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Abstract

This paper studies the set of equilibria that can be achieved by adding general com-
munication systems to Bayesian games in which some information can be certified
or, equivalently, in which players’ types are partially verifiable. Certifiability of in-
formation is formalized by a set of available reports for each player that varies with
the true state of the world. Given these state-dependent sets of reports, we charac-
terize canonical equilibria for which generalized versions of the revelation principle
are valid. Communication equilibria and associated canonical representations are
obtained as special cases when no information can be certified.

KEYWORDS: Bayesian game; Communication equilibrium; Information certification;
Revelation principle; Verifiable types.
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Résumé

Cet article étudie I’ensemble des équilibres que 1’on peut atteindre en ajoutant
des systemes de communication généraux a des jeux bayésiens dans lesquels certaines
informations peuvent étre certifiées ou, de fagon équivalente, dans lesquels les types
des joueurs sont partiellement vérifiables. Le caractére certifiable de I'information est
formalisé par le fait que chaque joueur dispose d’'un ensemble de messages dépendant
de I’état de la nature. Etant donné un tel ensemble de messages, nous caractérisons
des équilibres canoniques auxquels s’appliquent des versions généralisées du principe
de révélation. Les équilibres en communication et leurs représentations canoniques

correspondent au cas particulier ol aucune information ne peut étre certifiée.



1 Introduction

Since the pioneering work of Aumann (1974) on correlated equilibria and Crawford
and Sobel’s (1982) analysis of cheap talk games, the introduction of communication
possibilities into the analysis of interactive decision situations has been commonplace
in a whole host of applied and theoretical researches (for some recent references, see,
e.g., Aumann and Hart, 2003, Baliga and Morris, 2002, Ben-Porath, 2003, Gerardi,
2003, Krishna and Morgan, 2002, and Urbano and Vila, 2002). Such analyses are
motivated by the fact that when individuals can talk to each other before choosing
their final payoff-relevant actions, they may be able to share information and/or
agree on compromises, and then reach outcomes that differ from those of the stan-
dard Nash equilibrium solution concept. For example, a correlated equilibrium of a
strategic form game is a Nash equilibrium of some extension of the game where play-
ers receive private, “extraneous” and possibly correlated signals before the beginning
of the original game. Such a solution concept is appropriate to characterize the set
of all equilibrium outcomes achievable in one-shot complete information games with
costless and non-binding communication.

With the exception of some specific applications discussed below, the literature
on communication games and the various extensions of the correlated equilibrium
to incomplete information typically relied on the assumption that the set of reports
available to a player does not depend on his private information.! On the contrary,
our starting point in this paper is to allow the set of all possible messages that an
individual is able to send to vary with his actual state of knowledge. Said differ-
ently, the information that is transmitted might be certifiable or provable by its
sender, or verifiable by its receiver.? For example, reports may consist of written
documents or direct physical observations which may not be forged.? Alternatively,
in economic or legal interactions there may be penalties for perjury, false advertis-
ing and warranty violations, or accounting principles that impose limits on what is
possible to disclose. Requiring traders in an exchange economy to deposit collateral
for each order (as, e.g., in Forges, Mertens, and Vohra, 2002) also implies that their
types are partially verifiable because traders are not able to over-report their initial
endowments.? Finally, an individual’s ability to manipulate and misrepresent infor-
mation may be limited due to psychological reasons (e.g., observable emotions such
as blushing, or a strong taste for honesty that cannot adequately be represented by
standard preferences, as in Alger and Ma, 2003, and Alger and Renault, 2002). The
purpose of this paper is precisely to study in a general and tractable framework the

'For an overview, see, e.g., Farrell and Rabin (1996), and Myerson (1994).

2Tn this paper, the terms “certifiable”, “provable” and “verifiable” are equivalent. See subsec-
tion 3.1 for a formal definition.

3For instance, disclosures of knowledge generated by R&D may be knowledge-dependent in the
sense that an informed firm cannot disclose more knowledge than it has (see, e.g., d’Aspremont,
Bhattacharya, and Gérard-Varet, 2000).

4Similarly, the type of a budget-constrained buyer may be partially verifiable if the seller can
ask him to post a bond equal to his reported budget (as, e.g., in Che and Gale, 2000).



effects of adding communication systems to incomplete information games in which
players’ types are partially verifiable, and to provide a canonical representation of
the equilibria of such extended communication games.

Our basic model is an n-person Bayesian game. As in Forges (1990), we extend
the game by allowing the players to communicate for several periods, with the help
of a mediator, before they make their decisions. More precisely, at every stage of
the extended game, every player sends an input to a communication device, which
selects a private output for every player, as a function of past inputs and outputs. In
a standard communication equilibrium, all types of a given player have access to the
same inputs, which are thus interpreted as cheap talk. Here, we assume that, in addi-
tion to these messages, each player can also transmit reports from a type-dependent
set, i.e., can send certified information into the communication system. We define a
certification equilibrium as a Nash equilibrium of such an extension of the Bayesian
game. Our first result (Theorem 1) is a characterization of all certification equi-
librium outcomes that can be achieved for given sets of type-dependent reports for
every player. We first show that the type-dependent report sets can be represented
in a canonical way, in terms of the fundamentals of the game (we will refer to this
representation as to a certifiability configuration). Once such a certifiability configu-
ration is well-defined, the canonical representation we propose is simple: players are
only required to present, in a one-stage game, the most informative certificate con-
cerning their type to a mediator and to make a cheap talk claim about their type.
Then, once the mediator has received a report in this canonical space from each
player he makes private recommendations to the players. We show that there is no
loss of generality in focusing on such representations and on equilibria where players
reveal their true type and follow the recommendations of the mediator. This result
can be interpreted as the generalized revelation principle for Bayesian games with
partially verifiable types. The associated canonical representation (resp., canonical
equilibrium) is the analog of a direct mechanism (resp., direct incentive-compatible
mechanism) used in the mechanism design literature.

