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Abstract
This aticle is an empiricd study dedicated to the GARCH Option pricing modd of Duan

(1995) applied to the FTSE 100 European style options for various maturities. The beauty of
this modd is to have used the standard GARCH theory in an option perspective and dso it is
its flexibility to adgpt to different rich GARCH specifications. We andyze the valididy of the
modd given its ability to price one-day ahead out-of-sample cal options and aso its ability to
capture the empirical dynamic of the volatility skew.

We get severe migpricing for deep out-of-the-money and short term cdl options, which tend
to decrease the globd performance of the modd that is relatively correct. We note that long
term skews tend to be more stable across time and drikes, which explains why we had a
decreasing pricing bias for longer maturity contracts. We dso get that skews tend to deform
into smiles as we go toward the expiry date. This mode reveds a good ability to capture the
change of regime in the implied volatility surface judging from the transformation observed

from smilesto skews.
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1. Introduction

Since the mid seventies, as an dternative to the Black-Scholes (1973) model, a srand of
literature devoted to option pricing has emerged with authors that specified the diffuson
coefficient being function of the asset price as the CEV modd of Cox (1975) or the
compound modd of Geske (1979). Later on, option theory has been developped under
bivariate diffuson processes with authors, such as Hull and White (1987), Wiggins (1987),
Scott (1987), Johnson and Shanno (1987) proposing numerical solutions for pricing oprions.
Other researchers developed closed-form solutions as Stein and Stein (1991) or Heston (1993)
whose mode dlows for arbitrary corrdation between asset returns and volatility. We can dso
add the universd modd of Bakshi, Cao and Chen (1997) very smilar to the Heston (1993)
but dlowing for sochedtic interest rate, sochastic volatility and jump diffuson. However, the
main limit of these moddsisthat they are difficult to implement.

As an dterndive to continuous time modds, GARCH framework offered some interesting
features. Among them, the fact that current variance is observable since it is a function of past
squared shocks and past variance. Thus, edimating the time varying variance is no longer
cumbersome as in diffuson processes. The success of GARCH option pricing theory is due
both on its flexibility to adapt to every GARCH specifications and aso to its connection with
the stochastic volatility models. Indeed, Nelson (1990) showed that some univariate GARCH
processes can be used to gpproximate some Stochadtic volatlity bivariate diffusons. Duan
(1996) generdized these results through its Unified Theory of GARCH option pricing where
he dso demondrated that exising bivariate diffuson modes ae the limits of the GARCH
models and how to use these results for pricing options. Among the authors within this stream
of literature, a competitive modd was st up by Heston and Nandi (2000). They postulated the
same dynamic of Duan (1995) usng the NGARCH specification with the dight difference
that for obtaining a closed-form solution, the variance is no longer multiplied by the ARCH
term but by the asymmetric term. The modd is very resembling to the Heston (1993) modd in
its form, by the inverson of characterigic functions to caculate risk-neutra probabilities.
Trevor and Ritchken (1999) developed a lattice based aso on the NGARCH modd to price
both European and American options. Also, the advantage of such an adgorithm, is that it can
be extended to other GARCH specifications, such as the GJR modd or the EGARCH modd.
In order to avoid exploding trees they only condder the maximum and minimum variance.
Obvioudy, the more one add the number of daes in the dgorithm, the more the modd



converges to hivariate diffusons. Duan, Gauthier and Simonato (1999) have provided an
anayticad gpproximation for the NGARCH process in a form of series expansons. The man
advantage of such a modd is that they ae rddivey easy to implement and fast in
convergence.

Section 2 presents the option pricing modd, section 3 discusses the calibration procedure and
gives informaion on the sampling methodology, section 4 presents and andlyses the out-of-
sample vduation performance of the modd while the section 5 discusses the empirica

dynamic of the skew. Section 6 summarizes and concludes.

