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Abstract

This paper sheds light on how changes in the organization of work lead to wage in-

equality. We present a theoretical model in which workers with a wider span of competence

(higher level of multitasking) earn a wage premium. Since abilities and opportunities to

expand the span of competence are distributed unequally among workers across and within

education groups, our theory explains (1) rising wage inequality between groups, (2) rising

wage inequality within groups, and (3) the polarization of work and the decoupling of the

income distribution. Using a rich German data set covering a 20-year period from 1986 to

2006, we provide empirical support for our model.
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1 Introduction

This paper provides a theoretical and empirical analysis that helps explain several important de-

velopments in wage inequality in terms of observed changes in the organization of work. The

developments comprise the following empirical regularities: (i) rising wage inequality between

skill groups, (ii) increasing within-group wage inequality, and (iii) the “ polarization of work”

(a reduction in the mass of middle-income earners) and the “decoupling of the earnings distri-

bution” (with more inequality in the upper range of the wage distribution and less inequality in

the lower range of this distribution).1 We observe that many of the developments in the orga-

nization of work over the past two decades involve changes in workers’ spans of competence,

defined in terms of the breadth of their portfolios of tasks. In our empirical analysis we show

that cross-section and time-series variations in workers’ span of competence shed light on the

above empirical regularities.

The paper is organized as follows. Section 2 provides some background and summarizes some

relevant literature. Our theoretical analysis in Section 3 explains why the span of competence

tends to rise with the skill level, defined in terms of education. In particular, higher-skilled

workers are able to take advantage of more complementarities across tasks and thus they ex-

perience a rise in their productivity and wages, relative to lower-skilled workers. The resulting

wage differential we call the “multitasking premium.” We also show that, within education

groups, differences in spans of competence (defined in terms of multitasking) can help account

for a growing fraction of within-group inequality. Finally, we indicate how changes in multi-

tasking spans can help explain why work has become polarized and the earning distribution has

become decoupled over the past decade in several countries.

In Section 4, we construct a simple empirical measure of multitasking and then, using a rich

data set of Germany covering 20 years from 1986 to 2006, we introduce some preliminary

evidence indicating the growing importance of multitasking. In Section 5, we present wage

regressions that provide evidence for the existence of a multitasking premium and find that

it increases throughout the 20 years of our sample period. We also show that the level of

multitasking can explain an increasing fraction of wage inequality within education groups.

1For papers discussing these regularities, see e.g. Autor et al. (2008); Dustmann et al. (2009); Lemieux (2006);
Juhn et al. (1993); Autor et al. (2006); Goldin and Katz (2007).
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2 Background

Large bodies of evidence testify to the significant changes in the organization of work that have

taken place in many OECD countries over the past two decades (cf. NUTEK, 1999; Snower

et al., 2009). Hierarchies have become flatter, decision-making has become more decentralized

(Caroli and Van Reenen, 2001), team work has become important (OECD, 1999; Carstensen,

2001), job rotation and quality circles are more frequently used (Osterman, 2000). What many

of these organizational changes have in common is that workers now perform broader sets of

tasks, i.e. they have increased their spans of competence. A number of studies provide evi-

dence that these organizational innovations have often gone hand in hand with technological

innovations, such as ICT capital and versatile machines capable of producing a greater variety

of customized products (cf. Brynjolfsson and Hitt, 2000; Bartel et al., 2007; Bresnahan et al.,

2002; Aghion et al., 2002). Some authors also show that organizational change is complemen-

tary to skilled labour (Caroli and Van Reenen, 2001; Bresnahan et al., 2002; Bauer and Bender,

2004). The implications of this workplace transformation for individual wages have however

remained largely unexplored thus far.

Earnings inequality has risen substantially in many advanced countries during the last three

decades. In the US, wage inequality has grown strongly during the 1980s and the income

distribution has started to polarize more recently (Goldin and Katz, 2007; Autor et al., 2006).

Similar developments have been reported for the UK and have, to a lesser extent, also been

observed in other developed countries such as Germany (e.g. Haskel and Slaughter, 2001; Goos

and Manning, 2007; Dustmann et al., 2009). A major contributor to rising overall inequality

is the educational wage differential (college premium), which has increased strongly since the

1980s in the US and since the 1990s in Germany (Autor et al., 2008; Dustmann et al., 2009).

However, observable characteristics such as education or work experience have been found to

explain at most half of the variation in wages so that the wage dispersion within these groups

is at least as important a contributor to overall inequality as the variation between the groups

(Juhn et al., 1993; Katz and Autor, 1999).

In the mainstream literature, the link between educational premia and wage premia is explained

primarily through globalization, de-industrialization, and skill-biased technological change

(SBTC), with the last playing a particularly prominent role. Each of these explanations is,

to some degree, a “black box” comprising various economic phenomena, including multitask-

ing. The contribution of this paper is thus not simply to be seen as a distinct alternative to

these explanations, but also as a step towards getting into the black box. The various problems

with the conventional explanations are well-known. With regard to the SBTC hypothesis, for
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example, Card and DiNardo (2002) have argued that, if SBTC caused the steep rise in US (and

UK) earnings inequality during the 1980s, it is difficult to explain why it has failed to produce

a similarly steep rise in the 1990s even though ICT capital continued to spread across the US

and other advanced countries, and the spread may have even accelerated. They also report the

development of several wage differentials (e.g. gender, race, age) which cannot be explained

by the simple SBTC hypothesis. Furthermore, SBTC is often measured as a residual (such

as a Solow residual), i.e. as a catch-all category for everything that cannot be explained by

other measured variables (Snower, 1999). Some contributors have suggested that SBTC af-

fects the wage structure primarily through organizational changes in the workplace (Caroli and

Van Reenen, 2001; Bresnahan et al., 2002). Yet, while Levy and Murnane (2004) and Spitz-

Oener (2006) have studied how technical change affects the task requirements of jobs, we are

not aware of any study that has looked at how multitasking evolved and how it affects earnings.

The reasons for rising within-group inequality remain highly controversial as well. Juhn et al.

(1993) suggest that rising within-group inequality reflects increasing returns to some type of

skill other than years of schooling or experience. Some authors tried to capture unobserved

ability by measures of cognitive skill (e.g. IQ), but were not successful in explaining increasing

residual inequality well (Gould, 2005; Blau and Kahn, 2005). Hence, it is still an open question

what constitutes these unobserved skills that seem to drive within-group inequality.

As noted, this paper explains how the rising multitasking premium can shed light on wage

inequality between and within skill groups. The rise of multitasking is part of a broader set

of changes in the organization of work that has swept through OECD countries over the past

two decades. These organizational changes have been driven by improvements in ICT capi-

tal, the introduction of more versatile machinery, and the broadening of human capital across

skills through education and training, all of which enable workers to exploit complementari-

ties among wider groups of tasks (cf. Lindbeck and Snower, 1996, 2000). For example, the

implementation of ICT capital reduces the cost of communication and facilitates communica-

tion processes. As a result, it becomes easier for co-workers to obtain information about each

other’s tasks, to take over each other’s responsibilities, and to perform larger sets of tasks. Con-

sequently, we would expect workers with wider spans of competence to earn a multitasking

premium because they are able to exploit more complementarities among tasks. Our empirical

analysis provides support for this claim.
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3 A Theoretical Model of the Span of Competence

We now present a theoretical model that shows how exogenous changes such as the improve-

ments in IT capital, versatility of machinery, and a widening of the human capital base (cf.

Lindbeck and Snower, 2000) trigger a reorganization of work, because they make it profitable

for workers to expand their span of competence, i.e. perform a broader range of tasks. Thereby

workers receive a multitasking premium, which can lead to a fanning out of the wage dis-

tribution between and within skill groups. Our analysis also indicates how the multitasking

premium might contribute to explaining the polarization of work and the decoupling of the

income distribution (cf. Goos and Manning, 2007).

3.1 Model Basics

We define a worker’s span of competence in terms of the number of tasks performed by the

worker. Generally a worker has a “primary task,” which characterizes her occupation, and

a number of “secondary tasks” that are usually complementary with the primary one. The

worker’s span of competence may then be measured by the number of secondary tasks asso-

ciated with the primary one. To begin with, we consider a one-period model, although the

phenomena described here occur through time. A multi-period case is discussed in the ap-

pendix.

The primary tasks x̂i can be ordered according to skill along a line, from low-skilled to high-

skilled tasks. Workers choose combinations of tasks clustered around their primary task. In

particular, if a worker’s primary task is x̂, then the set of secondary tasks chosen is taken

from the range
[(

x̂− s
2

)
,
(
x̂ + s

2

)]
, where s is the worker’s span of competence. Our analysis

provides a choice theoretic rationale for this span of competence. (In this section, we focus at-

tention on a particular worker and thus omit subscripts identifying the primary tasks of different

workers.)

