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Place du Maréchal de Lattre de Tassigny
F–75775 Paris Cedex 16, France
dana@ceremade.dauphine.fr

Marco Scarsini†

Dipartimento di Statistica e Matematica Applicata
Università di Torino
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Abstract
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sumptions on the stochastic dependence between the insurable and uninsurable risk
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1 Introduction

Since the early work of Borch (1962), many authors have considered the problem of the
optimal sharing of risk between an insurer and an insured. In particular Arrow (1963, 1970,
1974) showed that if the premium set by a risk neutral insurer depends only on the actuarial
value of the policy offered and is fair, then the optimal policy for a risk averse von-Neumann
Morgenstern insured is full insurance. If the premium includes a factor loading, then the
optimal policy contains full insurance above a deductible. This result plays an important
role in the literature since it shows that the insured’s decision can be brought down to a
one-dimensional problem, the choice of the optimal deductible (or equivalently of the optimal
premium). In particular, it allows for comparative static results.

Raviv (1979) reconsidered the problem under a more general set of assumptions: the
insurer can be risk averse and the premium is a convex function of the supplied insurance.
He showed that if the marginal cost is greater than 1, then the efficient policy of a risk averse
von-Neumann Morgenstern insured entails coinsurance above a deductible. Furthermore, if
the insurer is risk averse and if the cost of insurance equals the supplied insurance, then the
efficient policy is coinsurance. It may also be checked that if the cost is too high the insured
takes no insurance.

These results have at least two important implications: first, insurer and insured wealths
are comonotone, each being nonincreasing function of the risk (in other words, there is risk
sharing). Second, if there are no costs, then there are no deductibles, and, if there are costs,
then there are deductibles. Hence costs explain deductibles.

A drawback of this analysis is that it assumes that markets are complete. As already
mentioned by Doherty and Schlesinger (1983a,b), Schlesinger and Doherty (1985) and Gol-
lier (1996), first insurers prefer to cover different sources of risk by different contracts and
next, some risks such as war, floods, earthquakes, market risks, and human capital are not
insurable. Hence, it seems necessary to reconsider insurance problems under the assumption
of background risk. Furthermore, the problem of insurance in the presence of background
risk arises in the pricing of climatic options (the risk to be insured is a climatic risk and the
background risk is the financial risk, see for example Barrieu and El Karoui (2002, 2003)).
It also arises when an insured faces a sequence of risks over time and chooses at each date
an insurance contract that depends on the forthcoming risk and on her history.

It is well-known that the presence of background risk in wealth has an effect on the
demand for other risks. Several authors have considered different risk postures of decision
makers in the presence of background risk, among them Ross (1981), Kihlstrom et al. (1981),
Nachman (1982), Pratt and Zeckhauser (1987), Jewitt (1987), Kimball (1993), Gollier and
Pratt (1996), Eeckhoudt et al. (1996), Finkelshtain et al. (1999), Franke et al. (2004). An
extended treatment of background risk and relevant references can be found in Gollier (2001).

Insurance with background risk has been considered in various settings, since the early
work of Doherty and Schlesinger (1983b). Doherty and Schlesinger (1983b) first addressed
the problem of insurance demand with background risk in a two-state economy. The problem
has been reconsidered by a number of authors (see the survey paper by Schlesinger (2000) who
discussed the case of proportional coinsurance under independent and dependent background
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risk). This trend in the literature has focused for the most part on comparing demand when
there is background risk to demand when there is no background risk. Eeckhoudt and
Kimball (1992) have considered background risk of loss such that a higher level of insurable
risk implies a less risky distribution of the background risk loss in the sense of third degree
stochastic dominance. In the setting of an exchange economy where agents have HARA
utilities, Franke et al. (1998) studied the effect of introducing an independent background
risk.

Gollier (1996) first examined the problem of efficient contracts when there is background
risk under the assumptions that the insurer is risk neutral, and that the premium is a
function of the expected indemnity, with marginal increase greater than 1. Assuming two
dependent sources of risks such that the uninsurable risk has zero conditional expectation
given any value of the insurable risk, he showed that if a higher level of insurable risk implies
a more risky distribution of the background risk, then the deductible rule does not apply
anymore. He showed also that if the insured is prudent, then the optimal insurance contract
entails a disappearing deductible. Efficient contracts when there is background risk were also
considered by Mahul (2000) and Vercammen (2001) in slightly different models, in which the
risks are independent, but the loss in revenue is not additive.

This paper shows that the shape of the optimal insurance contract crucially depends on
the type of dependence among the insurable and noninsurable risks.

The optimal contract results, to be stated in the sequel, concern a large class of decision
makers, and entail no parametric assumptions of the distribution of risks. All strictly risk
averse expected utility maximizers will be considered, namely, all agents whose von Neumann
Morgenstern utility function is strictly concave. In order to get significant results for such a
huge class of utility functions, strong conditions of positive dependence among the risks are
needed.

It is definitely not enough to use some measure of dependence like the correlation coeffi-
cient. This would be possible only under very restrictive hypotheses on the choice criterion
and on the parametric family of distributions for the risks. See e. g. Luciano and Kast
(2001) who used value at risk and normally distributed risks, or Barrieu and El Karoui
(2002, 2003), who dealt with climatic options in a normal framework.

The necessity to go beyond correlation in finance and insurance models has been empha-
sized among others by Embrechts et al. (1999, 2002).

The concept of dependence that will be applied is “stochastic increasingness” (or “stochas-
tic decreasingness”). This concept was introduced under the name “positive regression de-
pendence” by Lehmann (1966) and has been widely used in the applied probability literature
(see e. g. Barlow and Proschan (1975)).

A random variable X2 is stochastically increasing in another random variable X1 if con-
ditioning on higher values of X1 the conditional distribution of X2 becomes larger in the
sense of first degree stochastic dominance.

A simple extreme case of stochastic increasingness is given by X1 and X2 comonotone.
Another simple case where stochastic increasingness arises is when a common environ-

mental variable Θ is present. Assume e. g. that, given Θ, the random variables X1 and X2

are conditionally i. i. d. normally distributed with expectation Θ. If the prior distribution
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for Θ is itself normal, then X2 is stochastically increasing in X1.
Stochastic increasingness is an asymmetric concept, namely, the fact that X2 is stochas-

tically increasing in X1 does not imply that X1 is stochastically increasing in X2. Neverthe-
less stochastic increasingness is implied by “affiliation” and implies “association” (see Karlin
and Rinott (1980) and Esary et al. (1967)). Both affiliation and association are symmet-
ric concepts of positive dependence, whose definition will be given in the following section.
Affiliation is a strong concept of positive dependence which has been extensively used in
economics, especially in auction theory (see Milgrom and Weber (1982)).

Call X1 the insurable risk and X2 the uninsurable one. If the total loss X1 + X2 is
stochastically increasing in X1, then the indemnity will be proved to be nondecreasing. If
X2 is stochastically decreasing in X1, then the identity minus the indemnity is nondecreasing.
The difference with respect to the independent case is that in the dependent case the optimal
indemnity is not necessarily continuous. In the model considered in this paper the revenue
of the insured is a function of the sum of the losses but more general revenue functions may
be considered.

With the above concepts of dependence among risks results can be obtained for all strictly
risk averse expected utility maximizers. With no surprise many of these results hold true for
a larger class of utility functions, those which respect second order stochastic dominance.

The paper is organized as follows: Section 2 introduces the model and analyzes the case
of independent risks. Section 3 contains the general supermodularity tools that provide the
qualitative properties of the efficient contracts in the cases of dependent risks. In Sections 4,
5, and 6 properties of the efficient contracts are determined under different stochastic depen-
dence hypotheses of the risks. Section 7 looks at robustness results in the independent case.
Section 8 deals with a nonexpected utility model. Section 9 considers various side issues.
All the proofs appear in Section 10.

