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Abstract

We show that if limit orders are required to vary smoothly, then
strategic (Nash) equilibria of the double auction mechanism yield com-
petitive (Walras) allocations. It is not necessary to have competitors
on any side of any market: smooth trading is a substitute for price
wars. In particular, Nash equilibria are Walrasian even in a bilateral
monopoly.
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1 Introduction

As is well-known Walrasian analysis is built upon the Hypothesis of Perfect

Competition, which can be taken as in Mas-Colell (1980) to state: “...that

prices are publicly quoted and are viewed by the economic agents as ex-

ogenously given”. Attempts to go beyond Walrasian analysis have in par-

ticular involved giving “a theoretical explanation of the Hypothesis itself”

(Mas-Colell (1980)). Among these the most remarkable are without doubt

the 19th century contributions of Bertrand, Cournot and Edgeworth (for an

overview, see Stigler (1965)). The Cournot approach was explored inten-

sively, in a general equilibrium framework, in the symposium issue entitled

“Non-cooperative Approaches to the Theory of Perfect Competition” (Jour-

nal of Economic Theory, Vol. 22 (1980)).

The features common to most of the symposium articles are:

(a) The strategies employed by the agents are of the Cournot type, i.e.,

consist in quoting quantities.

(b) The (insignificant) size of any agent relative to the market is the key

explanatory variable for the tendency of strategic behavior to approx-

imate perfect competition and, in its wake, to lead to Walrasian out-

comes (Mas-Colell (1980), p.122).

The extension of pure quantity strategies from Cournot’s partial equilib-

rium model of oligopoly to a general equilibrium framework, however, does

raise questions. Underlying the Cournot model is a demand curve for the

particular market under consideration which enables the suppliers to relate

quantities, via prices, to expected receipts. If such a close relationship is not

provided by the market, then it seems more natural to us that an agent will

no longer confine himself to quoting quantities, i.e., to pure buy-or-sell mar-

ket orders. To protect himself against “market uncertainty - or illiquidity, or

manipulation by other agents 1”, he will also quote prices limiting the execu-

tion of those orders, consenting to sell q units of commodity j only if its price

is p or more, or buy q̃ units only if its price is p̃ or less. By sending multiple

1to quote from Mertens (2003)
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orders of this kind an agent can approximate any monotone demand or sup-

ply curve in a market by a step function, as was done in Dubey (1982, 1994).

Here we go further and give each agent full manoeuvrability. He places a

continuum of infinitesimal limit-price orders, which in effect enables him to

send any monotone, continuous demand or supply curve for each commodity.

The upshot is a striking result: provided only that all commodity markets

are “active” (i.e. there is positive trade in them), and no matter how thin

they are, strategic (Nash) equilibria (SE) coincide - in outcome space - with

competitive (Walras) equilibria (CE). Our result thus provides a rationale,

based on strategic competition, for Walrasian outcomes even in the case of a

bilateral monopoly. This brings it in sharp contrast to Dubey (1982, 1994),

where it was necessary to have competition on both sides of each market (in

the sense of there being at least two active buyers and two active sellers for

each commodity) in order to conclude that SE are CE .

The models in Dubey (1982, 1994) rely on competition that is “cut-

throat” in the spirit of Betrand. Any agent can take over a whole chunk

of some buy (sell) order from another by quoting an infinitesimally higher

(lower) price. Our model is not based on the possibility of such takeovers.

Instead it requires that agents’ behavior be “smooth”, with commodities

bought (sold) in infinitesimal increments of continuously non-increasing (non-

decreasing) prices. The key point of our paper is that such smooth trading

is a substitute for cut-throat price wars, and also gives rise to Walrasian

outcomes. A monopolist may be in sole command of his own resource, but

nevertheless he will be reduced to behaving as if he had cut-throat rivals,

once smooth trading sets in. A related phenomenon2 was analyzed in Coase

(1972) (and following Coase (1972), a long line of literature, see e.g., Bulow

(1982), Gaskins (1974), Schmalensee (1979)). There, too, a monopolist was

shown to forfeit his power, but this happened in the setting of durable goods

which could be sold sequentially over time to infinitely patient customers. In

our model the monopolist loses power even with perishable goods which are

traded at one instant of time. But we do need, unlike Coase, smooth strategic

behavior on both sides of every market as well as convex preferences.

