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Public and private entities frequently measure and reward performance on a task of interest.

While these measurements commonly use a continuous scale, sometimes the information released to

the market, or the administratively determined reward, is binary–linked solely to the passing of a

threshold.  This simple change to the reward structure dramatically affects its incentive properties.

With perfect performance measurement, the marginal benefit of improved performance is nil unless

one crosses the threshold.  With imperfect measurement, so that passing the threshold is uncertain

(conditional on performance), expected marginal benefits are nonmonotonic, rising and falling rapidly

in the neighborhood of the threshold.  Both are atypical.

Yet thresholds are often observed, even when a continuous system of measurement and

reward appears feasible.  Table 1 lists several examples that have been examined in the literature, in

labor economics, law and economics, the economics of education, and elsewhere.  While thresholds

such as these are a common feature of economic life, however, their positive and normative properties

have not been fully developed.   Thus, a unified discussion of these properties is warranted, along

with a concordant, comprehensive estimation strategy.

In this paper we offer such a development, introducing a basic model of thresholds that

generates a sequence of robust predictions that can be applied to a wide range of economic activity

and tested elegantly with simple nonparametric methods.  This advances the literature in three ways:

• five behavioral predictions are established, only one of which has been previously tested;

• conditions under which thresholds can have desirable normative properties are identified, in
contrast to previous work that has emphasized the potential perverse effects of thresholds;

• a more general, comprehensive, and revealing econometric strategy is introduced.

Two direct applications of these results are then provided: the strongest example of threshold

incentive effects that we have been able to find, in, ironically, an ultramarathon, and an example of



1 A technical point: this price supports a symmetric sub-game perfect Nash equilibrium to the
N-person “effort game,” where each person’s effort is optimal given everyone else’s choices.  As each
person provides the same amount of effort, the variance of t ex post equals the variance of < ex ante.
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an impotent threshold, excerpted from the companion paper, Grant and Green (2010).  Finally, we

show how these methods could be applied to several papers on the economics of education,

sometimes to strengthen the authors’ empirical tests, sometimes to overturn their conclusions.

I.  The Behavioral and Normative Effects of Thresholds.

Behavioral Effects.  Let there be a behavioral outcome of interest, t, that is additive in endowed

“natural ability,” <, and effort, f, and valued by the market at price p per unit.  When t is measured

precisely, each individual’s effort is chosen to maximize the difference between the rewards from

effort, pf, and its cost, C(f).  The solution, f = CN-1(p), is efficient as long as the price p is appropriate

(there are no externalities, for example).  Continuous, perfect measurement provides ideal information

to users and appropriate effort incentives: thresholds are not needed (see Costrell, 1994).

But measurement exhibits diminishing returns, so it may be impractical to measure t precisely.

This is true in a wide variety of circumstances, including many of those listed in Table 1 and most of

the empirical applications discussed below.  Under these circumstances, direct performance

measurement exhibits the classic signal-extraction problem: variation in the measured outcome is

attributable partly to population variation in t and partly to error.  Let T = t + ,, where , is error in

measuring the true outcome, independently and normally distributed.  When < is also normally

distributed (throughout the population), the market price of a unit increase in T is pF<²/(F<²+F,²) <

p,1 so each individual underprovides effort.  The information provided to the market and the effort
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(1)

elicited by agents can be improved, and under the right circumstances thresholds can do this.

Thresholds can be justified by imperfect information.

Let the evaluator establish a passing threshold normalized, for simplicity, to 0.  Instead of

releasing T it simply indicates whether or not T$0.  The market value of passing the threshold is P

= (t$PASSERS - t$NONPASSERS)p; the probability of passing the threshold, conditional on effort, is now

M((<+f)/F,), where M is the standard normal distribution function.  The expected marginal returns to

effort are bell-shaped, centered around zero.  Equating these to the marginal costs of effort can yield

multiple solutions for f, which may be minima, local maxima, or global maxima (as sketched out by

Becker and Rosen, 1992).  These are easily calculated and depicted when the costs of effort are

specified as C(f) = kC(exp((f) - 1), with k normalized to one and (>0 representing diminishing returns

or fatigue in the provision of effort.  Now the logged marginal expected returns to effort, log(PM' ),

form a quadratic in f, while the log of marginal costs, log((Cexp((f)), are a line.

Under these assumptions, it is easy to calculate effort among those agents who try at all:

The awkwardness of this expression belies the simplicity of the result: this equation represents (a

segment of) a parabola with an axis of symmetry that runs through the origin and has a slope of -1.

This is natural because the solution for f(<) is the intersection of linear marginal costs and quadratic

expected marginal benefits.  Depicting this graphically is useful for generating heuristics.

Accordingly, Figure 1 represents five agents, A-E, whose upward sloping marginal cost of

effort lines begin at <A-<E.  For sufficiently low <, as for agent A, marginal costs and marginal benefits

do not intersect, so f=0: it is too much work to try to pass the threshold.  This can also be true when



2 Four properties of f(<), when positive, are as follows: P1) f' > -1; P2) f'' < 0; P3) f''' > 0; and
P4) f' = 0 implies f = -< and t = 0.  P4 (along with P1, when the maximum is at the extensive margin)
ensure max(f) $ -argmax f(<), so that t(argmax f(<)) $ 0.  These individuals’ chances of passing the
threshold are at least 50%, proving the Peak Proximity Property.  And max(f) $ -argmax f(<), along
with P1, ensures f(0) > 0, the Precautionary Effort Property.

