Differentiability properties of Rank Linear Utilities

G. Carlier *

April 8, 2006

Abstract

We study the differentiability properties of concave functionals defined as integrals of the quantile. These functionals generalize the rank dependent expected utility and are called rank-linear utilities in decision theory. Their superdifferential is described as well as the set of random variables where they are Gâteaux-differentiable. Our results generalize those obtained for the rank dependent expected utility in [1].

The author wishes to express his grattitude to Rose-Anne Dana for very helpful and inspiring discussions on the present work.

[^0]
1 Introduction

The aim of this paper is to study differentiability properties of some concave quantile-based integral functionals. Such law-invariant utilities are sometimes called rank-linear utilities (henceforth RLU) and are of the form:

$$
V(X):=\int_{0}^{1} L\left(t, F_{X}^{-1}(t)\right) d t
$$

where F_{X}^{-1} is a version of the quantile of the random variable X and L satisfies some assumptions of concavity and submodularity ensuring that V is concave. Those utilities were studied by Green and Jullien [10] who showed that they are characterized by an axiom of ordinal independence, weaker than the von Neumann-Morgenstern independence axiom. We also refer to the papers of Chew and Epstein [5] and Chew and Wakker [6] and the references therein for the decision-theoretic foundations of those utilities.

The issue of differentiability of an RLU naturally arises in a variety of problems : efficient risk sharing rules between RLU agents, demand of an RLU agent for a risky asset, structure of equilibria... Due to the analogy -up to a minus sign- between RLU functionals and law-invariant convex risk measures (although RLU do not fulfill the cash invariance property), we also believe that the results of the present paper may be useful in some risk-measures problems.

When $L(t, x)=f^{\prime}(1-t) U(x)$, with f a convex distortion satisfying $f(0)=0, f(1)=1$ and U a concave utility index then V is a rank-dependent utility (RDU), in the linear case $U(x)=x$ then V is a Yaari utility. In the case of a Yaari utility, V is the support function of the core of the distortion of the underlying probability by f, hence differentiablity properties of V are tightly linked to the geometry of the core. The differentiability properties of RDU functionals have been studied in [1] using a characterization of the core of convex distortions of a probability. For a more general L, the previous approach is not adapted and different arguments have to be developed to compute the superdifferential of V and the set of random variables where V is Gâteaux-differentiable.

Some basic definitions and properties are given in section 2. The superdifferential of an RLU is determined in section 3. Some applications are given in section 4 , including the identification of the set where an RLU is Gâteaux-differentiable. A technical lemma, used in the proof of the representation of the superdifferential of an RLU is proved in section 5 .

2 Rank linear utilities

We recall that a probability space (Ω, \mathcal{F}, P) is nonatomic if there is no $A \in \mathcal{F}$ such that $P(A)>0$ and $P(B) \in\{0, P(A)\}$ for every $B \in \mathcal{F}$ such
that $B \subset A$. In the sequel, we will always work on a state space (Ω, \mathcal{F}, P) assumed to be nonatomic. We also recall that if (Ω, \mathcal{F}, P) is nonatomic, there exists a random variable U on (Ω, \mathcal{F}, P) such that the probability law of U is the uniform law on $[0,1]$ (this property is actually a characterization).

Let X be a random variable on (Ω, \mathcal{F}, P) and let $F_{X}(t)=P(X \leq t), t \in$ \mathbb{R} denote its distribution function. The generalized inverse of F_{X} is defined by:

$$
F_{X}^{-1}(t)=\inf \left\{z \in \mathbb{R}: F_{X}(z)>t\right\}, \text { for all } t \in(0,1)
$$

We also define the set or random variables with a uniform probability law:

$$
\begin{equation*}
\mathcal{U}:=\left\{U \in L^{\infty}(\Omega, \mathcal{F}, P): F_{U}^{-1}(t)=t, \forall t \in[0,1]\right\} \tag{1}
\end{equation*}
$$

We will use in the sequel a decomposition result due to Ryff (see [11]):
Proposition 1 Let $X \in L^{\infty}(\Omega, \mathcal{F}, P)$ there exists $U \in \mathcal{U}$ such that $X=$ $F_{X}^{-1} \circ U$.

