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Abstract 
This article is an empirical study dedicated to the GARCH Option pricing model of Duan 

(1995) applied to the FTSE 100 European style options for various maturities. The beauty of 

this model is to have used the standard GARCH theory in an option perspective and also it is 

its flexibility to adapt to different rich GARCH specifications. We analyze the valididy of the 

model given its ability to price one-day ahead out-of-sample call options and also its ability to 

capture the empirical dynamic of the volatility skew.  

We get severe mispricing for deep out-of-the-money and short term call options, which tend 

to decrease the global performance of the model that is relatively correct. We note that long 

term skews tend to be more stable across time and strikes, which explains why we had a 

decreasing pricing bias for longer maturity contracts. We also get that skews tend to deform 

into smiles as we go toward the expiry date. This model reveals a good ability to capture the 

change of regime in the implied volatility surface judging from the transformation observed 

from smiles to skews. 
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1. Introduction 
 
Since the mid seventies, as an alternative to the Black-Scholes (1973) model, a strand of 

literature devoted to option pricing has emerged with authors that specified the diffusion 

coefficient being function of the asset price as the CEV model of Cox (1975) or the 

compound model of Geske (1979). Later on, option theory has been developped under 

bivariate diffusion processes with authors, such as Hull and White (1987), Wiggins (1987), 

Scott (1987), Johnson and Shanno (1987) proposing numerical solutions for pricing oprions. 

Other researchers developed closed-form solutions as Stein and Stein (1991) or Heston (1993) 

whose model allows for arbitrary correlation between asset returns and volatility. We can also 

add the universal model of Bakshi, Cao and Chen (1997) very similar to the Heston (1993) 

but allowing for stochastic interest rate, stochastic volatility and jump diffusion. However, the 

main limit of these models is that they are difficult to implement.  

As an alternative to continuous time models, GARCH framework offered some interesting 

features. Among them, the fact that current variance is observable since it is a function of past 

squared shocks and past variance. Thus, estimating the time varying variance is no longer 

cumbersome as in diffusion processes. The success of GARCH option pricing theory is due 

both on its flexibility to adapt to every GARCH specifications and also to its connection with 

the stochastic volatility models. Indeed, Nelson (1990) showed that some univariate GARCH 

processes can be used to approximate some stochastic volatility bivariate diffusions. Duan 

(1996) generalized these results through its Unified Theory of GARCH option pricing where 

he also demonstrated that existing bivariate diffusion models are the limits of the GARCH 

models and how to use these results for pricing options. Among the authors within this stream 

of literature, a competitive model was set up by Heston and Nandi (2000). They postulated the 

same dynamic of Duan (1995) using the NGARCH specification with the slight difference 

that for obtaining a closed-form solution, the variance is no longer multiplied by the ARCH 

term but by the asymmetric term. The model is very resembling to the Heston (1993) model in 

its form, by the inversion of characteristic functions to calculate risk-neutral probabilities. 

Trevor and Ritchken (1999) developed a lattice based also on the NGARCH model to price 

both European and American options. Also, the advantage of such an algorithm, is that it can 

be extended to other GARCH specifications, such as the GJR model or the EGARCH model. 

In order to avoid exploding trees, they only consider the maximum and minimum variance. 

Obviously, the more one add the number of states in the algorithm, the more the model 



converges to bivariate diffusions. Duan, Gauthier and Simonato (1999) have provided an 

analytical approximation for the NGARCH process in a form of series expansions. The main 

advantage of such a model is that they are relatively easy to implement and fast in 

convergence. 

Section 2 presents the option pricing model, section 3 discusses the calibration procedure and 

gives information on the sampling methodology, section 4 presents and analyses the out-of-

sample valuation performance of the model while the section 5 discusses the empirical 

dynamic of the skew. Section 6 summarizes and concludes. 