The Sawtooth Property is trivial if <* = argmax f(<) occurs at the extensive margin.  For
interior maxima, along with the extensive margin, f ' (<*-d) > -f ' (<*+d) for any d > 0 by f ' =  I f ''
and P3.  This property, along with P1 and t = f + <, ensures the Stair Step Property.

Because f=0 below the extensive margin, while f(0) > 0, P2 and P4 ensure that f(<) has a
single peak for some <* < 0, possibly at the extensive margin.  Thus one can define a region of < <
0 for which effort is higher than anywhere else: the Peak Effort Property.
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the curves do intersect, as the maximum may only be local, as between agents A and B, where total

benefits are less than total costs.  This continues until one reaches the extensive margin, where it is

optimal to put forth effort (agent B).  Effort then exhibits a discontinuity and becomes positive.

Clearly, this margin is always reached where < < 0.  It may be also reached where t < 0, as in

the figure; if so effort increases until it reaches its maximum, for agent C, at the vertex of the

parabola, and declines steadily thereafter (agent D) until, at sufficiently high, positive <, it returns to

nil (agent E).  Those with 0 < < < <E probably will pass without trying, but assessment is uncertain

so they put forth “precautionary” effort to raise their chances.  If t > 0 at the extensive margin,

maximum effort occurs there and declines thereafter; C, the point of maximum effort, falls to the right

of the vertex of the parabola.

Figure 2 depicts the resulting {<,f} and {<,t} loci for the non-trivial situation in which some

agents put forth effort.  The relation between natural ability and effort exhibits five properties,

depicted in the figure and described heuristically below, with proofs sketched in a footnote.2

1. Peak Effort Property: Colloquially, those individuals far below the threshold (< << 0) put
forth little effort; those near it (< . 0) put forth more; those in between put forth the most.
This property stems from the non-monotonic returns to effort.  The existence of a point of
peak effort (though not its location) has been previously shown (Oettinger, 2002, and others).
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2. Sawtooth Property: Effort rises more quickly than it falls; that is, line BC in Figure 2 (top)
rises faster than line CE falls, so that the {<,f} locus takes a sawtooth shape.  This follows
both from the existence of the extensive margin, at which effort increases discretely, and from
the geometry of Figure 1.  The point of intersection responds more to increases in the pre-
exam average when marginal costs and expected marginal benefits are more similarly sloped,
which occurs to the left of point C.

3. Peak Proximity Property: Line OC in Figure 2 (top) has a slope # -1, so that those
individuals who try the hardest–whose ability is argmax f(<)–have at least a 50% chance of
passing the threshold.  This is a natural consequence of increasing returns to effort for t < 0.

4. Precautionary Effort Property: Effort is positive at <=0.  Error in assessing t motivates
precautionary effort to increase the individual’s chances of passing.

5. Stair Step Property: More able individuals have better outcomes than less able individuals;
that is, )f/)< > -1 and )t/)< > 0.  Beyond point C, better-endowed individuals work less
and still have better outcomes.  The {<,t} locus always slopes upward, fastest near the
extensive margin, like the sloping stair step at the bottom of Figure 2.

These predictions are fairly general, and can be supported with geometric arguments that do

not depend on our specific functional forms.  Furthermore, all extend to a broader interpretation of

< and f, in which the former represents a combination of ability and “base” effort and the latter

represents the “strategic” effort perturbation in response to threshold incentives.  Clearly this

interpretation should prevail in our application to ultramarathons, which cannot be completed without

tremendous effort.  Still, the threshold incentive may spur the provision of even greater effort.

Normative Properties of Thresholds.  We can now examine three reasons a threshold might be

actively preferred to a system of direct measurement.

Motivating.  Effort is underprovided under direct, imperfect performance measurement; its

expected returns are attenuated, as some effort is inferred to be noise, instead, in the solution to the

signal extraction problem.  This effort reduction can be large in relative terms, particularly when the



3 The word “simulation” is almost too strong: these are simply numerical calculations of the
function f(<) past the extensive margin, for the parameter values indicated.  The figure identifies the
values of the parameter P.  Given this value and mean t for passers and nonpassers, p is backed out
and used in calculating f*IMPERFECT and  f*PERFECT under direct performance measurement.  These effort
levels do not depend on <.  The term fTHRESHOLD refers to mean effort across all agents, in the presence
of the threshold.  All calculations are conducted for all values of <, not just those shown in the figure.
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efficient, or perfect measurement, level of effort is small.  Given our assumed functional forms, for

example, one can show f*IMPERFECT =(1/()[ln(p/()+ln(F<²/(F<²+F,²))] = f*PERFECT - (1/()ln(1+F,²/F<²),

so that f*IMPERFECT/f*PERFECT = 1 - ln(1+F,²/F<²)/ln(p/(), which approaches zero as p declines.

Under these circumstances, thresholds can improve efficiency by intensifying the effort of

individuals near the threshold.  The rewards for passing, P = (t$PASSERS - t$NONPASSERS)p, are magnified

by the divergence in effort between passers and nonpassers and, more subtly, by a positive feedback

loop in which the increased effort of passers further increases the rewards for passing, and so on.  It

is not difficult to construct examples where effort is increased by the use of thresholds, just as one

can construct examples where bundling, as a price discrimination mechanism, increases profits, or

where competition for patents leads to “premature applications of discoveries” (Barzel, 1968).  All

work on the same principle: they convert a problem of the intensive margin, of marginal analysis, into

a problem of the extensive margin, of whether participation in the activity (providing effort,

purchasing the product, investing in innovation) is worthwhile.  This additional margin provides

leverage that can be used to increase effort.