Let us define

$$
\mathcal{U}_{X}:=\left\{U \in \mathcal{U} \text { such that } X=F_{X}^{-1} \circ U\right\}
$$

Ryff's result implies that $\mathcal{U}_{X} \neq \emptyset$. Moreover, if X has no atoms (i.e. F_{X} is continuous) then $\mathcal{U}_{X}=\left\{F_{X} \circ X\right\}$. A characterization of \mathcal{U}_{X} can be given using the concept of comonotonicity. Let us first recall the following definition:

Definition 1 Two random variables X and Y on (Ω, \mathcal{F}, P) are said to be comonotone if:

$$
\begin{equation*}
\left(X\left(\omega_{2}\right)-X\left(\omega_{1}\right)\right)\left(Y\left(\omega_{2}\right)-Y\left(\omega_{1}\right)\right) \geq 0, P \otimes P \quad \text { a.s. } \tag{2}
\end{equation*}
$$

Similarly X and Y on (Ω, \mathcal{F}, P) are said to be anticomonotone if X and $-Y$ are comonotone.

The set \mathcal{U}_{X} may be characterized as follows:
Lemma 1 Let $X \in L^{\infty}(\Omega, \mathcal{F}, P)$, then:

$$
\mathcal{U}_{X}=\{U \in \mathcal{U} \text { such that } U \text { and } X \text { are comonotone }\}
$$

Moreover for every $U \in \mathcal{U}_{X}$, one has P-a.s. $U(\omega) \in\left[F_{X}\left(X(\omega)_{-}\right), F_{X}(X(\omega))\right]$.
Proof. Since F_{X}^{-1} is nondecreasing, any element of \mathcal{U}_{X} is comonotone with X. Now assume that $U \in \mathcal{U}$ is comonotone with X :

$$
\begin{equation*}
\left(X\left(\omega_{2}\right)-X\left(\omega_{1}\right)\right)\left(U\left(\omega_{2}\right)-U\left(\omega_{1}\right)\right) \geq 0, P \otimes P \quad \text { a.s. } \tag{3}
\end{equation*}
$$

and let us prove that $X=F_{X}^{-1} \circ U$. By (3), we obtain that for P-a.e. $\omega \in \Omega$, one has:

$$
P\left(\left\{\omega^{\prime} \in \Omega: U\left(\omega^{\prime}\right)<U(\omega)\right\}\right)=U(\omega) \leq F_{X}(X(\omega))
$$

and

$$
P\left(\left\{\omega^{\prime} \in \Omega: X\left(\omega^{\prime}\right)<X(\omega)\right\}\right)=F_{X}\left(X(\omega)_{-}\right) \leq U(\omega)
$$

Hence $U(\omega) \in\left[F_{X}\left(X(\omega)_{-}\right), F_{X}(X(\omega))\right]$. If F_{X} is continuous at $X(\omega)$, then $U(\omega)=F_{X}(X(\omega))$ and $X(\omega)=F_{X}^{-1}(U(\omega))$. Now if $X(\omega)=x$ with F_{X} discontinuous at x, F_{X}^{-1} is constant equal to x on $\left[F_{X}\left(x_{-}\right), F_{X}(x)\right]$ hence $F_{X}^{-1}(U(\omega))=X(\omega)$ and the proof is complete.

In the remainder of the paper, we shall study differentiability properties of quantile based-utilities defined by integrals. These utilities generalize the rank dependent expected utility with a convex continuous distortion and are of the form:

$$
\begin{equation*}
V(X):=\int_{0}^{1} L\left(t, F_{X}^{-1}(t)\right) d t, \text { for all } X \in L^{\infty}(\Omega, \mathcal{F}, P) \tag{4}
\end{equation*}
$$

where F_{X}^{-1} is a version of the quantile of the random variable X. The previous class of utilities is sometimes refered to as rank-linear utility (henceforth RLU) in decision theory (see [10], [5], [6] and the references therein). We will always assume in the sequel the following properties on L :

- $L \in C^{0}([0,1] \times \mathbb{R}, \mathbb{R})$,
- $L(t,$.$) is concave nondecreasing for every t \in[0,1]$,
- $L(t,$.$) is differentiable for every t \in[0,1]$ and $\partial_{x} L(.,.) \in C^{0}([0,1] \times, \mathbb{R})$,
- L is submodular i.e for every $\left(t_{1}, t_{2}, x_{1}, x_{2}\right) \in[0,1]^{2} \times \mathbb{R}^{2}$:

$$
t_{2} \geq t_{1}, x_{2} \geq x_{1} \Rightarrow L\left(t_{1}, x_{1}\right)+L\left(t_{2}, x_{2}\right) \leq L\left(t_{1}, x_{2}\right)+L\left(t_{2}, x_{1}\right)
$$