2 The model

Let (Ω,A,P) be a probability space on which all the random variables will be defined. An
agent with nonrandom endowment w faces two random losses X1 and X2. The insurance
market provides insurance only for X1, a continuous random variable with support [0, x̄]. A
feasible insurance contract is characterized by a nonnegative premium P and an indemnity
schedule I : [0, x̄] → R which satisfies 0 ≤ I ≤ Id for all x ∈ [0, x̄], where Id denotes the
identity function Id(x) = x. When the insured buys the contract, she is endowed with the
random wealth W = w−P−X1−X2+I(X1). The insured is assumed to have von Neumann-
Morgenstern preferences over random wealth represented by E[U(W )] where U : R → R is
increasing, strictly concave, and C1. Let û(P, I) = E[U(w −X1 −X2 + I(X1)− P )] be the
indirect utility of a contract for the insured. The function û is concave, with û(·, I) and
û(P, ·) strictly concave.

By selling the contract, the insurer gets P and promises to pay I(X1) if a loss X1 occurs.
Her profit is assumed here to be of the form E[V (P − c(I(X1))] where V : R → R with
V (0) = 0 is increasing, strictly concave, C1, and c : R+ → R+ is a convex, increasing, C1

cost function satisfying c(0) = 0 and c′(0) ≥ 1. Let v̂(P, I) = E[V (P − c(I(X1)))] be the
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indirect utility of a contract for the insurer. The function v̂ is concave, and strictly concave
if V and c are strictly concave.

A feasible contract (P̃ , Ĩ) (strictly) dominates (P, I) if û(P̃ , Ĩ) ≥ û(P, I) and v̂(P̃ , Ĩ) ≥
v̂(P, I) (with a strict inequality for one of the two agents). A feasible contract (P, I) is Pareto-
efficient if it is not strictly dominated. As is well-known, a contract (P, I) is Pareto-efficient
if it is a solution of the following program

(Pα)


sup
P,I

E[U(w −X1 −X2 + I(X1)− P )] s. t.

0 ≤ I ≤ Id,

E[V (P − c(I(X1)))] ≥ α, for some α ≥ V (0).

Special attention will be paid to the case (P0). In this case the efficient contract is individ-
ually rational.

If (I∗, P ∗) is an efficient contract, then there exists a multiplier λ ∈ R+ such that (I∗, P ∗)
is the solution of

max
0≤I(x)≤x, P≥0

E[U(w −X1 −X2 + I(X1)− P )] + λE[V (P − c(I(X1)))]. (2.1)

Since

E[U(w −X1 −X2 + I(X1)− P )] = E[E[U(w −X1 −X2 + I(X1)− P ) | X1]],

at the optimal premium P ∗, for every x, I∗(x) is the solution of a state by state maximization
problem

max
0≤I(x)≤x

E[U(w−x−X2 +I(x)−P ∗) | X1 = x]+λV (P ∗−c(I(x))), for all x ∈ [0, x̄]. (2.2)

Some dependence concepts are recalled in the following definition (see e. g. Lehmann
(1966) or Joe (1997)).

Definition 2.1. (i) The random variable X2 is stochastically increasing in X1, denoted
X2 ↑st X1 (resp strictly stochastically increasing in X1, denoted X2 ↑sst X1) if the map
x 7→ E[f(X2) | X1 = x] is nondecreasing (resp increasing) for every f nondecreasing
(resp increasing), for which expectations exist.

(ii) X2 is stochastically decreasing in X1, denoted X2 ↓st X1 (resp strictly stochastically de-
creasing in X1, denoted X2 ↓sst X1) if the map x 7→ E[f(X2) | X1 = x] is nonincreasing
(resp decreasing) for every f nondecreasing (resp increasing), for which expectations
exist.

Sklar (1959) showed that any joint distribution function can be decomposed into its
marginals and a dependence structure, called copula. The copula is invariant with respect
to increasing transformations of the marginal components. If X2 ↑st X1, Y1 = f1(X1), and
Y2 = f2(X2), with f1, f2 increasing, then Y2 ↑st Y1. This implies that stochastic increasingness
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depends on the joint distribution of (X1, X2) only through its copula. An extreme case of
stochastic increasingness is given by comonotonicity. If X1, X2 are comonotone, then, for
x < y, all the points in the support of X2|X1 = x are smaller than the points in the support
of X2|X1 = y. Hence X2 ↑st X1.

Two random variables X1 and X2 are called affiliated if the logarithm of their joint density
is supermodular (see Definition 3.1 below). They are called associated if Cov[f(X1, X2), g(X1, X2)] ≥
0 for any nondecreasing functions f, g : R2 → R.

As mentioned in the Introduction, stochastic increasingness is a positive dependence
concept that is stronger than affiliation and weaker than association.

The following terminology will be used.

Definition 2.2. (i) A contract (P, I) is called a deductible contract if for some a ∈ [0, x̄]
it satisfies I(x) = (x− a)+, where y+ = max(y, 0).

(ii) A contract (P, I) is called a generalized deductible contract if for some a ∈ [0, x̄] it
satisfies

I(x) = 0 for x ∈ [0, a],

and the functions I and Id−I are nondecreasing on [a, x̄].

(iii) A contract (P, I) is called a coinsurance contract if it satisfies

0 < I(x) < x for x ∈ [0, x̄],

and the functions I and Id−I are nondecreasing.

(iv) A contract (P, I) is called a disappearing deductible if I is nondecreasing, and there
exists a ∈ [0, x̄] such that I(x) = 0 for x ∈ [0, a] and I − Id is nondecreasing on [a, x̄].

Since 0 ≤ I ≤ Id, a disappearing deductible may contain full insurance on an interval
[b, x̄]. Even if the above definitions are given in terms of contracts, notice that all their
properties depend only on the indemnity.

Our benchmark case will be the case of independent risks in which the optimal contract
has the same properties as in the no-background-risk case, as the following theorem shows.

Theorem 2.3. Assume that X1 and X2 are independent. There exist efficient contracts and
any efficient contract (P ∗, I∗) is such that I∗ and Id−I∗ are nondecreasing.

In the case α = 0 the efficient contract (P ∗, I∗) has the following properties.

(a) There is insurance iff

c′(0) <
E[U ′(w − x̄−X2)])

E[U ′(w −X1 −X2)]
. (2.3)

If c′(x) > 1 for all x ∈]0, x̄], then (P ∗, I∗) is a generalized deductible.

(b) If V (x) = ax, c(x) = (1 +m)x, and (2.3) holds, then (P ∗, I∗) is a deductible.

(c) If furthermore m = 0, then (P ∗, I∗) is full insurance.

5



(d) If V is strictly concave, and c(x) = x, then (P ∗, I∗) is a coinsurance contract.

When there is no background risk, or the background risk is independent, then efficient
contracts are such that

(i) Agents’ wealths are comonotone. Therefore anything that violates comonotonicity is
ruled out: for example no insurance followed by coinsurance then full insurance violates
the comonotonicity of I and Id−I. Thus only one of the following is possible:

• coinsurance,

• full insurance,

• no insurance followed by coinsurance,

• full insurance followed by coinsurance.

(ii) When there are no costs, either there is full insurance if the insurer is risk neutral, or
coinsurance if she is risk averse.

(iii) When there are costs, there is a deductible (with full insurance above the deductible if
the insurer is risk neutral, or coinsurance if she is risk averse).

(iv) Properties stated in Theorem 2.3 hold true for every strictly concave utility function.
Stronger properties of the efficient contracts, that are induced by additional hypotheses
on the utility function (e. g. HARA), do not survive the presence of an independent
background risk.

3 Supermodularity and efficient contracts in the de-

pendent case

This section contains some general results on rearrangements and supermodularity, that
are at the core of all our theorems concerning the risk sharing with dependent risks. For
supermodularity the reader is referred e. g. to Milgrom and Shannon (1994), Topkis (1998),
Athey (2002).

First recall two definitions.

Definition 3.1. A function φ : R2 → R is called supermodular if

φ(x1, y1) + φ(x2, y2) ≥ φ(x1, y2) + φ(x2, y1),

for all x1 < x2, y1 < y2. If the inequality is strict, the function φ is called strictly supermod-
ular.

A function φ ∈ C2 is supermodular iff ∂2φ(x1, x2)/∂x1∂x2 ≥ 0 for all (x1, x2) ∈ R2. If
∂2φ(x1, x2)/∂x1∂x2 > 0 for all (x1, x2) ∈ R2, then φ is strictly supermodular.
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Example 3.2. The following are examples of supermodular functions.
If f : R → R and g : R → R are either both increasing or both decreasing, and

φ(x1, x2) = f(x1)g(x2), then φ is supermodular.
Consider a convex function ψ : R → R, and define φ(x1, x2) = ψ(x1 + x2). Then φ is

supermodular.
Analogously, if ξ : R→ R is concave, and φ(x1, x2) = ξ(x1−x2), then φ is supermodular.