Three such examples, from simulations of our model, are provided in panels A, C, and D of

Figure 3.3  In panel C, agents apply effort only under the threshold, not under direct measurement.

But examples in which the threshold increases efficiency, not just effort, are more elusive.  These

generally require a high degree of imprecision in measurement (F, . F<), because this is when effort
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under direct measurement falls far short of efficiency.  In practice this situation is not only unlikely,

but also inauspicious for employing thresholds, as passing or failing will be substantively due to luck,

generating fairness concerns.  Thus efficiency increases only in panel A, in which F, is large.

Signaling.  Spence (1973) showed that passing an educational threshold can provide valuable

information to employers about workers’ underlying aptitudes (< in our model) even when schooling

does not develop human capital.  But there was no claim that establishing a threshold is an optimal

way to do this, because it is not: direct measurement, even if imperfect, is always superior, because

unlike the threshold it does not discard valuable information on which to condition.  Thresholds are

never optimal for signaling.

Measuring Performance.  While < is immutable, t is under the agent’s control.

Consequently, thresholds can generate more accurate information about performance.  Unlike direct

measurement, where effort and ability need not be related (as in our model), a threshold system

engenders great effort by those low-< individuals who try to pass, but at most a little precautionary

effort by high-< individuals.  The two resulting groups, passers and nonpassers, have disparate cross-

group outcomes but similar within-group outcomes–especially passers, with whom information users

are probably most interested.  These within-group outcomes can be sufficiently similar that the

variance of t for passers, var(t*T>0), is less than var(t*T) when performance is measured directly.

Simulations not reported here can easily produce such an outcome, particularly with high

rewards for passing the threshold (higher P), which leads to more effort.  Bond ratings, which meet

this condition, may have been intended to work this way:

Credit markets are not continuous; a bond that qualifies, though only by a hair, as
investment grade is worth a lot more than one that just fails....There is a huge
incentive to get over the line.  The challenge to investment banks is to design
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securities that just meet the rating agencies’ tests....  But if the [securities] are too
risky, Moody’s will object...  “Every agency has a model available to bankers that
allows them to run the numbers until they get something they like and send it in for
a rating” (Lowenstein, 2008).

While potential for gaming in this system is now well recognized (for example, Bolton, Freixas, and

Shapiro, 2009), one can also see how within-grade risk clusters together, potentially enhancing the

informational value of discrete ratings.

We now have two possible explanations for using thresholds, which both rely on imprecision

in performance measurement.  When the incentives for effort are relatively weak, a threshold can

augment effort and thus improve efficiency; when they are relatively strong, a threshold can improve

the accuracy of performance information that is provided to the public.

II.  Estimation.

Estimating Behavioral Effects.  To estimate thresholds’ incentive effects, one must relate T to < using

micro data, employing a specification that allows agents near the threshold to exhibit unusually strong

performance.  Four different regression approaches can be used to do this, but only one,

nonparametric regression, is well suited to the essential econometric task, because the location and

shape of the effort perturbation induced by thresholds cannot and should not be pre-specified.  It is

thus best identified by flexible methods, which also facilitate the formal and informal testing of the

properties listed above.

Before proceeding it is important to identify the scale of the incentive effects we expect to

uncover.  We believe thresholds will be typically employed where the expected incentive effect
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(among those who try at all) can exceed the error in measurement, F,, but is much smaller than F<,

the variation in ability: F, < max f < F<.  This appears to occur regularly in practice, based on the

findings of the many empirical studies in Table 1 and discussed below.  It also satisfies the fairness

concerns articulated above.  It may be difficult to identify threshold effects if max f > F<.

We describe our preferred estimation methodology after critically examining two alternatives.

Regression Discontinuity.  This technique may seem natural because thresholds induce an

effort discontinuity at the extensive margin.  But these methods were designed for situations in which

the discontinuity is imposed by the “experimenter” and the size of the discontinuity identifies the

effect of the intervention.  So, for example, Card, Dobkin, and Maestas (2008) use an age

discontinuity to estimate the effect of Medicare coverage, for which Americans qualify on their sixty-

fifth birthday, on health care utilization.

But these conditions do not apply to the problem studied here.  First, the discontinuity arises

endogenously through optimizing behavior, which means its location, somewhere below the

threshold, is not known in advance.  Second, the discontinuity does not fully describe thresholds’

incentive effects, which may or may not be largest at the extensive margin, and which extend even

to individuals above the threshold (< > 0).  Finally, when estimating mean incentive effects within a

population, the discontinuity strictly arises only if all agents share common values of all structural

parameters, which is unlikely in practice, as we will soon demonstrate.  The underlying assumption

for estimation purposes must be that these parameter values are sufficiently similar that the properties

outlined above, which do not depend on a strict discontinuity, continue to obtain.  For all of these

reasons, regression discontinuity methods are impractical.

“Reduced Form” Parametric Estimation.  Another alternative is to conduct a parametric
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(2)

regression of T on < and include one or more dummy variables to capture perturbations in

performance near the threshold, as follows:

where the values of a, specified in advance, define the ranges of < represented by each dummy, and

X contains control variables.  Perturbations in performance are identified by the D coefficient

estimates, whose joint significance can be tested statistically (as in Oettinger, 2002).