2. The GARCH option pricing model

We condder usudly a one-period returns for the underlying assst since we don't find
genegdly dgnificant returns influence beyond one day period. Let S be the asset price a
date t and h be the conditiond variance of the logarithmic returns over the a daly interva
[t,t+:|] . Let consider the price process under the physical measure modeled by :

ng—=(-d)+1 vh - 3 ++he @
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with r; beng the risk-free interest rate and d the dividend yidd. The unit risk premium for
the asset is | and e is a gandard norma random varigble with @ ~N(0,1) . Under the same
measure, we condder the following variance process following a non-linear asymmetric
GARCH (NGARCH) modd asin Engle and Ng [1993] :

h =w+alg,-gfh,+bh., @
where g is a nontnegative parameter likdy to capture the negative corrdaion between
returns and volaility corrdations. w, a, b must reman pogdtive to ensure that conditiona
volatility stays podtive. To ensure Sationarity of the variance, the parameters should satisfy :
a(1+g2)+b <1. The unconditiond variance is given by a/ [1- a(1+g’4‘)- bJ. We note that the
Black-Scholes (1973) moded is a paticular case of this specification when it reduces to
standard homoskedastic log-norma processwith a=0 and b=0.

To derive the GARCH option modd, Duan (1995) had to apply the risk-neutrd vauation
defined as the Locdly Risk Neutrd Vauation Reaionship. Under this risk-neutra measure,
the price processisgiven by :
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and the variance processis given by :
h =w+ a(a-l' (I +g)2h-1 +bh., (4)
where @ beng a sandard normd random varigble with ~N(0,1). The appearing non

0
N

centrdity parameter has the following form g-=I +g, but the variance process remains dmost

the same. The option model will yied four parameters, w, a, b and g while the interest

rate and the dividend rate are input parameters. By recurson we find essly that the
underlying asset price a maturity T is:
: 134 J LU
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Since we cannot derive an anaytical gpproximation of the option price, Monte Carlo

smulations are run to esimate a st of N random path of residuds (g.;...e;) with

j=1,...,N . These resduds will be plugged into the last equation to compute the corresponding
prices S;, given drike prices K, which are in their tun plugged into the risk-neutra

conditional expectation E* :

CGARCH =e " (T_t)E*[maX(Sr - K’O)]
This can be approximated by :

Canmon = €L [max(s; , - K 0] ©
The decomposition of the computation can be ex[J)rlaaed in two manners whether we use
ample Monte Calo gmulaion or Empiricd Martingde Smulation (EMS) as in Duan and
Simonato [1998]. The EMS method that we apply in this study is reputed to accelerate the
convergence of Monte Carlo price estimates. The Monte Carlo simulation can be stated as:

S (1) =S, expl(r - d)t] Z, (i)

Z, ()= Z,_,(i)exp[- 0.5s] +s, & ()]

and for EMS, we must compuite :
Z (i) exp[ - 0.5sé+sia(i)]

g . .
LA 7..(i) expl- 05s2+s.@()]
i=1
The next section dedls with the cdibration procedure of the NGARCH option pricing model

Z ()=

aong with the sampling methodol ogy.



3. The sampling methodology and the estimation procedure

3.1. The sampling methodology

We consider the period of January 2002 including 22 tading days going from January 2 to
January, 31"". The datsbase only contains closing prices stemming from the FTSE 100
European style purchased at the LIFFE web sSite and is organized as cross-sectiona data. We
condruct the database usng the same number of cdls and puts, that is 2310 esch. The
maturities are the third friday of February, March, June, September and December. For each
day of January 2002, we have considered 5 maturities which are for the January 2"

[50, 80, 169, 258, 348] days declining until the last day of January to [21, 51, 140, 229, 319]
days. The range of strike prices goes from 4225 to 6225 for an average stock price of 5216
with a minimum of 5082 and a maximum of 5411. We compute the implied interest rates and
the implied dividend rates from the observed option prices usng the method of Shimko
[1993] based on the put-cdl parity, which holds rdatively wel on the data used in the study.
The average implied interest rate is about 3,80% and the implied dividend yield is around
3,73%. As for the average implied volaility, as it is provided by the LIFFE Stock Exchange
for the observed period, it is about 20,86% and the ATM volatility is 18,16%.

