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Abstract

A variety of practical situations inveolve supplying a particular commo-
dity by some locations to satisfy the demand at others. If the demands and the
costs of producing varying amounts of commodity at each location are known, then
the question is how much commodity should be supplied by each location in order
to minimize the total system cost. Under some relatively general conditions,
there will be an optimal solution with the property that the vector of amounts
supplied by the various locations is one of a distinguished set of points. In
the case of star networks, this combinatorial nature may be exploited to give a
very efficient algorithm for finding an optimal solution. A numerical example

i1llustrates the results.

#
Preliminary versions of the results of this paper appear in the unpublished

Ph.D. thesis of David R. Strip [13].

+
This work supported in part by the National Science Foundation under
Contract S0C 78-25219.

1Safeguards Methodology (Division #4416) Sandia Laboratories, Albuquerque,
New Mexico 87185

2
Cowles Foundation for Research in Economics at Yale University, Box 2125,
Yale Station, New Haven, Connecticut 06520



introduction

A varfety of practical problems fnvolve supplylng a particular commo-
dity by some locatlons to satisfy the demand at others. 1If the cost of sup-
plying various amounts at each location, the cost of transporting the commo-
dity from one location to another, and the total demand at each location are
known, then one may ask how much of the commodity should each loca-
tion supply to each other location so as to minimize the total cost. In gen-
eral, it will not be optimal for each location to supply enough commodity to
satisfy its own demand; likewise, it will, in general, not be optimal for a
single location to be the sole supplier.

One example of such a supply-demand problem is that associated with com-~
puter networks. Each location has some demand for computer services. Each
location could, at some cost, install an in-house computing facility sufficient-
1y large to handle all local demand for services, Alternatively, the demand at
one location could be satisfied by one, or possibly several, larger central pro-
cessing centers; such an option becomes desirable if the pooling of demands re-
sults in a larger center sufficiently efficient to offset the cost of communica-
tions and other overhead. This example motivates the use of "distributed
service gystems' to describe the above supply-demand problem.

Therearemanyothcrexamplcsofdistributedservicesystmnproblems. These
include designing electrical power networks, trash recycling programs and re-
gional medical care systems, and locating manufacturing plants or regional cen-
ters for bulk mailings. In each of these examples, the designer has the option
of having each demand for a commodity or service satisfied locally. Alternative-
ly, all or part of the demand may be satisfied at some other location; this alter-
native may invelve transportation costs and other overhead but may still result

in lower overall costs due to, for example, economies of scale.



Distributed Service Model

There iz a set N = {1, 2, ..., nt of locations which demand or can
supply a commodity. It is assumed that each location has a non-negative de-
mand and that, at some price, each location can supply any amount of the commodity.
The amount of commodity demanded at location j 1is assumed to be a fixed known
amount dj . If xi,j (i#j) denotes the amount of the commodity demanded by

location j which is supplied by location i , then let S(x) be the total

cost of solution x . The amount d, - must be supplied locally;

Yi£951,
this appears implicitly in the function § . (For concreteness, the reader
may refer to the subsequent numerical example.)

The total cost of the solution x includes the cost of supplying the
commodity, the cost of transporting the commodity, any overhead incurred be-
cause of remote processing, and any costs associated with time delays result-
ing from transportation and remote processing. In general, the cost of ship-
ping Xi,j units from i to j may depend on how much location 1 supplies
to each other location, how many other locations are supplying j , and how
much of the commodity is being shipped on each possible route. Indeed, there
may be several different ways (e.g., alternative shipping routes) for a parti-
cular solution X to arise; if there is more than one way to realize a parti-
cular solution, then it is assumed that S(x) corresponds to the least ex-—
pensive implementation of the solution x . (If there are infinitely many
such implementations, then we assume the problem is sufficiently regular so

that a minimum cost implementation exists.) The optimization problem may be

summarized as follows.



Distributed Service System Problem:

Minimize $S(x) subject to: X, j-i 0 (¥ # 3) .