This approach, while reasonable, is not optimal.  If the dummies are few in number, it may

be difficult to confirm the properties listed above; if they are too numerous, the coefficient estimates

will be suffused with noise.  In a way, this parametric approach is both too smooth and not smooth

enough.  The effect is required to be the same within the ranges specified by the dummy variables (by

the a sequence), but is allowed to vary greatly across those ranges.  The natural solution to this

problem is nonparametric estimation, which allows a smooth, unrestricted estimate of the incentive

effect across the entire domain.

Nonparametric Estimation.  In this technique the {<,f} or {<,t} loci are estimated directly,

leading to empirical results in the format of Figure 2.  Unlike the alternatives, nothing need be pre-

specified–not the intervals spanned by dummy variables, as in the parametric model, nor a

discontinuity, as in the regression discontinuity model, nor a functional form, as in the structural

model discussed below.  (The following discussion relies on the survey by Yatchew, 1998.)

Furthermore, every feature of this problem is well suited to the characteristics of the data.

There is typically just one independent variable of interest, < or its proxy, which eliminates the “curse

of dimensionality” and allows specification tests that use simple differencing methods.  (Control
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(3)

(4)

variables can be included, but this can probably be done parametrically, holding the curse of

dimensionality at bay.)  Estimation is conducted on individual microdata, which is often numerous

enough to permit reasonably precise nonparametric estimates, in which the effect of the threshold on

outcomes can be directly determined.  And one can informally determine whether these estimates are

consistent with the five properties listed above, by identifying the empirical equivalents of point C,

point D, line BC, and line CE in Figure 2, and comparing their values, slopes, or relative slopes to

those predicted by the theory.

Most importantly, a simple, natural, formal test for threshold incentive effects can be

conducted–not a parameter test, but a more comprehensive, more powerful specification test.  In the

absence of threshold incentive effects, outcomes should be a smooth function of natural ability.  In

our theoretical model, for example, there is a direct linear relationship.  Allowing the units of

measurement of T and < to differ, and allowing there to be control variables X, this linear relationship

is represented by this parametric regression:

The adequacy of this regression is the null hypothesis.  The alternative is that this parametric relation

is inadequate, because effort is systematically related to proximity to the threshold.  Absent controls,

a very simple specification test is based on A, the average squared error in equation (3), and B, one

half of the mean squared difference between adjacent values of T, after being placed in <-order:

where S is the number of observations.  The null is rejected for sufficiently large values of the test
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(5)

(6)

statistic Z.  Yatchew (1998) provides other practical alternatives.

If the null is rejected, and one can pre-specify an ability range over which threshold incentive

effects will not appear, < < <L or < > <H, the effort perturbation g(<) can be estimated as follows:

These perturbations should satisfy the properties identified in Section I. 

Structural Estimation and the Identification of Normative Effects.  So far, we have deemed the least

structured empirical approach best.  Following this logic in the other direction, we also argue against

using the most structured empirical approach, structural estimation, which would use the following

regression specification:

While the function f takes a simple form, given in equation (1), the domain over which it is positive

(that is, the location of the extensive margin) must be calculated numerically for each {(,F,,P}

combination.  Estimation, while feasible, is difficult.  Given estimates of P and F, and the distribution

of T, the final structural parameter, p, can be calculated, but this also requires numerical techniques.

Our primary objection to this approach, however, is based not on its feasibility, but its utility:

the structural parameters cannot be cleanly resolved.  Under the restrictions F, < max f < F< the shape

of the {<,f} profile is typically quite insensitive to the parameter values–and, thus, the parameter

estimates are quite sensitive to the shape of the estimated profile.  Scaling the horizontal axis so that

F, = 1, P is the following function of the f (vertical) and positive < (horizontal) intercepts:



4 Under some circumstances, however, there may be practical alternatives.  Sometimes
qualitative judgements may be possible, as in the companion paper.  Other times, the effort under
direct measurement may be known.  Finally, and surprisingly, the net incentive effect can be signed
using just one structural parameter, F,, which can sometimes be imputed a priori.

Too see this, recognize that threshold effort satisfies the following condition, which equates
marginal costs and expected marginal benefits, in logarithms: (fTHRESHOLD = ln(P) - ln(() + ln(N(t)).
Using P = (t$PASSERS - t$NONPASSERS)p = )t$p and the results above, (fTHRESHOLD = (fIMPERFECT + ln()t$) +
ln(1+F,²/F<²) + ln(N(t)).  Simplifying the last term and rearranging yields: ((fTHRESHOLD - fIMPERFECT) =
ln()t$) + ln(1+F,²/F<²) - ln(2.5F,) - t²/2F,².  This expression depends on <, which (naturally) determines
t.  Taking expectations across <, and using the fact that var(T) = var(t) + F,², yields:

(E(fTHRESHOLD - fIMPERFECT) = -0.4 + ln()t$) + ln(1+F,²/F<²) - ln(F,) - (var(T) + GT²)/2F,².

The )t$ and T terms can be inferred from the data; the others may be reasonably approximated.  This
equation is exact unless normality in <, required to finesse the game-theoretic concerns noted in
footnote 1, does not hold strictly, in which case it is approximate.  This expression signs the
difference in average effort under the two systems, but does not quantify it unless ( is known.
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(7)

This equation can be very sensitive to changes in the value of the either intercept, and will be when

the restrictions above obtain, as (one can show) the horizontal intercept will exceed one.  (That is,

agents one standard deviation of measurement error above the threshold will still try at least a little.)