It must be emphasized that our model is based on decentralized markets.

2We thank John Geanakoplos for this reference.
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Each commodity j is traded against fiat money (“unit of account”), and

orders sent to the markets k 6= j for other commodities k, do not affect

how market j functions. Thus we do not allow an agent to link his buy-

order for a commodity to whether the sell-order for another commodity goes

through.3 The only connection between different commodity markets is the

budget-constraint of agents, requiring them to cover purchases out of their

sales receipts. Our model is therefore an order-of-magnitude simpler than

that of Mertens (2003), where cross-market limit orders are permitted. In

spite of this paucity of our strategy-space compared to Mertens (2003), we

exactly implement 4 CE via our mechanism (modulo activity in markets). In

contrast, SE form a large superset 5 of CE in Mertens (2003) (though, we

hasten to add, the implementation of CE was never the aim there, rather it

was to well-define a mechanism that allowed for a rich menu of cross-market

limit-orders).

For better perspective, we consider two somewhat contrasting versions of

our model. In the first version agents act under the optimistic illusion that

they can exert perfect price discrimination: sell to others, starting at the

highest quoted market price (or buy, starting at the lowest). The equilibrium

point (EP) that we define does not correspond to a strategic equilibrium (SE)

of a standard game, because we allow agents to speculate that they could

trade at much better prices, via unilateral deviations, than any proper game

form would permit. Nevertheless we think that EP is an interesting concept

in its own right.

In the second version we turn to a standard market game, akin to that

of Dubey (1982) and Dubey (1994). Here each agent is grimly realistic and

realizes that he will be able to buy (sell) only after higher-priced buyers

(lower-priced sellers) have been serviced at the market, and that the prices

he gets are apropos his own quotations, not the best going.6 To accommo-

3That would be like allowing agents to submit demand functions based on the whole
price vector.

4Indeed, our result may be interpreted in terms of the mechanism design literature (see
Section 3).

5For instance, the SE of Shapley’s “windows model” (see Sahi and Yao (1989)) are also
SE in Mertens’ model.

6We could make the same assumption also in the first market model. However we would
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date economies in which CE consumptions could occur on the boundary7, it

becomes needful here to introduce a “market maker” who has infinitesimal

inventories of every good, and stands ready to provide them if sellers renege

on their promises of delivery. It turns out that, at our SE, the market maker

is never active. But it is important for agents to imagine his presence when

they think about what they could get were they to unilaterally deviate.

Though the two versions are built on quite different behaviorial hypothe-

ses, we find their equilibria (the EP and the SE) lead to the same outcomes,

namely Walrasian.

Our model shares some of the weaknesses of the Walrasian models. In

particular, since it is based on the static concept of a strategic equilibrium,

our model does not address the question of what dynamic forces bring the

equilibrium about and ensure that individual strategic plans become jointly

compatible. But it goes beyond the Walrasian notion in at least three im-

portant ways:

(a) It is not assumed that the economic agents face perfectly elastic supply

and demand curves.

(b) Prices are not quoted from outside but set by the agents themselves.

Each agent, operating in a market, realizes and exerts his ability to

influence price.

(c) Strategies of the individuals (i.e. supply and demand curves submitted

to the market) need not be based on their true characteristics (prefer-

ences and endowments).

lose economic insight, as to what happens to the consumers’ and producers’ surplus, when
agents behave like monopolists, trying to exert perfect price discrimination .

7If we restrict to economies in which CE consumptions are strictly interior, the market
maker can be dispensed with.
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2 The First Version: Optimistic Conjectures

and Equilibrium Points

Let N = {1, . . . , n} be the set of agents who trade in k commodities. Each

agent i ∈ N has an initial endowment ei ∈ IRk
+ \ {0} and a preference

relation
>∼i on IRk

+ that is convex, continuous and monotonic (in the sense

that x ≥ y, x 6= y implies x Âi y). We assume that
∑
i∈N

ei À 0, i.e. every

named commodity is present in the aggregate.