If the original set of possible communication systems is restrained to one-period
communication systems where players can only present one verifiable argument, we
also provide (in Theorem 2) a sufficient condition on the certifiability configuration
which maintains the outcome equivalence between the associated certification equi-
libria and canonical certification equilibria. Finally, Theorem 3 is even closer to the
traditional revelation principle than the previous results. It states that every certifi-
cation equilibrium outcome can be achieved as a truthful and obedient equilibrium
of a one-stage communication extension of the game in which the set of reports of
every player is just a subset of his original set of types. In this scenario, it is implic-
itly assumed that players must produce a certificate that is consistent with the type
they report. By contrast to Theorems 1 and 2, Theorem 3 does not describe a full
equivalence. Its converse holds under further assumptions, which guarantee that the
mediator can restrain the set of reports available in the communication system.



Our approach combines three areas of research. As made clear above, the first
relates to the notion of communication equilibrium (Forges, 1986; Myerson, 1982,
1986). The second area of research related to our work is the economic literature
dealing with strategic information revelation, initiated by Grossman (1981), Gross-
man and Hart (1980) and Milgrom (1981), which investigates the amount of informa-
tion voluntarily transmitted when individuals are required to make only truthful—
but possibly very vague—disclosures.? This literature includes specific applications
in oligopoly theory (see, e.g., Okuno-Fujiwara, Postlewaite, and Suzumura, 1990),
finance (see, e.g., Shin, 2003), and law (see, e.g., Shin, 1994). The accounting lit-
erature has also placed considerable emphasis on games with strategic information
revelation (see, e.g., Verrecchia, 2001 and references therein). Contrary to those
previous contributions we consider a general game-theoretical framework allowing
private, stochastic, repeated, and mediated information revelation, and we do not
require players’ types to be independent. Finally, our work is related to the literature
on mechanism design with partially verifiable information (Bull and Watson, 2002,
Deneckere and Severinov, 2001, Green and Laffont, 1986). This literature, which
is restricted to the implementation of an exogenous social choice function, studies
the validity of the standard revelation principle when the set of available reports of
a single informed agent (or several symmetrically informed agents) varies with the
true state of the world.

Green and Laffont (1986) pointed out that the revelation principle might fail
in this framework, and proposed the ‘nested range condition’ as a necessary and
sufficient condition on the report sets for a form of the revelation principle to hold.
It was implicit in their approach that the agent could only send a single message,
typically consisting of a type. Deneckere and Severinov (2001) showed that the
revelation principle could be restored by enlarging the agent’s set of possible reports.
Both papers focus on message spaces that are closely related to the original state
spaces, i.e., on direct mechanisms so that the point of the revelation principle is
truthful implementation. The difference between this paper and those contributions
is that our revelation principle applies to n-person games, in which the players have
asymmetric information and must make decisions. Furthermore, instead of starting
with some desirable outcome function and looking for the means to implement it
as an equilibrium outcome, we are rather interested in characterizing all (possibly
mixed) equilibrium outcomes that are feasible when general means of communication
(i.e., mediators with perfect recall, equipped with lotteries, for several periods) are
available to the players. In particular, the sets of (type-dependent as well as type-
independent) inputs and the sets of outputs of non-canonical communication systems
are fully arbitrary, their elements have no pre-determined semantic meaning. This is
the reason why we insist in establishing full equivalence results, stating not only that
all equilibrium outcomes can be achieved as canonical ones but also that the set of

SFor more recent references, see, e.g., Glazer and Rubinstein (2001), Koessler (2002, 2003),
Lipman and Seppi (1995), Seidmann and Winter (1997), and Wolinsky (2003).



canonical outcomes is not too large, i.e., that all canonical outcomes are compatible
with the original certification possibilities. In this way, our representations can be
used without loss of generality to maximize any function of the players’ payoffs.

The paper is organized as follows. In Section 2 we present our general framework
and some preliminary definitions. Canonical representations and generalized versions
of the revelation principle for Bayesian games are analyzed in Section 3. We conclude
in Section 4. The Appendix contains the proofs.

2 General Framework and Definitions

2.1 Bayesian Games and Communication Systems

We represent an interactive decision situation under asymmetric information by a
(finite) Bayesian game

G = (N, (A)ien, (Ti)ien, ps (Ui)ien),

where N = {1,...,n} is the set of players, A; is player i’s set of possible actions, T; is
player i’s set of possible types, p € A(T') is a common prior probability distribution
over the set of type profiles T = [[,cy Ti, and u; : A x T" — R is player i’s state
dependent payoff (utility) function, where A = [, A; is the set of action profiles.
Let p(t;) = >, .er , p(ti;t—;) be the prior probability that player i’s type is t;.6
We assume without loss of generality that p(¢;) > 0 for all i € N and t; € T;. Let
p(t—;i | t;) = % be the subjective probability that player ¢ assigns to the event that
t_; is the actual profile of the other players’ types if his own type is ¢;.”

To allow players to communicate before choosing an action in the Bayesian game
G, we introduce a communication system (or mediator) that helps players to share
information and to coordinate their actions.® As usual, in a game with communi-
cation players exchange messages conditionally on past messages and on their own
type before choosing their actions. However, contrary to previous work related to
cheap talk communication and to the various extensions of the correlated equilib-
rium to incomplete information, we assume that the set of available messages may
be type-dependent. As a consequence, reports may have some pure informational
content which does not depend on any particular equilibrium and players may be
able to certify some of their information.

Formally, a (finite) communication system given the set of players, N, and the
set of possible type profiles, T, is denoted by

¢ = {(Ri)ien, (Si)iens (My)ien, K, (VF)k=01. x)-

SFor any variable, we denote its profile over all agents except that of player i by the corresponding
letter with subscript —i.

"We do not assume that every type profile has non-zero probability.

8Players have no ability to sign any contract or binding agreement. Hence, our approach is
strictly non-cooperative.