3.2. The cdibration procedure

The procedure for theimplied caibration for day N isthefallowing :

Step 1: we estimate the NGARCH parameters on a FTSE 100 time series of 2001 as a starting
vaue for thefirgt day of January 2002.

Sep 2 : we compute the implied interest rate and implied dividend yield for the day N-1.

Sep 3 : udng cross-sectiond quadratic minimizetion with al meatwrities of day N-1, we
estimate the implied NGARCH parameters using the parameters of day N-2 as sarting vaues.

The nonlinear least squares procedure edtimates the values of the NGARCH st of
parameters, Q={w, a, b,g, h}, while we st the rik premium parameter | constant
equd to its higoricd vaue for amplifying the esimaion procedure which minimized the
following sum of squared errors:

min SSE(Q) =4 A &

t=1i=1



With g, representing the difference between the actud price and the theoreticad price of

contract i a maturity t. The number of Monte Carlo smulations used is 10000 replications.
We noted that 5000 runs produce enough precision to converge to the true prices.

Sep 4 : usng thee implied parameters from day N-1, the implied interest rate and implied
dividend yield from day N-1, the maturity of day N and the current stock price, we compute a
sream of resduds usng Monte Carlo smulaions for the computation of a termina stock
price in order to obtain a NGARCH cdl price. Note that we could have chosen another
GARCH specification, as for example, EGARCH or GJR-GARCH. End of the procedure for
computing the call prices for the day N. We ran this procedure for each day of the sample.

4. Empirical tests for the out-of-sample valuation

4.1 Parameter estimates

The study aimed at computing tomorrow’s cal prices usng each day of January 2002. Table
1 provides average vaues for each of the NGARCH parameters for the month of January.

Tablel
NGARCH average parameters
Implicit vaues Higtoric vaue
w a b g \/hi |
5.334E-06 8.759E-02 8.300E-01 0.691 8.670 % 1.262E-02

The volatility computed here is obtained by taking the square root of the NGARCH final variance divided by 252 trading days.

Only the risk premium was set to its higtorica vaue computed from the whole year 2001.
Typicdly; the vaue for the risk premium is weak and has few impact on the option pricing as
it is obsarved in many empirica gudies We found surprisngly a relative wesk vaue of
volatility derived from the NGARCH modd, but it is dso the case in the aticle of Hieh and
Rithcken (2000).



4.2 Out-of-sample performance

Tables 2, 3 and 4 digplay the out-of-sample results for the NGARCH option pricing modd of
Duan (1995) in teems of Pricing Error (PE), Rdative Pricing Error (RPE) and Absolute
Redative Pricing Error (ARPE). If the PE is defined here as the difference between computed

cal prices f; and observed pricesG , the RPE and ARPE are defined as:

N

G-C

RPE :% and ARPE =

These tables give pricing results per moneyness computed as stock prices divided by drike
prices, but also per category of maturities. We therefore display the results by range of
maturities, corresponding to February, March, June, September and December. For instance,
for the range [50,21], we begin by January 2%, which has 50 days until maturity, January 3¢
which has 49 days until maturity, etc until January 31", which has 21 days to maturity. This
precise maturity being of course, February, and so on for the other four range of maturity. The
last column gives the average results per moneyness whatever is the maturity and the lagt line
gives the average results per maturity whatever is the moneyness. Options with moneyness
inferior to 0,94 are denoted DOTM as degp out-the-money options, with moneyness between
[0,94; 0,97[ are denoted OTM as out-the-money options, with moneyness belonging to [0,97;
1,00 and [1,00; 1,03 are denoted ATM as around-the-money options, with moneyness
between [1,03; 1,06] are denoted ITM as in-the-money options and those with a moneyness
superior or equa to 1,06 are denoted DITM as deep in-the-money options.