An agent may enter a market either as a buyer or a seller, and submit

to each of the k commodity markets a marginal demand or supply curve.

Formally, let

M+ = {f : IR+ → IR++| f is continuous and non-decreasing}
M− = {f : IR+ → IR++| f is continuous and non-increasing}.

Then a strategic choice σi of agent i is given by

σi = (di
1, s

i
1; . . . ; d

i
k, s

i
k|di

j ∈ M−, si
j ∈ M+, for j = 1, . . . , k).

In the interpretation di
j(q

i
j) is the price at which agent i is willing to

buy an infinitesimal, incremental unit of commodity j, once his level of pur-

chases has reached qi
j. The supply curve has an analogous meaning. Denote

σ ≡ (σ1, . . . , σn) and let Sσ
j , Dσ

j be the aggregate supply, demand curves.

We suppose that agent i acts under the optimistic conjecture that he

can exert perfect price discrimination, i.e., that he can sell (buy) starting at

the highest (lowest) prices quoted by the buyers (sellers). This means that

agent i calculates his receipts (or expenditures) on the market j as the inte-

gral, starting from 0, under the curve Dσ
j (or Sσ

j ). The generally non-convex

budget-set Bi(σ) for σ = (σ1, . . . , σn), is then obtained by the requiring that

(perceived) expenditures do not exceed (perceived) receipts, i.e.,

Bi(σ) = {ei + t | t ∈ IRk, ei + t ∈ IRk
+,

k∑
j=1

Eσ
j (tj) ≤

k∑
j=1

Rσ
j (tj)}
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where

Eσ
j (q) =

q∫

0

Sσ
j if q > 0, 0 otherwise,

Rσ
j (q) =

|q|∫

0

Dσ
j if q < 0, 0 otherwise.

(Note that tij > 0 (tij < 0) means that i buys (sells) j .)

The collection of strategic choices σ will be called an equilibrium point

(EP) if there exist trade vectors t1, . . . , tn in IRk such that

(i) ei + ti is
>∼i -optimal on Bi(σ) for i = 1, . . . , n

(ii)
n∑

i=1

tij = 0 for j = 1, . . . , k

(iii)
∑

i:tij>o

tij = sup{qj | Sσ
j (qj) ≤ Dσ

j (qj)} for j = 1, . . . , k

Conditions (i) and (ii) require that agents optimize and that markets

clear. Condition (iii) says that no trade can be enforced, i.e., it stops when

the (marginal) supply price for the first time exceeds the demand price; and,

at the same time, in equilibrium all trades compatible with the submitted

strategies are actually carried out.

An EP will be called active if there is positive trade in each market.

First let us establish that at an active EP all trade Tj :=
∑

i:tij>0

tij in

any commodity j takes place at one price, pj.

Lemma 1. The curves Sσ
j and Dσ

j coincide and are constant on [0, Tj] at

any EP .
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Proof. For any j, let Gj := {i : tij > 0}, Hj := {i : tij < 0} Then

∑
i∈Hj

Rσ
j (tij) =

∑
i∈Hj

|tij |∫

0

Dσ
j(1)

≥
Tj∫

0

Dσ
j

≥ Dσ
j (Tj) · Tj

≥ Sσ
j (Tj) · Tj

≥
Tj∫

0

Sσ
j

≥
∑
i∈Gj

tij∫

0

Sσ
j

=
∑
i∈Gj

Eσ
j (tij).

The third inequality follows from (iii); the other four follow from monotonic-

ity of the supply and demand functions.

Hence

(2)
n∑

i=1

Rσ
j (tij) ≥

n∑
i=1

Eσ
j (tij) for j = 1, . . . , k.

From the monotonicity of preferences, and the fact that each agent has op-

timized, we have

(3)
k∑

j=1

Rσ
j (tij) =

k∑
j=1

Eσ
j (tij) for i = 1, . . . , n.
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(2) and (3) together imply:

(4)
n∑

i=1

Rσ
j (tij) =

n∑
i=1

Eσ
j (tij) for j = 1, . . . , k.