The positive integer K is the number of communication periods. For each player 1,
R; : T; — R; is a reporting correspondence that determines the set R;(t;) of type-
dependent inputs available to player ¢ of type t; € T;, i.e., the set of reports that
player ¢ can send out into the communication system in each period if his actual
type is t;, and R; = Uti T, R;(t;) is the set of all reports the communication system
can receive from player ¢ in each period. The set .S; is the set of type-independent
inputs available to player ¢, i.e., the set of cheap talk signals that player i can send
out into the communication system in each period. The set M; is the set of outputs
for player ¢, i.e., the set of all messages that player ¢ can privately receive from
the communication system in each period. Let R = [[;cx Ri, S = [[;cny Si, and
M = [];cy M;. (Observe that, a priori, the elements of R, S and M have no semantic
content.) In period 0, each player i privately receives from the communication
system an initial output m? € M;, where m® = (m{);cy is distributed according to
the probability distribution 1° € A(M). Then, at the end of each communication
period k € {1,..., K}, after all inputs up to that period have been received by the
communication system, the transition probability

VP MR x RF <SP — A(M),

chooses the outputs as a function of past outputs and past and present inputs.

That is, v(m* | mOm!', ... mFtrl . 7k sl ... s¥) is the conditional proba-

k k

bility that m* = (mj,...,mr) € M are the messages privately received by the

various players at the end of period k given the sequence of vectors of past outputs
(m% m!,...,m*1) € MF, past and present type-dependent inputs (r!,... ,r*) €

RF¥, and past and present type-independent inputs (s',...,s*) € S*.

2.2 Extended Bayesian Games and Certification Equilibria

Given a communication system ¢, one can define the extension G, of G as the new
game obtained by adding ¢ to G. Such a communication game proceeds as follows. In
period 0, after having received the output m?, player i is privately informed about his
type t; € T;, where t = (t;);en is distributed according to p. Then, at the beginning
of each period k € {1,..., K} he sends a confidential input (r¥,s¥) € R;(t;) x S; to
the communication system. At the end of each period k € {1,..., K}, he receives a
confidential output m¥ € M; from the communication system. Finally, after the last
communication period (in period K + 1, which corresponds to the action phase) he
chooses an action a; € A; and is rewarded according to his utility function wu,.

A behavioral strategy for player i in G, is a tuple ((Uf)kﬂ,...,Ka 9;) where for all
kEe{l,...,K},

(]

of : MF x RETLx SF1 < Ty — A(Ri x S)),

is player i’s communication strategy in period k satisfying of(r¥ sk | - ;) = 0



whenever ¥ ¢ R;(t;), and

i METU X RE x SK x Ty — A(4),

is player i’s strategy in the action phase. A profile of behavioral strategies is de-
noted by (o,6) = (04, 0;)icn, where o; = (af)kzl’m,K. Such a strategy profile in G,
generates an outcome i : T — A(A) and an expected payoff >, - p(t) > ,c 4 1(a |
t) u;(a,t) for each player i.? As usual, a (Bayesian) Nash equilibrium of the commu-
nication game G, is a strategy profile (o, ) such that no player can strictly increase
his expected payoff by unilaterally deviating from his strategy. The outcome gener-
ated by a Nash equilibrium of G, is called an equilibrium outcome of G,.*°

Definition 1 A certification equilibrium of G is a Nash equilibrium of the extended
game G obtained by adding a communication system c to G.!!

It can be shown'? that the set of all certification equilibrium outcomes, denoted
by € C [A(A)]”, obtained when considering all possible communication systems (in
particular, all possible reporting correspondences), coincides with the set of Nash
equilibrium outcomes of the extended games obtained by adding a one-period com-
munication system (K = 1) without initial output (v is degenerate), without type-
independent input (S is a singleton), satisfying M = A, R;(t;) = {t;} for all i € N
and t; € T;, and in which every player follows the recommendation of the mediator.
That is, a certification equilibrium outcome is simply characterized by a recommen-
dation p: T'— A(A) satisfying

S ot 1) plal uilast) > > plti )Y pla|t)uiai, di(ai);t),

t_;€T_; a€A t_;€T_; a€A

foralli € N, t; € T;, and d; : A; — A;. The intuition of this equivalent characteri-
zation is very simple. Starting with any certification equilibrium, the mediator first
simulates the sequence of signals and reports (inputs) that would have been sent by
the players and the sequence of messages (outputs) that would have been received by
the players given the type profile under the original equilibrium. Then, he computes
the actions that would have been chosen by the players as a function of the type
profile and the sequence of inputs and outputs. Finally, he privately recommends

9That is, if for all (m,r,s) € M® x R x S¥ we denote by h(m,r,s | m°,t) the probability
distribution over M x R¥ x S% generated by (o,6) in G. given m® € M and t € T, then
pla|t) =3 0en V0 (m?) D momsye MK xRE x gk h(m, 7,8 | m%,t)6(a | m®, m,r, s,t).

OWe consider equilibrium outcomes rather than equilibrium strategies because the dimension of
strategy sets depends on the underlying communication system. By contrast, equilibrium outcomes
are always in [A(A)]7.

HWe use the term “certification equilibrium” to point out the link with a communication equi-
librium, which is defined as a certification equilibrium except that the communication systems used
to define a communication equilibrium do not allow players to certify their information through
type-dependent sets of available inputs (see Definition 2).

12The formal proof is a simplified version of the Proof of Theorem 1.



each player to choose the associated action. Clearly, if a player has an incentive to
deviate from the recommendation of the mediator, then the strategy profile of the
original communication game was not an equilibrium.

The previous observation can be interpreted as a form of “revelation principle”:
any certification equilibrium is outcome equivalent to a “truthful certification equi-
librium”. However, the set of “truthful certification equilibria” generated in this
way is much too large for the result to be interesting, and is not appropriate for
most applications. Indeed, players may have the right to remain silent or to present
only vague arguments, whereas in some certification equilibria they are compelled to
reveal their type to the mediator even if they have no incentive to do so. A simple
illustration is provided in Example 1. On the other hand, in some environments
players may have only limited ability to certify claims. Accordingly, when certifi-
ability possibilities are given and only partial, it is not appropriate to consider a
communication system with R;(¢;) = {¢;} for all i € N and t; € T; because what is
certified with such a communication system might not be certifiable with the original
set of available reports.