 

2. The GARCH option pricing model 
 
We consider usually a one-period returns for the underlying asset since we don’t find 

generally significant returns influence beyond one day period. Let tS  be the asset price at 

date t  and th  be the conditional variance of the logarithmic returns over the a daily interval 

[ ]1, +tt . Let consider the price process under the physical measure modeled by :  
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with fr  being the risk-free interest rate and δ  the dividend yield. The unit risk premium for 

the asset is λ  and tε is a standard normal random variable with )1,0(~Ntε . Under the same 

measure, we consider the following variance process following a non-linear asymmetric 

GARCH (NGARCH) model as in Engle and Ng [1993] : 
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where γ  is a non-negative parameter likely to capture the negative correlation between 

returns and volatility correlations. ω , α , β  must remain positive to ensure that conditional 

volatility stays positive. To ensure stationarity of the variance, the parameters should satisfy : 

( ) 1   1 2 <++ βγα . The unconditional variance is given by ( )[ ]βγαα −+− 211  . We note that the 

Black-Scholes (1973) model is a particular case of this specification when it reduces to 

standard homoskedastic log-normal process with 0=α  and 0=β . 

To derive the GARCH option model, Duan (1995) had to apply the risk-neutral valuation 

defined as the Locally Risk Neutral Valuation Relationship. Under this risk-neutral measure, 

the price process is given by : 
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and the variance process is given by : 
    ( ) 11
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where *tε  being a standard normal random variable with )1,0(~* Ntε . The appearing non 

centrality parameter has the following form γλγ +=* , but the variance process remains almost 

the same. The option model will yield four parameters, ω , α , β  and *γ  while the interest 

rate and the dividend rate are input parameters. By recursion we find easily that the 

underlying asset price at maturity T is : 
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Since we cannot derive an analytical approximation of the option price, Monte Carlo 

simulations are run to estimate a set of N  random path of residuals ( )*,* ,1 ,..., jTjt εε +  with 

Nj ,...,1= . These residuals will be plugged into the last equation to compute the corresponding 

prices jTS , , given strike prices K , which are in their turn plugged into the risk-neutral 

conditional expectation *E  : 
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The decomposition of the computation can be expressed in two manners whether we use 

simple Monte Carlo simulation or Empirical Martingale Simulation (EMS) as in Duan and 

Simonato [1998]. The EMS method that we apply in this study is reputed to accelerate the 

convergence of Monte Carlo price estimates. The Monte Carlo simulation can be stated as :  
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The next section deals with the calibration procedure of the NGARCH option pricing model 

along with the sampling methodology. 

 
 
 



3. The sampling methodology and the estimation procedure 
 
3.1. The sampling methodology 

 
We consider the period of January 2002 including 22 trading days going from January 2nd to 

January, 31th. The database only contains closing prices stemming from the FTSE 100 

European style purchased at the LIFFE web site and is organized as cross-sectional data. We 

construct the database using the same number of calls and puts, that is 2310 each. The 

maturities are the third friday of February, March, June, September and December. For each 

day of January 2002, we have considered 5 maturities which are for the January 2nd,  

[50, 80, 169, 258, 348] days declining until the last day of January to [21, 51, 140, 229, 319] 

days. The range of strike prices goes from 4225 to 6225 for an average stock price of 5216 

with a minimum of 5082 and a maximum of 5411. We compute the implied interest rates and 

the implied dividend rates from the observed option prices using the method of Shimko 

[1993] based on the put-call parity, which holds relatively well on the data used in the study. 

The average implied interest rate is about 3,80% and the implied dividend yield is around 

3,73%. As for the average implied volatility, as it is provided by the LIFFE Stock Exchange 

for the observed period, it is about 20,86% and the ATM volatility is 18,16%.  

 

3.2. The calibration procedure 

 

The procedure for the implied calibration for day N is the following : 

Step 1 : we estimate the NGARCH parameters on a FTSE 100 time series of 2001 as a starting 

value for the first day of January 2002. 

Step 2 : we compute the implied interest rate and implied dividend yield for the day N-1. 

Step 3 : using cross-sectional quadratic minimization with all maturities of day N-1, we 

estimate the implied NGARCH parameters using the parameters of day N-2 as starting values. 