From (4) it follows that all the inequalities in (1) must, in fact, be equalities.

Therefore

(5) Sσ
j (Tj) = Dσ

j (Tj) =: pj

and

(6)

Tj∫

0

Dσ
j = pjTj =

Tj∫

0

Sσ
j .

Since by (iii), Dσ
j ≥ Sσ

j on [0, Tj] we get, from (6), and the monotonicity of

D and S

(7) Dσ
j = Sσ

j on [0, Tj].

In view of the Lemma 1 we can talk not only of the allocation but also the

prices produced at an active EP . These are the constant values of Sσ
j , Dσ

j on

[0, Tj] for j = 1, . . . , k. Note that these prices are positive by assumption.

Proposition 1. The prices and allocation at an active equilibrium point are

Walrasian.

Proof. Let σ be an EP with trades t1, . . . , tn and prices p . We need to show

that, for each i , ei + ti is
>∼i -optimal on the set

Bi(p) := {ei + t : t ∈ IRk, ei + t ∈ IRk
+, p.t = 0}.
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W.l.o.g. fix i = 1, put

J1 := {j : t1j > 0}
J2 := {j : t1j < 0}
J3 := {j : t1j = 0}
Tj :=

∑

i:tij>0

tij

δj := min[|t1j |, Tl : j ∈ J1 ∪ J2, l ∈ J3]

Nj := {α ∈ IR : |t1j − α| < δj}
Fj := Ej −Rj

(Since the EP is active, δj > 0). Now we claim, for j = 1, . . . , k:

Fj is continuously differentiable and strictly increasing on Nj(8)

and its derivative at t1j is pj.

This follows from the continuity and strict positivity of Sj and Dj, and from

Lemma 1 which implies:

(9) Fj(q) coincides with Ej(q) = pjq if j ∈ J1, 0 ≤ q ≤ t1j

(10) Fj(q) coincides with −Rj(q) = pjq if j ∈ J2, t1j ≤ q ≤ 0

(11) Fj(q) = pjq if j ∈ J3, q ∈ Nj.

W.l.o.g. fix commodity j = 1. Since F1, . . . , Fk are all strictly increasing

and
k∑

j=1

Fj(t
1
j) = 0, and F ′

1(t
1
1) = p1 > 0, it follows from the implicit func-

tion theorem that there is a neighborhood V of (t12, . . . , t
1
k) in N2 × . . .×Nk

such that if (t2, . . . , tk) ∈ V then there is a unique t1 which satisfies the

equation F1(t1) + . . . + Fk(tk) = 0. Thus we have an implicit function

G(t2, . . . , tk) = F−1
1 (−F2(t2) − . . . − Fk(tk)) defined on V which is clearly

continuously differentiable. Finally the point t1 = (t11, . . . , t
1
k) belongs by
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construction to the smooth hypersurface M = {(G(t2, . . . , tk), t2, . . . , tk) :

(t2, . . . , tk) ∈ V } ⊂ B1(σ) and, by (8), the tangent plane H to M at this

point has normal p .

Since we are at an EP, e1 + t1 is
>∼1-optimal on (e1 + M)∩ IRk

+. Suppose

that there is some x ∈ H+ := (e1 + t1 + H) ∩ IRk
+ such that x Â1 e1 + t1.

By continuity of
Â∼1 we can find a neighborhood Z of x (in IRk

+) with the

property: y ∈ Z ⇒ y Â1 e1 + t1. But since M is a smooth surface there exists

a point y∗ in Z, such that the line segment between y∗ and e1 + t1 pierces

e1 +M at some point z∗ ∈ (e1 +M)∩ IRk
+ (see Fig.1). By convexity of

>∼1, we

have z∗ Â1 e1 +t1, contradicting that e1 +t1 is
>∼1-optimal on (e1 +M)∩IRk

+ .

We conclude that e1 +t1 is
>∼1-optimal on H+ . But we have e1 ∈ H+ (simply

set trades to be zero, i.e., pick −t1 in H). Therefore, in fact, H+ = B1(p).

Since the choice of i = 1 was arbitrary, the proposition follows.

................. Insert Figure 1 approximately here!.................