The worker is endowed with T units of working time per period. She devotes a unit of time

to each secondary task and the time span (T − s) to the primary task. Effective labor services

devoted to the primary task are (T − s) x̂ and effective labor services devoted to the secondary

tasks are ∫ x̂+ s
2

x̂− s
2

xdx =
1

2

((
x̂ +

s

2

)2

−
(
x̂− s

2

)2
)

= sx̂
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3.2 Production

We assume that the productivity of a worker is the sum of (i) returns to specialization (learning

by doing) and (ii) informational task complementarities.2 Returns to specialization imply that

the more time the worker devotes to a task, the more productive she becomes at that task. The

informational task complementarities are modeled as an interaction term between the worker’s

“primary” task x̂ and her “secondary” tasks.

Let returns to specialization in the primary task be represented by y (T − s) x̂, where y is

the productivity arising from learning-by-doing and thus depends on the time devoted to the

primary task. Thus the returns from specialization (rts) are specified as the product of (i) x̂ the

productivity per unit of time at the primary task, (ii) (T − s), the time devoted to the primary

task and (iii) y, learning-by-doing. Setting y = 1
2
(T − s) for simplicity, we obtain:

rts =
1

2
(T − s)2 x̂.

We describe the informational task complementarities (itc) between the primary task and each

of the secondary tasks through the following interaction effect:

itc = γ ((T − s) x̂) (sx̂) = γ (T − s) sx̂2.

Note that the parameter γ governs the magnitude of informational task complementarities.

The production function is the sum of the two above effects:

q =
1

2
(T − s)2 x̂ + γ (T − s) sx̂2.

3.3 The Span of Competence

The worker sets her span of competence s to maximize her wage, which we assume to be equal

to her productivity. Maximizing q with respect to s, we obtain

s∗ =
T (x̂γ − 1)

2x̂γ − 1
,

where we assume that x̂ > 1/γ.

2This analysis is in the spirit of Lindbeck and Snower (2000).
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Note that the optimal span of competence depends positively on the skill level at the primary

task, x̂:
∂s∗

∂x̂
=

Tγ

(2γx̂− 1)2 > 0.

The output generated through this optimal span of competence is

q∗ =
T 2x̂3γ2

2(2x̂γ − 1)
.

In the absence of multitasking (s = 0), the output generated would be

q′ =
1

2
T 2x̂.

Thus the multitasking premium is

q∗ − q′ =
T 2x̂3γ2

2(2x̂γ − 1)
− 1

2
T 2x̂

=
T 2x̂(x̂γ − 1)2

2(2x̂γ − 1)
.

The parameter γ, measuring informational task complementarities, is affected by improve-

ments in ICT technologies and versatile physical capital, and through the widening of human

capital. Specifically, the spread of ICT capital reduces the cost of communication and thereby

enables workers to obtain more information about other jobs, share responsibilities, and engage

in multitasking. The introduction of versatile machinery (programmable equipment and flexi-

ble machine tools) enables workers to respond to changing customer needs through variation in

tasks. A broader human capital base enables workers to perform a wider range of tasks (Lind-

beck and Snower, 2000). In our model, all these developments may be captured by an increase

in the task-complementarity parameter γ.

Observe that the span of competence depends positively informational task complementarities:

∂s∗

∂γ
=

T x̂ (2γx̂− 1)− 2x̂T (x̂γ − 1)

(2x̂− γ)2 =
−T x̂ + 2x̂T

(2x̂− γ)2 =
T x̂

(2γx̂− 1)2 > 0.
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3.4 Explaining the Distribution of Wage Income

We now consider the wages of workers with different occupations, where each occupation is

identified by its primary task x̂i. Then the span of competence for a worker with occupation i

is

s∗ =
T (x̂iγi − 1)

2γix̂i − 1
.

3.4.1 The Fanning Out of the Earnings Distribution

For simplicity, suppose that γi = γ so that all occupations are identical in terms of their oppor-

tunities for informational task complementarities. Next suppose that workers fall into two skill

classes, where x̂h is the primary-task productivity of the high-skilled worker and x̂l is that of

the low-skilled worker. Then the wage differential (equal to the productivity differential) is

qh − ql = (Tγ)2

(
x̂3

h

2(2x̂hγ − 1)
− x̂3

l

2(2x̂lγ − 1)

)
.

In this context, an increase in informational task complementarities (driven, as noted, by the

introduction of ICT and versatile physical capital, as well as a widening of human capital) has

a striking effect on the wage differential. In our model, a doubling γ would more than double

the productivity difference. In this way, our analysis helps account for the fanning out of the

income distributions in many OECD countries between the mid-1970s and the mid-1990s.

3.4.2 The Breakup of Earnings Distribution Changes

Several papers on the polarization of work argue that the middle range of the wage distribution

contains a disproportionate number of white-collar workers doing routine jobs (e.g. Goos and

Manning, 2007). These jobs potentially offer relatively few opportunities for expanding the

span of competence.3 Accordingly, consider a distribution of primary-task skill classes x̂i

over the range [x̂−, x̂+], where x̂− and x̂+ are positive constants, x̂− < x̂+, and let γi be the

3Indeed, the average level of multitasking in occupations that intensively use routine tasks is indeed lower
than in nonroutine-intensive occupations (2.66 vs. 2.17). We arrive at these figures by first calculating the routine
and non-routine task input of each occupation using the methodology suggested by Spitz-Oener (2006). Then,
occupations with a larger (non-)routine task input are designated (non-)routine task-intensive and the average
multitasking is calculated.

8



corresponding task-complementarity parameters. The income of a worker in skill class i is

qi =
T 2x3

i γ
2
i

2(2xiγi − 1)

To capture the above characteristic of routine white-collar work, we suppose that as the task-

complementarity parameter rises (for the reasons outlined above), the increase in γi is relatively

small for workers in the middle range of the wage distribution, compared to workers in primary-

task groups at the top and bottom of the wage distribution. Since ∂qi/∂γi > 0, we then find

that the incomes of the routine white-collar workers will rise more slowly than the incomes

at the lower and upper tails of the occupational distribution for x̂i. Thus the lower part of the

income distribution will become more equal and the upper part of the distribution with become

less equal. Thereby our analysis can help account for both the polarization of work and the

decoupling of the wage distribution (see, for example, Autor et al. (2006) for the US).

4 Data and Construction of Variables

Our following empirical analysis is based on the German Qualification and Career Survey. The

goal of the survey, conducted by the German Bundesinstitut für Berufsbildung (BIBB; Institute

for Occupational Training), is to shed light on structural change in the labour market, and

to document how it affects working conditions, work pressure, and individual mobility. For

that purpose, it collects detailed data on issues, such as qualification and career profiles of the

workforce, and organizational and technological conditions at the workplace. We use the four

cross-sections 1985/86, 1991/92, 1999, and 2006, and can thus cover a period of 20 years.4 This

makes the dataset particularly suitable for our analysis, because the available literature suggests

that major changes in the organization of work have only been observed since the late 1980s

(cf. OECD, 1999). The Qualification and Career Survey has already served a large number

of academic studies (e.g. DiNardo and Pischke, 1997; Pischke, 2007; Spitz-Oener, 2006). It

samples from employed persons aged between 16 and 65.

The central variable in our empirical investigation is multitasking, which we use as a measure

for the worker’s span of competence. A unique feature of our data is is that they allow the

construction of such a variable at the individual level. We provide two independent measures

of multitasking, in order to assess the robustness of our results.

4An earlier survey wave in 1979 is available as well, but large changes in the variable definition over time
make it impossible to use the earliest wave of the survey. Consequently, we start our analysis in 1985/86.
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4.1 A Task-Based Measure of Multitasking

A distinctive feature of our data is that every respondent is required to indicate which tasks

he performs at work. Multiple answers are possible, and indeed chosen by almost all respon-

dents. An overview of available answer options is given in table 1. However, this overview

hides two problematic inconsistencies between the different survey waves: (1) the number of

available answer options changes over time, and (2) in some cases, the wording of the answers

differs significantly between the survey waves. We proceed by describing how two consistent

multitasking variables can nevertheless be generated.