The non-linear least squares procedure estimates the values of the NGARCH set of 

parameters, Θ ={ω , α , β ,γ , h }, while we set the risk premium parameter λ  constant 

equal to its historical value for simplifying the estimation procedure which minimized the 

following sum of squared errors :  

∑∑
= =

=Θ
T

t

N

i
tie

1 1

2
, )( SSE min  



With tie ,  representing the difference between the actual price and the theoretical price of 

contract i  at maturity t . The number of Monte Carlo simulations used is 10000 replications. 

We noted that 5000 runs produce enough precision to converge to the true prices.  

Step 4 : using these implied parameters from day N-1, the implied interest rate and implied 

dividend yield from day N-1, the maturity of day N and the current stock price, we compute a 

stream of residuals using Monte Carlo simulations for the computation of a terminal stock 

price in order to obtain a NGARCH call price. Note that we could have chosen another 

GARCH specification, as for example, EGARCH or GJR-GARCH. End of the procedure for 

computing the call prices for the day N. We ran this procedure for each day of the sample. 

 

4. Empirical tests for the out-of-sample valuation 
 

4.1 Parameter estimates 

 

The study aimed at computing tomorrow’s call prices using each day of January 2002. Table 

1 provides average values for each of the NGARCH parameters for the month of January. 

 

Table 1 
NGARCH average parameters 

Implicit values Historic value 

ω  α  β  γ  h  λ  

5.334E-06 8.759E-02 8.300E-01 0.691 8.670 % 1.262E-02 

The volatility computed here is obtained by taking the square root of the NGARCH final variance divided by 252 trading days. 

 

Only the risk premium was set to its historical value computed from the whole year 2001. 

Typically; the value for the risk premium is weak and has few impact on the option pricing as 

it is observed in many empirical studies. We found surprisingly a relative weak value of 

volatility derived from the NGARCH model, but it is also the case in the article of Hsieh and 

Rithcken (2000). 

 

 

 

 



4.2 Out-of-sample performance 

 

Tables 2, 3 and 4 display the out-of-sample results for the NGARCH option pricing model of 

Duan (1995) in terms of Pricing Error (PE), Relative Pricing Error (RPE) and Absolute 

Relative Pricing Error (ARPE). If the PE is defined here as the difference between computed 

call prices iĈ  and observed prices iC , the RPE and ARPE are defined as : 

i

ii
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i

ii
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ˆ
  ARPE  

These tables give pricing results per moneyness computed as stock prices divided by strike 

prices, but also per category of maturities. We therefore display the results by range of 

maturities, corresponding to February, March, June, September and December. For instance, 

for the range [50,21], we begin by January 2nd, which has 50 days until maturity, January 3rd, 

which has 49 days until maturity, etc until January 31th, which has 21 days to maturity. This 

precise maturity being of course, February, and so on for the other four range of maturity. The 

last column gives the average results per moneyness whatever is the maturity and the last line 

gives the average results per maturity whatever is the moneyness. Options with moneyness 

inferior to 0,94 are denoted DOTM as deep out-the-money options, with moneyness between 

[0,94; 0,97[ are denoted OTM as out-the-money options, with moneyness belonging to [0,97; 

1,00[ and [1,00; 1,03[ are denoted ATM as around-the-money options, with moneyness 

between [1,03; 1,06[ are denoted ITM as in-the-money options and those with a moneyness 

superior or equal to 1,06 are denoted DITM as deep in-the-money options. 

 

Table 2 
Pricing Error for different moneyness and maturity groups 

 Maturity in days 
Moneyness [50,21] [80,51] [169,140] [258,229] [348,319] Average 
< 0.94 0.608 2.341 12.085 22.495 33.338 14.173 
0.94 - 0.97 1.270 4.427 8.388 15.826 20.969 10.176 
0.97 - 1.00 -1.075 1.883 3.334 8.096 12.358 4.919 
1.00 - 1.03 -4.815 -4.385 -2.604 -0.570 4.240 -1.627 
1.03 - 1.06 -7.016 -10.418 -8.566 -7.167 -3.780 -7.389 
≥  1.06 -4.748 -16.548 -18.066 -19.874 -19.479 -15.743 
All options -2.322 -5.703 -2.299 1.871 7.123 -0.266 

The pricing errors are computed as the difference between the computed call price and the observed call price. 