For those reasons we define certification equilibria that can be obtained only
with a specified profile of available type-dependent inputs, i.e., with communica-
tion systems where the reporting correspondences R = (R;);en are given. Such
communication systems are called R—communication systems. If the set of available
inputs does not depend on players’ types then the set of associated equilibria is, by
definition, the set of communication equilibria.

Definition 2 An R-certification equilibrium of G is a Nash equilibrium of the ex-
tended game G, obtained by adding an R—communication system ¢ to G. A com-
munication equilibrium is an R—certification equilibrium where R;(t;) = R;(t) for
all t;, t, € T; and i € N.

We denote by £(R) the set of R—certification equilibrium outcomes and by &
the set of communication equilibrium outcomes. Clearly, we have & C E(R) C & for
every profile of reporting correspondences R, and all these sets are convex (thanks
to the preliminary lottery ©°). As shown in the following example these inclusions
may be strict.

Example 1 Consider a consumer whose endowments depend on two equally likely
types, t! and 2, which are private information to the consumer. There are two com-
modities. In state t! (2, resp.) the consumer’s endowment is (10, 0) ((0, 10), resp.).
A government can choose to deduct taxes of twenty per cent either on commodity 1
(action a') or on commodity 2 (action a?). If each unit of commodity provides a util-
ity of one to the consumer and to the government, this situation can be represented
by the Bayesian game of Figure 1 on the next page. In this game it can be shown!?

that the set of communication equilibrium outcomes and the set of R—certification

13See Section 3 for a general and explicit characterization.



equilibrium outcomes coincide whenever player 1 can remain silent, i.e., whenever
Mier Ri(t) # 0: they are characterized by p(a® | t?) = 1 — pu(a' | t'). Hence, the
only associated vector of expected payoffs is (9,1). The set of all certification equi-
librium outcomes is however strictly larger since it is the set of outcomes satisfying
w(a? | t2) > 1 — p(al | t'). In particular, the perfectly revealing recommendation
induces such an equilibrium outcome with the vector of expected payoffs (8, 2).

al a?

tt ] (8,2) | (10,0)
t2 1 (10,0) | (8,2)

Figure 1: Bayesian Game of Example 1.

In the following section we introduce canonical communication systems and equi-
libria given some specified profile of reporting correspondences R = (R;);en in order
to obtain a simple and equivalent characterization of the set of all R—certification
equilibrium outcomes.

3 Canonical Representations

3.1 Certifiability Configuration and Canonical Communication Sys-
tems

As noted earlier, the inputs in a communication system have no semantic content.
In order to capture certification possibilities associated with a profile of reporting
correspondences in a canonical way, we first introduce a framework where certifiable
information is represented as events of the state space. Then, we prove a generalized
version of the revelation principle for Bayesian games with type-dependent sets of
available signals in order to characterize the set of all R—certification equilibrium
outcomes in a tractable way. This is performed by defining appropriate canonical
communication systems where the profile of reporting correspondences is written as
a certifiability configuration.

A certifiability configuration is an n-tuple of collections of sets of types, V =
(Vi)ien, where an element y; € Y; C 27\{(} is a certificate (certifiable event)
concerning player i’s type. For all + € N and ¢; € T; we assume that there exists
y; € Y; such that t; € yi.14 The set of events that player i of type t; is able to
certify concerning his type is the set of certificates containing t; and is denoted by
Yi(ti) = {y; € Vi : t; € y;}. Hence, a certifiability configuration ) = (););en can
equivalently be viewed as a profile of reporting correspondences R =Y = (Y;)ien.
The closure of a certifiability configuration Y is the certifiability configuration Y =

M“The set V; is not assumed to be closed under intersection, union or complementation, even if
the closure under intersection often seems natural as will be discussed later.



(Y:)ien where for all i € N and t; € T;, Y;(t;) is the element of )); containing ¢;,
and Y; is the smallest set containing ); which is closed under intersection. Define
the smallest event concerning player i’s type as MiniY;(¢;) = ﬂyieYi (t,) ¥i and let
MiniY(t) = (Mlnln(tz))ze]\[

Let R = (R;);en be an arbitrary profile of reporting correspondences. With any
such profile we can associate a unique certifiability configuration Y# = (YiR)ie N,
where Y(t;) = {R;'(r;) : s € Ri(t;)} for all t; € T;, i € N, and R; '(r;) =
{ti € T; : i € R;(t;)} is the set of types of player ¢ who can send the report ;.
Hence, Y = {Vi(;) : t; € T;} = {R;'(r;) : ; € R;} for all i € N. It is worth
mentioning that many different profiles of reporting correspondences can generate
the same certifiability configuration.

Given a certifiability configuration Y and its closure Y, we define a canonical
Y —communication system as a Y -communication system such that S =T, M = A,
K = 1, and v is degenerate. Hence, in a canonical Y -communication system
there is no initial output, there is only one communication period, a report of each
player i € N of type t; € T is a certificate concerning his type, y; € Y;(¢;), a cheap
talk signal is a claim about his type, s; € T;, and messages sent by the communication

system are (recommended) actions.

3.2 Canonical Certification Equilibria

Definition 3 A canonical Y —certification equilibrium of G is a Nash equilibrium
of the extended game G. obtained by adding a canonical Y -communication system
¢ to G, and in which every player certifies the smallest event concerning his type,
truthfully reveals his type, and follows the recommendation of the mediator.