(Implicit in the above problem, and in subsequent problems, is the con-
dition that zi#jxi,j i.dj ¥j . This condition is not stated explicitly since
it will always be satisfied if there is a positive cost associated with supplying
excess units; alternatively, an appropriate choice of the function § will
assure that the above condition is satisfied even if negative costs are allowed.)
While in come special cases the above problem may be solved using network flow
algorithms [3], this will, in general, not be possible. Since the costs of
transportation need not be linear in each xi,j or additive across Xi,j
and since, in general, the cost of supplying a commodity at a particular location
is non-linear due to the start-up cost of supplying the first unit, the cost
function will, in general, be sufficiently non-linear to make optimization difficult.

It will be shown that if S$(x) 1is lower semi-continuous and piecewise
concave, then the above problem may be transformed inte a combinatorial prob-
lem. Since almost any function can be approximated arbitrarily well by a lower
semi-continuous piecewise liuncar function, this result appears quite general.
Although the combinatorial problem is typically quite difficult to solve, a
class of star network problems exists for which an efficient algorithm is devel-
oped. Since distributed service systems in which each location has only the
options of satisfying its demand locally or at a single central processing fa-
cility (e.g., the components of trash may be separated at the location gene—
rating the trash or at a regional recyceling facility, but typically not any-
where else) correspond to star networks, the efficient algorithm developed be-

low is of potential importance to practical problems.



Relation to Previous Work

Fxisting technical literature related to the design of distributed service
systems can be divided into two major categories; one dealing with the computer
science aspects and the other dealing with the operations research aspects.

The former field includes, for the purpose of this paper, such topics as net-
work operating systems, access methods, systems protocols, packet switching

techniques, and the like. While these topics are important considerations in

network design, they are unrelated to the directions of our paper and will there-
fore not be dealt with here.

The operations research area has several major concerns. The first is
the data base distribution problem: finding an allocation of
data bases among users in a network to optimize the costs of maintaining the
data base [1, 2, 8, 9, 14] . Cenerally, these papers consider the problem of
optimally allocating copies of files among nodes in a network for which the topo-
logy, job assignment to computers, and irequencies are all known in advance. The
models range from deterministic linear models to more complicated stochastic
models: even at these extremes, they still have the common assumption of known
network structure.

The second area of widespread attention in the operations research cate-
gory is network design. Typically, network design has been interpreted as
specifying network topology for a system in which message traffic patterns
(source-node to destination-node) are known [4, 5, 6, 12] . Most of these pa-
pers deal with a waiting time objective and a cost constraint. They usually
make the exponential and Poisson assumptions on the known message traffic pat-
terms adopted by Kleinrock [7] in developing analytic expressions for calcu-
lating waiting time measures in message routing networks. Due to the difficulty

of the problem, most authors restricted their design to tree-structured networks,



and adopted a variety of "greedy"-type heuristics to find locally optimal solu-
tions. No analytic evaluation of the heuristics is given in any of the papers,
and few give any comparison to calculated optima. Pye and Arozullah {11] and
McGregor and Boorstyne [10] attempt to deal with the question of load distri-
bution in the network. One model [11] is fairly elementary and provides no in-
sight which may be used here. The other model [10] is basically a queueing
model with assumptions adopted to satisfy Kleinrock's conditions. Despite

this shortcoming, the model is fairly reasonable and an optimal gradient follow-
ing algorithm is presented which calculates the proportions of the tasks per-
formed by each server {(computer).