A stronger assumption than submodularity is strict submodularity, defined by: for every $\left(t_{1}, t_{2}, x_{1}, x_{2}\right) \in[0,1]^{2} \times \mathbb{R}^{2}$:

$$
\begin{equation*}
t_{2}>t_{1}, x_{2}>x_{1} \Rightarrow L\left(t_{1}, x_{1}\right)+L\left(t_{2}, x_{2}\right)<L\left(t_{1}, x_{2}\right)+L\left(t_{2}, x_{1}\right) \tag{5}
\end{equation*}
$$

When L is of class C^{2}, submodularity of L is equivalent to $\partial_{t x}^{2} L \leq 0$ and a sufficient condition for strict submodularity of L is $\partial_{t x}^{2} L<0$. When L is of class C^{1} a sufficient condition for strict submodularity of L is that $\partial_{x} L(t, x)$ is decreasing in t for every x. Classical examples of submodular L 's are given by functions of the form $L(t, x)=f(t) g(x)$ with f nonincreasing and g nondecreasing, $L(t, x)=f(t+x)$ with f concave, $L(x, y)=g(t-x)$
with g convex... When $L(t, x)=g(t) U(x)$ with g nonincreasing and U concave nondecreasing, the corresponding V is an RDU functional with convex distortion.

The assumption of monotonicity clearly ensures monotonicity of V (in the sense that $X \geq Y P$-a.s implies $V(X) \geq V(Y))$). The assumptions of concavity and submodularity above (which also appear naturally in [10], related to risk aversion) ensure that V is a concave functional (which is not straightforward at first glance), as shown in proposition 2. Actually, more is true: the assumptions of monotonicity, concavity and submodularity above are indeed necessary and sufficient for V to be monotone, concave and u.s.c for the weak $*$ topology of $L^{\infty}(\Omega, \mathcal{F}, P)$ (see [4] for a proof).

3 The superdifferential of an RLU

3.1 Preliminary results

In the sequel, we will denote by \mathbb{E}, expectation with respect to P. Under the previous assumptions of concavity and submodularity, V defined by (4) admits a particular concave representation, as the next result shows:

Proposition 2 Under the general assumptions of the paper, for every $X \in$ $L^{\infty}(\Omega, \mathcal{F}, P)$, one has:

$$
\begin{equation*}
V(X)=\inf _{U \in \mathcal{U}} \mathbb{E}(L(U, X)) \tag{6}
\end{equation*}
$$

Moreover, defining:

$$
\mathcal{V}_{X}:=\{U \in \mathcal{U}: V(X)=\mathbb{E}(L(U, X))\}
$$

one has $\mathcal{U}_{X} \subset \mathcal{V}_{X}$. In particular, V is concave and the infimum in (6) is a minimum. Finally, under the additional assumption (5), one has $\mathcal{U}_{X}=\mathcal{V}_{X}$.

Proof. By definition of V and \mathcal{U}_{X}, we have for every $U \in \mathcal{U}_{X}$:

$$
\mathbb{E}(L(U, X))=\mathbb{E}\left(L\left(U, F_{X}^{-1} \circ U\right)\right)=\int_{0}^{1} L\left(t, F_{X}^{-1}(t)\right) d t=V(X) .
$$

Now for every $U \in \mathcal{U}$, the submodular Hardy-Littlewood inequality (see for instance [2]) implies:

$$
\begin{equation*}
V(X) \leq \mathbb{E}(L(U, X)) \tag{7}
\end{equation*}
$$

which implies the representation (6) and $\mathcal{U}_{X} \subset \mathcal{V}_{X}$. When (5) is satisfied, inequality (7) is strict unless U and X are comonotone (see for instance [2]) hence $U \in \mathcal{U}_{X}$ by lemma 1 . We then have $\mathcal{U}_{X}=\mathcal{V}_{X}$ in this case.

Let $X \in L^{\infty}(\Omega, \mathcal{F}, P)$, the superdifferential of V at X is by definition:

$$
\partial V(X):=\left\{\mu \in\left(L^{\infty}\right)^{\prime}: V(Y)-V(X) \leq\langle\mu, Y-X\rangle, \forall Y \in L^{\infty}\right\} .
$$

Since V is finite and concave, general convex analysis results (see [7]) imply that V is continuous (for the strong topology of L^{∞}) hence everywhere superdiffentiable which by definition means $\partial V(X) \neq \emptyset$. Moreover since V is monotone, $\partial V(X)$ is a subset of:

$$
\left(L^{\infty}\right)_{+}^{\prime}:=\left\{\mu \in\left(L^{\infty}\right)^{\prime}:\langle\mu, Y\rangle \geq 0, \forall Y \in L^{\infty}, Y \geq 0\right\} .
$$

In other words, $\partial V(X)$ consists of finitely additive nonnegative measures on (Ω, \mathcal{F}, P). More is true: due to the special form (6), $\partial V(X)$ is in fact included in $L^{1}(\Omega, \mathcal{F}, P)$:

Lemma 2 For all $X \in L^{\infty}(\Omega, \mathcal{F}, P), \partial V(X)$ is a closed convex subset of $L^{1}(\Omega, \mathcal{F}, P)$.