Proposition 2. If the trades t1, . . . , tn and prices p À 0 are Walrasian, then

they can be achieved at an EP

Proof. For any i let

J i
1 ={j : tij > 0}

J i
2 ={j : tij < 0}

J i
3 ={j : tij = 0}

f i
j = any strictly decreasing function with f i

j(t
i
j) = pj

gi
j = any strictly increasing function with gi

j(t
i
j) = pj

and consider

si
j(x) =

{
0 if j ∈ J i

1 ∪ J i
3

max{pj, g
i
j(x)} if j ∈ J i

2}

di
j(x) =

{
0 if j ∈ J i

2 ∪ J i
3

min{pj, f
i
j(x)} if j ∈ J i

1}
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Then it is readily checked that these strategies constitute a EP and produce

the trades t1, . . . , tn at prices p.

3 Strategic Market Games: Implementing Wal-

ras Equilibria with an Infinitesimal Market

Maker

The foregoing analysis can be recast in terms of strategic (Nash) equilibria

(SE) of a market game. Of course it is well known8 (see Maskin (1999))

that CE cannot be implemented as SE unless CE consumptions are strictly

in the interior of Rk
+. By suitable restrictions on agent characteristics (e.g.,

ei ∈ Rk
++ and i’s indifference surface through ei is contained in Rk

++, for all

i ∈ N), one can consider a smaller domain of economies on which interiority

is guaranteed. But we shall place no such restrictions here. Instead we

shall imagine a “market maker”who has inventory of εj > 0 units of each

commodity j ∈ K ≡ {1, ..., k} and who is ready to bring them to market

if any seller reneges on his promise to deliver, thereby giving the buyers

something to look forward to. No matter how small ε = (ε1, ..., εk) is, so

long as it is positive, CE are implemented as SE. The market maker is not

called upon to take any action at the SE of our strategic game. He only

lurks in the background. It is enough for every agent i to believe that the

market maker would make available the infinitesimal inventory ε, were i to

unilaterally deviate from SE and thereby trigger a situation in which some

sellers of commodity j are unable to deliver on their promises. The belief in

the market maker ensures that he is never called upon to prove his existence9

(somewhat akin to the Federal Reserve’s guarantee of private banks, which

deters bank runs and eliminates the need for the Federal Reserve to make

8We are grateful to Stephen Morris and Andrew Postlewaite for references to the mech-
anism design literature.

9Indeed, we can reinterpret the scenario in terms of “refined” SE of the game without
the market maker, relegating the market maker to ε-trembles in the refinement. (See
Section 3.7).
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good its guarantee). We feel that this role of the market maker is not without

economic interest. But the reader who is troubled with the notion can restrict

attention to the smaller domain of economies that have only interior CE. Our

analysis goes through on this domain without the need for a market maker.

The main point of our analysis is not that Maskin’s result on the impos-

sibility of (Nash-)implementation of non-interior CE can be overcome with

an infinitesimal market maker. Nor is it to add to the list of abstract mecha-

nisms which implement the Walras correspondence. Many such have already

been presented (see, e.g., Hurwicz (1979), Hurwicz, Maskin, and Postlewaite

(1980), Postlewaite (1985), Schmeidler (1980) ) – all of which, incidentally,

require at least three agents, in addition to interior CE, and bypass the case

of a bilateral monopoly). We are instead inspired by the fact that the “dou-

ble auction” has a long and rich history, not only in academia, but in real

market processes (see Friedman and Rust (1993) for an excellent survey).

Our analysis reveals that a “smoothened” version of the double auction will

make for efficiency and help to break monopoly power. It thereby implies

that, if the “price-jumps” permitted in bidders’ strategies are reduced by

mandate of the auction-designer, every such reduction will come with effi-

ciency gains. To that extent, we hope that our analysis below will also be

of some interest to applied economists who are concerned with the general

properties of double auctions.