A deficiency of all the existing models is the assumption that the capa-
city of the computers in the network is known and predetermined. In the net-
work design papers this assumption is necessary to be able to determine the
node-node message intensities. In addition, these papers assume that the assign-
ment of tasks to processors is known. The last pair of papers attempts to deter-
mine the assignment of tasks to processors, but assumes not only the computer
location, necessary to determine the processing rate for each node, but further
assumes that the network topology is known and the routing pattern between each
pair of nodes is known. Thus, while several important aspects of the problem
have been dealt with, the interaction of task assignment and network topology
has been ignored. More significantly, the capacity assignment aspects of the
problem have not been considered at all. Since capacity assignment is the de-
sign variable which probably has greatest impact on cost, neglecting this var-
iable, as well as its iInteraction with the two factors already considered,
creates a serious deficiency in the set of tools available to a designer who is
attempting to develop a system where none currently existg., Our distributed

service model rectifies this situvation.



Lower Semi-Continuous Piecewise Concave Model

The search for an optimal solution is simplified when S(x) satisfies

some relatively gemeral conditions. For each pair of i and j (i # 3) ,

< <

LI

define a set A, . of points a , . such that 0 =a_ , ., < a, . .
1,] ki jalsJ 0,1i,3 1,i,j

a . ., =d, . Assume that

1. 3(x) 1is lower semi-continucus on the set H?in

n-1
0, 4. 3
] l[ J]

2. S(x) 1is concave with respect to the boundary of each rectangular

j=n,i=n
j=1,1i=1
i#]

I, k, . =1,2,...,m, ., i#j ;
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specifically, S(x) satisfies the following condition, for each i

and j, andforall x ineachof the correspending rectangular sets:
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where x and x denote the vectors obtained by changing the
(i,j)th component of x to a(k] 1), .5 and ak. R respectively.

1,3 1,]
(The second condition is similar to piecewise concavity, but more general since it
only requires concavity with respect to the boundaries of the sets.) A function

which satisfies the above two conditions will be called lower semi-continuous and

piecewise concave with respect to the sets Ai . . Finally, a point x 1is said
s
to be a corner of the sets A, . if x, . ¢ A, . ¥i # j
i,] i,] 1,3
Theorem 1: If B8(x) is lower semi-continuous and piecewise concave with respect

to the sets A, . , then there is at least ome optimal solution x* to the dis-
3

tributed service problem such that x* 1is a corner of the sets Ai , -
?

Proof: The existence of at least one optimal solution follows from
the lower semi-continuity, on a compact set, of the function § . If x' is an

optimal solution not at a corner of the sets A then there must be values

i,j



£ i, J and k such that a L < < .
0 J =1),1,7 © *i,j i Then, because

of the piecewise concavity of S , either increasing x, to a or

1’3 k’i:j

decreasing x, to (but not necessarily both) results in

. a ..
i,] (k-1),1,7
another optimal solutiom. Tterate this procedure until the new optimal solution

is at a corner.

Notice that if for some j, Ai 5 = {0, dj} vi # j , then there is at
;4
least one optimal solution x with x. ., =0 for all 1 (i#3}) except at
b ]
most one,and x, 5= dj for the one excepted 1 (i#j) if any exists. 1In
<3

other words, the demand at each j 1is satisfied entirely by a single supplier,

possibly i dtself. (Note that if the hypothesis holds for several j , it is

not necessary that a single 1 supplies all the demand for all of the j's.)
The above theorem allows the distributed service system problem to be

transformed into a combinatorial problem. In the next section, we identify a

class of problems such that the combinatorial problem may be easily solved.

Star Networks

A star network consists of n + 1 locations; n of the locations are
demand points while the remaining location is a central supply facility. A
demand point may satisfy any or all of its demand itself. The demand not
satisfied locally must be supplied by the central facility.

Each of the previcusly listed examples of distributed service systems
may, as a special case, be a star network. TFor example, in the case of re-
cycling, it may be reasonable that trash is separated into components either

at tne location where the trash is generated or at a central location, but no-



wherc else. Similar cases exist for power networks (a single utility providing
any power which a residence cannot generate itself through solar collectors,
ete.) , medical services (a single hospital providing services for a region
served by several doctors), manufacturing problems (a single manufacturing
piant to assemble parts from several feeder plants), and mailing systems
(a single regional mailing center from which to mail a magazine).