Proof. Since the convex set $\partial V(X)$ is weak $*$ closed in $\left(L^{\infty}\right)^{\prime}$, it is enough to show that $\partial V(X) \subset L^{1}(\Omega, \mathcal{F}, P)$. Let $\mu \in \partial V(X), A \in \mathcal{F}$ and $U_{A} \in$ $\mathcal{U}_{X-\mathbf{1}_{A}}$ we then have:

$$
\mathbb{E}\left(L\left(U_{A}, X-\mathbf{1}_{A}\right)\right)-\mathbb{E}\left(L\left(U_{A}, X\right)\right) \leq V\left(X-\mathbf{1}_{A}\right)-V(X) \leq-\mu(A) .
$$

By our assumptions on L, there exists $c>0$ such that $L(u, x-1)-L(u, x) \geq$ $-c$ for all $(u, x) \in[0,1] \times\left[-\|X\|_{L^{\infty}},\|X\|_{L^{\infty}}\right]$ which yields:
$V\left(X-\mathbf{1}_{A}\right)-V(X)=\int_{A}\left[L\left(U_{A}(\omega), X(\omega)-1\right)-L\left(U_{A}(\omega), X(\omega)\right)\right] d P(\omega) \geq-c P(A)$.
We then obtain $0 \leq \mu(A) \leq c P(A)$, which implies that μ is a σ-additive nonnegative measure absolutely continuous with respect to P, in other words $\mu \in L^{1}(\Omega, \mathcal{F}, P)$.

3.2 Main result

In view of formula (6), we see that computing $\partial V(X)$ amounts to computing the superdifferential of a lower envelope. General envelope theorems (see [12]) cover the case where the infimum is taken with respect to a parameter in a compact set. In the present problem (where the parameter space is \mathcal{U}), getting some sort of compactness requires to combine carefully a.s. convergence and convergence in law arguments, technical details are defered to section 5 . Leaving apart this compactness issue, the following result may be viewed as classical and so are the main lines of its proof.

Theorem 1 Let $X \in L^{\infty}(\Omega, \mathcal{F}, P)$ then:

$$
\partial V(X):=\overline{\operatorname{co}}\left\{\partial_{x} L(U, X), U \in \mathcal{V}_{X}\right\}
$$

where $\overline{\mathrm{co}}$ denotes closed convex hull operation for the $L^{1}(\Omega, \mathcal{F}, P)$ topology. Under the additional condition (5), we then have:

$$
\partial V(X):=\overline{\operatorname{co}}\left\{\partial_{x} L(U, X), U \in \mathcal{U}_{X}\right\}
$$

Proof. Define

$$
B:=\overline{\operatorname{co}}\left\{\partial_{x} L(U, X), U \in \mathcal{V}_{X}\right\}
$$

If $U \in \mathcal{V}_{X}$ and $Y \in L^{\infty}(\Omega, \mathcal{F}, P)$, by concavity of $L(u,$.$) we have:$

$$
V(Y)-V(X) \leq \mathbb{E}(L(U, Y)-L(U, X)) \leq \mathbb{E}\left(\partial_{x} L(U, X)(Y-X)\right.
$$

hence $\partial_{x} L(U, X) \in \partial V(X)$. Since $\partial V(X)$ is convex and closed in L^{1}, we then have $B \subset \partial V(X)$.