 
We first see that for PE measure, in average, the best out-of-sample fit is for ATM call 

options while far from the money contracts seems to suffer from a severe mispricing. As the 

maturity increases, the mispricing for DITM and DOTM options is being worse. The negative 



values show that prices are under-estimated, which is the case for ITM options and for most 

of ATM options.  

 
Table 3 

Relative Pricing Error or different moneyness and maturity groups 
 Maturity in days 
Moneyness [50,21] [80,51] [169,140] [258,229] [348,319] Average 
< 0.94 0.045 0.719 0.472 0.335 0.282 0.371 
0.94 - 0.97 0.015 0.110 0.063 0.075 0.072 0.067 
0.97 - 1.00 -0.022 0.022 0.017 0.028 0.034 0.016 
1.00 - 1.03 -0.037 -0.024 -0.008 -0.001 0.009 -0.012 
1.03 - 1.06 -0.029 -0.039 -0.022 -0.015 -0.007 -0.022 
≥  1.06 -0.009 -0.028 -0.026 -0.025 -0.022 -0.022 
All options -0.009 0.186 0.161 0.117 0.105 0.112 

The pricing errors are computed as the difference between the computed call price and the observed call price. 

 

We also get the best pricing for ATM options but we observe that as in Table 2, the 

mispricing of these options is increasing as we move towards short term contracts. Note that 

ATM contracts are underestimated for options with maturity less than one year. We see that, 

in average, the worse mispricing is systematically produced by DOTM options. If we get 

away these DOTM contrats, we would have a pricing precision that would be much more 

improved.  

Table 4 
Absolute Relative Pricing Error for different moneyness and maturity groups 

 Maturity in days 
Moneyness [50,21] [80,51] [169,140] [258,229] [348,319] Average 
< 0.94 0.788 0.783 0.472 0.335 0.282 0.532 
0.94 - 0.97 0.192 0.127 0.066 0.076 0.075 0.107 
0.97 - 1.00 0.104 0.049 0.030 0.034 0.041 0.052 
1.00 - 1.03 0.054 0.034 0.020 0.020 0.026 0.031 
1.03 - 1.06 0.035 0.039 0.025 0.022 0.021 0.028 
≥  1.06 0.010 0.028 0.026 0.027 0.026 0.023 
All options 0.199 0.249 0.183 0.138 0.120 0.178 

The pricing errors are computed as the difference between the computed call price and the observed call price. 

 
We also get a severe mispricing for DOTM options which is almost five times worse than 

other moneyness. Thus, the more we move towards DOTM contracts, the more the pricing 

biais is increased. We note that the pricing precision is a function of the maturity. The more 

the maturity increases, the more the bias pricing is reduced.  

 

 

 

 



5. The empirical dynamic of the skew 
 

Figure 1 displays the skews generated by the Duan (1995) ‘s model for respectively, the first 

day (Figure 1a) and last day (Figure 1b) of the sample. It shows the observed deformation of 

the implied volatility surface during January 2002.The implied volatilities in the vertical axes 

are computed by equating the Black-Scholes (1973) formula to the prices computed by the 

NGARCH option pricing model. These theoretical prices are obtained from an out-the-sample 

fit. In the horizontal axis, we displayed the strike prices. Additional Figures are presented in 

appendice. 
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Figure 1 – Skews computed from an out-the-sample valuation on January, 2nd 2002 

 
Figure 1a shows almost linear skews per maturities for the first day of the sample. We see that 

for ITM calls, the slope of the skew is all the more high that the maturity is short. Once, we 

arrive to the ATM options around 5375-5425 points, the scheme is reversed with the 

difference that the slope coefficients are very tight. This center point has a pivotal role since it 

reverse the order of the skews. 