This case will be used extensively in our applications.

Definition 3.3. A function Ĩ is a rearrangement of I with respect to X if Ĩ(X) and I(X)
have the same distribution.

The following lemma generalizes some inequalities due to Hardy and Littlewood, (see
Hardy et al. (1988)).

Lemma 3.4. Let X be a bounded random variable with a continuous distribution FX . Let
Ĩ be a nondecreasing rearrangement of I with respect to X. Then for any supermodular
function φ

(a)

E[φ(Ĩ(X), X)] ≥ E[φ(I(X), X)].

If φ is strictly supermodular, then equality holds only if I = Ĩ a. e..

(b) For every Borel subset A of [0, x̄]

E[1A(X)φ(ĨA(X), X)] ≥ E[1A(X)φ(I(X), X)],

where ĨA is a nondecreasing rearrangement of I on A.

A special case of Lemma 3.4 (a) goes back to Lorentz (1953). It also follows from
more general inequalities for expectations of distributions with fixed marginals. See e. g.
Cambanis et al. (1976) Tchen (1980). Part (b) was proved by means of different techniques
by Carlier and Dana (2005).

The next two lemmata are proved using Lemma 3.4 and the supermodularity of the
function ψP (x, y) = E[U(w − X2 − x + y − P ) | X1 = x] when X1 + X2 ↑st X1, and of the
function φP (x, z) = E[U(W − z − P −X2) | X1 = x] when X2 ↓st X1.

Lemma 3.5. Let X1 + X2 ↑st X1, and let Ĩ be a nondecreasing rearrangement of I with
respect to X1. Then for U : R→ R concave increasing and for all w ≥ 0 and P ≥ 0

E[U(w −X1 −X2 + Ĩ(X1)− P )] ≥ E[U(w −X1 −X2 + I(X1)− P )].

Moreover if X1 +X2 ↑sst X1, and U is strictly concave, then the inequality is strict unless
I is nondecreasing.

7



Lemma 3.6. Assume that X2 ↓st X1.
Let Z : [0, x̄] → R and Z̃ be its nondecreasing rearrangement with respect to X1. Then

for U : R→ R concave increasing and for all w ≥ 0 and P ≥ 0

E[U(w −X2 − Z̃(X1)− P )] ≥ E[U(w −X2 − Z(X1)− P )].

Moreover if U is strictly concave and X2 ↓sst X1, then the inequality is strict unless Z is
nondecreasing.

The following proposition shows that, if X1 + X2 ↑st X1, attention may be restricted
to nondecreasing contracts, whereas, if X2 ↓st X1, attention may be restricted to contracts
I such that Id−I is nondecreasing. This result is the fundamental tool for the proof of
Theorem 3.8, the main result of this section.

Proposition 3.7. (a) Let X1 + X2 ↑st X1 and Ĩ be a nondecreasing rearrangement of I

with respect to X1. Then (P, Ĩ) dominates (P, I) (strictly if I is not nondecreasing and
X1 +X2 ↑sst X1).

(b) Let X2 ↓st X1 (X2 ↓sst X1) and let Z = Id−I and Z̃ be a nondecreasing rearrangement of

Z with respect to X1. Then (P, Id−Z̃) dominates (P, I) (strictly if Z is not nondecreasing
and X2 ↓sst X1 or c is strictly convex or V is strictly concave).

The following theorem provides monotonicity properties of efficient contracts under dif-
ferent dependence assumptions on the risks.

Theorem 3.8. (a) Let X1+X2 ↑st X1. Then there exist efficient contracts, and any efficient
contract is nondecreasing.

(b) Let X2 ↓st X1. Then there exist efficient contracts, and any efficient contract I∗ is such
that Id−I∗ is nondecreasing.

4 The case X2 ↑st X1

In this section X2 ↑st X1. This assumption is justified e. g. in one of the following circum-
stances.

An individual may insure her house, but not her car, against fire. If the car is parked in
the driveway of the house and for some reason it gets on fire, there is a positive probability
that the fire spreads to the house and damages it, or vice versa. Therefore, if X1 is the
insured risk related to the fire damage of the house, and X2 is the uninsured risk related to
the fire damage of the car, the assumption X2 ↑st X1 is quite reasonable.

Consider a household with two individuals: one of them has health insurance, the other
doesn’t. Since health insurances policies cover, among other things, risks related to infectious
diseases, it is reasonable to assume that two people living in the same environment, are prone
to get sick at the same time, and therefore there is positive dependence between the risks
related to the health of the two individuals.
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Again consider a household with two people working in the same field: one of them is
insured against job loss, the other is not. Since firing of workers often depends on the general
situation of the economy or of an industry, more than on their performances, it is quite likely
that the two spouses could be dismissed at approximately the same time, so that the risks
related to the dismissal of one is positively dependent on the risk related to the dismissal of
the other.

Risks that are somehow dependent on common environmental circumstances tend to
exhibit positive dependence of the form X2 ↑st X1. For instance, given Θ, let X1, X2 be
conditionally i. i. d. normally distributed random variables with expectation Θ. If Θ
itself has a normal distribution, then X2 is stochastically increasing in X1. Since conditional
increasingness is invariant with respect to increasing transformations of the marginals, any
pair of random variables that has a normal copula with positive correlation coefficient will
have this property.

Lemma 4.1. If X2 is stochastically increasing in X1, and X1 is nondegenerate, then X1+X2

is strictly stochastically increasing in X1.

The following is a general existence and monotonicity result obtained by supermodularity
methods.

Theorem 4.2. Assume that X2 ↑st X1. Then there exist efficient contracts, and any efficient
contract is nondecreasing.

The proposition that follows specifies conditions for the agent to optimally choose to have
insurance in the case α = 0.

Proposition 4.3. Assume X2 ↑st X1, and α = 0. Then there is no insurance iff

c′(0) ≥ E[U ′(w − x̄−X2) | X1 = x̄]

E[U ′(w −X1 −X2)]
. (4.1)

When there is positively dependent background risk, agents’ wealths are not comonotone.
Hence there may be more than two insurance regimes. The following scenario is possi-

ble: there is no insurance for small values of the insurable risk, there is full insurance for
intermediate values, and partial insurance for high values of the risk.

In the case of a risk neutral insurer, then there are at most three regimes: no insurance
followed by partial insurance and then by full insurance, as the following proposition shows.

Proposition 4.4. Assume that X2 ↑st X1, and let α = 0, V (x) = ax, c(x) = (1 +m)x, with
m ≥ 0. The following properties hold.

(a) There is no insurance iff

(1 +m) ≥ E[U ′(w − x̄−X2) | X1 = x̄])

E[U ′(w −X1 −X2)]
.

(b) If either m > 0, or X2 ↑sst X1, then full insurance is not efficient.
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(c) When the efficient contract is interior, the function Id−I∗ is nonincreasing.

(d) The efficient contract is a disappearing deductible.

Proposition 4.4 shows that costs do not explain deductibles anymore. In particular, if the
insurer is risk neutral, there are no costs, and X2 ↑sst X1, then full insurance is not efficient,
and there is a disappearing deductible. As mentioned before, the optimal contract is not
necessarily continuous.

5 The case X1 +X2 ↑st X1 and X2 ↓st X1

In this section the two risks are negatively dependent but that their sum is positively de-
pendent on X1. This assumption is reasonable e. g. in the following circumstances.

Most of the insurance contracts do not cover losses due to acts of terrorism or riots.
Consider then a contract that covers the loss of a car, except if the loss is due to an act of
terrorism. The risk of losing the car is decomposed into an insured component X1 and an
uninsured component X2. Since it’s impossible to lose a car for two different reasons at the
same time, the two components are negatively dependent in a very strong sense: whenever
one is positive, the other is zero, hence they are anticomonotone, which implies (X2 ↓st X1).
On the other hand, since the probability of losing a car due to an act of terror is in general
extremely small compared to the probability of losing it due to other reasons, the total risk
X1 + X2 will be more heavily dependent on X1 than on X2, and therefore the assumption
X1 +X2 ↑st X1 makes sense.