(table 1 here)

Table C.1 in the appendix provides a detailed overview of the exact wording and occurrence of

the items. We followed Spitz-Oener (2006) and Gathmann and Schoenberg (2007) in drawing

up a list of 17 tasks that can potentially be identified from the data (see tables 1 and C.1). Then

we use two ways to identify these tasks: (1) directly from the answers to the question ”Which of

these tasks do you perform during your work?” and (2) indirectly via the question ”Does your

job require special knowledge in any of these fields?” (printed in italics in table C.1). Note that

some tasks can only be identified either via the direct way or via the indirect way, because the

respective answer was not included in the relevant questionnaire. More specifically, in year I

(1986) only the direct question is available. In year II (1992), the answers to the direct question

are identical to the previous survey, and this time, also the indirect question is available. In

year III (1999), a couple of direct answers have been dropped from the survey, but the indirect

answers are often identical to the previous survey. The same holds for year IV (2006).

In 8 out of the 17 cases on our list, the answer options for the direct question are identical (or

nearly identical) in all four survey waves. We hence use the direct question to code these tasks

and mark them accordingly in the third column of table 1. In 4 out of 17 cases (des, pre, man,

tex), neither the direct nor the indirect answers are comparable over time, so we drop these

tasks and do not use them in the analysis. In the 5 cases left, we obtain a mix of identical direct

answers in years I and II, together with identical indirect answers in years II, III, and IV. We

mark these cases in the fourth column of table 1. We can hence draw upon the direct answers

in years I and II, but have to use the indirect answers in years III and IV. All we need is to make

sure that the direct answers in year I and II and the indirect answers in year III and IV measure

the same thing, i.e. whether it can capture that the person performs the respective task.

To check this, we make use of the fact that both the direct answers and indirect answers are

available in year II. We code the tasks once using the direct answers and again using the indirect

10



answers, and then calculate the correlation between the two. Correlation coefficients are listed

in the fifth column of table 1. Taking coefficients larger than 0.4 as appropriate, we find that

in 4 of the 5 cases, both ways to code a task are acceptable. Accordingly, we have identified a

total of 12 tasks, which are consistent and comparable across all four years of analysis.5 The

variable for multitasking is obtained by simply counting all tasks indicated by a respondent.

4.2 A Tool-Based Measure of Multitasking

Arguably, the task-based measure of multitasking described above might be contested since

it could be subject to imprecision, even though we took great care to avoid this. Fortunately,

our data allow the construction of an additional measure of multitasking, which we will use

to check the robustness of our results. In addition to work tasks, every survey respondent was

asked to indicate the tools utilized at his workplace. The tools to choose from are shown in

table 2. A great advantage over the task-based measure is that the definitions of these tools

hardly change between the years. Even in the few cases they do, it is easy to aggregate them

consistently. Unfortunately, the question about workplace tools has been dropped in the latest

wave of the survey (2006).

(table 2 here)

We consider workplace tools as a good proxy for tasks. Consider, for example, a typical wood-

worker. According to our data, he uses simple tools, power tools, measuring instruments,

hand-controlled machines, and lift trucks. A few woodworkers in our sample also use typewrit-

ers, cash registers, files, simple writing materials, phones, and calculators. Looking at this list

of workplace tools, we can infer that the average woodworker is performing tasks such as lum-

bering, transporting wood, transforming it into new forms. However, some of the woodworkers

seem to be involved in sales or bookkeeping tasks, too. An increase in the portfolio of tasks is

hence reflected in the number of tools a worker uses. Note that also Becker et al. (2009) use

workplace tools as a proxy for the task content of a job.

As another example, we list the tools used by at least 20 per cent of electricians in our samples

(table 3). The tasks printed in italics have newly entered the list in the respective year, i.e.

they were previously performed by less than 20 per cent of the electricians. Just like in the

case of the wood workers, it seems that office equipment and computers are taking on a more

prominent role in an electrician’s workplace, while the traditional tools remain important as

5Note that Spitz-Oener (2006) claims that a larger list of 17 tasks is comparable over all waves, but we consider
this as highly problematic given the above-mentioned strong changes in the wording of the task description.
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well. It thus appears from the tools they use, that electricians perform a broader range of tasks

today than they used to.

(table 3 here)

A major problem with using tools as proxy for tasks is that certain tools can potentially be used

for more than one task. While a personal computer is very versatile, i.e. it can be used for

many different purposes and to perform many tasks (maybe even at the same time), a hammer

or other simple tools are much less versatile, i.e. they can only be used for one specific purpose

and task. In order to account for this, we subjectively rank tools according to their degree of

versatility (see table 2). Tools at the top of the list can potentially be used to perform a larger

number of tasks; tools at the bottom of the list can only be used to perform one or few tasks.

We then aggregate the tasks into three groups: high, medium, and low versatility and attach

the weights of 3, 2, and 1, respectively. The multitasking measure is the weighted sum of the

number of tools.6

4.3 Earnings and Other Variables

Data about individual earnings are also taken from the Qualification and Career Survey. In years

I–III, earnings are reported in brackets and are both bottom- and top-censored (see table 4). We

impute individual earnings by taking the midpoint of each earnings bracket.7 For the right-

censored cases, we follow Pischke (2007) and assign the values stated in the column “Highest”

of table 4. Due to the small size of the earnings brackets, potential measurement errors should

be limited.8 In year IV, we can abstain from imputation because respondents were asked to

indicate the exact amount of their gross monthly earnings. For the regressions, we first convert

monthly earnings into real hourly wages by dividing them by the reported hours worked and

deflate them by the CPI in the respective year (as provided by the German Statistical Office).9

(table 4 here)
6Note that this weighting scheme has problems on its own because it is a completely arbitrary assumption that

e.g. a PC is three times as versatile as a hammer and that the worker is indeed using the entire versatile potential
of the PC. Nevertheless, we consider this alternative measure for multitasking as a useful device to check the
empirical results derived from the task-based measure.

7See also DiNardo and Pischke (1997) and Pischke (2007) who use the same data for their analyses.
8We employ censored normal regressions in order to account for censoring in the wage data. In the appendix,

we also provide the results of interval regressions to account for the bracket structure (von Fintel, 2007).
9Table 4 shows that the top category of earnings in 1992 is much lower than in 1986 and 1999. However, this is

not a limitation for our purpose because even with the lower top category in 1992, almost the entire German wage
distribution is covered. Detailed summary statistics of earnings in 1992 shows that the censoring only affects the
top 2 percent of the distribution.
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Other variables that enter our regression analysis as control variables are dummies for the edu-

cational level, years of experience, and dummies for married, female, the interaction of the two,

working part-time and residing in a city. The three educational levels indicate the highest qual-

ification obtained by a respondent and include tertiary education (university and equivalent),

secondary education (Abitur [A-levels], vocational training) and less than secondary education

(schooling up to 10th grade or less). Work experience is calculated using a variable indicating

the year in which respondents had their first job. The city dummy indicates whether the respon-

dent lives in a city with more than 50,000 inhabitants. A similar set of control variables has

also been used by DiNardo and Pischke (1997) who, however, investigate the wage impact of

computer use.

5 Results

We now present evidence for some of the main features and predictions of the theoretical model

discussed above.10 Before proceeding to the results, we would like to quickly summarize some

expected results. First, we expect the level of multitasking to rise throughout the sample period.

As we mentioned above, the two decades analyzed have been characterized by a large-scale re-

organization of work, which should be reflected in an increased level of multitasking of workers

(cf. NUTEK, 1999; Caroli and Van Reenen, 2001). Second, we expect the level of multitask-

ing to differ between workers with different educational level. Higher-educated individuals are

more likely to expand their span of competence either because they are more able to do so or

because they work in jobs where more opportunities for an expansion arise (cf. Appelbaum

and Schettkat, 1990). Third, we expect to find a multitasking premium because—as shown

theoretically—with a wider span of competence, employees exploit more complementarities

between tasks, which raises their productivity and wages.

5.1 Facts about Multitasking

We start by presenting some preliminary empirics on the extent and development of multitask-

ing in Germany in order to get an idea about its importance. Table 5 shows summary statistics

of our two measures of multitasking for all workers and by educational level. To begin with, it

becomes clear that multitasking has increased significantly over time. Even though multitask-

ing was already slightly rising throughout the late 1980s, the biggest increase happened after

10Note that we do not intend to provide a structural estimation of the model.

13



1992. Interestingly, both independent measures of multitasking, task-based and tool-based,

paint roughly the same picture. Importantly, the standard deviation of our multitasking mea-

sures is increasing over time in all groups. It is thus evident that not all workers have equally

increased their spans of competence, but that the increasing average is accompanied by an

increasing dispersion of multitasking within the groups.

