greatly reduced. 1In any
case alternative procedures are available which reduce this effort to rea-
sonable proportions. (See [10], Chapter V, Section 3.} We shall not go
into details here as with the sample sizes occurring in practice in the
present type of problem the techniques we have presented would not be too

costly.

{¢c) There may be a need to test some or all of the linear restrictions.
We take a(l), ..., a(rl) to define r, linear constraints whose validity
is maintained so that it is those defined by a(r1 + 1), i=1 ... Ty,

r, + T, =T, which we wish to test, We now form 51 exactly as we formed

E but using E, = qu - F in place of E, where F, is set from the
first r, of the o(k) . We next form
uy = a'(r1 + jigl ;o d= L e T,
uy = o (ry + DEMED TR 4K, 5 k=1, .., T
We arrange the u, in a column vector u and the u in a squai‘e matrix

3 jk
U . Then our test statistic is
M'v .
Then under the conditions of the theorem in the next section this is, on
the null hypothesis that the additional restrictions are valid, asymptotically

distributed as chi-square with r, degrees of freedom and may be used to

2
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test the validity of these restrictions. The result follows immediately

from that theorem. A particular case is, of course, that where r = 0,

1

80 that E, =1 | .

i 1’ 1~ “pq

2 ™ F

One could, of course, test the restrictions by using the unconstrained
estimate and W in place of E1WE1 but this would clearly be an inferior
procedure since the rise of the first ry constraints improves the efficiency

of the estimate of B .

3. The Asymptotic Justification of the Estimation Procedure

We shall now state a theorem justifying the procedures of Section 2
in an asymptotic fashion. We make the following requirements.1

(1) The vector x(n) 1is of the form

- -] -]

x(n) = £6(Peln=1) , |6 <=
bt - -} bt - - ]

where by |[A|l we mean a norm for the matrix A (e.g. the square root

of the greatest eigenvalue of A'A ) and the e(n) are independent and

ldentically distributed random vectors with zero mean vector and

EIg(n)g(n)') = Iq » The matrix [I'(n) introduced in Section 1 is related

to the G(j) by

1T

(7) r = [ e™epoan,
-7
£(A) = 517; hOOROD* , h(A) = Te(j)et?

1'l’he validity of unproved statements in this section is establighed in [10],
Chapter VII.
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wherg the star indicates trgnsposition cqmbined with conjugation. 1In (7)
we mean”the integrael to be evaluated element hy.element of the matrix £{i) .
We assume that the determinant of f(A) 1is never zero in [-m, ] .

(ii) So far as the x(n) are concerned we adopt specifications in-
troduced 1g {7}. Qe ca}l D(N) the diagonal matrix with dj(N) in the

_'i":h place, j =1, ..., p, and

1
2
(n) .

N
d.(N) =
j nhl *3

Then we require that the following limits exist and have the values shown

lim dj(N) =w, lim |x (N)|/cI (N) =0,

lim (m)x, (m+n) d, (N)d, (N) =p..(0) .
N—w(njx“><dk> I

T oinn
r e dmjk(k)

Then

pjk(n) =

where mjk(x) is a complex valued function whose real and imaginary parts

are signed measures. We rewrite this relation as

I~ in?\,

R(n) = aM(»)

-

where R(n) 1is a matrix with pjk(n) in the typical place and M(A) is

similarly defined from the mjk(k) .
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(1ii) Let m(N) be the minimum of the m, used in the procedure

]
of the last section. We require that

jr—=

im N2/m(N) = O .
Ko

(iv) Let M(N) be the maximum of the mj used in the procedure.
We may define Hu(J) s Ku(j) in terms of au(t) s bu(t) in the same
way as for Hx(j) s Kx(j) . Of course Hu s Ku are not computable.

Then, for A the midpoint of the interval in which the W, used in forming

Hu(j) , Ku(j) s WwWe may regard
F) = (2mim)7YH () - K (D]

as m estimate of f(A) . Now we keep M\ fixed and, choosing m so that
m(N) <m < M(N) and m of the w, nearest to A, we allow N, m(N),

M(N) to increase. Then we require that

Y2 202001 - 50 €2 < w

lim M(N)

Newen
where a 1s independent of A . This condition imposes a restriction on
the speed with which M(N) (and hence m(N) ) may increase. 1In order that
this may not conflict with (iii) it is necessary that £(\) be reasonably

smooth, for example differentiable. (For details see [10], Chapter V.)