To illustrate, the simulations in panels B, C, and D of Figure 3 illustrate three ability-effort

profiles satisfying these restrictions.  All three figures have very similar profiles, yet very different

parameter values–and different normative implications.  In panel B threshold effort is underprovided

and inefficient, compared to direct measurement; in panel C it is overprovided and inefficient; in panel

D, it is overprovided to roughly the same degree that effort under direct measurement is

underprovided.  Quantitative assessment of thresholds’ efficiency properties is often impractical.4
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Distributional Analysis.  One can also test for the presence of threshold effects using the ex post

distribution of T and pre-test/post-test rates of transition from < to T.  Again no distributional or

functional form assumptions are necessary, using what is called “the caliper method” (explicated in

Gerber and Malhotra, 2008; implemented in economics by Borghesi, 2008, and others; and extended

here to transition rates): the empirical density of T in a modest interval just above the threshold should

exceed that in an interval of equal size just below the threshold.  Also, <-T transitions should be

asymmetrical, with more individuals going from slightly negative < to slightly positive T than going

the other way.  The null that the two densities, or two transition rates, are equal is easily tested. 

III.  Application: The Western States 100.

Because our purpose here is to demonstrate the ability of the techniques described here to

reveal thresholds’ incentive effects, our application has been chosen for its technical properties, not

its social relevance.  It is the strongest example of threshold incentive effects we have been able to

find, has good proxies for “natural ability,” and contains a large number of observations, facilitating

nonparametric estimation.  Two socially relevant examples from the author’s other research, Grant

(2010) and the companion paper, Grant and Green (2010), fail to demonstrate any threshold incentive

effects.  The latter is discussed below as a “counterexample,” in which our techniques reveal the

impotence of the incentive.

The Western States 100 (WS100) is one of the largest and most venerable ultramarathons in

the U.S.  (Its web site, www.ws100.com, contains most of the following background information.)

Originating from a trail ride on horseback, the first official run was held in 1977 and quickly grew to



15

its current size of about 370 runners annually.  The extremely challenging one hundred mile run,

beginning in California’s Sierra Nevada mountains and ending in the valley below, features repeated

elevation changes, hot and cold temperature extremes, high altitudes, rugged trails, and night running.

Entry is primarily by lottery.  The number of applicants equals about one thousand, and all

accepted entrants must qualify by running reasonably good times in races of fifty miles or longer, or

by completing a certified trail run of one hundred miles.  Thus, the entrants in the race have shown

the capacity to complete the WS100, but are not certain to complete it quickly.

The course closes after thirty hours, but a highly coveted medal is presented to all those

finishing in under twenty-four hours, the time standard used for the original, equine ride.  The winning

time is approximately sixteen hours; about one hundred runners come in under twenty-four hours;

about another two hundred finish between twenty-four and thirty hours, with the remainder dropping

out of the race or finishing after the course has closed.

With few exceptions (such as years with wildfires), the WS100 has run the same course since

its inception.  Finish times and split times, for nine aid stations spread throughout the course, are

recorded on the run’s web site for the run’s entire history.  Eliminating years in which the course was

changed or the location of the aid stations was moved (2003, 2002, 1998, 1995) and observations

with incomplete split information yields a sample of 3,991 runners over the period 1986-2006.  Split

times are recorded in minutes, finish times in minutes and seconds.

Figure 4 illustrates the course layout.  The course is effectively run in two stages.  The first

two-thirds of the course feature high elevations, steep gradients, and temperature extremes of

mountain cold and daytime heat.  (Even temperatures in the seventies are onerous in a race of this

length.)  Then, between the sixth and the seventh splits, the course drops to low altitude and flattens
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out; day turns into night, and any daytime heat subsides.  This begins the second stage.

As the stage changes, so do runners’ racing strategies.  Figure 5 illustrates the distribution of

recorded split times in the full sample at splits 2, 4, 6, 7, 8, and the finish, using both a simple

histogram and a more precise kernel density.  During the first two-thirds of the race, split times take

a bell-curve shape, but between splits 6 and 7 this distribution begins to bifurcate.  This bifurcation

grows until, at the finish, the density is, for practical purposes, divided into two highly skewed

distributions: one bunched ahead of 1,440 minutes, or twenty-four hours, and another ahead of 1,800

minutes, the time that the course closes.  This suggests contestants run the first stage of the race at

a reasonably even pace, generating the ever-widening bell curves, and then tweak their times during

the more manageable second stage to try to satisfy one of the two thresholds.  The finish time kernel

density indicates that many are, in fact, successful.

This finish time distribution is censored after 1,800 minutes, but the distribution surrounding

the 1,440 minute threshold is not, and it unquestionably shows large threshold effects.  A total of 97

runners finish no more than ten minutes ahead of the threshold; only 19 runners finish no more than

ten minutes behind the threshold, a highly significant difference.  We now determine whether these

incentive effects are revealed in the nonparametric regressions sketched out above.

IV.  Empirical Results.

To begin our empirical analysis, we need a proxy for “natural ability,” and split times can

serve this purpose.  The previous discussion suggests a natural proxy: the time at the sixth split, just

before the end of the “first stage” of the race.  The top of Figure 6 presents a scatterplot of these split
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times versus finish times, both measured in logarithms (which best fit the data), along with a (loess)

smoothed estimate of the mean.   Censoring, after which finish times are not recorded, occurs at the

top of the graph at 7.50 log points.  The medal threshold of 7.27 log points is easily visible as a

horizontal “strip” of finish times: evidence, again, of a threshold effect.