In other words, in a canonical Y —certification equilibrium each type t; € T} of
every player i € N sends the report Mini Y;(t;), sends the cheap talk signal ¢;, and
plays the action recommended by the mediator. Hence, such an equilibrium outcome
is simply characterized by a recommendation (transition probability) v* : Y x T —
A(A) satisfying

Z p(t—i| t) Z v¥(a | Mini Y (¢),t) ui(a;t) >

t_, €T, a€A
. . , (1)
> oplti [t)> (e | (M Yoi(t-i),ys), (b, 1)) wi(a—s, di(aq);t),
t_,€T_; a€A

for all i € N, t;, t. € Tj, yi € Yi(t;), and d; : A; — A;. The set of canoni-
cal Y-certification equilibrium outcomes is denoted by £*(Y). According to the
following theorem, for any profile of reporting correspondences R = (R;);cn, the
set 5*(?R), where Y is the closure of the certifiability configuration generated
by R, exactly coincides with the set of all Nash equilibrium outcomes achievable
through all R—communication systems. The intuition of this result is similar to
the revelation principle for Bayesian games with non-certifiable information, except



that, in the latter case, without any specific assumption, communication equilibria
which use several communication periods can be equivalently achieved as one-stage
canonical communication equilibria (see Forges, 1990). Here, we have to take the
closure Y of the certifiability configuration Y generated by the reporting corre-
spondences R to ensure that every information which can be certified by sending
different reports at different periods in the original equilibrium can also be certified
in the one-period canonical communication system. Deneckere and Severinov (2001)
already recognized the crucial role of multiple reports in extending the revelation
principle to principal-agent problems with partially verifiable types. Given a basic
state space, they construct a large set of messages, which typically capture multiple
claims about the agent’s private information. Assuming the existence of a state inde-
pendent “worst outcome”, they show that any implementable social choice function,
defined on the large set of messages, is truthfully implementable. Theorem 1 below
differs from this result in several respects. First, it applies to any n-person Bayesian
game, without any requirement of possible “worst outcomes”. Furthermore, in an
R—certification equilibrium, the range of the reporting correspondences, the input
sets and the output sets have no relationship with the fundamentals of the game.
We thus derive appropriate direct mechanisms before exhibiting truthful equilibria.

Theorem 1 The set of R—certification equilibrium outcomes coincides with the set
of canonical ?Rfcertiﬁcation equilibrium outcomes. That is, E(R) = 5*(?R) for all

profiles of reporting correspondences R.

The following example illustrates the canonical representation. A similar, but not
quite identical (see Subsection 3.3), example was used by Green and Laffont (1986) to
show the possible failure of the revelation principle and by Deneckere and Severinov
(2001) to show how restore it. The example also shows that communication equilibria
can differ from certification equilibria even if we consider certifiability configurations
Y% allowing players to remain silent, i.e., such that T € YiR(ti) for all t; € T; and
i€ N.1

Example 2 Consider the game of Figure 2 on the following page, where N = {1, 2},
Ty and A; are singleton, 71 = {t!,12,#3}, Ay = {a',a?}, and consider the following
reporting correspondence: R(t') = {r,7’} and R(t?) = R(t3) = {r,7’,7”"}. A naive
application of the standard revelation principle in this game leads to the conclusion
that the complete information outcome (a' | t!,a? | 2, a? | #3) is not implementable
since if each type sends a different report to the mediator, then the sender of type ¢!
deviates by sending the same report as type 2 or t3. Consider on the contrary the
canonical representation presented before. The certifiability configuration generated
by R is Y = {{t2,#3}, T} (the report " allows to exclude the occurrence of state
t1), 50 V' = YR, Mini YR(#!) = T and Mini YR(¢2) = Mini Y2(3) = {t2,£3}. The

15Note that this condition is equivalent to mt,»eTi R;(t;) # 0 for all i € N. In other words, each
player can send an uninformative report (i.e., a report which is available whatever his type).
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complete information outcome can be truthfully implemented with the recommenda-
tion v* : YR x T — A(A) satisfying v*(a? | ({t2,13},?)) = v*(a® | ({t3,3},3)) =1
and v*(a' | (y,t)) = 1 for all other inputs (y,t) € YT x T. Of course, this outcome
is not a communication equilibrium outcome since type t' will claim that his type
is t? or t3.

al a2
t' 1 (0,1) | (1,0)
t2 1 (0,0) | (1,1)
3 1(0,0) | (1,1)

Figure 2: Bayesian Game of Example 2.

3.3 One-Period Communication Systems

In this subsection we give a sufficient condition on the profile of reporting cor-
respondences R such that the set of all Nash equilibrium outcomes that can be
achieved with all one-period R—communication systems coincides with the set of R—
certification equilibrium outcomes. The motivation for the restriction to Bayesian
games extended with only one-period communication systems is that in some ap-
plications one may be interested by the set of equilibria that can be achieved when
players are restricted to present only one or few arguments, as it is the case, e.g., in
Glazer and Rubinstein’s (2001) analysis of debates.

Another interesting example is the configuration examined by Alger and Renault
(2002). There, the informed player can be of two different payoff-relevant types, ¢!
and ¢?, and in addition he can be honest or (possibly) dishonest. The honest player
can only reveal his true payoff-relevant type, whereas the dishonest player can also
lie. Denote by t% (til, resp.) the honest player (dishonest player, resp.) whose payoff-
relevant type is ¢!, for [ = 1, 2. The reporting correspondence of the player is thus
characterized by R(t}) = {t'}, R(t3) = {t*}, and R(t}) = R(t3) = {t!,*}. This cor-
respondence generates the certifiability configuration Y% = {{t}, th 2}, {t2, ¢ 21},
and its closure is Y = {{th,¢h 23 {2, ¢L 2}, {t}, £3}}. Consider now the game of
Figure 3 on the next page with a flat prior probability distribution. It is easy to
see that there is an R—certification equilibrium generating the outcome yu(a' | t}l) =
plat | t3) = p(a® | t}) = p(a® | t3) = 1. However, this equilibrium outcome cannot
be achieved with any one-period R—communication system since one of the honest
type will always imitate the input used by one of the dishonest type. As first pointed
out by Deneckere and Severinov (2001), once multiple communication periods are
allowed, a dishonest type can prove to be dishonest by sending two “contradicting”
reports (t! and t?). This possibility is implicitly introduced by taking the closure
of the original certifiability configuration, but is perhaps not satisfactory given the
psychological considerations that motivate the example. In particular, following Al-
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ger and Renault’s (2002) terminology, the “second-order honesty” configuration in
which an honest player can neither imitate a dishonest player by lying about his
payoff-relevant type nor by lying about his ethics becomes equivalent to the previ-

v

ous “first-order honesty” configuration in which an honest player is only required to

tell the truth concerning his payoff-relevant type.!©

al a2 a3
tho| (2,1) 0,2) | (1,-2)
to| (2,1) 0,2) | (1,-2)
21 (2,1) | (1,-2) | (0,2)
(2,1 | (1,-2) | (0,2)

Figure 3: One-Period vs Multiple-Period Certification Equilibria.