(table 5 here)

Looking at multitasking by educational level, panel B reveals that—as expected—higher edu-

cated workers perform significantly more tasks on average than lower educated workers. Work-

ers with tertiary education, i.e. with a university or technical college degree, have increased

their level of multitasking from 2.2 to 6.6 tasks on average, while workers with primary ed-

ucation increased the level from 1.5 to 5.1 tasks only. Interestingly, the “multitasking gap”

between higher- and lower-educated workers (the difference between the respective multitask-

ing scores) has increased quite strongly throughout the late 80s and 90s, but has shrunk after

1999. Note however that the standard deviation in 2006 is relatively high for primary-educated

workers compared to workers with a higher educational level, suggesting that the strong in-

crease in multitasking for low-skilled workers in the early 2000s has only been experienced by

a relatively small group of workers. 11 In general, the higher level of multitasking for higher-

educated workers is notable. Either their ability to expand the number of tasks is higher, or they

work in jobs where more possibilities for multitasking arise.

(table 6 here)

The data of 1999 and 2006 allow us to further investigate whether multitasking is indeed related

to the introduction of ICTs, versatile machinery, or other organizational changes, as we sug-

gested in the theoretical model. In the questionnaire, workers were asked whether there have

been recent changes in production techniques, machines or computers, whether the company

has developed new, improved products or services, whether there has been any organizational

restructuring, and whether there have been changes in the management or the worker’s supe-

riors. Table 6 shows the average levels of multitasking (task-based measure) of workers who

have and who have not experienced such changes. The numbers clearly convey that work-

ers in “changing” firms perform on average almost one task more than their counterparts in

11On the one hand, there is anecdotal evidence in the German press that firms have begun to favour specialization
of their workers again. The decreasing multitasking gap we report might be a first result of this trend. On the other
hand, the high level of multitasking for the primary education group is mostly driven by office personnel, salesmen
and IT experts, all of which are not typical unskilled jobs, but may yet be carried out by workers without formal
secondary or tertiary education (unlike a teacher, for example). It seems that in 2006, more of these jobs were held
by unskilled persons so that there might be a composition effect here. When estimating the multitasking premium,
we include a robustness check with occupation fixed effects, which should deal with this.
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other firms. Similar evidence has been reported by Caroli and Van Reenen (2001) for the UK

and France, and Carstensen (2001) for Germany. The same picture emerges when using the

tool-based measure for multitasking (not reported).

5.2 Is There a Multitasking Premium?

In the following econometric analysis, we estimate simple wage regressions, but amend them

by including our multitasking measure. Besides that, the estimated wage equation is standard;

it includes dummies for the educational level, years of experience, gender, marital status, the in-

teraction of gender and marital status, dummies for part-time work and living in a city. We also

include industry fixed effects (two-digit level) to account for possible industry-specific effects

of organizational and technical change that might otherwise be picked up by our multitasking

measure.12 In the pooled regressions, we also include year dummies. The endogenous variable

is log real gross hourly wage rate. The wage equations are estimated using a censored nor-

mal regression in order to provide for top and bottom censoring in the wage data. Our sample

includes all workers and is limited to West Germany.

(table 7 here)

The estimation results using our task-based measure of multitasking are shown in table 7.

Model 1 uses the pooled sample (all waves) and is equivalent to a conventional wage equa-

tion. The results are in line with usual estimates (e.g. DiNardo and Pischke, 1997).13 In model

2, we add our task-based measure of multitasking. We also include its square term in order to

account for possible diminishing returns to multitasking, which reflect the trade-off between

specialization and informational task complementarities in the theoretical model. The result

shows that multitasking has a positive and significant effect on hourly wages: at the mean level

of multitasking, performing one additional task is associated with a 3.5 percent higher wage.14

The regressions hence reveal the existence of a multitasking premium. The negative coefficient

for the square indicates diminishing returns to multitasking. Multicollinearity is not present

since the coefficients of education and experience only change very little. Our proxy for the

12In the appendix, we present the results of a regression also controlling for occupation. The results are con-
firmed.

13DiNardo and Pischke (1997) have used the same data and variables. However, they investigate the question
whether certain tools have similar wage effects as computers. The results are not directly comparable because
they include at least a variable for computer use in their regressions and approximated years of schooling instead
of dummies for the educational level. Our coefficient for work experience is about 1 percent lower than their
estimate.

14The effect is calculated at the mean level of multitasking (s) using ∂ ln w/∂s = β1 + 2β2s, where β1 and β2

are the coefficients of multitasking and multitasking squared. The mean level of multitasking of the pooled sample
as it is used here is 3.638.
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worker’s span of competence might thus be constituting a new measure of skill that can explain

wages beyond the standard measures.

Models 3–6 display the estimation results separately for each year. To illustrate the relationship

between multitasking and wages, we plot multitasking-wage profiles in figure 1. The graph

displays, separately for each year, the predicted log hourly wage for each level of multitasking.

It is drawn for an exemplary male, married worker who has secondary education and 20.74

years of work experience (sample average), and lives in a big city. The multitasking-wage

profile becomes steeper over time, implying a rising multitasking premium. The increasing

steepness is driven by the the increasing coefficient of the level of multitasking. Model 7

allows us to test whether the increase in the steepness is statistically significant. There, we use

the pooled sample and control for time differences in the multitasking coefficients by including

an interaction year*multitasking. As expected, the coefficient of the interaction term is greater

for later years and the difference is statistically significant.

(figure 1 here)

(table 8 here)

The coefficient of the square is rather large relative to the linear effect, resulting in the downward-

sloping multitasking-wage profile for high levels of multitasking, as shown in figure 1. The em-

pirical analysis thus suggests that there is an upper limit to how large the span of competence

can be in order to remain profitable for the worker. The maximum of the multitasking-wage

profiles can therefore be interpreted as the optimal level of multitasking. We calculate this limit

(i.e. the point at which the downward-sloping section of the multitasking-wage profile begins)

for each year in table 8. As our theoretical model predicts, the optimal span of competence

was lower in earlier years when multitasking-enhancing technologies and organizational forms

were not yet present or implemented. Yet, the ongoing change and implementation of the new

technologies and organizational structures throughout the 20 years shifted the optimal span of

competence outwards.

How does a multitasking premium translate into wage inequality between and within skill

groups? The existence of a multitasking premium means that the ability and opportunity to

expand the span of competence is rewarded. However, these abilities and opportunities are un-

likely to be equally distributed across the population, so that only some workers benefit from

the multitasking premium. As we showed above, higher educated workers tend to have higher

levels of multitasking, and also the “multitasking gap” between higher- and lower-educated

workers expanded (at least until 1999). Moreover, within educational groups, the level of mul-
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titasking was increasingly spread out. Seemingly, workers who had the ability and opportunity

to widen their span of competence are found in the higher branches of the wage distribution, so

that the multitasking premium leads to greater wage dispersion between groups and possibly

also within groups. If opportunities to expand the span of competence arise unequally along

the current wage distribution, entirely new patterns of inequality, such as the recently observed

polarization, could emerge (cf. Autor et al., 2006).

Besides that, the results also show that there is a “price effect” because the multitasking pre-

mium is rising over time. Without changing their actual levels of multitasking, workers with

a sufficiently high level of multitasking benefit from a higher premium, while workers with a

low level of multitasking might even suffer from wage declines. The latter result evolves from

figure 1 because the very left section of 2006 multitasking-wage profile is below the profile of

earlier years.15 Note, again, that the workers with higher levels of multitasking are the ones in

the upper part of the wage distribution and workers with lower levels are found in the lower

part, so that also the price effect (i.e. the rising premium) leads to more wage dispersion.