A person faces the risk of losing her spouse, who has life insurance. Life insurance policies
usually do not cover suicide. Therefore the risk due to the loss of the spouse is decomposed
into the insured component X1 and the uninsured component X2 relative to death due to
suicide. Since the spouse cannot die due to suicide and to another reason at the same time,
it follows that X2 ↓st X1, but since suicide is statistically a very unlikely cause of death
X1 +X2 ↑st X1.

In general this assumption is reasonable in the following situation. Mutually exclusive
causes may each give rise to some risk, but the insurance coverage is provided only for some
of the causes. The probability of the claim happening for the uninsured causes is small
compared to the probability of its happening for the insured causes.

Notice that, although stochastic increasingness of X2 with respect to X1 depends only on
the copula of (X1, X2), the hypothesis X1+X2 ↑st X1 depends on the copula of (X1, X1+X2),
not on the copula of (X1, X2).

Theorem 5.1. Assume that X1 + X2 ↑st X1 and X2 ↓st X1. Then there exist efficient
contracts, and any efficient contract is such that I∗ and Id−I∗ are nondecreasing. Hence I∗

is 1-Lipschitz.

The continuity of the contract marks a big difference between this case and the ones
considered in Sections 4 and 6. In this case, an optimal contract will be shown to have stan-
dard features: when there are costs, it is a generalized deductible. The “linear” properties
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of optimal contracts in the independent case are lost here. In particular in the case of linear
costs the deductible becomes a generalized deductible.

Let (P ∗, I∗) be an efficient contract when α = 0.

Proposition 5.2. Assume X1 + X2 ↑st X1 and X2 ↓st X1. Let α = 0. The following
properties hold.

(a) There is no insurance iff

c′(0) ≥ E[U ′(w − x̄−X2) | X1 = x̄])

E[U ′(w −X1 −X2)]
,

(b) If c′(x) > 1 for x ∈]0, x̄], then (P ∗, I∗) is a generalized deductible.

The following proposition deals with a risk neutral insurer with linear costs..

Proposition 5.3. Assume that X1 + X2 ↑st X1 and X2 ↓sst X1. If α = 0, V (x) = ax, and
c(x) = (1 +m)x, then (P ∗, I∗) is not a deductible.

Then consider the case of no costs.

Proposition 5.4. Assume X1 + X2 ↑sst X1 and X2 ↓st X1. Let α = 0, and c(x) = x. The
following properties hold.

(a) There is insurance.

(b) If either V is strictly concave or if X2 ↓sst X1, then (P ∗, I∗) verifies 0 < I∗(x) < x, and
is therefore a coinsurance contract.

As mentioned at the beginning, this section models the case where the background risk
is small with respect to the insurable risk. It is not surprising that efficient contracts have
properties which are similar to those of the benchmark model. Agents’ wealths are comono-
tone. Costs explain deductibles (see Propositions 5.2 and 5.3). Only the linear properties of
efficient contracts are not robust to such perturbations.

6 The case X1 +X2 ↓st X1

The assumption of this section X1 + X2 ↓st X1 is reasonable e. g. in the following circum-
stances.

Consider a person whose spouse buys an insurance that covers loss of life due to a plane
crash, but does not have any other form of life insurance. This case resembles the one
examined in the previous section, in that the insured and uninsured risk are negatively
dependent, since they are due to mutually exclusive causes. Therefore if X2 is the uninsured
risk and X1 is the insured risk related to the plane-crash death of the spouse, then X2 ↓st X1.
But now the insured risk is related to an event of very small probability compared to the

11



probability of the event that corresponds to the uninsured risk. Therefore X1 is somehow
negligible with respect to X2, and it can happen that X1 +X2 ↓st X1.

The case described in this section is also the case where the wealth w of the insured is
random, positively dependent on the insurable risk X1 and such that w − X1 is positively
dependent on X1.

Lemma 6.1. If X1+X2 is stochastically decreasing in X1, and X1 and X2 are nondegenerate,
then X2 is strictly stochastically decreasing in X1.

The following result is general.

Theorem 6.2. Assume that X1 + X2 ↓st X1. Then there exist efficient contracts, and any
efficient contract is such that Id−I∗ is nondecreasing, and I∗ is nonincreasing whenever
interior. Hence, there exist x0, x1 with 0 ≤ x0 ≤ x1 ≤ x̄ such that I∗ = Id on [0, x0], I∗ is
nonincreasing on [x0, x1], and I∗ = 0 on [x1, x̄].

As in the case examined in Section 4, efficient contracts are not necessarily continuous.
Theorem 6.2 does not rule out no insurance or full insurance. This is the reason why, in each
specific case, these boundary solutions have to be ruled out.

Proposition 6.3. Assume that X1 +X2 ↓st X1. Let α = 0. The following properties hold.

(a) There is no insurance iff

c′(0) ≥ E[U ′(w −X2) | X1 = 0]

E[U ′(w −X1 −X2)]
.

(b) if c′(x) > 1 for all x ∈]0, x̄], full insurance is not optimal.

Again consider the case of a risk neutral insurer with no costs.

Proposition 6.4. Assume that X1 + X2 ↓sst X1, that α = 0, V (x) = ax, and c(x) = x.
Then neither no insurance, nor full insurance are optimal.

7 Robustness of linear properties

When a risk-averse agent exchanges risk X1 with a risk-neutral insurer who bears no cost
and makes no profit, the optimal contract is full insurance. The result holds true when there
is an uninsurable background risk X2 independent of X1. Conversely the following holds.

Proposition 7.1. Let U , strictly concave, increasing, and C1, be a fixed von Neumann-
Morgenstern utility function. Assume that the solution to the program

(P?)


max
(P,I)

E[U(w −X1 −X2 + (I(X1)− P ))] s. t.

0 ≤ I ≤ Id,

P = E[I(X1)].

is full insurance for any marginal distributions of X1 and X2. Then X1 and X2 are inde-
pendent.
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8 The case of nonexpected utilities

The model is as in the previous section except that agents are not assumed to be expected
utility maximizers. In what follows, L∞ denotes L∞(Ω,A, P ).

Definition 8.1. Let Z, Y ∈ L∞. Then Z �2 Y if E[U(Z)] ≥ E[U(Y )] for any concave
increasing function U : R→ R.

Furthermore Z �2 Y if E[U(Z)] > E[U(Y )] for any strictly concave increasing function
U : R→ R.

Let u : L∞ → R and v : L∞ → R be the insured and insurer’s utility and c : R+ → R+

be a cost function fulfilling the assumptions of Section 2. A contract (P, I) is efficient if it is
a solution of

(Qα)


sup
P,I

u(w −X1 −X2 + I(X1)− P ) s. t.

0 ≤ I ≤ Id,

v(P − c(I(X1))) ≥ α, for some α ≥ v(0) = 0.

The following assumptions on u and v will be required.

(A) For h ∈ {u, v}, if Zn → Z pointwise, then lim suph(Zn) ≤ h(Z). Furthermore
limPn→P v(Pn) = v(P ).

(B) For h ∈ {u, v}, h is strictly monotone, that is, for all Y ≥ 0 a.e. Y 6= 0 and all X ∈ L∞,
h(X + Y ) > h(X).

Furthermore limP→∞ u(−P ) = −∞.

(C) For h ∈ {u, v}, X �2 Y implies h(X) ≥ h(Y ) for any X, Y ∈ L∞.

Furthermore X �2 Y implies v(X) > v(Y ) for any X, Y ∈ L∞.

Assumption (C) is called second-order-stochastic-dominance-preserving utility. Examples
of second order stochastic dominance preserving utilities may be found in Chew and Mao
(1995).

Remark 8.2. It follows from (C) that if X and Y have same distribution, then u(X) = u(Y )
and v(X) = v(Y ).

Proposition 8.3. Let Ĩ be an nondecreasing rearrangement of I with respect to X1.

(a) If u and v satisfy (C), and X1 + X2 ↑st X1, then (P, Ĩ) dominates (P, I) (strictly if
X1 +X2 ↑sst X1).

(b) If X2 ↓st X1, and Z̃ is a nondecreasing rearrangement of Z = Id−I with respect to X1,

then (P, Id−Z̃) dominates (P, I) (strictly if Z is not nondecreasing and X2 ↓sst X1).