3.1 The Subeconomy EJ

It will be useful to define subeconomies EJ of the whole economy E = (ei,ºi

)i∈N for any subset J ⊂ K ≡ {1, ..., k} of commodities. For a vector y ∈ RK ,

denote yJ ≡ (yj)j∈J ∈ RJ . Then the set of agents in EJ is {i ∈ N : ei
J 6= 0} ,

with endowments ei
J and preferences ºi,J on RJ

+ given by the rule: z ºi,J y

iff (z, ei
K\J ºi (y, ei

K\J).

3.2 Strategy Sets

There is a market for each commodity, as before. An agent must enter each

market either as a buyer or as a seller (and, for simplicity, not both). If

i enters as a buyer for commodity j, he must submit a strategic demand

13



function di
j : R+ −→ R++ which is weakly decreasing, and smooth (i.e.,

continuously differentiable)10. The interpretation is that i is willing to pay∫ x

0
di

j(t)dt units of “fiat money” in order to purchase x units of commodity

j. (There is no endowment of money in our model. But imagine that each

agent can borrow money without limit at zero interest rate, from a bank

in the background, prior to commodity trade and that the loan is due after

trade.)

In the same vein, if i enters market j as a seller he must submit a strategic

supply function si
j : R+ −→ R++ which is weakly increasing, smooth and

(for ease of presentation) satisfies lim
x→∞

si
j(x) = ∞. In addition, i must put up

θ̃i
j > 0 (with θ̃i

j ≤ ei
j) as “collateral” for his intention to sell j. (If si

j = φ, it

is understood that θ̃i
j = 0.) Finally we stipulate that each agent must enter

at least one market as a seller. Thus the strategy set
∑i of agent i is given

by

∑i = {(di
j, s

i
j, θ̃

i
j)j∈K : one, and only one,

of di
j, s

i
j is φ for every j; si

j 6= φ for at

least one j; 0 < θ̃i
j ≤ ei

j if si
j 6= φ;

θ̃i
j = 0 if si

j = φ}
where the functions di

j, s
i
j satisfy the conditions mentioned.

3.3 Outcomes

The market maker does a sequence of computations based on the N -tuple

(σi)i∈N ∈ X
i∈N

∑i of submitted strategies, in order to impute commodity

trades and monetary payments to the agents.

Step 1 Compute the aggregate demand Dj and aggregate supply Sj for

each j ∈ K as before.

Step 2 Compute the set J ⊂ K of markets in which Dj and Sj intersect11

10If i does not enter market j as a buyer, we write di
j = φ.

11At markets j ∈ K\J , the intersection fails to occur either because Sj lies above Dj , or
because one of the curves Sj or Dj is missing (which happens if di

j = φ for all i or si
j = φ

for all i).
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(at, necessarily, a unique price pj - see Figure 2).

Step 3 In each market j ∈ J , compute sales by agents until the price

pj, rationing proportionately quantities offered for sale at the margin price

pj in the event that there is excess supply at pj (see Figure 2). Denote these

sales (θi
j)i∈N . (Some θi

j could be zero, provided si
j = φ or si

j(0) > pj.)

If θi
j > θ̃i

j for some j ∈ J (i.e., i’s collateral fails to cover his imputed sale

θi
j at some market), then i is declared a “defaulter” and forbidden to trade

across all markets, and his collateral is confiscated at every market that he

submitted them to.

Step 4 At each j ∈ J , define

Qj =





∑
i∈N

θi
j, if there is no seller-default at j

εj +
∑
i∈N

min
{

θi
j, θ̃

i
j

}
otherwise

(Recall that εj is the market maker’s infinitesimal inventory of commodity

j). The market maker now allocates Qj to buyers on Dj, starting at the

highest price Dj(0) in Dj and rationing proportionately the demand at the

margin price Dj(Qj) if necessary (i.e., if there is excess demand at this price).

Denote these purchases (ϕi
j)i∈N . If i is already a defaulter in Step 3, he is

ignored; otherwise his net debt is computed:

∆i =
∑
j∈J

∫ ϕi
j

0

di
j(t)dt−

∑
j∈J

∫ θi
j

0

si
j(t)dt

(For dj = φ or si
j = φ, the integral is taken to be zero.) If ∆i > 0, then

again i is declared a “defaulter” and dealt with as before, i.e., his collateral

is confiscated at every market in which he put them up and he is forbidden

from trading.