l4a

(v) There is a firal requirement which calls for some explanation.
This is that Iq @ D(N) commute with E . This is the same as saying that
IP # D{N) commutes with F . The restriction seems to be 3 mild one for
the following reason. So long as dj(N)/dk(N) converges to a finite, non
zero, limit we may always modify our definition of B(N} so that dj(N)
= dk(N) and the theorem stated below remains true. This medification has
no effect on the computations in Section 2. Tf this can be done for all
pairs (j, k) then D(N) may be made into a scalar multiple of the identity

matrix and the condition is always met. Since D(N} could often be taken

P

to be N Ip a wide range of cases is already included. In general we may
divide the columms of B into sets so that all pairs of columms j, k,
in the same set have dj(R)/dk(N) converging to a finite non zero limit.
Then any linear restriction must refer only to elements in the same set

of colummg. Insofar as dj(N)/dk(N) does not so converge, as would be

the case with xj(n) =1, xk(n) =n , then it seems unlikely that re-
strictions would invelve both simultanecusly. It may be possible to modify

the theorem stated below when Iq @ D{N) does not commute with E but

the statement will be more cdmplicated and we have not attempted to do that.

Theorem: Under conditioms (i), (1i), (iif), (iv) the asymptotic distribution

of (Iq & D(N))fE - B) converges to the multivariate normal distribution
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with zero mean vector and covariance matrix

. - p 1
(8) E [ {2nf(M)Y ~ 8 aM(V)'E ,
-

which is algo

N ) P -1, -
;::(Iq 8 D(N)){‘E(Iq 2 X )rq (1q f X)E} (Iq & D(N)) .

The matrix (8) is consistently estimated by

(9) N‘l(xp 8 n(u))(EWE)“I(:p 8 D(N)) .

By the integral in (8) we mean the matrix of pq integrals obtained
by taking each element of {zﬁf(h)1-1 2 dM(M\)' . We shall not give a proof
of this Theorem. It is not essentially different from the main theorem of
[8]. (See also [10], Chapter VII; Theorem 10.) 1t provides an asymptotic
justification for the procedures of Section 2 since using (Ié # D(N))(E - B)
as normal with zero mean vector and covariance matrix estimated by (9) is

the same ag uvsing P as normal with mean £ and covariance matrix

8wyt .

4, Applications

System of Demand Equations

The estimation of a system of demand equations subject to the constraints
derived from the theory of Consumer Demand {6] is a suitable area of appli-
cation for the suggested methods. As an aid to exposition only we assume

that the demand equations are linear after logarithmic transformation of
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of the variables and further that the system involves only two components

of demand. A system containing a more realistic number of commodities would
introduce much greater detail, which would, we believe, be less rather than
more illuminating and would require an excessive amount of space to present.

The variables in the system are

, logp; (n)
logq, (n)

y(n) ={ ; x(n) = logp,(n)
long(n)

log O(n)

where qi(n) is the quantity purchased of the ith commodity, pi(n) is

the price of the ith commodity and 0(n) a measure of income or of total
outlay in the system, in period n .

We will consider three sets of restrictions, homogeneity, aggregation
(Cournot and Engel) and symmetry (see [6]). The main illustrative points
arise in the implementation of each set; taken separately, but later a brief
comment is given on combining any of the sets.

Previous investigations of systems of demand equations (see [1},

{2], [3], (4], [5] and [11]) have either directly specified or implicitly
assumed that the nature of E{(u(m)u’'(n)) is of the form {i) or (ii) dis-
cussed in Section 1. We derive the projection matrix, E , associated
with each geparate set of restrictions and discuss its relevance for esti-
mation under the different specifications for the variance covariance matrix
for the disturbance vector. It is however, in the part F plays in the
evaluation of (EWE)”1 in (6) when the third specification is appropriate

that we 2re most interested.
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The homogeneity restrictions for the given situation are

a&(l) = (1, 1, 1, 0, 0, 0) 3 aﬁ(z) ={0, 0, 0, 1, 1, 1)

and so

(L) = (IA/E)aﬁ(i) y 1=1, 2.