Table2
Pricing Error for different moneyness and maturity groups

Maturity in days

Moneyness [50,21] [80,5]] [169,140] [258,229] [348,319] Average
<094 0.608 2341 12.085 22495 33.338 14.173
0.94-0.97 1270 4.427 8.388 15.826 20.969 10.176
0.97-1.00 -1.075 1.883 3334 8.096 12.358 4.919
1.00-103 -4.815 -4.385 -2.604 -0.570 4.240 -1.627
1.03-1.06 -7.016 -10.418 -8.566 -7.167 -3.780 -7.389

3 106 -4.748 -16.548 -18.066 -19.874 -19.479 -15.743
All options -2.322 -5.703 -2.299 1871 7.123 -0.266

The pricing errors are computed as the difference between the computed call price and the observed call price.

We fird see that for PE measure, in average, the best out-of-sample fit is for ATM cdl
options while far from the money contracts seems to suffer from a severe mispricing. As the

maturity increases, the misoricing for DITM and DOTM options is being worse. The negative



vaues show that prices are under-estimated, which is the case for ITM options and for most
of ATM options.

Table3
Rdative Pricing Error or different moneyness and maturity groups

Maturity in days

M oneyness [50,21] [80,51] [169,140] [258,229] [348,319] Average
<094 0.045 0.719 0472 0.335 0.282 0371
094-097 0.015 0.110 0.063 0.075 0.072 0.067
097-1.00 -0.022 0.022 0.017 0.028 0.034 0.016
1.00-1.03 -0.037 -0.024 -0.008 -0.001 0.009 -0.012
1.03-1.06 -0.029 -0.039 -0.022 -0.015 -0.007 -0.022

3 106 -0.009 -0.028 -0.026 -0.025 -0.022 -0.022
All options -0.009 0.186 0.161 0.117 0.105 0.112

The pricing errors are computed as the difference between the computed call price and the observed call price.

We dso get the best pricing for ATM options but we observe that as in Table 2, the
mispricing of these options is increasing as we move towards short term contracts. Note that
ATM contracts are underestimated for options with maturity less than one year. We see that,
in average, the worse miguricing is sysematicaly produced by DOTM options. If we get
away these DOTM contrats, we would have a pricing precison that would be much more

improved.
Table4
Absolute Relative Pricing Error for different moneyness and maturity groups
Maturity in days
M oneyness [50,21] [80,51] [169,140] [258,229] [348,319] Average
<094 0.788 0.783 0472 0.335 0.282 0532
0.94-097 0.192 0.127 0.066 0.076 0.075 0.107
0.97- 100 0.104 0.049 0.030 0.034 0.041 0.052
1.00-1.03 0.054 0.034 0.020 0.020 0.026 0.031
1.03-1.06 0.035 0.039 0.025 0.022 0.021 0.028
3 106 0.010 0.028 0.026 0.027 0.026 0.023
All options 0.199 0.249 0.183 0.138 0.120 0.178

The pricing errors are computed as the difference between the computed call price and the observed call price.

We dso get a severe migaricing for DOTM  options which is dmog five times worse than
other moneyness. Thus, the more we move towards DOTM contracts, the more the pricing
bias is increased. We note that the pricing precison is a function of the maturity. The more
the maturity increases, the more the bias pricing is reduced.



5. The empirical dynamic of the skew

Figure 1 displays the skews generated by the Duan (1995) ‘s mode for respectively, the first
day (Figure 1a) and last day (Figure 1b) of the sample. It shows the observed deformation of
the implied volatlity surface during Jenuary 2002.The implied voldilities in the vertical axes
are computed by equating the Black-Scholes (1973) formula to the prices computed by the
NGARCH option pricing modd. These theoretica prices are obtained from an out-the-sample
fit. In the horizontd axis, we displayed the drike prices. Additiond Figures are presented in

appendice.
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Figure 1 — Skews computed from an out-the-sample valuation on January, 2" 2002

Figure 1a shows amogt linear skews per maturities for the first day of the sample. We see that
for ITM cdls, the dope of the skew is dl the more high that the maturity & short. Once, we
arive to the ATM options around 5375-5425 points, the scheme is reversed with the
difference that the dope coefficients are very tight. This center point has a pivotd role since it
reverse the order of the skews.