................. Insert Figure 2 approximately here!.................
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3.4 Payoffs

Agents i ∈ N who are not defaulters (as in Step 3 or in Step 4) buy ϕi
j and

sell θi
j in markets j ∈ J . They obtain payoff ui(xi) where

xi
j =

{
ei

j + ϕi
j − θi

j if j ∈ J

ei
j if j ∈ j ∈ K\J

Defaulting agents i obtain payoff ui(yi) where

yi
j = ei

j − θ̃i
j for j ∈ K.

This well defines a game Γ in strategic form on the player set N . By SE

we shall mean a strategic (Nash) equilibrium in pure strategies of the game

Γ.

3.5 Active SE are Walrasian

Define a market to be active in an SE if there is positive trade at that market.

Proposition 3. At any SE with active markets J ,all trade in j ∈ J

takes place at one price pj. Moreover these prices and the final allocation

constitute a CE of the economy EJ .

Define an SE to be active if all markets are active in it. Then Proposition

3 implies

Proposition 4. The prices and allocations at at an active SE are

Walrasian.

Proof : We will prove the proposition for the case J = K. (The same

argument holds for any J ⊂ K and the corresponding economy EJ .)

First observe that by lowering di
j to d̃i

j so that d̃i
j(0) < Sj(0) and by

raising si
j to s̃i

j so that s̃i
j(0) > Dj(0), any agent i can ensure that he does

not trade and so end up consuming his initial endowment ei. But if i defaults,

his utility is less than that of ei, since he loses his collateral in at least one

market and purchases nowhere. We conclude that there is no default in an

SE.
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Next we assert that (at an SE) in each market j all trade must be taking

place at the intersection price pj. The proof of this is similar to that of

Lemma 1. Indeed, no more than the money paid out by agent-buyers goes

to agent-sellers, implying
∑
i∈N

∆i ≥ 0. But no default also implies ∆i ≤ 0 for

all i ∈ N. We conclude that ∆i = 0 for all i ∈ N . Now if any purchase took

place above pj or any sale below pj in some market j, then (since purchases

[or, sales] occur at prices ≥ [or,≤] the intersection price at every market),

we would have: total money paid out by agents across all markets > total

money received by agents across all markets. This would imply ∆i < 0 for

some i, a contradiction, proving our assertion.

Consider the bundles that an agent i can obtain by unilateral deviation

in his own strategy at the SE. First suppose i is a buyer of commodity j at

the SE.

Case 1 There exists at least one other active buyer of j at the SE, or

else there is excess supply of j at the SE price pj.

In this case, i can buy slightly more of j at the price pj by simply de-

manding a slightly higher quantity at pj. (The maneuver works for i even if

he is the sole buyer of j and the sellers of j have no collateral left to back

further sales. This is on account of the market maker who stands ready to

make up for the sellers from his inventory, enabling i to buy a little more).

Case 2 Case 1 fails, i.e., i is the sole buyer of j and there is no excess

supply of j at the SE price pj.

In this case, i can demand a little more at a slightly higher price (i.e.,

raise the flat part of his demand curve, keeping it flat till it intersects Sj).

Since Sj is continuously differentiable, the extra quantity purchased by i will

vary smoothly with the rise in the intersection price. (The fact that i can

indeed buy a little more is once again assured by the infinitesimal inventory

of the market maker.)

By a similar argument, i can sell a little more of any commodity j′ that

he was selling at the SE, either at the same price or at a price that is slightly

lower and varies smoothly with the extra quantity sold.
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Clearly i can reduce his sale and purchase and get the same price as at

the SE.

Thus it is feasible for i to enhance trade a little beyond his SE trade in a

smooth manner. More precisely, he can get consumption bundles on a smooth

ε-extension M(ε) of the flat part of his achievable set of bundles (where the

extension is computed using prices smoothly increasing/decreasing away from

pj in accordance with the Dj/Sj curves). The situation is depicted in Figure

1, with the curved bold line extended only slightly beyond the flat part, and

representing M(ε).