This strip features “soft” horizontal and vertical edges, both of which are revealing.  The soft

horizontal edge confirms our assumption of measurement uncertainty.  Without this we would expect

points to be bunched not near the 7.27 line, but perfectly along it.  Here, this uncertainty pertains not

because the actual finish time is imprecisely measured, but because the runner cannot perfectly

forecast his finish time while on the course, and cannot perfectly self-regulate his pace.  In addition,

if there were a single extensive margin for all runners, the right edge of this strip would terminate

abruptly instead of steadily withering away, as in the figure.

The loess mean indicates that the relationship between the split time and the finish time is

generally smooth, but does exhibit a slight perturbation near the threshold.  Clearly, however, these

threshold incentive effects are small relative to the overall variation in split and finish times, satisfying

the scale restriction max f < F< adopted above.  The smoothed mean always slopes upward, consistent

with the Stair Step Property, but the stair step itself is obscured, because better times on this graph

occurs to the threshold’s left, not its right.  To maintain the orientation used in Figure 2, Figure 6

should be held upside down–and then the stair step appears.

We begin with a parametric regression analysis, as in equation (3).  Figure 6 suggests that the

sample should be restricted to those 2,273 individuals for whom the logged split time is less than 6.8,

for their finish times are unlikely to be censored, and supports a simple linear relation between the

split time and the finish time over this domain (as does an insignificant quadratic term, when included
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in this regression).  Year dummies are included as controls.

The residuals obtained from this regression are plotted in the next figure, Figure 7, for all but

the fastest runners.  To orient the figures in the same way the theory was presented, predicted finish

times, on the horizontal axis, run from largest (worst) to smallest (best), as do the deviation of actual

finish times from predicted, on the vertical axis.  This axis, also measured in log points, is placed at

the threshold, 7.27, and axis spans finish time deviations as large as 7%.  Along with the mean

residual, again calculated with a loess smoother, are 95% confidence intervals. 

The relevance of threshold incentive effects is formally supported by the residuals-based

specification test in equation (4), which can be conducted although this regression contains year

dummies, by finding the difference in finish times between adjacent runners (ordered by split times)

running the WS100 in the same year.  Our test statistic of 2.00 suffices to reject the null hypothesis

of no misspecification.  The figure indicates a perturbation in performance in the neighborhood of the

threshold, and only in this neighborhood, that is associated with logged split times ranging from about

6.64 to 6.76.  We structure the nonparametric term accordingly in the semiparametric regression,

based on equation (5), that is intended to identify this perturbation.

Figure 8 presents estimates of g(<) in this regression, conducted with a loess smoother in SAS

procedure GAM, with the bandwidth chosen by cross-validation and year dummies again included

as controls.  The g(<) term is easily significant at p <.01, and indicates performance improvements

of as much as 1.5%.  The Peak Effort Property and the Precautionary Effort Property are transparent,

while the Sawtooth Property is also supported (the acclivity is 50% steeper than the declivity).  The

Peak Proximity Property is also confirmed: at the point of maximum effort the runner has a three-

fourths chance of passing the threshold.  This, is turn, suggests that maximum effort occurs not at an



5 Nonparametric quantile estimation methods can be executed using the techniques discussed
in Koenker (2005), or with commercial software using transformation regression, the method adopted
here.  This technique expresses the key independent variable < (here, the split time) as the sum of an
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interior solution, as in Figure 2, but at the extensive margin, as in the profiles in Figure 3.  Simulations

suggest this virtually always occurs under the restriction F, < max f.  The gentle upward slope of the

perturbation seems to contradict this finding, but we will soon reconcile this contradiction.

Extensions.  A careful comparison of Figures 7 and 8 reveals that the smoothed residuals are almost

identical to the perturbation estimate, except for an additive scale factor that arises because the grand

mean of the residuals equals zero.  This should not be surprising, because the parametric regression

basically detrends the data, and the effort perturbation, being small in scale, affects the estimate of

this trend only slightly.  The same would be true of a more general trend, such as a smooth

polynomial in <, which may be necessary if < is measured with heteroskedastic error, which will cause

regression to the mean at a non-constant rate (as in Grant and Green, 2010). 

In other instances, however, natural ability may be proxied by more than one variable.  In the

WS100, for instance, a stronger and sharper effort perturbation is observed in residuals from a

parametric, double-log regression of the finish time on the sixth split time and the elapsed time

between splits six and seven.  The previous discussion implies that smoothed residuals from these

regressions will also provide a good estimate of threshold incentive effects, but (with our

nonparametric regression approach) a more formal option is also available: the single-index model.

Ichimura’s (1993) estimator is not yet available in commercial software, but Horowitz and Hardle’s

(1994) specification test can be conducted without estimating the full nonparametric model.  