(table 9 here)

In table 9, we repeat the estimations using the tool-based measure of multitasking. The sample

is larger for this exercise is larger because there was no need to drop observations that had

potential problems with inconsistencies in the task definition. Note that the tool-based measure

is no longer available in the cross section for 2006 because the questions have been dropped

from the survey. The results partly confirm our findings from before. Model 2 shows that,

ceteris paribus, using an additional tool is associated with a 1.2 percent higher wage. As

before, the square of multitasking is negative, pointing to diminishing returns. Multitasking and

wages are hence confirmed to be positively related. In contrast to the task-based measure, the

yearly regressions show decreases in the coefficients of multitasking, even though the decline

is very small (0.3 percentage points). However, the interaction model (model 6) conveys that

the coefficients in 1992 and 1999 are higher than in the reference year 1986, and that the 1999

coefficient is a bit larger. A t-test for equality of the interaction coefficients for 1992 and 1999

shows that the null hypothesis of equality cannot be rejected at a 12%-level. The similarity of

the results with the task- and tool-based measure of multitasking are striking because the two

measures are truly independent from one another. We hence consider this as a good proof for

the robustness of our results.
15Arguable, the result might stem from the quadratic estimated.
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5.3 Explanatory Power and Within-Group Inequality

We now address the explanatory power of adding the multitasking measure to an earnings re-

gression. For that purpose, we compare it to the importance of the other two measures of skill

in wage regressions: education and work experience. First, we re-estimate the wage equations

3, 4, and 5 from table 7 without any measure of skill and report the residual standard deviation

(σ) and the R2 of the regression (see table 10).16 Then we add either education, experience,

or multitasking as indicators for skill, again reporting σ and R2. This allows us to compare

the additional explanatory power of the three variables and compare them to one another. The

column entitled +multitasking
+educ./exp. shows how the size of the change in σ and R2 due to the inclusion

of multitasking compares to the change due to inclusion of education or work experience (in

percent). It turns out that multitasking is up to one-third as important as including educational

level into a simple wage regression, and that it is up to half as important as adding work ex-

perience. The size of this effect is striking because, after all, we compare it with two of the

major explanatory factors of variation in wages. We hence consider it as clear evidence for the

important role the span of competence plays in wage determination.

(table 10 here)

Another important implication of this result is that multitasking can explain a small, but grow-

ing fraction of residual wage inequality. Residual wage inequality (or within-group inequality)

can be measured by the standard deviation of the regression residuals (σ in table 10), i.e. the

variation in wages that cannot be explained by the variables entering the regression. Multi-

tasking could account for a growing fraction of residual inequality until 1999, although the

fraction has decreased thereafter. The rise in residual wage inequality (e.g. Dustmann et al.,

2009; Lemieux, 2006) has often been attributed to increasing returns to unobservable skills.

Our analysis thus suggests that the ability to perform multiple tasks constitutes at least a part

of these unobservable characteristics.

6 Conclusion

This paper shows how recent changes in the organization of work help explain rising wage

inequality in advanced industrialized economies. We offer a theoretical model, in which tech-

16Actually, the figure reported is not the R2 because the estimations are done using maximum likelihood.
However, Stata reports an artificial pseudo-R2, which is valid for comparing models. Therefore, we report the
pseudo-R2.
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nological changes such as the introduction of ICT capital and versatile machinery, and the

general widening of the human capital base trigger a reorganization of work. The technologi-

cal innovations let complementarities between formerly separated tasks arise so that it becomes

increasingly profitable for workers to expand their span of competence and perform a multitude

of tasks (multitasking) rather than just a specialized one. A wider span of competence implies

a higher wage; in other words, there is a multitasking premium. Since possibilities to expand

the span of competence differ between workers (e.g. the higher educated might have more such

possibilities), the existence of a multitasking premium implies a rise in wage inequality be-

tween the workers with different multitasking possibilities. These differences between workers

could also exist among workers with identical observed characteristics (e.g. education), so that

our theory also offers an explanation for rising within-group inequality. Finally, since possibil-

ities for multitasking are particularly rare in routine jobs in the middle of the wage distribution,

our theory also helps understanding the polarization of work and incomes.

In the empirical section of our paper, we use representative data for West Germany which

covers the years 1986–2006. We find support for the predictions of our theoretical analysis: (1)

The level of multitasking increases on average. The standard deviation of multitasking rises

within groups. (2) Higher-educated individuals have higher levels of multitasking than lower

educated individuals, and the multitasking gap between higher- and lower-educated widened

until 1999. (3) We find that a multitasking premium exists, and that it is rising over time. (4)

We find that the level of multitasking can explain a small, but increasing fraction (until 1999)

of within-group (residual) inequality.

This paper is clearly just a step towards gaining a better understanding of how work organiza-

tion affects wages. It remains for future research in this area to examine the evidence for other

countries and collect better data on work tasks.
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Appendices

A Model Extensions

The model above contained two particularly extreme simplifying assumptions concerning the

returns to specialization: first, the returns accrue immediately within the period of analysis and,

second, that there are constant returns to specialization. We now relax these two assumptions.

We first let returns to specialization accrue intertemporally, and then we consider diminishing

returns to specialization.

A.1 Returns to Specialization that Accrue Intertemporally

As returns to specialization (learning-by-doing) take time to materialize, we capture this in-

tertemporal dimension in a two-period model. As above, a worker’s productivity is the sum

of returns to specialization (y(T − s)x̂) and informational task complementarities (γ((T −
s)x̂)(sx̂)):

qt = yt(T − s)x̂ + γ(T − s)sx̂2

where t = 1, 2 is time. In the first period, no learning has yet taken place, so that y = 1:

q1 = (T − s)x̂ + γ(T − s)sx̂2 = (T − s)x̂(1 + sx̂γ).

In the second period, the returns to task specialization depend on the time (T − s) spent on the

primary task: y2 = 1
2
(T − s). The discounted value of output per worker in the second period

is

q2 =
(1/2)(T − s)2x̂

1 + r
+

γ(T − s)sx̂2

1 + r
=

(T − s)x̂(T + s(2x̂γ − 1))

2(1 + r)
,

where r is the discount rate. Thus the present value of output is

Q = q1 + q2

= (T − s)x̂(1 + sx̂γ) +
(T − s)x̂(T + s(2x̂γ − 1))

2(1 + r)

=
(T − s)x̂(2 + T + 2r + s(2x̂γ(2 + r)− 1))

2(1 + r)
.
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Differentiating Q with respect to s, we find the optimal span of competence s∗:

s∗ =
T (x̂γ(2 + r)− 1)− r − 1

(2xγ(2 + r)− 1)
.

Note that s∗ depends positively on the level of the primary task x̂:

∂s∗

∂x̂
=

γ(T + 2r + 2)(2 + r)

(1− 2x̂γ(2 + r))2
> 0

and positively on the task-complementarity parameter:

∂s∗

∂γ
=

x̂(T + 2r + 2)(2 + r)

(1− 2x̂γ(2 + r))2
> 0.

Note the intertemporal model yields the same qualitative conclusions as the simple model of

the previous section.

A.2 Non-linear returns to specialization

We now introduce diminishing returns to specialization. Specifically, in the second period, we

set y2 = (T − s)β , where 0 < β < 1. Thus output per worker in the second period is

q2 =
(T − s)x̂((T − s)β + γsx̂)

1 + r
.

The present value of output is

Q = q1 + q2

= (T − s)x̂(1 + sx̂γ) +
γ(T − s)x̂((T − s)β + γsx̂)

1 + r

=
(T − s)x̂(1 + (T − s)β + r + sx̂(1 + γ + r))

1 + r
.

Again, deriving this present value production function with respect to s gives the first order

condition for the optimal span of competence s∗. We are unable to solve the FOC for s∗

analytically, so we evaluate the function numerically. We set T = 13 and r = 0.1 in all

simulations. The simulations show that, indeed, ∂s∗/∂x̂ > 0. Figure A.1 plots the behaviour of

the optimal span of competence, where we set beta = 0.2 and γ = 2, 5, 10. Also the simulation

for ∂s∗/∂γ confirms that the optimal span of competence increases with the level of γ (see

2



figure A.2). Here, we set x = 0.75 and β = 0.2, 0.5, 0.8. Finally, we solve for the optimal span

of competence for varying values of the returns to specialization β (see figure A.3). Again, we

set x = 0.75 and γ = 2, 5, 10. As expected, the higher are returns to specialization, the smaller

is the optimal span of competence.

(figure A.1 here)

(figure A.2 here)

(figure A.3 here)
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B Robustness Checks

B.1 Regressions Controlling for Occupation

As a robustness check for our estimation results, we included occupation fixed effects into the

earnings regression. The results are shown in table B.1. All results continue to hold after

inclusion of occupation fixed effects.

B.2 Interval Regression

Table B.2 shows the regression results of an interval regression. This method deals with brack-

eted income data and with top- and bottom-censoring as in our data. Note that we left 2006 out

of the estimations here because income is no longer bracketed in the survey. The coefficient

estimates are only slightly lower than the results from the censored normal regressions, so that

our results are confirmed by this alternative regression technique.
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C Original Task Definitions

(table C.1 here)

5



Ta
bl

e
1:

Ta
sk

s
an

d
co

m
pa

ra
bi

lit
y

ov
er

al
lw

av
es

V
ar

ia
bl

e
D

es
cr

ip
tio

n
(1

)
D

ir
ec

t
co

m
pa

ra
bl

e
(2

)
In

di
re

ct
co

m
pa

ra
bl

e
co

rr
el

at
io

n
(1

),(
2)

In
cl

ud
ed

in
m

ea
su

re

re
s

R
es

ea
rc

hi
ng

,a
na

ly
zi

ng
,e

va
lu

at
in

g
an

d
pl

an
ni

ng
x

x
de

s
m

ak
in

g
pl

an
s/

co
ns

tr
uc

tio
ns

,d
es

ig
ni

ng
,s

ke
tc

hi
ng

pr
o

w
or

ki
ng

ou
tr

ul
es

/p
re

sc
ri

pt
io

ns
,p

ro
gr

am
m

in
g

x
0.