But the argument in the proof of Proposition 1 applies, no matter how

small the smooth extension M(ε) may be: if x is not optimal on i’s Walrasian

budget set, then there exists a point z∗ on M(ε) which yields more utility to

i than x, contradicting that i has optimized. This proves Proposition 3.

3.6 Walrasian outcomes are achieved at active SE

It is evident that Proposition 4 in fact holds if we allow agents to enter each

market both as buyers and as sellers. The mechanism is well-defined, treating

buy and sell orders as separate and disregarding the fact that they came from

the same individual. Once we enhance the strategy sets in this manner, it is

easy to establish along the lines of Proposition 2 :

Proposition 5. The prices and allocations at any CE can be achieved

at an active SE.

Proof: Consider strategies in which every agents offers to sell his entire

endowment at the CE prices (and to sell more at higher prices, as in the

proof of proposition 2); and offers to buy his CE consumption bundle at the

CE prices (and to buy more at lower prices). It is clear that these strategies

constitute an active SE. ¥

While Proposition 5 is technically correct it can leave one feeling a little

uneasy, because (as its proof makes evident) it is based on “wash sales”,
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i.e., sale of a commodity by an agent who buys it back at the same price.

However, the slightest transaction costs would eliminate such sales. Thus we

develop Proposition 7 in the next section as an alternative to Proposition 5.

3.7 Refined Nash Equilibria

It might be useful to couch our results in terms of equilibrium refinement.

Fix the economy (ei,ºi)i∈N and let Γε denote the strategic market game

when the market maker has inventories ε = (ε1, ...εk) ∈ RK
++ of the various

commodities. Thus Γ0 is the game without the market maker.

We shall say that an SE σ of Γ0 is refined if there exist SE σ(ε) of Γε

such that σ(ε) −→ σ as ε −→ 0.

It is immediate that the market maker can be removed from the fore-

ground and put into the ε-trembles of the refinement process, so that Propo-

sition 4 may be reworded :

Proposition 6. Active, refined SE of Γ0 coincide in prices and alloca-

tions with the CE of the underlying economy (ei,ºi)i∈N .

In fact the word “active” can be dropped in Proposition 6 by strengthen-

ing refinement as follows. Imagine that, in our game Γε, the market maker

further endeavors to bolster trade by offering to buy (and, sell) up to ε̃j > 0

units of commodity j at some common price p̃j and to buy (and, sell) more at

smoothly decreasing (and, increasing) prices. Treating the market maker as

a strategic dummy, and postulating that he creates the commodity and the

money that the mechanism calls upon him to deliver, the game is well-defined

even after some subset J ⊂ K of markets are ε̃j−p̃j – perturbed as described.

We shall say that an SE σ(ε) of Γε is “*-refined” if there exist ε̃j − p̃j – per-

turbations of the inactive markets in σ(ε) that do not disturb12 the SE σ(ε).

It is then trivial to verify (using the convexity of preferences) that *-refined

12A market can be inactive because agents have taken it into their heads to send crazy
orders to it (with sellers asking for exorbitant prices and buyers offering absurdly low
prices). On the other hand it may be open for business, quoting a single price at which
the market maker is ready both to buy and to sell, and nevertheless remain inactive
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SE of Γε coincide with the CE of (ui,ºi)i∈N . (i.e., *-refinement eliminates

the need to postulate activity in all markets in Proposition 5). Now say that

an SE σ of Γ0 is strongly refined if there exist *-refined SE σ(ε) of Γε such

that lim σ(ε) −→ σ as ε −→ 0. Then we obtain:

Proposition 7. Strongly refined SE of Γ0 coincide in prices and allo-

cations with the CE of (ei,ºi)i∈N

3.8 Strong Nash Equilibria

It can be checked that our SE are strong (i.e. no coalition of agents can by co-

ordinatedly changing its strategies - assuming others fixed - Pareto-improve

itself). The proof of this is similar to that of the analogous proposition in

Dubey (1982), hence omitted.

because agents are choosing voluntarily not to go there. The purpose of *-refinement is
to rule out the first kind of inactivity (in which markets are arbitrarily “shut”), but allow
for the second kind (in which markets are “open”, though no one is coming there).
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