Theorem 8.4. Let u and v satisfy (A), (B), (C). Then
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(a) If X2 ↑st X1, then there exist efficient contracts, and any efficient contract (P ∗, I∗) is
such that that I∗ is nondecreasing.

(b) If X2 ↓st X1 and X1 +X2 ↑st X1, then there exist efficient contracts (P ∗, I∗) such that I∗

and Id−I∗ are nondecreasing. Moreover if X1 + X2 ↑sst X1, then any efficient contract
(P ∗, I∗) is such that I∗ and Id−I∗ are nondecreasing.

(c) If X1 +X2 ↓st X1, then there exist efficient contracts, and any efficient contract (P ∗, I∗)
is such that Id−I∗ is nondecreasing and I∗ is nonincreasing whenever interior.

9 Miscellanea

9.1 Other dependence concepts

Other types of dependence concepts between X1 and X2 may be considered. The following
definition will be needed.

Definition 9.1. An increase in X1 induces X2 to be less risky if for every u concave increas-
ing and for all x < y

E[u(X2) | X1 = x] ≤ E[u(X2) | X1 = y].

If the inequality is strict for every u strictly concave increasing, then the increase in X1

induces X2 to be strictly less risky. The increase in X1 induces X2 to be more risky if the
above inequality sign is reversed.

Assuming that the insured is prudent (U ′′′ > 0), the same results as those of Sections 4,
5, and 6 hold. The following proposition is an example of such result.

Proposition 9.2. Assume that the insured is prudent. Assume that an increase in X1

induces X2 to be less risky. Then any efficient contract (P ∗, I∗) is such that I∗ is nonde-
creasing.

Let the insurer be risk neutral, let costs be affine, and let α = 0. Then there is no
insurance iff

(1 +m) ≥ E[U ′(w −X2 − x̄) | X1 = x̄])

E[U ′(w −X1 −X2)]
.

If either m > 0, or if X1 induces X2 to be strictly less risky, then the efficient contract is a
disappearing deductible.

Gollier (1996) considered background risks X2 with the property that, for some a, E[X2 |
X1 = x] = a for every x. He then defined an increase in X1 to induce X2 to be less risky if
x < y implies

E[u(X2) | X1 = x] ≤ E[u(X2) | X1 = y],

for every u concave. The result stated above remains true: if the insured is prudent and if
the increase in X1 induces X2 to be less risky, then I∗ is nondecreasing. If the insurer is risk
neutral and costs are affine, if there is insurance and either m > 0, or X1 induces X2 to be
strictly less risky, then the efficient contract is a disappearing deductible.
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9.2 An insurer with random wealth

Up to now the insurer’s wealth was assumed to be nonrandom. Assume now that the insurer’s
wealth, denoted X3, is random. Let X3 +P − c(I) be the insurer’s wealth when the contract
(I, P ) is offered. Assume that the insurer is risk-averse. Finally assume that X3 and X1

are dependent (this assumption is natural in the context of reinsurance). The following
proposition holds.

Proposition 9.3. Assume that X1 + X2 ↑st X1 and X3 ↑st X1 Then any efficient contract
(P ∗, I∗) is such that I∗ is nondecreasing. If X1 + X2 ↓st X1 and X3 −X1 ↓st X1, then any
efficient contract (P ∗, I∗) is such that Id−I∗ is nondecreasing.

9.3 Comparative statics

Several papers have considered comparative statics issues in the presence of background risk
(references can be found in Schlesinger (2000)). Most of them dealt with parametric models
where there is either coinsurance or a deductible. They focussed on comparing the optimal
contract in the presence of background risk with the optimal contract without background
risk.

The situation becomes much more difficult when efficient contracts are considered. If
the insurer is risk neutral and faces no costs, then, under the assumptions of Sections 4
and 5, without background risk there is full insurance, and with background risk there is
either a disappearing deductible or a generalized deductible. These results remain true for
small values of the loading factor. So the comparison between the cases with nor without
background risk is not clear-cut and it depends on the value of the risk.

9.4 Nonseparable background risk

In this paper the case of additively separable background risk (X1+X2) was considered. More
generally it would have been possible to consider an aggregate loss of the form f(X1, X2) as
Vercammen (2001) or Mahul (2000). Defining ψ̃P (x, y) = E[U(w−f(x,X2)+y−P ) | X1 = x],
if ψ̃P is supermodular, the optimal contract is nondecreasing. Similarly if gP (x, z) =
E[U(w − f(x,X2) + x− z − P ) | X1 = x] is supermodular, efficient contracts are such that
Id−I is nondecreasing. Vercammen (2001) or Mahul (2000) consider only the independent
case. In that case ψ̃P is supermodular if f(·, y) is nondecreasing, and g(·, y) is supermod-
ular if Id−f(·, y) is nondecreasing. In the case of dependent risks ψ̃P is supermodular if
f(X1, X2) ↑st X1, whereas gP is supermodular if X1 − f(X1, X2) ↑st X1.

10 Proofs

Section 2

Proof of Theorem 2.3. Let Ũ : R→ R be defined by Ũ(x) = E[U(x−X2)]. Then Ũ inherits
the properties of U . Let (P ∗, I∗) be an efficient contract. Then it is the solution of a program
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(Pα) for some α ≥ 0. Since X1 and X2 are independent, (Pα) may be rewritten as a standard
Pareto problem without background risk:

sup
P,I

E[Ũ(w −X1 + I(X1)− P )] s. t.

0 ≤ I ≤ Id,

E[V (P − c(I(X1)))] ≥ α.

Hence (P ∗, I∗) is such that I∗ and Id−I∗ are nondecreasing.
Consider now (P0), and let (P ∗, I∗) be its optimal solution.

(a) From (2.1) and (2.2), it follows that the contract (P ∗ = 0, I∗ = 0) is optimal iff there
exists λ ≥ 0 such that

−E[U ′(w −X1 −X2)] + λV ′(0) ≤ 0

Ũ ′(w − x) = E[U ′(w − x−X2)] ≤ λV ′(0)c′(0) for all x ∈ [0, x̄].

Hence

E[U ′(w − x−X2)] ≤ λV ′(0)c′(0) ≤ E[U ′(w −X1 −X2)]c′(0) for all x ∈ [0, x̄],

and

c′(0) ≥ E[U ′(w − x̄−X2)]

E[U ′(w −X1 −X2)]
,

as was to be proven.

The fact that I∗ and Id−I∗ are nondecreasing is well-known. For the sake of com-
pleteness (P ∗, I∗) is shown to be a generalized deductible whenever c′(x) > 1 for all
x ∈]0, 1]. Since I∗ and Id−I∗ are comonotone, there are three possible cases: full
insurance followed by coinsurance, coinsurance, and generalized deductible. The first
two cases are ruled out.

First a contract such that I(x) = x for x ∈ [0, x0], with 0 < x0 ≤ x̄, and 0 < I(x) < x,
for x ∈ [x0, x̄], is shown not to be optimal. For if it were, differentiating with respect
to P , one would obtain for some λ ≥ 0

E[U ′(w −X1 −X2 + I∗(X1)− P ∗)] = λE[V ′(P ∗ − c(I∗(X1)))],

E[U ′(w − x−X2 + I∗(x)− P ∗)] = λV ′(P ∗ − c(I∗(x)))c′(I∗(x)))

> λV ′(P ∗ − c(I∗(x))), for x ∈ [x0, x̄],

E[U ′(w −X2 − P ∗)] ≥ λV ′(P ∗ − c(x))c′(x)

> λV ′(P ∗ − c(x)) for x ∈ [0, x0].

Integrating over [0, x̄], one gets a contradiction.
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If there is coinsurance similarly for some λ > 0

E[U ′(w −X1 −X2 + I∗(X1)− P ∗)] = λE[V ′(P ∗ − c(I∗(X1)))],

E[U ′(w −X2 − x+ I∗(x)− P ∗)] = λV ′(P ∗ − c(I∗(x)))c′(I∗(x)))

> λV ′(P ∗ − c(I∗(x))), for x ∈]0, x̄],

which also leads to a contradiction. Hence the only possible case is that of a generalized
deductible.

(b) As is well-known, if V (x) = ax, c(x) = (1 + m)x, the solution of (P0) is no insurance
if the cost is too high and a deductible otherwise.