In the following lines we show that if each player is able to certify the intersection
of all certifiable events concerning his type, then considering multiple periods or only
single period communication systems is equivalent. Otherwise, as in the previous
example, we are not able to provide a simple representation of the set of one-period
certification equilibria since different inputs should be used to achieve different pos-
sible outcomes, and an initial lottery is thus necessary to ensure the convexity of the
set of equilibrium outcomes.

Definition 4 A certifiability configuration Y = (Y;);en, or an associated profile
of reporting correspondences R such that Y® = Y, satisfies the Minimal Closure
Condition (MCC) if MiniY;(t;) € Yi(t;) for all i € N and t; € T;.

Obviously, a sufficient but not necessary condition for MCC to be satisfied is
that each collection of events ); is closed under intersection, i.e., Y =Y. Another
sufficient condition for a certifiability configuration to satisfy MCC is that it is gener-
ated by a profile of reporting correspondences satisfying Green and Laffont’s (1986)
Nested Range Condition (NRC). More precisely, a profile of reporting correspon-
dences R such that t; € R;(t;) C T; for all i € N and ¢; € T; satisfies NRC if for
all i € N and t;, t; € T; we have t, € R;(t;) = Ri(t}) C R;(t;). It is not difficult
to prove that under NRC the generated certifiability configuration satisfies MCC.
However, the converse is not true. Indeed, consider a reporting correspondence as
in Example 2: T = {t',#2,£3}, R(t!) = {t!,#?}, R(t?) = R(t®) = T. NRC is not
satisfied since t? € R(t!) but R(t?) ¢ R(t'). However, MCC is satisfied since the

16Tt is important to notice the difference between this example and Example 2. In Example 2 the
complete information outcome cannot be achieved by requiring that every player sends a different
type-dependent input but it can be achieved with the original reporting correspondence as an
equilibrium in which the mediator cannot distinguish type t* from type t>. On the contrary, the
outcome considered in the previous example cannot be obtained as an equilibrium with the original
reporting correspondence.
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generated set of certifiable events, Y% = {{t?,¢3}, T}, is closed under intersection.'”
Theorem 2 If R satisfies the minimal closure condition, then the set of one-period
R—certification equilibrium outcomes coincides with the set of R—certification equi-
librium outcomes.

An immediate corollary of Theorems 1 and 2 is that under MCC the set of
all one-period R—certification equilibrium outcomes exactly coincides with the set
of canonical Y '—certification equilibrium outcomes. It is also worth mentioning
that under MCC a canonical Y —certification equilibrium is well defined and that
S = (YR even if Y # VE,

3.4 An Alternative Representation

In this subsection, following the approach of Forges et al. (2002),'® we propose an
alternative representation theorem for Bayesian games with certifiable information
by constructing, from any given R—communication system, an R*—communication
system in which the set of available inputs of each type t; of every player i is restricted
to a subset R}(t;) of his set of types (i.e., RI(t;) C T; for all t; € T; and ¢ € N).
Such a communication system can be (uniquely) defined for any R—communication
system, and the associated set of equilibrium outcomes contains all R—certification
equilibrium outcomes. However, in general, this set does not coincide with the set
of R—certification equilibrium outcomes because it may contain more outcomes than
can actually be achieved with R-communication systems. Nevertheless, natural
sufficient conditions are provided for the equivalence to hold.

More precisely, given any profile of reporting correspondences R, let R} (t;) =
{s; € T; : MiniY;R(s;) € ?f(ti)} for all t; € T; and i € N. That is, in an R*-
communication system the set of all type-dependent inputs that the mediator can
receive from each player is a claim concerning his type, where it is implicitly as-
sumed that when some type t; is reported by player ¢ he also sends the associated
certificate Mini Y;(¢;). It is not difficult to check that the profile of correspondences
R* generates the certifiability configuration YR = ()Z-R)ie ~, where for all i € N,
)ZR = {Mini V;2(t;) : t; € T;}.1° Hence, from Theorem 1 we know that the set
of R*—certification equilibrium outcomes coincides with the set of Y B-certification
equilibrium outcomes. Moreover, since players have less possible deviations in a

"Tn Green and Laffont’s (1986) original example, mentioned in the previous section, neither NRC
nor MCC are satisfied, so that Theorem 2 does not apply.

BForges et al. (2002) consider an exchange economy with type-dependent preferences and initial
endowments. By relying on an appropriate version of the revelation principle, they focus on mech-
anisms in which every agent is just asked to report his type, with the understanding that he has to
show the corresponding initial endowment.

90f course, when certification possibilities are partial, this implies that players can still lie
concerning their true type. For example, if MiniY;"(s;) € ER(ti) for s; # t;, then type t; can
certify Mini Y;"(s;) # Mini Y;"(¢;). This cannot happen, however, if all types can be fully certified,
ie.,if {t:;} € Vi forallie N and t; € T.
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(canonical) Y B-certification equilibrium than in a (canonical) Y certification equi-
librium, the set of R—certification equilibrium outcomes is included in the set of
R*—certification equilibrium outcomes. The next theorem shows that we can even
consider one-period R*—certification equilibria without initial outputs and without
cheap talk signals, where every player truthfully reveals his type and follows the
recommendation of the mediator.