53
9

x
ru

l
us

in
g

an
d

in
te

rp
re

tin
g

ru
le

s
x

0.
40

2
x

or
g

ne
go

tia
tin

g,
lo

bb
yi

ng
,c

oo
rd

in
at

in
g,

or
ga

ni
zi

ng
x

x
te

a
te

ac
hi

ng
or

tr
ai

ni
ng

x
x

se
l

se
lli

ng
,b

uy
in

g,
ad

vi
si

ng
cu

st
om

er
s,

ad
ve

rt
is

in
g

x
x

pr
e

en
te

rt
ai

ni
ng

or
pr

es
en

tin
g

m
an

em
pl

oy
in

g
or

m
an

ag
in

g
pe

rs
on

ne
l

ca
l

ca
lc

ul
at

in
g,

bo
ok

ke
ep

in
g

x
0.

54
1

x
te

x
co

rr
ec

tin
g

te
xt

s/
da

ta
op

e
op

er
at

in
g

or
co

nt
ro

lli
ng

m
ac

hi
ne

s
x

x
re

p
re

pa
ir

in
g

or
re

no
va

tin
g

ho
us

es
,

ap
ar

tm
en

ts
,

m
a-

ch
in

es
,v

eh
ic

le
s

x
x

se
r

Se
rv

in
g

or
ac

co
m

m
od

at
in

g
x

x
in

s
M

an
uf

ac
tu

re
,i

ns
ta

ll,
co

ns
tr

uc
t

x
x

se
c

Se
cu

re
x

0.
18

5
nu

r
N

ur
se

or
tr

ea
to

th
er

s
x

0.
59

9
x

N
ot

e:
Q

ua
lifi

ca
tio

n
an

d
C

ar
ee

r
Su

rv
ey

19
86

-2
00

6;
va

ri
ab

le
na

m
es

fr
om

Sp
itz

-O
en

er
(2

00
6)

an
d

G
at

hm
an

n
an

d
Sc

ho
en

be
rg

(2
00

7)
.

T
he

co
lu

m
n

co
rr

el
at

io
n

sh
ow

s
th

e
co

rr
el

at
io

n
be

tw
ee

n
th

e
co

di
ng

of
th

e
ta

sk
us

in
g

(1
)

th
e

di
re

ct
an

d
(2

)
th

e
in

di
re

ct
w

ay
.

So
ur

ce
:

Q
ua

lifi
ca

tio
n

an
d

C
ar

ee
r

Su
rv

ey
19

86
-2

00
6.

6



Table 2: Workplace tools and classification

Degree of versatility Task

high versatility PC
Computer network (external)
Computer, terminal
Computer network (internal)
Presentation tools (radio tv overh.)
Phone
File, database
CNC/NC-machine

medium versatility Simple writing material
Computer-controlled medical equ.
Motor vehicle
Measuring instruments
Precision and optical instruments
Calculator
Books, teaching material
Cash register
Simple means of transport
Text processor
Accounting machine, spreadsheets
Process plant
Production plant
Simple tools
Medical instruments
Hand-controlled machine
Powered tools

low versatility Other tools
Conveying machinery
(Semi-) Automatic machine
Lift trucks
Crane, lifting gear
Plants for power generation
Rail, ship, plane
Voice recorder
Typewriter
Fax machine
Graphical and specialist software

Source: Qualification and Career Survey 1986-1999
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Table 3: Tasks done by an Electrician 1986–1999

Year Description % of workers

1986 Simple tools 85.3
Measuring instruments 60.8
Powered tools 52.5
Motor vehicle 41.8
Other tools 33.4
Simple writing material 28.4
Phone 24.6

1992 Simple tools 80.4
Measuring instruments 65.0
Powered tools 57.9
Simple writing material 56.7
Phone 49.1
Other tools 41.2
Motor vehicle 40.7
Calculator 40.0
File, database 27.5
Fax machine 23.4
Books, teaching material 20.5

1999 Simple tools 82.9
Simple writing material 77.8
Measuring instruments 77.7
Phone 72.2
Powered tools 60.0
Other tools 58.5
Motor vehicle 45.2
Calculator 44.1
Medical instruments 38.6
PC 37.2
Hand-controlled machine 34.4
Computer-controlled medical equ. 29.3
Fax machine 28.4
Text processor 27.3
Graphical and specialist software 23.0
Computer network (internal) 21.5
Computer, terminal 21.2

Note: The table lists all tasks, which are performed by more than 20 per cent of the Electricians
in the sample. Tasks printed in italics are new in the list.
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Table 4: Earnings in the Qualification and Career Survey, in DM

Year Lower bound Upper bound Bracket size Highest

1986 400 15,000 200 up to 1,000; 250 up to 3,000; 500
up to 6,000; 2,000 up to 10,000; 5,000
up to 15,000

16,500

1992 600 8,000 500 up to 6,000; 1,000 up to 8,000 10,500
1999 600 15,000 500 up to 6,000; 1,000 up to 10,000;

5,000 up to 15,000
17,500

2006 earnings reported directly, no brackets

Source: Qualification and Career Survey 1986-2006; imputed earnings in top category (column
highest) from Pischke (2007).

Table 5: Multitasking by year and group

I. Task-based measure II. Tool-based measure

1986 1992 1999 2006 1986 1992 1999

A. Overall
1.965 2.227 4.229 6.266 10.052 12.762 15.149

(1.227) (1.531) (2.035) (2.219) (6.401) (8.140) (8.826)
B. Educational level

primary 1.549 1.533 2.999 5.173 5.682 6.590 9.405
(0.919) (0.927) (1.789) (2.409) (4.573) (5.661) (7.121)

secondary 1.968 2.243 4.247 6.255 10.266 13.076 15.252
(1.230) (1.531) (2.026) (2.266) (6.272) (7.980) (8.560)

tertiary 2.246 2.709 5.099 6.643 13.362 16.840 19.548
(1.319) (1.709) (1.759) (1.904) (6.252) (7.660) (8.515)

Source: Qualification and Career Survey 1986-2006. Standard deviations are given in brackets.

Table 6: Level of multitasking of workers reporting recent changes

1999 2006

Type of change Yes No Yes No

Production techniques, machines, computers 4.81 3.77 6.54 5.60
New improved products/services 4.88 3.92 6.76 5.84
Restructuring/reorganisations 4.81 4.03 6.60 5.97
Relocation of tasks, work areas 4.87 4.21 – –
Change in management or superiors 4.79 4.11 6.54 5.99

Source: Qualification and Career Survey 1986-2006. Question on the relocation of tasks and
work areas is not available in 2006. All differences are statistically significant.
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Table 7: Censored normal regression on Log gross real hourly wages; task-based measure

(1) (2) (3) (4) (5) (6) (7)
Std. All 1986 1992 1999 2006 Interaction

Multitasking 0.0630∗∗∗ 0.0664∗∗∗ 0.0734∗∗∗ 0.0752∗∗∗ 0.104∗∗∗ 0.0611∗∗∗

(23.52) (7.17) (12.29) (13.41) (12.97) (16.29)

Multitasking squared -0.00378∗∗∗ -0.00684∗∗∗ -0.00636∗∗∗ -0.00461∗∗∗ -0.00654∗∗∗ -0.00602∗∗∗

(-14.39) (-4.40) (-7.69) (-7.94) (-10.81) (-16.21)

Secondary education 0.218∗∗∗ 0.189∗∗∗ 0.146∗∗∗ 0.212∗∗∗ 0.143∗∗∗ 0.220∗∗∗ 0.188∗∗∗

(34.95) (30.13) (9.79) (22.47) (12.67) (11.78) (29.90)

Tertiary education 0.571∗∗∗ 0.530∗∗∗ 0.488∗∗∗ 0.577∗∗∗ 0.450∗∗∗ 0.543∗∗∗ 0.528∗∗∗

(73.98) (67.63) (25.89) (43.43) (31.28) (27.05) (67.40)