For the last day of the sample, in Figure 1b, skews are no longer linear except for long
maturities (229 days and 319 days). The more the maturity is short, the more the curvature of
the smile around the money is high. For DITM cals, i.e, from 4225 to 4725, we get a reverse
smile for shorter maturities. Note that this modd dlows for both skew and smile patterns
which is quite important to capture al the festures of the deformation of the true implied
volatility surface.



We dso caried out a Smple postion anadyss with skews re-computed from an in-the-sample
fit (i.e implied voldilities were obtained from an in-the-sample vauaion) to get theoretica
prices closer to true prices. We found that for the more we increase in maturity, the more the
rank between skews is stable, day after day. This should mean that it is easer to predict long
term implied volatilities rather than short term. For the group of maturities [348,319], the
number of shifts between ranks for the whole month is 61, for the group [258,229] it is 76, for
the group [169,14Q] it is 142, for the group [80,51] it is 239 and for the last group [50,21] it
has dightly decreased to 214. This is certainly due to the growing uncertaincy in the gpproach
of the expiry date. This can explains why the model succeed i pricing contracts with longuest

meaturities snce long term implied voletilities are more stable acrosstime.

6. Conclusion

This aticle is an empiricd dsudy of the GARCH Option pricing mode developped by Duan
(1995). This modd is implemented on the FTSE 100 European style options for five range of
maturities. Usng the NGARCH gspecification, we explan our implied cdibration procedure
and gpply it to compute one-day ahead out-of-sample call option prices for January 2002.

Severe migoricing was found for deep out-the-money options which worsen the globd
performance of the moded that is reatively correct judging from the pricing error. The best fit
is made for a-the-money options, which is generdly the case of many modes, even the
Black-Scholes (1973) modd.

We note that the pricing bias is decreasng with the maturity, which means tha this mode
succeed in pricing long term options, which is conastent with our andyss that long term
skews are more dtable in time and thus more predictable. However, the globa performance
remains good regarding the srtong stability of the modd.

The modd of Duan (1995) generates dmost downward linear skews for long maturities. We
observed that as we move closed to the expiry date, we get a deformation of the skews that
transform into smiles for around the money options. Therefore, the ability of the modd to
capture the deformation of the skew dynamic through time shows that this modd is sengtive
to the change of regime in the implied volatility surface.
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Appendix

The following grephics digplay the volatility skews per range of maurities in days : long term
maturities [229; 258] and [140; 169], middle term maturities [51; 80] and short term
maturities [21-50]. The verticd axis gives the equivdent Black-Scholes (1973) implied
volatilities obtained by inverting the formula to each theoreticd prices generated by the
NGARCH option pricing modd as in Figure 1. The horizonta axis shows the range of drike
prices from 4225 to 6225.
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Figure 2 — Skews computed from an out-the-sample valuation on January 31" 2002

Figure 2a displays the skews for very long maturity contracts We get very tightened skews
with a maximum volaility level around 22 and 25%. These skews are dmogt linear with

decreasing dtrike prices. Figure 2b shows the deformation process that increases the convexity

of the skews generated by short term options.
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Figure 5 — Skews computed from an out-the-sample valuation from January 2" to January 31" 2002

Figure 3 shows the skews for the middle and short term contracts. Figure 3a displays two

groups of skews, one remaning amog linear with drike prices and the other one,
trandforming into smile patterns. Figure 3b reveds that dmogt dl the skews have been
trandformed into smiles with a bottom levd for ATM options around 5425. The distinction
between one month and two months maturities is obvious over dl for ITM cdl options snce



the two month maturity group has a maximum volatility around 27% while the one month
maturity group begins with a maximum volatlity around 19%. We see that the NGARCH
option pricing model is able to capture the skew deformation into smiles pattern which makes
it more sengitive to the change of regimes that occurred in the implied volatility dynamic.