Theorem 3 FEvery R—certification equilibrium is outcome-equivalent to a one-period
R*—certification equilibrium in which the communication system has no initial out-
put, S is a singleton, M = A, and R}(t;) = {s; € T; : Mini Y;R(s;) € ?f(ti)} for all
1 € N and t; € T;, and in which strategies are truthful and obedient.

For example, the complete information outcome obtained in Example 2 can be
truthfully implemented with this alternative representation, which gives R*(t!) =
{t'} and R*(t?) = R*(¢3) = {t',#2,t3}. In this example the modification of the
reporting correspondence R is irrelevant since the closure of the generated certifi-
ability configuration is not modified (?R = ?R). However, in general, the closure
of the certifiability configuration generated by R is different from the certifiability
configuration generated by R*, so the inclusion in Theorem 3 may be strict (see
Example 1).

The equivalence is restored, for example, if the mediator is able to impose a
penalty to any player whose report does not correspond to any equilibrium report,
ie., if for all i € N and t_; € T—; there exists a_; € A_; such that u;(a;,a_;;t) <
u;(a’;t) for all a; € A;, ' € A and t; € T;. Recalling the comments in Subsection 3.2,
a_; is a “worst outcome” in the sense of Deneckere and Severinov (2001). This as-
sumption is for instance satisfied in the standard mechanism design framework with
transferable utility, where there are n — 1 agents (with no decision to make) and one
uninformed player (the principal) who can make monetary transfers between agents.
Alternatively, a mechanism designer or a mediator may be able to directly restrict
the set of reporting choices of the individuals (albeit not being able to prevent them
from lying), as it is the case when positive disclosures are mandatory. Under one
of these conditions, an interesting corollary of Theorem 2 is that under MCC the
set of all one-period R—certification equilibrium outcomes exactly coincides with the
set of truthful and obedient one-period R*—certification equilibrium outcomes. This
characterization may be very useful in many applications since a truthful and obe-
dient one-period R*—certification equilibrium is simply characterized by an outcome
function p : T — A(A) satisfying

Z p(t—i | ti) Z,u(a | t) ui(a;t) >

t_;e€T_; ac€A
) (2)
> op(toi [4:) Y pla |t t) ui(a—i, dia;);t),
t_,€T_; a€A
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forall i € N, t; € T;, t; € R*(t;), and d; : A; — A;.

Finally, it is interesting to remark that the approach proposed here allows to make
a direct link with Green and Laffont’s (1986) framework. Indeed, it can be checked
that a profile of reporting correspondences R satisfies NRC if and only if R = R*.
As a consequence, if one of the conditions discussed in the previous paragraph is
satisfied, then for any profile R we can construct unambiguously, and without loss
of generality, another profile R* satisfying NRC. Otherwise, in the general case, the
canonical construction of the representation theorem 1 or 2 should be used.

4 Concluding Remarks

In this paper we have characterized in a tractable way the set of all Nash equilibrium
outcomes that can be achieved in Bayesian games in which players have the ability to
voluntarily certify and exchange their information through general communication
systems. In particular, our framework and results encompass the representation
theorem for communication equilibria, as well as existing versions of the revelation
principle for principal-agent problems where the set of reports available to the agent
is type-dependent.

Since we have considered general communication systems the question of how
certification equilibrium outcomes can be implemented in an equilibrium by adding
only unmediated communication systems to the original Bayesian game was not
addressed in this paper and remains the topic of future research. In particular,
it should be interesting to investigate whether certification equilibrium outcomes
can be implemented with direct communication systems by considering a sufficient
number of players (as, e.g., in Bardny, 1992, Ben-Porath, 2003, Forges, 1990, and
Gerardi, 2003), by allowing codified messages and bounded computational abilities
(as in Urbano and Vila, 2002), or by considering the correlated equilibrium instead
of the Nash equilibrium as a solution concept (as in Forges, 1988). It should also
be helpful to provide a geometric characterization of the set of Nash equilibrium
outcomes achievable with direct communication and certifiable information in two-
player games with incomplete information on one side, as is provided by Aumann
and Hart (2003) for cheap talk communication. There, the set of communication
equilibrium outcomes gives an upper bound for the set of Nash equilibrium out-
comes achievable with unmediated communication systems when information is not
certifiable. The set of certification equilibrium outcomes characterized in this paper
gives exactly the analog of this upper bound in direct communication games with
partially verifiable types.

Appendix

To prove the theorems we introduce some lemmas and some additional notations.
Denote by E(R | K = 1) the set of one-period R—certification equilibrium outcomes,
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and denote by £7(R*) the set of one-period R*—certification equilibrium outcomes
in which the communication system has no initial output, S is a singleton, M = A,
and in which strategies are truthful and obedient. Let Q% = (Qf);cn be the profile
of correspondences defined by Qf(ti) ={q € oRi - q; C R;(t;)} for all t; € T; and

—OF
1 € N. Clearly, we have yor —y9¢ —vf

Lemma 1 If Mini Y(t)) € Y7 (t:), then Ri(t}) C Ri(t:).

Proof. We show that R;(t;) ¢ R;(t;) = Mini Y;E(t}) ¢ Yf(ti). Let r; € R;(t}),
ri ¢ Ri(t;). We have r; € Ri(t)) = Ry '(r;) € Y1 (#)) = Mini Y(#)) € Ry !(r;), and
ri & Ri(t;) = t; ¢ R, (r;). Thus, t; ¢ Mini Y;%(¢}), which implies that Mini Y;%(¢.) ¢
?Zﬁ(ti) since t; € y; for all y; € ?ﬁ(ti). O

Lemma 2 For every profile of reporting correspondences R, 5*(7R) C&(R). If R
satisfies MCC, then 5*(?R) CER|K=1).

Proof. Let v*: ?R x T"— A(A) be any canonical V7 certification equilibrium.
We construct an outcome-equivalent R—certification equilibrium as follows. Let ¢ be
an R—-communication system satisfying M = A, S =T, K > |R;(t;)| for all i € N
and t; € T, v* is degenerate for k = 0,1,..., K — 1. In addition, % only depends
on the sequence of reporting profiles r = (11, ..., riK ) € RX and on the cheap talk
signals sent in the last communication period (period K), s = (sf ... &) e T.