Given C a closed convex of $L^{1}(\Omega, \mathcal{F}, P)$, we define the support function of C by:

$$
\sigma_{C}(Y):=\inf _{Z \in C} \mathbb{E}(Y Z), \forall Y \in L^{\infty}(\Omega, \mathcal{F}, P)
$$

Since both B and $\partial V(X)$ are convex and closed in L^{1}, a standard separation argument implies that $\sigma_{\partial V(X)}=\sigma_{B}$ implies $B=\partial V(X)$. We already know that $\sigma_{\partial V(X)} \leq \sigma_{B}$. To show the converse inequality, we remark that by a standard convex analysis result (see [7]), for all $Y \in L^{\infty}(\Omega, \mathcal{F}, P)$, one has:

$$
\begin{equation*}
\sigma_{\partial V(X)}(Y)=D^{+} V(X ; Y):=\lim _{t \rightarrow 0^{+}} \frac{1}{t}[V(X+t Y)-V(X)] \tag{8}
\end{equation*}
$$

For a given $Y \in L^{\infty}(\Omega, \mathcal{F}, P)$ and $t>0$, let $U_{t} \in \mathcal{U}_{X+t Y}$ and let θ_{t} be the joint probability law of $\left(U_{t}, X+t Y, Y\right)$. There exists a sequence t_{n} decreasing to 0 such that $\theta_{n}:=\theta_{t_{n}}$ weakly $*$ converges to some probability measure θ supported on $[0,1] \times\left[-\|X\|_{L^{\infty}},\|X\|_{L^{\infty}}\right] \times\left[-\|Y\|_{L^{\infty}},\|Y\|_{L^{\infty}}\right]$. We claim that there exists $\bar{U} \in \mathcal{V}_{X}$ such that the joint probability law of (\bar{U}, X, Y) is θ. The proof of this claim is rather long and will be given separately. Let us admit this result and proceed to the end of the proof. By concavity and since $\partial_{x} L(\bar{U}, X) \in B$, we get:

$$
\begin{aligned}
\sigma_{\partial V(X)}(Y) & =\lim _{n} \frac{1}{t_{n}}\left[V\left(X+t_{n} Y\right)-V(X)\right] \\
& \geq \liminf _{n} \frac{1}{t_{n}} \mathbb{E}\left(L\left(U_{t_{n}}, X+t_{n} Y\right)-L\left(U_{t_{n}}, X\right)\right) \\
& \geq \liminf _{n} \mathbb{E}\left(\partial_{x} L\left(U_{t_{n}}, X+t_{n} Y\right) Y\right) \\
& =\int_{[0,1] \times \mathbb{R}^{2}} \partial_{x} L(u, x, y) y d \theta(u, x, y) \\
& =\mathbb{E}\left(\partial_{x} L(\bar{U}, X) Y\right) \geq \sigma_{B}(Y)
\end{aligned}
$$

this proves that $\partial V(X)=B$. Finally, when (5) is satisfied, it follows from proposition 2 that $\mathcal{V}_{X}=\mathcal{U}_{X}$, we thus obtain the desired representation of $\partial V(X)$.

In the previous proof, we have used the following technical result that is proved in section 5 :

Lemma 3 Using the same notations as in the previous proof, there exists $\bar{U} \in \mathcal{V}_{X}$ such that the joint probability law of (\bar{U}, X, Y) is θ.

4 Applications

4.1 Comonotonicity and single-valuedness

Under the assumption (5), we may first deduce from theorem 1 that elements of $\partial V(X)$ are anticomonotone with X :

Proposition 3 In addition to the general assumptions of the paper, assume that L satisfies (5) and let $X \in L^{\infty}(\Omega, \mathcal{F}, P)$, then every element of $\partial V(X)$ is anticomonotone with X.

Proof. Let us first remark that the set of $L^{1}(\Omega, \mathcal{F}, P)$ random variables that are comonotone with X is convex and closed for the L^{1} topology. Thanks to theorem 1 and lemma 1, it is therefore enough to prove that $\partial_{x} L(U, X)$ is anticomonotone with X for every $U \in \mathcal{U}_{X}$. If $U \in \mathcal{U}_{X}$, $X=F_{X}^{-1} \circ U$ and $\partial_{x} L(U, X)=\partial_{x} L\left(U, F_{X}^{-1} \circ U\right)$. Hence, if we prove that the function $t \mapsto \phi(t):=\partial_{x} L(t, \gamma(t))$ is nonincreasing on $[0,1]$ for every nondecreasing γ, the desired result will follow. Assume first that L is of class C^{2} and γ is differentiable, we then have:

$$
\phi^{\prime}(t)=\partial_{t x}^{2} L(t, \gamma(t))+\partial_{x x}^{2} L(t, \gamma(t)) \gamma^{\prime}(t) \leq 0
$$

so that ϕ is nondecreasing. In the general case, we can approximate (by convolution for instance) L and γ by smooth functions L_{n} and γ_{n} satisfying $\partial_{t x}^{2} L_{n} \leq 0, \partial_{x x}^{2} L_{n} \leq 0$ and $\gamma_{n}^{\prime} \geq 0$. The desired result then follows from letting n go to $+\infty$.