For the last day of the sample, in Figure 1b, skews are no longer linear except for long 

maturities (229 days and 319 days). The more the maturity is short, the more the curvature of 

the smile around the money is high. For DITM calls, i.e, from 4225 to 4725, we get a reverse 

smile for shorter maturities. Note that this model allows for both skew and smile patterns 

which is quite important to capture all the features of the deformation of the true implied 

volatility surface. 



We also carried out a simple position analysis with skews re-computed from an in-the-sample 

fit (i.e, implied volatilities were obtained from an in-the-sample valuation) to get theoretical 

prices closer to true prices. We found that for the more we increase in maturity, the more the 

rank between skews is stable, day after day. This should mean that it is easier to predict long 

term implied volatilities rather than short term. For the group of maturities [348,319], the 

number of shifts between ranks for the whole month is 61, for the group [258,229] it is 76, for 

the group [169,140] it is 142, for the group [80,51] it is 239 and for the last group [50,21] it 

has slightly decreased to 214. This is certainly due to the growing uncertaincy in the approach 

of the expiry date. This can explains why the model succeed in pricing contracts with longuest 

maturities since long term implied volatilities are more stable across time. 

 

6. Conclusion 
 

This article is an empirical study of the GARCH Option pricing model developped by Duan 

(1995). This model is implemented on the FTSE 100 European style options for five range of 

maturities. Using the NGARCH specification, we explain our implied calibration procedure 

and apply it to compute one-day ahead out-of-sample call option prices for January 2002. 

Severe mispricing was found for deep out-the-money options which worsen the global 

performance of the model that is relatively correct judging from the pricing error. The best fit 

is made for at-the-money options, which is generally the case of many models, even the 

Black-Scholes (1973) model.  

We note that the pricing bias is decreasing with the maturity, which means that this model 

succeed in pricing long term options, which is consistent with our analysis that long term 

skews are more stable in time and thus more predictable. However, the global performance 

remains good regarding the srtong stability of the model.  

The model of Duan (1995) generates almost downward linear skews for long maturities. We 

observed that as we move closed to the expiry date, we get a deformation of the skews that 

transform into smiles for around the money options. Therefore, the ability of the model to 

capture the deformation of the skew dynamic through time shows that this model is sensitive 

to the change of regime in the implied volatility surface.  
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Appendix 
 
The following graphics display the volatility skews per range of maturities in days : long term 

maturities [229; 258] and [140; 169], middle term maturities [51; 80] and short term 

maturities [21-50]. The vertical axis gives the equivalent Black-Scholes (1973) implied 

volatilities obtained by inverting the formula to each theoretical prices generated by the 

NGARCH option pricing model as in Figure 1. The horizontal axis shows the range of strike 

prices from 4225 to 6225. 
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Figure 2 – Skews computed from an out-the-sample valuation on January 31th 2002 

 
Figure 2a displays the skews for very long maturity contracts. We get very tightened skews 

with a maximum volatility level around 22 and 25%. These skews are almost linear with 

decreasing strike prices. Figure 2b shows the deformation process that increases the convexity 

of the skews generated by short term options. 
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Figure 5 – Skews computed from an out-the-sample valuation from January 2nd to January 31th 2002 

 
Figure 3 shows the skews for the middle and short term contracts. Figure 3a displays two 

groups of skews, one remaining almost linear with strike prices and the other one, 

transforming into smile patterns. Figure 3b reveals that almost all the skews have been 

transformed into smiles with a bottom level for ATM options around 5425. The distinction 

between one month and two months maturities is obvious over all for ITM call options since 



the two month maturity group has a maximum volatility around 27% while the one month 

maturity group begins with a maximum volatility around 19%. We see that the NGARCH 

option pricing model is able to capture the skew deformation into smiles pattern which makes 

it more sensitive to the change of regimes that occurred in the implied volatility dynamic. 