More precisely, let

v

Bm,rys)=v(l () Bi'(Dien,s™),
ke{l,...,.K}

for all (m,r,s) € MK x RE x TX. Since ?f ={Mkeqr,..xy R (rF):r; € RE} and
Vrierie) B Y(r;) = Mini Y;R(t;) for all i € N, the strategy which consists for each
type t; of every player i in sending every report in R;(¢;) during the communication
phase, revealing his true type in the last communication period and following the
recommendation of the mediator is, by the definition of the original canonical v
certification equilibrium and the construction of ¢, a Nash equilibrium of G.. This
equilibrium is clearly outcome-equivalent to v*. Similarly, to prove the second part
of the lemma let v(m,r, s) = v*([R; *(ri))ien, s) for all (m,r,s) € M x R x T and
remark that under MCC, for all i € N and t; € T;, there exists r; € R;(t;) such that
R; Y (r;) = Mini Y(t;). O

Lemma 3 For every profile of reporting correspondences R, E(R) C £(QF | K = 1).

Proof. Consider any Nash equilibrium of any communication game G, where ¢
is an R—communication system. We construct an outcome-equivalent one-period QQ—
certification equilibrium where Q = Q®, M = A, the initial lottery is degenerate, the
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transition probability is 7 : (] [;cn 2Ri) x T — A(A), each player i of type t; follows
the recommendation generated by 7, sends the report R;(t;) € Q(t;) and reveals his
true type. That is, o;(t;) = (Ri(t:),t;) and d;(a; | a4, 8:,t;) = 1 for all ¢; € T,
a; € A;, (r4,8:) € Qi(t;) x T; and i € N. If every player i sends an input (R;(s;), s;)
for some s; € T;, then 7 simulates the action profile played in the original equilibrium
when the type profile is s = (s1,...,8,) € T. Clearly, this constructed mechanism
generates the original equilibrium outcome. To verify that it is incentive compatible
we must verify that for every player i, no type ¢; has an incentive to deviate from
(Ri(ti),ti) to (Qi’si) 7& (Rl(tl),tl) for all (qi,Si) S Ql(tz) X ’I'l If (Qi’si) = (Rz(51)751)
(unobservable deviation), then R;(s;) C R;(t;) (because R;(s;) € Qi(t;) = Ri(si) C
R;(t;)), which means that type t; already had the possibility to imitate type s;’s
communication strategy under the original equilibrium. If (g;,s;) # (Ri(;),8:)
(observable deviation), then m simulates the outcome generated by a deviation of
player ¢ to, e.g., an unconditional sequence of K reports of any single report in ¢;
and K cheap talk signals in .S; under the original equilibrium. This deviation was
already available to type t; since g; € Q;(t;) = ¢ C R;(t;). O

Lemma 4 For every profile of reporting correspondences R, E(R | K = 1) C
—R
EXY ).

Proof. The proof is similar to the proof of Lemma 3. Consider any Nash equi-
librium of any communication game G, where c is a one-period R—communication
system. We construct an outcome-equivalent canonical Y —certification equilibrium
v* Y x T — A(A), where Y = ?R, as follows. If every player ¢ sends an input
(Mini Y;(s;), s;) for some s; € T;, then v* simulates the action profile played in the
original equilibrium when the type profile is s € T'. If some player ¢ sends an input
(yiy si) # (MiniY;(s;),s;), then v* simulates the outcome generated by player i’s
deviation to some report r; such that y; C R;'(r;) and some cheap talk signal in
S; under the original equilibrium. This deviation was already available to type ¢;
since y; € Yi(t;) = t; € y; C R;l(ri) = r; € Ri(t;). It remains to show that type
t; has no incentive to send an input (MiniY;(s;), s;) for s; # t;. This is obtained
by Lemma 1 since MiniY;(s;) € Yi(t;), so Ri(s;) € R;(t;), which means that an
equivalent deviation was already available under the original equilibrium. (|

Proof of Theorem 1. Lemma 4 gives £(QF | K = 1) C 8*(?QR) = &XY).
Therefore, by Lemmas 2 and 3 we get £(QR | K = 1) C 5*(?R) C E(R) C £(QF |
K=1),50 &) = &(R). 0

R

Lemma 5 For every profile of reporting correspondences R, % (R*) = 5*(}7R).

Proof.  Clearly, we have £#(R*) C £(R*). In addition, Theorem 1 gives
E(R*) = £*(YT) because the profile of reporting correspondences R* generates the
certifiability configuration Y. Thus, we have to show that £*(Y) C £#(R*). Let
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v* : YEXT — A(A) be any canonical Y B-certification equilibrium. We have to show
that p : T — A(A), where u(a | t) = v*(a | Mini Y#(t),t), induces a truthful and
obedient one-period R*—certification equilibrium outcome (an outcome in E7(R*)),
i.e., that Equation (2) on page 14 is satisfied for all ¢; € R*(¢;) and d; : A; — A,.
Since t; € R*(t;) < Mini YA(t) € YE(t;), this condition is implied by the fact
that v* is a Y Fcertification equilibrium outcome (see Equation (1) on page 9 with
Y=Y =YR). O

Proof of Theorem 2. Let R be a profile of reporting correspondences satisfying
MCC. By Lemma 4 we have E(R | K = 1) C 5*(?R), and by Lemma 2 we have
5*(?R) CER|IK=1),s0 S*(?R) =&(R| K =1). Thus, by Theorem 1 we get
ER)=E(R| K =1). O

Proof of Theorem 3. We have £(R) = 5*(7R) by Theorem 1, £* (?R) C &X(YR)
because players have less possible deviations in a canonical Y E_certification equi-
librium than in a canonical ¥ —certification equilibrium, and £*(YB) = £#(R*) by
Lemma 5. Consequently, £(R) C £#(R*). O
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