We will consider problems in which each component of the cost can be
associated with some node and the total cost is the sum of the total costs assoc—

iated with each node. 1In particular, consider problems of the following form.

Star Network Problem:

j=n

Minimize 8(w) = Z,=1 sj(Wj) + s (Zq=? wj) subject to wj > 0v3 .

0 j=1i

The various quantities have the following interpretations:

Wj = amount supplied by center to demand point j ;

sj(wj), j=1, 2, ..., n = cost incurred by demand point j when the

center supplies it Wj units;
so(w) = cost of center suppiying w units.

Notice that the hﬁ may include any overhead (costs of accounting/billing,
checking for transmission errors, etc.) associated with remotely satisfied de-
mand; the fact that similar overhead is not incurred for demand satisfied lo-
cally, is reflected in an appropriate choice of the functions s, . The function
Si includes both the cost of locally satisfying any demand not satisfied when
the center supplies wj units and other costs such as the transportation cost

resulting from the center supplying w; unjits.
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As in the previous problem, define a set Aj of points ak i such that
k]

0=a., . <a, ,<a, ., < ... <a . =d, , where d, is the amount (including
0,] 2,3 mys] h| ]

overhead) which the central facility must supply for demand point j 1if all of

that demand point's demand were satisfied by the center. It is assumed that

each sj (3 =1, 2, ..., n) 1is concave with respect to the end points of each

a(k*l,j)’ ak,j] y that Sy 1s concave on the interval [0, Z;:;dj]

interval 1 ,

and that all these functions are lower semi-continuous over the appropriate range.
It follows that S(E) is lower semi-continucus and piecewise concave with respcet

to the sets Aj ; thus, the search for an optimal solution to the star network

problem may be restricted to corners of the sets Aj

Minimally Piecewise Concave Functions

There are certain corners which never need be considered in the search

for an optimal solution.

Lemma: If for some j (j=1, 2, ..., n) , there isa k, <k and a k > k

1 2
IS Lkl T S
such that Sj(ak,J) > dkz,J - akl’J bj(akl,j) akz,J = akl,j SJ akz,j
then wj will not be equal to ak,j in any optimal solution.
Proof: Consider any solution w with wj = ak,j such that the hypo-

thesis is satisfied. Then, using the concavity of Sy > it is easy to verify

that one of the following two changes 1in wj results in a strictly better solu-

{on: i = a , oY W, = a .
rion either wj kl'J 1 kz’J
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GConstruct the set A? by deleting all the superfluous points (as defined by the

above lemma) from Aj » and ronumbering the clements a, 2 of A% so0 that
. N

. Note that the points in
Aj* are those of Aj which are on the lower boundary of the convex hull of

the points (ak,j’ Sj(ak,j)) , k=1, 2, ..., mj y =1, 2, ..., n ; thus, the

set Aj* is uniquely defined, Finally, define the function sj(wj)* (j=1, 2, ..., n)
as the piecewise linear continuous function obtained by connecting the points
{(a

*, s . (a * k=1, 2, ..., m.* . Note that s.(w.) = s_{(w.)%¥ for all
J( )) s 2, > My J( J) J( J)

K, ] K, j
W, éiAj* and that, although sj* is a convex function over the entire range,
sj* is piecewise linear and continuous and, therefore, also lower semi-contin-

uous and piecewise concave. Consider the following transformation of the star

network problem.

Minimal Star Network Problem:

Minimize S{(w)* = ij s (w Y* + g (EJ " %) subject to w, > 0 Vj
- j=1 0°"3=1 "y . i-

In light of the above observations, Theorem 1 states that there is a corner

of the sets Aj* which is an optimal solution to the minimal star problem.
This fact, the abhove lemma, and the fact that S(w) = S{w)* for all corners

of the Ai* together imply that if a corner z of the sets Aj* is an optimal
solution to the minimal star network problem, it is also an optimal solution to
the star network problem.