(c) If V (x) = ax, c(x) = x, and (2.3) holds, then (P ∗, I∗) is full insurance.

(d) Since

1 <
E[U ′(w −X2 − x̄)

E[U ′(w −X1 −X2)]
,

there is insurance.

Next a contract such that I(x) = x for x ∈ [0, x0], with 0 < x0 ≤ x̄, and 0 < I(x) < x,
for x ∈ [x0, x̄], is shown not to be optimal. For if it were, differentiating with respect
to P , then one would have for some λ ≥ 0

E[U ′(w −X1 −X2 + I∗(X1)− P ∗)] = λE[V ′(P ∗ − I∗(X1))]

and

E[U ′(w −X2 − x+ I∗(x)− P ∗)] = λV ′(P ∗ − I∗(x)), for x ∈ [x0, x̄],

E[U ′(w −X2 − P ∗)] ≥ λV ′(P ∗ − x), for x ∈ [0, x0].

Integrating over [0, x̄],

E[U ′(w −X2 − P ∗)] = λV ′(P ∗ − x) for all x ∈ [0, x0],

which is a contradiction since the function −V ′ is increasing. If a regime of no insurance
for low values of the risk is followed by a coinsurance regime, similarly for some λ > 0
and x0 > 0

E[U ′(w −X2 − x− P ∗)] = λV ′(P ∗), x ∈ [0, x0],

which leads to a contradiction since the function −U ′ is increasing.
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Section 3

Proof of Lemma 3.5. For fixed (P,w), let ψP (x, y) = E[U(w − X2 − x + y − P ) | X1 = x].
Then

∂ψP
∂y

(x, y) = E[U ′(w −X2 − x+ y − P ) | X1 = x] = E[U ′(w −X1 −X2 + y − P ) | X1 = x].

Since U ′ is decreasing and X1 +X2 ↑st X1, then ∂ψP (·, y)/∂y is nondecreasing.
From Lemma 3.4 it follows that

E[U(w −X1 −X2 + Ĩ(X1)− P )] =

∫ x̄

0

ψP (x, Ĩ(x)) dFX1(x)

≥
∫ x̄

0

ψP (x, I(x)) dFX1(x)

= E[U(w −X1 −X2 + I(X1)− P )],

proving the desired result. Moreover if U ′ is decreasing and X1 + X2 ↑sst X1, then, by
Lemma 3.4, the inequality is strict unless I is nondecreasing.

Proof of Lemma 3.6. For fixed (w,P ), let φP (x, z) = E[U(w− z − P −X2) | X1 = x]. Then

∂φP
∂z

(x, z) = −E[U ′(w −X2 − z − P ) | X1 = x].

Since U ′ is nonincreasing and X2 ↓st X1, then ∂φP (·, z)/∂z is nondecreasing. From
Lemma 3.4 it follows that

E[U(w −X2 − Z̃(X1)− P )] =

∫ x̄

0

φP (x, Z̃(x)) dFX1(x)

≥
∫ x̄

0

φP (x, Z(x)) dFX1(x)

= E[U(w −X2 − Z(X1)− P )].

Moreover if U is strictly concave and X2 ↓sst X1, by Lemma 3.4, then the inequality is
strict unless Z is nondecreasing.

Proof of Proposition 3.7. Let X1 + X2 ↑st X1 and Ĩ be a nondecreasing rearrangement of I
with respect to X1. Then v(P, Ĩ) = v(P, I). By Lemma 3.5, u(P, Ĩ) ≥ u(P, I) with a strict
inequality if X1 +X2 ↑sst X1 and I is not nondecreasing, proving part (a).

Let X2 ↓st X1 (X2 ↓sst X1) and let Z = Id−I and Z̃ be a nondecreasing rearrangement
of Z with respect to X1. By Lemma 3.4, since the function hP (x, z) = V (P − c(x − z))
is supermodular (strictly supermodular if c is strictly convex or V is strictly concave), the
following holds

v(P, Id−Z̃) = E[V (P − c(X1 − Z̃(X1)))] ≥ E[V (P − c(I(X1)))] = v(P, I),

with a strict inequality if Z is not nondecreasing and c is strictly convex or V is strictly
concave. Furthermore, by Lemma 3.6, u(P, Id−Z̃) ≥ u(P, I) with a strict inequality if

X2 ↓sst X1 and Id−Z̃ is not nondecreasing, proving part (b).
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Proof of Theorem 3.8. (a) By Proposition 3.7 attention may be restricted to nondecreasing
contracts. To show existence recall that a contract is efficient iff it is an optimal solution
of a program (Pα) for some α ≥ 0.

To show the existence of an optimal solution of (Pα), let (Pn, In) be a maximizing
sequence with In nondecreasing. Since limP→∞ U(−P ) = −∞, the sequence Pn is
bounded. By Helly’s theorem, the sequence (Pn, In) has a limit point (P ∗, I∗), with
In → I∗ pointwise and I∗ nondecreasing. Clearly 0 ≤ I∗ ≤ Id. By Lebesgue dominated
convergence theorem

E[V (P ∗ − c(I∗(X1)))] = lim
n

E[V (Pn − c(In(X1)))] ≥ α,

therefore I∗ is feasible.

Furthermore, using again Lebesgue dominated convergence theorem,

E[U(w −X1 −X2 + I∗(X1)− P ∗)] = lim
n

E[U(w −X1 −X2 + In(X1)− Pn)],

hence (P ∗, I∗) is optimal for (Pα). Since U is strictly concave, I∗(X1) − P ∗ is unique
but since I∗(0) = 0, then (P ∗, I∗) is unique for each α.

Let (P ∗, I∗) be an efficient contract. Then it is the unique optimal solution to (Pα)

for some α. By Proposition 3.7 (P ∗, I∗) is dominated by (P ∗, Ĩ∗). If I∗ 6= Ĩ∗, then,

since û(P, ·) is strictly concave, (P ∗, (Ĩ∗ + I∗)/2) strictly dominates (P ∗, I∗), which is

a contradiction. Hence I∗ = Ĩ∗, proving that I∗ is nondecreasing.

(b) This part can be proved in a similar way by considering Id−I instead of I.

Section 4

Proof of Lemma 4.1. Denote by [X | A] a random variable that has the distribution of X
given A, and let =st denote equality in law. If X2 ↑st X1, then, for x < y

[X1 +X2 | X1 = x] =st [x+X2 | X1 = x]

≤sst [y +X2 | X1 = x]

≤st [y +X2 | X1 = y]

=st [X1 +X2 | X1 = y].

Proof of Theorem 4.2. This follows from Lemma 4.1 and Theorem 3.8.

Proof of Proposition 4.3. Let (P ∗, I∗) be the optimal solution of (P0). Differentiating with
respect to P and I, (P ∗ = 0, I∗ = 0) is optimal iff there exists λ such that

−E[U ′(w −X1 −X2)] + λV ′(0) ≤ 0, (10.1)

E[U ′(w −X2 − x) | X1 = x] ≤ λV ′(0)c′(0), for all x ∈ [0, x̄]. (10.2)
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Since X2 ↑st X1, the map x 7→ E[U ′(w −X2 − x) | X1 = x] is increasing and (10.2) implies

E[U ′(w −X2 − x̄) | X1 = x̄]

c′(0)
≤ λV ′(0).

From (10.1) it follows that if (P ∗ = 0, I∗ = 0) is optimal, then either

E[U ′(w −X2 − x̄) | X1 = x̄]

c′(0)
≤ λV ′(0) ≤ E[U ′(w −X1 −X2)],

or

c′(0) ≥ E[U ′(w −X2 − x̄) | X1 = x̄]

E[U ′(w −X1 −X2)]
. (10.3)

Conversely if (10.3) holds, let

λ =
E[U ′(w −X2 − x̄) | X1 = x̄]

V ′(0)c′(0)
.

Then
λV ′(0)c′(0) ≥ E[U ′(w −X2 − x) | X1 = x], for all x ∈ [0, x̄].

Hence (10.2) follows. From (10.3) it follows that

λV ′(0) =
E[U ′(w −X2 − x̄) | X1 = x̄]

c′(0)
≤ E[U ′(w −X1 −X2)],

hence (10.1). Thus (P ∗ = 0, I∗ = 0) is optimal.

Proof of Proposition 4.4. (a) This is just a corollary of Proposition 4.3.