A second qualitative consequence of theorem 1, is that all the elements of $\partial V(X)$ coincide on the set of ω 's satisfying $P(X=X(\omega))=0$:

Proposition 4 In addition to the general assumptions of the paper, assume that L satisfies (5) and let $X \in L^{\infty}(\Omega, \mathcal{F}, P)$. Defining:

$$
\Omega_{r}:=\left\{\omega \in \Omega: F_{X} \text { is continuous at } X(\omega)\right\}
$$

then for any $Z \in \partial V(X)$ one has:

$$
Z(\omega)=\partial_{x} L\left(F_{X}(X(\omega)), X(\omega)\right) \text { for } P \text {-a.e. } \omega \in \Omega_{r} .
$$

Proof. The claim immediately follows from theorem 1 and the fact that for every $U \in \mathcal{U}_{X}$ one has $U=F_{X} \circ X P$-a.s. on Ω_{r} by lemma 1 .

4.2 Gâteaux differentiability

Let us recall that V is Gâteaux-differentiable at $X \in L^{\infty}(\Omega, \mathcal{F}, P)$, if the map:

$$
Y \in L^{\infty}(\Omega, \mathcal{F}, P) \mapsto D^{+} V(X ; Y):=\lim _{t \rightarrow 0^{+}} \frac{1}{t}[V(X+t Y)-V(X)]
$$

defines a continuous linear form on $L^{\infty}(\Omega, \mathcal{F}, P)$, simply denoted $V^{\prime}(X)$. It follows from (8) that V is Gâteaux-differentiable at $X \in L^{\infty}(\Omega, \mathcal{F}, P)$, if and only if $\partial V(X)$ consists of a single element. In this case $\partial V(X)=\left\{V^{\prime}(X)\right\}$. Under the following assumption (stronger than (5)):

$$
\begin{equation*}
t \mapsto \partial_{x} L(t, x) \text { is decreasing on }[0,1] \text {, for all } x \in \mathbb{R} . \tag{9}
\end{equation*}
$$

the set where V is Gâteaux-differentiable is characterized by the following:
Proposition 5 In addition to the general assumptions of the paper, assume that L satisfies (9) and let $X \in L^{\infty}(\Omega, \mathcal{F}, P), V$ is Gâteaux-differentiable at X if and only if F_{X} is continuous, in this case, one has:

$$
\partial V(X)=\left\{V^{\prime}(X)\right\}=\left\{\partial_{x} L\left(F_{X} \circ X, X\right)\right\} .
$$

Proof. If F_{X} is continuous then $\mathcal{V}_{X}=\mathcal{U}_{X}=\left\{F_{X} \circ X\right\}$. The Gâteauxdifferentiability result then follows from theorem 1 . To prove the "only if part" assume that F_{X} is discontinuous at x i.e. $P(X=x)>0$ and let us prove that $\partial V(X)$ contains two different elements. Let $U \in \mathcal{U}_{X}$, since $U 1_{\{X=x\}}$ has no atom on $\{X=x\}$ and the space $(\{X=x\}, \mathcal{F} \cap\{X=$ $x\}, P / P(\{X=x\}))$ is non atomic, there exists a uniform random variable W on that space and F increasing such that $U 1_{\{X=x\}}=F \circ W$. Define then

$$
\widetilde{U}:=U \mathbf{1}_{\{X \neq x\}}+F(1-W) \mathbf{1}_{\{X=x\}} .
$$

On the one hand, by construction $\widetilde{U} \in \mathcal{U}$ and $V(X)=\mathbb{E}(L(U, X))=$ $\mathbb{E}\left(L(\widetilde{U}, X)\right.$ hence $\widetilde{U} \in \mathcal{U}_{X}$. On the other hand, from theorem 1, both $\partial_{x} L(U, X)$ and $\partial_{x} L(\widetilde{U}, X)$ belong to $\partial V(X)$. Finally, by injectivity of F and assumption (9), one has:

$$
P\left(\left\{\partial_{x} L(\widetilde{U}, X) \neq \partial_{x} L(U, X)\right\}\right)=P(\{\widetilde{U} \neq U\})=P(\{X=x\})>0
$$

which proves that V is not Gâteaux-differentiable at X.

5 Proof of lemma 3

It remains to prove the following:
Lemma 4 Using the same notations as in the proof of theorem 1, there exists $\bar{U} \in \mathcal{V}_{X}$ such that the joint probability law of (\bar{U}, X, Y) is θ.

Proof.