Define the gross unit cost (excluding central facility costs) Qk i
b1

for units in the interval |[a *} (k=1, 2, ..., mj* ; =1, 2, ..., n)

%
(k=1),3 * %k, j

6 0 = (s (a . e %) ;0 . 1is ne
as (\k,‘i (bj(lk,j ‘) S, (1(1\ l) )/(d i a(k"l),J ) \k,_] is negative

infinity fer k < 0 , and positive infinity for k > m] . (Note that since
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x , .
5. 1s convex, Q is a non-decreasing sequence.) The

0,5° %1,57 2,5’
following theorem proves that there is an optimal sclution to the minimal star

network problem in which the central facility supplies precisely those units

for which the gross unit cost is not greater than some threshhold Q .

Lemma: There exists an optimal solution 2z to the minimal star net-

work problem of the following form: There are integers kl’ k2’ R and
n

threshold such that 2z, = a IR S , < iz i
Q b k., j % 3-—QVJ 3 and Q(k+l),j3QvJ

j i’ 3

Proof: Since there is at least one optimal solution at a corner of

the sets Aj* and since 2z of the above form are corners, it need only be
shown that any corner not of the above form is not an optimal solution. Con-
gider any corner v not of the above form; thus, for some Q, jl’ and jz

., < a & and ( , < ; and v, » a ¥ and . > . Let
v i Qk. 3 Q hP k, ,j Qk. ] Q
3 )

D = minimum {{(a K-v, ), (v, - a %)} and define v' as being

equal to v except v, =vyv, +D and v, '=v, - D ., Notice that
- N J J |
1 1 2 2
v, = 3 ¢ vj' , and thus the only difference in the value of the objective

function is (s, (v, ")* - s, (v, )*) + (s, (v, "Y* - s, (v, )*)} . However,
e S Y iy 3, i, iy

since  Q the difference in objective functions is negative and

N .
'k, L] 2k. N
! J2

v is a strictly better solution than v ; v is not an optimal solution.

Theorem 2: There exists an optimal solution =z to the minimal star network

problem of the following form: There are integers kl’ k2, .-+, k_ and
n

tt hold h that . = A - i 3
1resho Q such a zJ akj’J ¥j ij,j < Q ¥ ; and Q(kj+1),j > Q ¥ .
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Proof: Since sS4 1s concave, it follows that if there is a positive
amount of demand with gross unit cost Q supplied by the central facility in
an optimal sclution, then all of the demand with gross unilt cost Q 1is supplied

by the central facility. Thus, either, or both, of the inequalities in the

lemma may be replaced by a strict inequality.

This theorem suggests an efficient algorithm for finding an optimal
solution to a star network problem. First identify the sets A§ . Next calculate
all the Qk i Finally, for each Q equal to Q. j < o calculate S(w) where

=T %

w. =max a, , s.t. Q. <0 . There will be a total of at most M =1 + ZQ_ m,
J k k).] k)J - J—l J

such w's ; the one (or more) with a minimal S(w) 1s an optimal solution to
the minimal star network problem, and therefore an optimal solution to the star
network problem. (If the computations are intelligently organized, the al-
gorithm's complexity is a low order polynomial of M .) Thus, there exists

an efficient algorithm for solving star network problems.

Numerical Ixample:

Consider a star network of two computer users tied into a central facility
and each user needs to prepare 1000 mailing labels. The first user has two
alternatives. The first, brute force, alternative is to have some, or all,
labels formated and processed at the central facility; the associated demands on
resources for labels printed at the central facility are 100 CPU units/label
for formatting and printing, 250 bytes/label for data transmission, and 20 CPU
units/label of overhead for remote processing. Under the second alternative,
the user compresses the data before transmission and trades some transmission
costs for some local processing costs; the associated demands on resources are
25,000 CPU units to compress all the data, 125 bytes/label for data transmission,