Alternatively, it may be valuable to estimate not the smoothed mean, but smoothed quantiles.5



overlapping series of “B-splines,” Ss(<), calculated using the method of deBoor (1978), such that
ESs(<) = 1 � <.  These splines are then employed as independent variables in a parametric quantile
regression.  Applying the coefficient estimates to the splines yields a smooth, unrestricted estimate
of that quantile.  That is, if the coefficients on the splines are $s, then the predicted value of the
quantile at split time < is E$̂ sSs(<).  The extent of smoothing is governed by the number of splines.
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Here, this estimates the amount of incentivized effort among those runners who tend to “finish

strong” and among those who don’t.  Estimates of the 25th, 50th, and 75th percentiles, presented in

Figure 6 (bottom), are indeed revealing.  Runners at the 25th percentile, who tend to run the second

stage of the race relatively quickly, appear to increase their finish time by as much as 2% compared

to trend, while those at the 75th percentile–who have more energy in reserve–increase their times by

as much as 5%.  The Stair Step and Sawtooth Properties are clearly followed in each instance, while

the sudden and sharp onset of the effort perturbations, moving inward from the top right corner of

the graph, indicate the locations of the extensive margins.  The modest mean threshold effects that

are illustrated in Figure 6 (top), Figure 7, and Figure 8 are in fact smoothed combinations of stronger

threshold effects across runners at different quantiles.

V.  Applications to Educational Research.

Thresholds are rife in education, where they delineate acceptable or noteworthy performance

for students, educators, schools, and school districts.  Increasingly, economic research utilizes these

thresholds to draw conclusions about the effect of incentives on student, educator, and school

performance.  The results developed here can sharpen the conclusions drawn in some of these studies

and modify the conclusions drawn in others.  We illustrate with four varied examples.
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Grant and Green (2010).  How much are students motivated to study by the prospect of earning a

higher grade?  To answer this question, the companion paper applies the methodology developed here

to micro data on student performance in four business courses taught by five instructors at two

universities.  Final exam performance was related to the proximity of students’ pre-exam course

averages to the threshold between two letter grades.  Students near the threshold are expected to do

unusually well on the final examination, compared to those far away.

While this might seem like a straightforward application of basic economic theory, this is not

so: there is consistently no effect.  The methodology here helps reinforce that counterintuitive result

by its generality, showing that the failure to reject the null does not stem from an arbitrary parametric

specification choice, and its completeness, showing that the Peak Effort Property and Sawtooth

Property are repeatedly violated, while the Stair Step Property is occasionally violated.

Figure 9 presents a subset of results from that paper, which use data from this author’s

Principles of Microeconomics classes.  The relation between students’ course averages and their final

exam scores is essentially a trend, uninterrupted by significant perturbations near the threshold

dividing any two letter grades (A, B, C, D, F)–not even on the pass/fail border.  A specification test

fails to reject the null that this trend adequately describes the data.  This is complemented by an

analysis of the distribution of post-exam course averages, which are not bunched just above the

cutoffs dividing grade thresholds: nineteen percent of all unrounded final course averages end with

a units digit of 0 or 1, slightly below the 20% that would be expected at random.  Furthermore, pre-

exam/post-exam transitions in students’ course averages reveal that, after taking the final exam,

students are as likely to drop just below a grade threshold as to rise just above it.  The italicized cells

of the table, which contain these two transition probabilities, are not significantly different.  All
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together, in a total of twenty hypothesis tests conducted in that paper–five tests for each of four

instructors–exactly one is significant at the five percent level and one other at the ten percent level,

just as predicted by chance.

McEwan and Saltibañez (2005).  This paper examines the effect of incentives on teacher

effectiveness, using for identification a points threshold required for promoting schoolteachers in

Mexico.  One-fifth of the available points are generated by scores on standardized student tests, and

McEwan and Saltibañez find that scores rise modestly just above a somewhat arbitrarily-chosen

threshold that distinguishes teachers with a reasonable chance of being promoted from those who

don’t.  They thus conclude these performance incentives are effective means of improving instruction.

These results are presented in Figure 10 (bottom).  The positive effect, an increase in awarded

points of about five percent above trend, is clearly visible.  However, this finding violates the Peak

Proximity Property: at the point of maximum effort, the chances of passing the threshold must be at

least one-half.  In the figure, however, these chances are below one-half: the total points received by

the average individual at the point of peak effort, 53+11.5=63.5, are well below the 70 points

required for promotion.  Simply put, if it is worth expending great teaching effort if you “begin” with

53 points, it should be at least as valuable to do so at 54 points or more.  Absent an explanation why

this should not be the case, these empirical results must be viewed not as evidence of threshold

incentive effects, but some unknown specification error that generates this spurious result.

Reback (2008).  This paper looks at the effect of accountability standards in the state of Texas on the

distribution of academic achievement.  These standards classify schools into one of four
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categories–low performing (unacceptable), academically acceptable, recognized, and

exemplary–based (to simplify slightly) essentially on the fraction of students passing state

assessments.  Reback creates an index, called the “accountability incentive,” that measures the

“marginal benefit to the school from a moderate increase in a student’s expected performance” (p.

1404).  This incentive, depicted in Figure 10 (top) for the low performing/academically acceptable

threshold, takes a shape resembling that in Figure 2, but this figure depicts the construction of the key

independent variable.  This variable is then used to predict test scores, and its significance indicates

that schools focus their energies on those students closest to passing the threshold.

Our analysis suggests a less restrictive, more demanding way to explore the same topic: take

the prediction of each students’ expected assessment score that goes into forming the accountability

incentive–which is < is our nomenclature–and nonparametrically relate it directly to actual test scores.

If schools respond to assessment incentives as predicted, this regression would itself yield curves that

look like those at the bottom of Figure 2, and residuals that resemble those in Figure 10, which would

satisfy all the properties enumerated above.  A closely related paper, Neal and Schanzenbach (2010)

provides graphs that, while not formally testing the properties derived in Section I, appear to be

consistent with several of them.