Step1: preliminary remarks

Let us recall that θ is a compactly supported probability measure on \mathbb{R}^{3} whose first marginal (on the variable u say) is the Lebesgue measure on $[0,1]$ and whose marginal on the last two variables (x, y) is $P_{(X, Y)}$, the joint probability law of the pair (X, Y). In the sequel, we shall denote by $\theta^{x, y}$ the conditional probability law of the first component u given x and y. To be more precise, these conditional probabilities are characterized by the fact that, for all Borel subsets A, B, C of \mathbb{R} we have:

$$
\theta(A \times B \times C):=\int_{B \times C} \theta^{x, y}(A) d P_{(X, Y)}(x, y) .
$$

For notational simplicity, we set $\left(U_{n}, X_{n}\right):=\left(U_{t_{n}}, X+t_{n} Y\right)$. By definition of \mathcal{U}_{X}, for each $n, X_{n}=F_{X_{n}}^{-1} \circ U_{n}$, this can also be written in the form:

$$
\begin{equation*}
U_{n} \in \partial g_{n}\left(X_{n}\right)=\partial g_{n}\left(X+t_{n} Y\right) \tag{10}
\end{equation*}
$$

For some convex function g_{n}, that we can assume to be 1-Lipschitz on \mathbb{R} and to satisfy $g_{n}(0)=0$. By Ascoli's Theorem, taking if necessary some (not relabeled) subsequence, we may assume that g_{n} converges uniformly on compact sets to some convex function g. Let S be the set where g fails to be differentiable, we may write $S=\left\{x_{i}\right\}_{i \in I}$ with I at most countable. Let us also define:

$$
\Omega_{i}:=\left\{X=x_{i}\right\} \forall i \in I \text {, and } \Omega_{r}:=\{X \notin S\} .
$$

Step 2: convergence on Ω_{r}

Let $\omega \in \Omega_{r}$, we claim that $U_{n}(\omega)$ converges to $g^{\prime}(X(\omega))$. Indeed, $U_{n}(\omega)$ takes values of $[0,1]$ and if $u \in[0,1]$ is a cluster point of the sequence $U_{n}(\omega)$, using the fact that X_{n} converges uniformly to X, we easily obtain $u \in \partial g(X(\omega))$ and since $\omega \in \Omega_{r}$ we deduce that $u=g^{\prime}(X(\omega))$. This implies that $g^{\prime}(X(\omega))$ is the unique cluster point of the sequence $U_{n}(\omega)$, hence $U_{n}(\omega)$ converges to $g^{\prime}(X(\omega))$.

Step 3: behavior on Ω_{i}

If $\omega \in \Omega_{i}$, (10) takes the form $U_{n}(\omega) \in \partial g_{n}\left(x_{i}+t_{n} Y(\omega)\right)$ which can be rewritten as:

$$
\begin{equation*}
U_{n}(\omega) \in \partial h_{n, i}(Y(\omega)) \text { with } h_{n, i}(y):=\frac{1}{t_{n}}\left(g_{n}\left(x_{i}+t_{n} y\right)-g_{n}\left(x_{i}\right)\right) . \tag{11}
\end{equation*}
$$

Noting that $\left(h_{n, i}\right)_{n}$ is a family of 1-Lipschitz convex functions, arguing as in step 1, we may assume (after an extraction depending on i) that $h_{n, i}$ converges uniformly on compact subsets to some convex function h_{i}. By a diagonal extraction argument, we may also assume that $h_{n, i}$ converges to some h_{i} for every $i \in I$. Let $S_{i}:=\left\{y_{i j}\right\}_{j \in J_{i}}$ be the set where h_{i} fails to be differentiable, and:

$$
\Omega_{i j}:=\left\{X=x_{i}, Y=y_{i j}\right\} \forall j \in J_{i}, \text { and } \Omega_{r, i}:=\Omega_{i} \cap\left\{Y \notin S_{i}\right\} .
$$

By the same arguments as in step $1, U_{n}$ converges to $h_{i}^{\prime}(Y)$ on $\Omega_{r, i}$.
Step 4: the case of $\Omega_{i j}$
From the previous steps, the only case where we have no information on the convergence of $U_{n}(\omega)$ is when $\omega \in \Omega_{i j}$ with $i \in I, j \in J_{i}$ such that $P\left(\Omega_{i j}\right)>0$. In that case, let us remark that ($\Omega_{i j}, \mathcal{F} \cap \Omega_{i j}, P / P\left(\Omega_{i j}\right)$) is non atomic hence there exists a random variable $U_{i j}$ on that space whose probability law is $q_{i j}$, where by definition $q_{i j}:=\theta^{x_{i}, y_{i j}}$ denotes the conditional probability of θ given $x=x_{i}$ and $y=y_{i j}$.