The projection matrix E to be used in the restricted estimator is then

of the form, E = 12 f E1 where the matrix E1 is

(2/3) ) ('1/3) » (“1/3) 3
E, = | GUD, @, Uy, | .
-1/3) , (-1/3), (2/%)

Because of this structure of E , when the homogeneity restrictions
are employed alone, the simple least squares procedure in which =x(n) is
replaced by P(n) and B by BP' is efficient for all ¢ (see specifi-

cation (ii)). The matrix P is

2//% -1//6 -1//6
P = 0 -1//3 1//3
1//3 1//3 1//3

and is the orthogonal matrix such that PE1P° is diagonal with units in the
main diagonal save for a zero in the last place.
Uader the more general third specification on é(u(m)u'(n)) the ef-

ficient estimate is (3.iii{) . It has already been emphasized that the compu-~
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tation 1is bgst_pursued through (6) and thus requires the evaluation of

(EWE)-l , which for E = Ié ®# E. and E, as specified above, becomes

1 1

= 4 o

(205 @ B (E; +8() 8 B (DB + T, 83 L1 -1 a3 1,1!
3

where 13 is a vector of three unitas.
Lf it is desired to impose and test the validity of the aggregation

restrictions alone then we define the vectors,
aA(l) - (wl’ 0, 0, W 0, 0), G‘A(Z) = (0, ¥y 0, o wz’ 0)

aA('?,) =0 0 w, 0, 0, w), ¢ =-w, C, =Wy, cy=1

where wi(n) " (pi(n)qi(n)lﬂ(n)) »y 1 =1 2., An adjustment is first made
to the y and £ vectors by substracting (Ié ® X)e and e respectively
where e is simply

3

e = 3 d @#(k)
kﬂldk

where
Prk) = @ /M, d(e/m, haVwiaud, ka1 2 3.

Now the matrix E 1s of the form L, 8 I where the matrix L is

2 @13 2
wz -ww_
2 1¥2
L ==
2 hz -, W wz
2¥1 1
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an# because E 1s of the general form E, @ E2 then the B.L.U.E. under
the first specification for g(u(m)u(n)') is simply obtained, as stated
in s§ction 1, by unrestricted ordinary least squares regression after changing

to new x and y variables. The estimate relevant to specification (ii)

becomes
-1 -1 - -
(e Ly & @' ™ME ! 8 xhy
and the evaluation of (E‘iill')-1 needed for the estimate (6) using specifi-
cation (iii) 1s obtained from

-1
1 - A
u zj}[LzC(j)Lz 2 Hx(j) + LZQ(j)Lz 8 Kz(jH + (Ll 8 13)> -l 81,

where

—Wz "WW_
.
h2

L

- ]

‘szl w

It is conceivable that the only restrictions that an investigator may
wish to impose are the symmetry restrictions. The system considered here

has only one indepéndent symmetry restriction defined by
aé(]-) - {(llwz): 0, 1, ("llwl): 0, -1}

and

B = (/&) , £ =V 2+ AfD) + (ped)

The associated projection matrix,
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wlwzzz-(wlwz) 0 W, -1 0 -y
0 zzwlwz 0 .0 0 0
E =t Y1 0 (32‘1)“1“2 V2 0 V1Y
Jﬁz""1"2 -1 0 ¥y ("1"2"2" (wyfvy)) O Yy
0 0 0 0 gzwlwz 0
vy 0 “Wy¥, v, o (gz-l)wlw2

can be clearly shown not to be of the form E. 8 E, and therefore E as

1 2
defined above is used in (3(i)), (3(ii)) or in (6), the computationally con-
venient form for (3(iii)), depending on the appropriate specification for
g(u(m)u'(n)) .

In practice some coﬁbination of these sets of restrictions will pro-
bably be employed. Suppose for example that both the homogeneity set and
the aggregation set of restrictions were required. This combined set of
restrictions‘only becomes linearly independent when one restriction is dropped;

then the remaining restrictions are orthonormalized and the projection matrix

F is of the form

F=L 81_+L, AU,

1 3 2

where

0| =
i
e
-
-

-
H
-

2 ] (I3 - U) and {s again of the form El 8 Ez as

was the case for the aggregate restrictions alone. The minor simplification

“Thus E 1is L
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of the proposed estimates under various disturbance specifications resulting
from the fact that g = L2 - | (I3 = U) 1is not pursued here because it follows
anslogous lines to those discussed for aggregation restrictions alone. A
combination of the homogeneity set and the symmetry set of restrictions

or of the aggregation set and the symmetry set of restrictions may also

be posited. In both of these cases the combined set of restrictions is
linearly independent and since E ig'not of the form E1 f E2 the esti-

mates are simply obtained from (3(1)), (3(ii)) and (6).
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