(b) If full insurance were optimal, differentiating with respect to P and I, then for some
λ ≥ 0

E[U ′(w −X2 − E[X1])] = λ, (10.4)

E[U ′(w −X2 − E[X1]) | X1 = x] ≥ λ(1 +m) for almost all x ∈ [0, x̄]. (10.5)

Integration with respect to X1 provides a contradiction, if m > 0.

Assume now that m = 0. Combining (10.4) and (10.5) one gets

E[U ′(w −X2 − E[X1]) | X1 = x] = λ for almost all x ∈ [0, x̄],

which is impossible if X2 ↑sst X1, since the map x 7→ E[U ′(w −X2 − E[X1]) | X1 = x]
is increasing.

(c) Assume that I is interior. Defining Z(x) = x− I(x), then for some λ ≥ 0,

E[U ′(w −X2 − Z(X1)− P ∗) | X1 = x] = λ(1 +m).

Since x 7→ E[U ′(w−X2 − z − P ∗) | X1 = x] is nondecreasing and z 7→ E[U ′(w−X2 −
z − P ∗) | X1 = x] is increasing, the function Id−I is nonincreasing.
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(d) If I(x0) = x0 for some x0, then I(x) = x for x ≥ x0. Indeed, for some λ > 0,

E[U ′(w −X2 − E[X1]) | X1 = x0] ≥ λ(1 +m).

Since X2 ↑st X1,

E[U ′(w −X2 − E[X1]) | X1 = x] ≥ λ(1 +m), for x ≥ x0.

hence I(x) = x for x ≥ x0.

Now the optimal contract for (P0) is characterized. By Theorem 4.2, I∗ is nondecreas-
ing. The optimal contract cannot be interior in a neighborhood of zero, since from (c),
when interior, it must be nonincreasing. If I∗(x) = x for x ∈ [0, x0], then as remarked
above, the optimal contract would be full insurance, contradicting (b). Hence there
is a regime of no insurance for low values of the risk. Then either I∗ is interior and
Id−I∗ is nonincreasing, or, as remarked, if I(x0) = x0 for some x0, then I(x) = x for
x ≥ x0. Hence there is a disappearing deductible.

Section 5

Proof of Theorem 5.1. This follows directly from Theorem 3.8.

Proof of Proposition 5.2. Let (P ∗, I∗) be the optimal solution of (P0).

(a) This part, which is similar to the previous proofs, is skipped.

(b) Since (P ∗ = 0, I∗ = 0) is not optimal, then P ∗ > 0 and I∗ 6= 0 (if not the constraint
E[v(P ∗ − E[c(I∗(X))])] = 0 would not be binding).

The contract (P, I) such that I(x) = x for x ∈ [0, x0] with 0 < x0 ≤ x̄ and 0 < I(x) < x
for x ∈ [x0, x̄] is shown not to be optimal. For if it were,

E[U ′(w −X1 −X2 + I∗(X1)− P ∗)] = λE[V ′(P ∗ − c(I∗(X1)))], (10.6)

E[U ′(w −X2 − x+ I(x)− P ∗) | X1 = x] = λV ′(P ∗ − c(I(x))c′(I(x))

> λV ′(P ∗ − c(I(x)) for x ∈ [x0, x̄],

and

E[U ′(w −X2 − P ∗) | X1 = x] ≥ λV ′(P ∗ − c(x))c′(x)

> λV ′(P ∗ − c(x)) for x ∈ [0, x0].

Integration over [0, x̄], provides a contradiction with (10.6).

The contract (P, I) such that 0 < I(x) < x for x ∈ [0, x̄] is not optimal, since

E[U ′(w−X2− x+ I(x)−P ∗) | X1 = x] = λV ′(P ∗− c(I(x))c′(I(x)), for all x ∈ [0, x̄]

also contradicts (10.6) since c′(I(x)) > 1. Hence there exists x0 > 0, such that I∗(x) =
0 for all x ∈ [0, x0], and 0 < I∗(x) < x for x > x0.
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Proof of Proposition 5.3. When interior, I fulfills the equation

E[U ′(w −X2 − x+ I(x)− P ∗) | X1 = x] = λ(1 +m).

If X2 ↓sst X1, then x 7→ E[U ′(w −X2 − z − P ∗) | X1 = x] is decreasing, z 7→ E[U ′(w −
X2− z−P ∗) | X1 = x] is increasing, hence Id−I is increasing, which rules out the existence
of a deductible.

Proof of Proposition 5.4. (a) Since

1 <
E[U ′(w −X2 − x̄) | X1 = x̄]

E[U ′(w −X1 −X2)]
,

as in the previous cases, one can verify that (P ∗ = 0, I∗ = 0) is not optimal.

(b) The contract (P, I) such that I(x) = x for x ∈ [0, x0] with 0 < x0 ≤ x̄, and 0 < I(x) < x
for x ∈ [x0, x̄] is shown not to be optimal if V is strictly concave or if X2 ↓sst X1. For
if it were, then

E[U ′(w −X2 − x+ I∗(x)− P ∗)] = λE[V ′(P ∗ − I∗(x))], (10.7)

E[U ′(w −X2 − P ∗) | X1 = x] ≥ λV ′(P ∗ − x), for x ∈ [0, x0],

E[U ′(w −X2 − x+ I∗(x)− P ∗) | X1 = x] = λV ′(P ∗ − I∗(x)), for x ∈ [x0, x̄].

Since E[U ′(w − X2 − P ∗) | X1 = x0] = λV ′(P ∗ − x0), under either of the above
hypotheses, E[U ′(w −X2 − P ∗) | X1 = x] > λV ′(P ∗ − x) for x ∈ [0, x0] contradicting
(10.7).

Similarly it is not possible to have I(x) = 0 for x ∈ [0, x0] with 0 < x0 ≤ x̄ and
0 < I(x) < x for x ∈ [x0, x̄] if either V is strictly concave or if X1 +X2 ↑sst X1. Hence
0 < I∗(x) < x.

Section 6

Proof of Lemma 6.1. Let x < y. Then

[X1 +X2 | X1 = x] ≥st [X1 +X2 | X1 = y]

is equivalent to
[x+X2 | X1 = x] ≥st [y +X2 | X1 = y],

which in turn is equivalent to

[X2 | X1 = x] ≥st [y − x+X2 | X1 = y].

Since
[y − x+X2 | X1 = y] ≥sst [X2 | X1 = y],

transitivity gives the result.
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Proof of Theorem 6.2. This follows from Lemma 6.1 and Theorem 3.8.

Proof of Proposition 6.3. Let (P ∗, I∗) be the optimal solution of (P0).

(a) The proof is analogous to that of Proposition 4.3, using the fact that the map x 7→
E[U ′(w −X2 − x | X1 = x)] is nonincreasing.

(b) If full insurance were optimal, then

E[U ′(w −X2 − E[X1])] = λE[V ′(E[X1]− c(X1))],

E[U ′(w −X2 − E[X1]) | X1 = x] ≥ λV ′(E[X1]− c(x))c′(x)

> λV ′(E[X1]− c(x)) for all x ∈ [0, x̄].

Integration with respect to X1, gives a contradiction.

Proof of Proposition 6.4. The contract (P ∗ = 0, I∗ = 0) is optimal iff there exists λ ≥ 0 such
that

−E[U ′(w −X1 −X2)] + λ ≤ 0, (10.8)

E[U ′(w −X2 − x) | X1 = x] ≤ λ for all x ∈ [0, x̄]. (10.9)

Since, X1 +X2 ↓sst X1, x 7→ E[U ′(w−X2 − x) | X1 = x] is decreasing and (10.8) and (10.9)
are equivalent to

E[U ′(w −X2) | X1 = 0] ≤ λ ≤ E[U ′(w −X1 −X2)],

there is a contradiction.
Let’s now prove that full insurance is not optimal. If it were, differentiating with respect

to P and I, one would have for some λ ≥ 0

E[U ′(w −X2 − E[X1]− P ∗)] = λ

E[U ′(w −X2 − E[X1]− P ∗) | X1 = x] ≥ λ for almost all x ∈ [0, x̄],

hence
E[U ′(w −X2 − E[X1]− P ∗) | X1 = x] = λ for almost all x ∈ [0, x̄].