15 CPU units/label for expanding compressed data at the central facility, 100



14

CPU units/label for formatting and printing, and 10 CPU units/label of overhead
for remote processing. Labels may be formatted and printed locally with a
total resource demand of 100 CPU units/label. Although remote processing
requires greater demands on resources, the various costs of the resources
may be such that remote processing is desirable.
The cost C(x)} of x CPU units at the first user location is 0 for
x <0, .008x for 0 < x < 50,000 , and .008x-200 for 50,000 < x . The
discontinuity of C{(x) at 50,000 may result from a different computer being
used if the load is at least 50,000 units. The cost T(x) of transmitting
X Dbytes of data is 0 for x < 0, 100 for 0 < x < 25,000 , amd 25+ .003x
for 25,000 < x . The different unit communication costs may be caused, for
example, by the fact that single telephone line available at a flat rate of
100 can handle up to 25,000 bytes.
The cost Hl(x) incurred by the first user under the first option if
the central facility provides x CPU units is 600 for x = 0 ,
€(160,000 -x/1.2) + T(2.5x/1.2) for O < w < 120,000 , and 775 for
120,000 < x . Similarly, the cost Hz(x) under the second option is 600 for
x =0, €(125,000-x/1.25) + T(x) for O < x < 125,000 and 600 if
125,000 < x . Since the user may be assumed to use the less expensive alter-
native, sl(x) is defined as the pointwise minimum of Hl(x) and HZ(X)
The functions Hl(x) ’ Hz(x) . sl(x) and si(x) are plotted in Figure 1,
where A1 = {0, 12500, 60000, 93750, 1250001 and Af = {0, 93750, 125000} .
Without developing a similar scenario for the second user, define
A; = {0, 50000, 75000, 125000} and define s;(x) to be the piecewise linear
continuous function through the following points (x, sg(x)) : {0,500),

(50000,400), (75000,400), and (125000,540); the function sg(x) is plotted

in Figure 1. Finally, let so(x) be any concave lower semi-continuous function
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through the following polnts (x, so(x)) < (0,0), (50000,90), (1473750,170),
(168750,185), (218750,210), and (250000,218). The total cost S(x) of the
solution x = (xl, XZ) is given by S(x) = so(xl-+x2) + sl(xl) + sz(xz)

In order to find an optimal solution, we first calculate the Qi i

and obtain that = - Q = ~-.002 , Q -.001

Qo’l = Q0,2 b 1,2 0 »

1,1 > Qo =

Q3,2 = .0028 , Q2,l = .003 , and Q4’2 = Q3,l = +w= . By considering setting

the threshold Q equal to each of the six possible values of Qi,j above,
we obtain the solutions and associated costs tabulated in Table 1. Notice
that Q = -.001 results in an optimal solution with x = (93750,50000) and
a cost of 1076.25. Finally, it should be noted that although the costs in
Table 1 form a unimodal function, this is not, in general, true (for example,
if 50(0) were —1000 rather than 0, then x=(0,0) would be the optimal solution
with a cost of 100, while all the cost associated with the other solutions
would remain as in Table 1); in particular, the cost of the solution must be
calculated for each threshold Qi,j < e,
Conclusion

Under quite general conditions, a distributed service system problem has
at least one optimal solution at a corner of the associated cost functions.
The property reduces the optimization problem to a combinatorial problem. In
the case of a general class starr network, the combinatorial nature results
in an efficient algorithm for generating an optimal solution. The theory and

algorithm are illustrated through a numerical example.
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TABLE 1

Solutions and Costs Associated with Various Thresholds

Q x, i X, LS(xl, %,) (=8,(x; +%,) +5)(x,) +5,(x,)
oo 0 !; 0 1100 ( = 0+ 600+ 500)
-.002 0 | 50000 | 1080 ( = 80+600+400)
-.001 93750 j 50000 1076.25 ( = 506.25+ 400+ 170)
0 93750 i 75000 51091.25 {( = 506.25+400+185)
L0028 93750 Ij 125000 | 1256.25 ( = 506.25+ 540+ 210)
L0063 125000 125000 1358 ( = 600+ 540+218)
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