Craig, Imberman, and Perdue (2009), Ahn and Vigdor (2009).  Using Texas and North Carolina data,

respectively, these authors move further up the bureaucracy and explore how districts respond to

accountability incentives, which typically assign schools one of three or four ratings based on the

fraction of students that score acceptably on standardized tests. 

Of course, these ratings are separated by thresholds (to simplify slightly, as the rating process
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is not quite this simple).  These thresholds can be used in one of two ways.  Retrospectively, using

regression discontinuity methods, one can compare consequences for schools that just did, and did

not, achieve their desired rating.  This is the approach used by both of these papers, which collectively

find that successful schools receive a funding increase but perform no differently from their less

successful confederates on future tests.

Alternatively, these thresholds could be used prospectively, to identify how threshold

incentives affect schools’ outcomes, using the methods developed here.  Using the prior year’s score

as a proxy for “natural ability,” one can discern whether there is particularly strong performance by

schools near the thresholds separating rating categories, which satisfies the properties articulated

above.  This fundamental question about accountability incentives has so far gone unaddressed.

VI.  Conclusions.

A basic economic model predicts several properties threshold incentive systems should

possess.  These properties can be easily checked, and the incentive effects revealed, using

nonparametric regression.  This practical method adds rigor and generality to the methods used

heretofore, which can be applied to a wide range of phenomena.
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Table 1.  Summary of Academic Studies of Threshold Incentive Effects. 

 

Topic Selected Studies Threshold Theory Evidence 

gaming of bonus 

systems or financial 

reporting 

requirements 

Healy (1985), 

Courty and 

Marschke (2004),      

Grundfest and 

Malenko (2009) 

annual cutoff for meeting 

quotas to qualify for 

bonuses, or the 0.5 cent 

cutoff to round up 

earnings per share 

emphasizes potential 

adverse effects of 

thresholds 

timing of reported output is 

adjusted to maximize bonuses;  

small accounting adjustments 

are made to nudge up earnings 

per share to the next cent 

criminal behavior, 

drunk driving  

Friedman and 

Sjostrom (1993), 

Iyengar (2008), 

Grant (2010) 

zero tolerance thresholds 

of various types 

 

emphasizes potential 

adverse effects of 

thresholds or threshold 

reductions 

reduced BAC thresholds do 

not effect the amount of drunk 

driving by youth; criminals on 

their “third strike” commit 

more severe offenses 

biodiversity loss Perrings and 

Pearce (1994), 

Muradian (2001) 

where species 

populations are 

sufficiently depleted that 

“the ecosystem loses 

resilience” 

emphasizes risk 

avoidance in a 

dynamic, uncertain 

environment 

“there is abundant evidence 

of…threshold effects as the 

consequence of human 

perturbations on [ecosystems]” 

effort by students, 

schoolteachers, 

schools, or districts 

Oettinger (2002), 

McEwan and  

Saltibanez (2005), 

Reback (2008), 

and many others 

letter grade cutoffs; 

“points” required for 

promotion, for passing a 

high-stakes test, or for a 

higher school rating 

emphasizes the “Peak 

Effort Property”  

described below 

see the extended discussion 

below, especially Section V 

analyst / publication 

bias in several 

fields of social 

science 

Card and Krueger 

(1998), Tufte 

(2006), Gerber and 

Malhotra (2008) 

the t values required for 

statistical significance of 

regression coefficients 

formally derives the 

“caliper test” 

researchers’ methodological 

choices and/or editors’ 

acceptance decisions favor 

rejections of the standard null 

 



Figure 1.   Analysis of the Effort Decision, Conditional on Ability. 



Figure 2.  Top: Ability-Effort Locus.  Bottom: Ability-Performance Locus. 
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A.  Parameter Values: γ = 0.2, σε = 3, P = 5, mean ν = -3. 

      f PERFECT = 6.34, f IMPERFECT = 2.70, f THRESHOLD = 3.73. 

B.  Parameter Values: γ = 1.2, σε = 0.3, P = 10, mean ν = -1. 

      f PERFECT = 0.39, f IMPERFECT = 0.38, f THRESHOLD = 0.26. 

C.  Parameter Values: γ = 0.2, σε = 0.3, P = ½, mean ν = -1. 

      f PERFECT = 0, f IMPERFECT = 0, f THRESHOLD = 0.23. 

D.  Parameter Values: γ = 0.6, σε = 0.8, P = 3½, mean ν = -1. 

      f PERFECT = 0.16, f IMPERFECT = 0.04, f THRESHOLD = 0.35. 

Figure 3: Theoretical Relation between Natural Ability and Effort under a Threshold Placed at Zero (ν ~ N(0,3)). 

 



Figure 4.  Visual Overview of the Western States 100. 
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Figure 5.  Histograms and Kernel Densities of Five Split Times and Finish Times (in minutes).

Left column: Times at splits 2, 4, and 6.  Right column: Times at splits 7 and 8, and finish times. 
A finish time of twenty-four hours corresponds to 1,440 minutes.



Figure 6.  Split 6 and Finish Time Scatterplot, with Smoothed Mean (top) and Quantiles (bottom). 
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Figure 7.  Smoothed Deviation of Actual Finish Time from Trend (95% Confidence Interval). 

 

Figure 8.  Effort Perturbation Surrounding the Threshold (95% Confidence Interval).
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Figure 9.  Abbreviated Results Portfolio: Grant (adapted from Grant and Green, 2010). 
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Figure 10.  Reback (2008), Figure 2, and McEwan and Saltibañez (2005), Figure 4.
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