Since X2 ↓sst X1, the map x 7→ E[U ′(w−X2−E[X1]−P ∗) | X1 = x] is decreasing and there
is a contradiction.
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Section 7

Proof of Proposition 7.1. If full insurance is the solution to the problem (P?), differentiating
with respect to P and I, then there exists λ ≥ 0 such that

E[U ′(−X2 − E[X1]) = λ,

E[U ′(−X2 − E[X1]) | X1 = x] ≥ λ, for all x ∈ [0, x̄].

Hence E[U ′(−X2−E[X1]) | X1 = x] = λ for all x. Therefore Cov[U ′(−X2−E[X1]), X1] =
0 for any marginal distribution of X1 and X2. Call Z = U ′(X2−E[X1]). Then Cov[Z,X1] = 0
for all marginal distributions of Z and X1. Then by Lehmann (1966)

Cov[Z,X1] =

∫ ∞

−∞

∫ ∞

−∞
[FZ,X1(s, t)− FZ(s)FX1(t)] ds dt

=

∫ 1

0

∫ 1

0

[CZ,X1(u, v)− uv] dF−1
Z (u) dF−1

X1
(v)

= 0 for all FZ , FX1 .

where CZ,X1 is the copula of FZ,X1 . This is possible only if CZ,X1(u, v) = uv, namely, if Z
and X1 are independent, which in turns implies that X1 and X2 are independent.

Section 8

Proof of Proposition 8.3. This is a corollary of Proposition 3.7.

Proof of Theorem 8.4. (a) Assume that X2 ↑st X1. By Lemma 4.1 and Proposition 8.3
attention may be restricted to nondecreasing contracts. Any efficient contract is a
solution of (Qα) for some α ≥ 0.

To show the existence of a solution of (Qα), let (Pn, In) be a maximizing sequence
with In nondecreasing. Since limP→∞ u(−P ) = −∞, the sequence Pn is bounded.
By Helly’s theorem, the sequence (Pn, In) has a limit point (P ∗, I∗), with In → I∗

pointwise and I∗ nondecreasing. Clearly 0 ≤ I∗ ≤ Id. Since v fulfills (A), then

v(P ∗ − c(I∗)) ≥ lim sup v(Pn − c(In)) ≥ α,

therefore v(P ∗ − c(I∗)) ≥ α.

Since u fulfills (A), then

u(w −X1 −X2 + I∗(X1)− P ∗) ≥ lim supu(w −X1 −X2 + In(X1)− Pn),

hence (P ∗, I∗) is optimal with I∗ is nondecreasing, which proves the existence of a
nondecreasing optimal solution of (Qα).

To prove that any efficient contract (P ∗, I∗) is such that I∗ is nondecreasing, let α be
such that (P ∗, I∗) is the optimal solution of (Qα). By Lemma 4.1, since X2 ↑st X1,
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then X1 +X2 ↑sst X1, hence by Lemma 3.5, if I∗ is not nondecreasing, then w −X1 −
X2 + Ĩ∗(X1)−P ∗ �2 w−X1−X2 +I∗(X1)−P ∗, hence u(w−X1−X2 + Ĩ∗(X1)−P ∗) >
u(w−X1−X2 + I∗(X1)−P ∗), whereas v(P ∗− c(Ĩ∗)) = v(P ∗− c(I∗)), a contradiction.
Therefore, any efficient contract (P ∗, I∗) is such that I∗ is nondecreasing.

(b) To prove the existence of efficient contracts, by Proposition 8.3 attention may be
restricted to contracts (P ∗, I∗) such that both I∗ and Id−I∗ are nondecreasing. The
style of the proof will be as in part (a). If X1 + X2 ↑sst X1, then, by Lemma 3.5,
any optimal solution (P ∗, I∗) is such that I∗ is nondecreasing. To show that Id−I∗
is nondecreasing, let Z∗ = Id−I∗ and Z̃∗ be its nondecreasing rearrangement with
respect to X1. Since X2 ↓st X1, by Lemma 3.6, for any U concave

E[U(w −X2 − Z̃∗(X1)− P ∗)] ≥ E[U(w −X2 − Z∗(X1)− P ∗)],

hence, since u fulfills (A),

u(w −X2 − Z̃∗(X1)− P ∗) ≥ u(w −X2 − Z∗(X1)− P ∗).

If V is strictly concave, then L̃(x, z) = V (P ∗ − c(x− z)) is strictly supermodular.

By Lemma 3.4, if Z∗ 6= Z̃∗, then

E[V (P ∗ − c(X1 − Z̃∗(X1)))] > E[V (P ∗ − c(X1 − Z∗(X1)))],

for any V strictly concave. Hence, since v fulfills (C),

v(P ∗ − c(X1 − Z̃∗(X1))) > v(P ∗ − c(X1 − Z∗(X1))).

Therefore, for some ε > 0, the contract (P ∗ − ε, Id−Z̃∗) is feasible and dominates

(P ∗, I∗) contradicting its optimality. Hence Z∗ = Z̃∗ as was to be proven.

(c) By Lemma 6.1 and Proposition 8.3 attention may be restricted to contracts I such
that Id−I is nondecreasing. Existence of an optimal contract follows from the same
type of arguments as above. So does nondecreasingness of Id−I∗. To show that
I∗ is nonincreasing whenever interior, let A = {x : 0 < I∗(x) < x}, and let I =
I∗ for every x ∈ Ac and I be the nonincreasing rearrangement of I∗ on A. Then
v(P ∗ − c(I)) = v(P ∗ − c(I∗)) since v fulfills (C). Furthermore for any concave U ,
E[U(w − X1 − X2 + I(X1) − P ∗)] ≥ E[U(w − X1 − X2 + I∗(X1) − P ∗)] with a strict
inequality unless I∗ is nonincreasing on A. Hence u(w − X1 − X2 + I(X1) − P ∗) ≥
u(w−X1−X2 + I∗(X1)−P ∗) with a strict inequality unless I∗ is nonincreasing on A.

Section 9

Proof of Proposition 9.2. Since this proof is very tedious, only the main lines of the argument
will be exposed. To show that any efficient contract (P ∗, I∗) is such that I∗ is nondecreasing,
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the same method of proof as in Proposition 3.7 is used. Any contract (P, I) is shown to be

dominated by (P, Ĩ) with Ĩ a nondecreasing rearrangement of I with respect to X1.
First remark that, if X1 induces X2 to be less risky, then it induces X1 +X2 to be strictly

less risky. If Ĩ is a nondecreasing rearrangement of I with respect to X1, then for all concave
increasing function U : R→ R and for all w ≥ 0 and P ≥ 0,

E[U(w −X1 −X2 + Ĩ(X1)− P )] ≥ E[U(w −X1 −X2 + I(X1)− P )].

Indeed, as in Lemma 3.5 below, let ψP (x, y) = E[U(w −X2 − x+ y − P ) | X1 = x]. Then

∂ψP
∂y

(x, y) = E[U ′(w −X2 − x+ y − P ) | X1 = x].

Since −U ′ is concave increasing, x→ E[U ′(w−X2−x+y−P ) | X1 = x] is nondecreasing and
∂ψP (·, y)/∂y is nondecreasing which implies that ψP is supermodular. The other assertions
follow either from the fact that x → E[U ′(w −X2 − x + y − P ) | X1 = x] is nondecreasing
or from the fact that x→ E[U ′(w −X2 − E(X1)) | X1 = x] is nondecreasing.

Proof of Proposition 9.3. The same method of proof as in Proposition 3.7 is used. Any
contract (P, I) is dominated by (P, Ĩ) with Ĩ a nondecreasing rearrangement of I with respect
to X1. In fact by Lemma 3.5

E[U(w −X1 −X2 + Ĩ(X1)− P )] ≥ E[U(w −X1 −X2 + I(X1)− P )].

Let hP (x, y) = E[V (X3 − y + P ) | X1 = x]. Then

∂hP
∂y

(x, y) = E[−V ′(X3 − y + P ) | X1 = x].

Since X3 ↑st X1, the function x → E[−V ′(X3 − y + P ) | X1 = x] is nondecreasing, proving
the supermodularity of hP . By Lemma 3.4

E[V (X3 − Ĩ(X1) + P )] ≥ E[V (X3 − I(X1) + P )],

proving the desired result. The proof of the next assertion is similar.
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