Step 5: construction of \bar{U}

Let us define:

$$
\begin{equation*}
\bar{U}:=\mathbf{1}_{\Omega_{r}} g^{\prime}(X)+\sum_{i \in I} \mathbf{1}_{\Omega_{r, i}} h_{i}^{\prime}(Y)+\sum_{i \in I} \sum_{j \in J_{i}: P\left(\Omega_{i j}\right)>0} \mathbf{1}_{\Omega_{i j}} U_{i j} \tag{12}
\end{equation*}
$$

and let us prove that the probability law of (\bar{U}, X, Y) is θ. Let $H \in$ $C^{0}\left(\mathbb{R}^{3}, \mathbb{R}\right)$, we have:

$$
\begin{aligned}
\int_{\mathbb{R}^{3}} H d \theta & =\lim _{n} \mathbb{E}\left(H\left(U_{n}, X_{n}, Y\right)\right)=\int_{\Omega_{r}} H\left(g^{\prime}(X(\omega)), X(\omega), Y(\omega)\right) d P(\omega) \\
& +\sum_{i \in I} \int_{\Omega_{r, i}} H\left(h_{i}^{\prime}(Y(\omega)), X(\omega), Y(\omega)\right) d P(\omega) \\
& +\sum_{i \in I} \sum_{j \in J_{i}} P\left(\Omega_{i j}\right) \int_{0}^{1} H\left(u, x_{i}, y_{i j}\right) d q_{i j}(u) \\
& =\mathbb{E}(H(\bar{U}, X, Y))
\end{aligned}
$$

Step 6: end of the proof

It remains to prove that $\bar{U} \in \mathcal{V}_{X}$. The fact that $\bar{U} \in \mathcal{U}$ follows from the fact that the first marginal of θ is uniform on $[0,1]$. Finally $V\left(X_{n}\right)$ converges to $V(X)$ so that:

$$
V(X)=\lim _{n} \mathbb{E}\left(L\left(U_{n}, X_{n}\right)=\mathbb{E}(L(\bar{U}, X))\right.
$$

which proves $\bar{U} \in \mathcal{V}_{X}$.

References

[1] G. Carlier, R.-A. Dana, Core of a convex distortion of a probability, Journal of Economic Theory, 113, 199-222,(2003).
[2] Carlier G., Dana R.-A., Rearrangement inequalities in non convex insurance models, Journal of Mathematical Economics, 41, 483-503, (2005).
[3] Carlier G., Dana R.-A., Law invariant concave utility functions and optimization problems with monotonicity and comonotonicity constraints, to appear in Statistics and Decisions.
[4] Carlier G., Dana R.A., Demand for concave Rank-Linear Utilities, in preparation.
[5] Chew S.H., Epstein L., A Unifying Approach to Axiomatic NonExpected Utility Theories, Journal of Economic Theory, 49, 207-240 (1989).
[6] Chew S. H., Wakker P., The Comonotonic Sure-Thing Principle, Journal of Risk and Uncertainty, 12, 5-27, (1996).
[7] Ekeland I., Temam R., Convex Analysis and Variational Problems, Classics in Mathematics, Society for Industrial and Applied Mathematics, Philadelphia, (1999).
[8] Epstein L., Behaviour Under Risk: Recent Developments in Theory and Application, Advances in Economic Theory Sixth World Congress of the Econometric Society, Vol II, J. J. Laffont ed., Cambridge U. Press, 1-63, 1992.
[9] Föllmer H., Schied A., Stochastic finance. An introduction in discrete time, De Gruyter editor, Berlin, (2004).
[10] Green J., Jullien B., Ordinal Independence in Non-Linear Utility Theory, Journal of Risk and Uncertainty, 1, 355-387, (1988).
[11] Ryff J.V., Measure preserving Transformations and Rearrangements, J. Math. Anal. and Applications 31 (1970), 449-458.
[12] Valadier M., Sous-différentiels d'une borne supérieure et d'une somme continue de fonctions convexes ", C.R. Acad. Sci. Paris, 268, pp. 39421 (1969).
[13] Yaari M., The Dual Theory of Choice under Risk, Econometrica 55 (1987), 95-115.

[^0]: * CEREMADE, UMR CNRS 7534, Université Paris IX Dauphine, Pl. de Lattre de Tassigny, 75775 Paris Cedex 16, FRANCE carlier@ceremade.dauphine.fr.