Experience 0.0245∗∗∗ 0.0240∗∗∗ 0.0262∗∗∗ 0.0213∗∗∗ 0.0217∗∗∗ 0.0269∗∗∗ 0.0241∗∗∗

(42.77) (42.15) (21.24) (21.33) (20.47) (19.74) (42.23)

Experience squared -0.000393∗∗∗ -0.000379∗∗∗ -0.000437∗∗∗ -0.000352∗∗∗ -0.000333∗∗∗ -0.000385∗∗∗ -0.000379∗∗∗

(-30.44) (-29.54) (-15.08) (-15.66) (-14.69) (-12.40) (-29.56)

Married 0.117∗∗∗ 0.111∗∗∗ 0.127∗∗∗ 0.0940∗∗∗ 0.120∗∗∗ 0.109∗∗∗ 0.112∗∗∗

(25.51) (24.46) (12.72) (11.39) (14.31) (11.09) (24.60)

Female -0.0783∗∗∗ -0.0708∗∗∗ -0.0940∗∗∗ -0.110∗∗∗ -0.0483∗∗∗ -0.0452∗∗∗ -0.0705∗∗∗

(-13.29) (-12.08) (-7.39) (-10.50) (-4.50) (-3.63) (-12.04)

Married*Female -0.130∗∗∗ -0.125∗∗∗ -0.136∗∗∗ -0.121∗∗∗ -0.137∗∗∗ -0.113∗∗∗ -0.126∗∗∗

(-18.15) (-17.59) (-8.27) (-9.50) (-10.54) (-7.65) (-17.75)

Part-time -0.00875 0.00643 0.0579∗∗ 0.0583∗∗∗ 0.0421∗∗∗ -0.0740∗∗∗ 0.00912
(-1.39) (1.02) (3.28) (5.03) (3.87) (-6.15) (1.45)

Big city 0.0398∗∗∗ 0.0411∗∗∗ 0.0650∗∗∗ 0.0148∗ 0.0525∗∗∗ 0.0381∗∗∗ 0.0414∗∗∗

(12.03) (12.56) (9.21) (2.55) (8.96) (4.98) (12.64)

Year 1992*tasks 0.0134∗∗∗

(3.61)

Year 1999*tasks 0.0223∗∗∗

(6.08)

Year 2006*tasks 0.0362∗∗∗

(8.16)

Constant 2.432∗∗∗ 2.371∗∗∗ 2.411∗∗∗ 2.491∗∗∗ 2.447∗∗∗ 2.244∗∗∗ 2.388∗∗∗

(129.64) (126.57) (64.94) (71.68) (74.33) (41.23) (123.74)

Year dummies Yes Yes Yes

Industry dummies Yes Yes Yes Yes Yes Yes Yes

Sigma 0.402∗∗∗ 0.399∗∗∗ 0.408∗∗∗ 0.369∗∗∗ 0.380∗∗∗ 0.427∗∗∗ 0.399∗∗∗

(188.68) (186.17) (85.54) (112.91) (89.56) (93.38) (186.36)

pseudo R2 0.268 0.280 0.233 0.314 0.284 0.251 0.281
N 66735 66735 14520 18304 18441 15470 66735
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

10



Table 8: Optimal level of multitasking

Year Level

1986 4.854
1992 5.770
1999 8.156
2006 7.951

Note: The optimal level of multitasking is obtained by maximizing the equation ln w =
β1s + β2s

2, where s is the level of multitasking (the span of competence), and the β’s are
the regressions coefficients of models 3–6 (see table 7).
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Table 9: Censored normal regression on Log gross real hourly wages; tool-based measure

(1) (2) (3) (4) (5) (6)
All All 1986 1992 1999 Interaction

Tools 0.0191∗∗∗ 0.0217∗∗∗ 0.0198∗∗∗ 0.0187∗∗∗ 0.0188∗∗∗

(32.38) (16.38) (19.08) (17.98) (29.07)

Tools squared -0.000274∗∗∗ -0.000404∗∗∗ -0.000319∗∗∗ -0.000234∗∗∗ -0.000294∗∗∗

(-16.67) (-8.03) (-10.14) (-9.45) (-16.20)

Secondary education 0.203∗∗∗ 0.129∗∗∗ 0.0930∗∗∗ 0.154∗∗∗ 0.123∗∗∗ 0.128∗∗∗

(37.59) (22.64) (9.13) (17.77) (11.17) (22.48)

Tertiary education 0.562∗∗∗ 0.453∗∗∗ 0.416∗∗∗ 0.504∗∗∗ 0.414∗∗∗ 0.452∗∗∗

(79.89) (56.43) (28.24) (39.38) (28.77) (56.32)

Experience 0.0239∗∗∗ 0.0225∗∗∗ 0.0238∗∗∗ 0.0208∗∗∗ 0.0225∗∗∗ 0.0225∗∗∗

(45.76) (41.30) (25.05) (23.00) (22.04) (41.33)

Experience squared -0.000389∗∗∗ -0.000365∗∗∗ -0.000401∗∗∗ -0.000340∗∗∗ -0.000346∗∗∗ -0.000365∗∗∗

(-33.14) (-30.12) (-18.18) (-16.87) (-15.90) (-30.14)

Married 0.116∗∗∗ 0.111∗∗∗ 0.121∗∗∗ 0.0878∗∗∗ 0.116∗∗∗ 0.111∗∗∗

(27.24) (24.06) (15.31) (11.45) (14.19) (24.10)

Female -0.0786∗∗∗ -0.0848∗∗∗ -0.105∗∗∗ -0.108∗∗∗ -0.0433∗∗∗ -0.0846∗∗∗

(-14.38) (-14.51) (-10.56) (-11.12) (-4.13) (-14.48)

Married*Female -0.135∗∗∗ -0.136∗∗∗ -0.146∗∗∗ -0.121∗∗∗ -0.139∗∗∗ -0.136∗∗∗

(-20.21) (-18.79) (-11.50) (-10.10) (-10.88) (-18.84)

Part-time 0.000977 0.0667∗∗∗ 0.0872∗∗∗ 0.0806∗∗∗ 0.0378∗∗∗ 0.0670∗∗∗

(0.16) (10.03) (6.73) (7.25) (3.58) (10.09)

Big city 0.0395∗∗∗ 0.0403∗∗∗ 0.0597∗∗∗ 0.0110∗ 0.0445∗∗∗ 0.0403∗∗∗

(12.91) (12.51) (10.69) (2.04) (7.77) (12.49)

Year 1992*tools 0.000915
(1.64)

Year 1999*tools 0.00164∗∗

(2.76)

Constant 2.432∗∗∗ 2.390∗∗∗ 2.412∗∗∗ 2.500∗∗∗ 2.456∗∗∗ 2.396∗∗∗

(146.50) (140.35) (86.19) (88.46) (77.73) (138.33)

Year dummies Yes Yes Yes

Industry dummies Yes Yes Yes Yes Yes Yes

Sigma 0.399∗∗∗ 0.380∗∗∗ 0.396∗∗∗ 0.358∗∗∗ 0.378∗∗∗ 0.380∗∗∗

(202.06) (173.98) (103.34) (116.90) (90.06) (173.97)

pseudo R2 0.272 0.299 0.255 0.332 0.293 0.299
N 76617 61059 22014 20082 18963 61059
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 10: Change in residual variance and Pseudo-R2

σ ∆ σ +multitasking
+educ./exp. Pseudo R2 ∆ R2 +multitasking

+educ./exp.

1986 no skill measure 0.436 0.138
+ education 0.422 -0.014 10.90% 0.183 0.045 11.70%
+ experience 0.409 -0.013 11.54% 0.227 0.044 12.07%
+ multitasking 0.408 -0.002 0.233 0.005

1992 no skill measure 0.407 0.174
+ education 0.382 -0.025 12.03% 0.266 0.092 13.18%
+ experience 0.372 -0.010 30.30% 0.302 0.036 33.70%
+ multitasking 0.369 -0.003 0.314 0.012

1999 no skill measure 0.415 0.158
+ education 0.397 -0.018 31.98% 0.222 0.064 34.12%
+ experience 0.386 -0.011 50.91% 0.263 0.041 52.93%
+ multitasking 0.380 -0.006 0.284 0.022

2006 no skill measure 0.471 0.127
+ education 0.449 -0.022 18.75% 0.190 0.064 20.63%
+ experience 0.431 -0.018 23.86% 0.238 0.048 27.23%
+ multitasking 0.427 -0.004 0.251 0.013

Note: The column “+multitasking
+educ./exp. ” shows how the change of σ and R2 due to adding multitasking

compares to the change due to inclusion of education or work experience (in percent). Example
for 1986: the reduction in σ due to adding education is -0.014, the reduction due to adding
multitasking is -0.002. Calculating −0.002/− 0.014 = 0.109 (= 10.90%)
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Table B.1: Censored normal regression on Log gross real hourly wages with occupation dum-
mies; task-based measure

(1) (2) (3) (4) (5) (6) (7)
Std. All 1986 1992 1999 2006 Interaction

Tasks 0.0433∗∗∗ 0.0472∗∗∗ 0.0512∗∗∗ 0.0547∗∗∗ 0.0627∗∗∗ 0.0429∗∗∗

(16.47) (5.25) (8.85) (9.92) (7.91) (11.74)

Tasks squared -0.00244∗∗∗ -0.00502∗∗∗ -0.00417∗∗∗ -0.00338∗∗∗ -0.00376∗∗∗ -0.00403∗∗∗

(-9.48) (-3.33) (-5.22) (-5.97) (-6.26) (-11.17)

Secondary education 0.135∗∗∗ 0.122∗∗∗ 0.0736∗∗∗ 0.144∗∗∗ 0.0939∗∗∗ 0.169∗∗∗ 0.122∗∗∗

(20.52) (18.47) (4.73) (14.19) (7.90) (9.27) (18.49)

Tertiary education 0.356∗∗∗ 0.338∗∗∗ 0.279∗∗∗ 0.356∗∗∗ 0.283∗∗∗ 0.401∗∗∗ 0.338∗∗∗

(40.26) (38.27) (13.30) (22.63) (17.26) (19.42) (38.25)

Experience 0.0243∗∗∗ 0.0239∗∗∗ 0.0257∗∗∗ 0.0199∗∗∗ 0.0218∗∗∗ 0.0270∗∗∗ 0.0239∗∗∗

(43.45) (42.88) (21.59) (20.37) (21.04) (20.39) (42.91)

Experience squared -0.000385∗∗∗ -0.000374∗∗∗ -0.000424∗∗∗ -0.000322∗∗∗ -0.000340∗∗∗ -0.000386∗∗∗ -0.000374∗∗∗

(-30.75) (-29.99) (-15.19) (-14.66) (-15.48) (-12.88) (-29.99)

Married 0.106∗∗∗ 0.102∗∗∗ 0.119∗∗∗ 0.0850∗∗∗ 0.109∗∗∗ 0.100∗∗∗ 0.103∗∗∗

(23.90) (23.23) (12.13) (10.65) (13.56) (10.60) (23.33)

Female -0.106∗∗∗ -0.0986∗∗∗ -0.104∗∗∗ -0.137∗∗∗ -0.0726∗∗∗ -0.0798∗∗∗ -0.0981∗∗∗

(-17.82) (-16.57) (-8.03) (-12.75) (-6.65) (-6.39) (-16.48)

Married*Female -0.122∗∗∗ -0.119∗∗∗ -0.133∗∗∗ -0.114∗∗∗ -0.131∗∗∗ -0.105∗∗∗ -0.119∗∗∗

(-17.53) (-17.19) (-8.33) (-9.20) (-10.37) (-7.34) (-17.30)

Part-time 0.00748 0.0174∗∗ 0.0704∗∗∗ 0.0712∗∗∗ 0.0481∗∗∗ -0.0644∗∗∗ 0.0191∗∗

(1.20) (2.80) (4.06) (6.30) (4.48) (-5.44) (3.07)

Big city 0.0314∗∗∗ 0.0327∗∗∗ 0.0557∗∗∗ 0.00908 0.0437∗∗∗ 0.0273∗∗∗ 0.0329∗∗∗

(9.84) (10.29) (8.09) (1.61) (7.68) (3.69) (10.36)

Year 1992*tasks 0.00948∗∗

(2.65)

Year 1999*tasks 0.0137∗∗∗

(3.88)

Year 2006*tasks 0.0251∗∗∗

(5.91)

Constant 2.758∗∗∗ 2.715∗∗∗ 2.330∗∗∗ 2.369∗∗∗ 2.382∗∗∗ 2.622∗∗∗ 2.726∗∗∗

(8.89) (8.64) (16.21) (25.80) (9.60) (8.10) (8.61)

Year dummies Yes Yes Yes

Industry dummies Yes Yes Yes Yes Yes Yes Yes

Occupation dummies Yes Yes Yes Yes Yes Yes Yes

Sigma 0.386∗∗∗ 0.385∗∗∗ 0.393∗∗∗ 0.353∗∗∗ 0.367∗∗∗ 0.410∗∗∗ 0.384∗∗∗

(181.56) (180.18) (81.90) (110.68) (86.30) (91.65) (180.28)

pseudo R2 0.323 0.329 0.285 0.378 0.336 0.303 0.330
N 66538 66538 14469 18304 18358 15407 66538
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table B.2: Interval regression on Log gross real hourly wages; task-based measure

(1) (2) (3) (4) (5) (6)
Std. All 1986 1992 1999 Interaction

Tasks 0.0606∗∗∗ 0.0663∗∗∗ 0.0713∗∗∗ 0.0732∗∗∗ 0.0577∗∗∗

(18.65) (7.21) (12.65) (13.74) (14.75)

Tasks squared -0.00398∗∗∗ -0.00683∗∗∗ -0.00629∗∗∗ -0.00444∗∗∗ -0.00522∗∗∗

(-10.47) (-4.42) (-8.08) (-8.02) (-11.80)

Secondary education 0.204∗∗∗ 0.177∗∗∗ 0.146∗∗∗ 0.210∗∗∗ 0.139∗∗∗ 0.175∗∗∗

(32.58) (28.17) (9.89) (23.04) (13.17) (27.87)

Tertiary education 0.548∗∗∗ 0.506∗∗∗ 0.487∗∗∗ 0.548∗∗∗ 0.440∗∗∗ 0.504∗∗∗

(67.22) (61.11) (26.09) (44.12) (32.50) (60.90)

Experience 0.0228∗∗∗ 0.0224∗∗∗ 0.0261∗∗∗ 0.0205∗∗∗ 0.0207∗∗∗ 0.0224∗∗∗

(38.31) (37.74) (21.35) (21.52) (20.81) (37.80)

Experience squared -0.000375∗∗∗ -0.000362∗∗∗ -0.000435∗∗∗ -0.000341∗∗∗ -0.000313∗∗∗ -0.000363∗∗∗

(-28.18) (-27.43) (-15.15) (-15.90) (-14.77) (-27.48)

Married 0.120∗∗∗ 0.114∗∗∗ 0.127∗∗∗ 0.0889∗∗∗ 0.118∗∗∗ 0.115∗∗∗

(23.97) (23.08) (12.78) (11.28) (14.64) (23.13)

Female -0.0854∗∗∗ -0.0791∗∗∗ -0.0927∗∗∗ -0.106∗∗∗ -0.0481∗∗∗ -0.0790∗∗∗

(-13.47) (-12.57) (-7.35) (-10.54) (-4.72) (-12.55)

Married*Female -0.137∗∗∗ -0.132∗∗∗ -0.136∗∗∗ -0.114∗∗∗ -0.137∗∗∗ -0.133∗∗∗

(-17.49) (-17.02) (-8.37) (-9.29) (-11.10) (-17.10)

Part-time 0.0521∗∗∗ 0.0643∗∗∗ 0.0645∗∗∗ 0.0713∗∗∗ 0.0643∗∗∗ 0.0651∗∗∗

(7.38) (9.16) (3.75) (6.34) (6.27) (9.27)

Big city 0.0426∗∗∗ 0.0438∗∗∗ 0.0648∗∗∗ 0.0145∗∗ 0.0513∗∗∗ 0.0441∗∗∗

(12.22) (12.70) (9.29) (2.63) (9.21) (12.76)

Year 1992*tasks 0.00912∗

(2.51)

Year 1999*tasks 0.0186∗∗∗

(4.99)

Constant 2.469∗∗∗ 2.411∗∗∗ 2.412∗∗∗ 2.503∗∗∗ 2.468∗∗∗ 2.424∗∗∗

(127.94) (124.34) (65.23) (76.64) (77.85) (122.44)

Year dummies Yes Yes Yes Yes

Industry dummies Yes Yes Yes Yes Yes Yes

Sigma -0.987∗∗∗ -0.995∗∗∗ -0.908∗∗∗ -1.067∗∗∗ -1.027∗∗∗ -0.995∗∗∗

(-165.19) (-163.67) (-80.90) (-122.17) (-95.00) (-163.76)

pseudo R2

N 51265 51265 14520 18304 18441 51265
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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