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Cointegration in Fractional Systems with Unknown
Integration Orders∗

P. M. Robinson and J. Hualde
Department of Economics, London School of Economics,

Houghton Street, London WC2A 2AE, UK

Abstract

Cointegrated bivariate nonstationary time series are considered in a fractional context,
without allowance for deterministic trends. Both the observable series and the cointegrating
error can be fractional processes. The familiar situation in which the respective integration
orders are 1 and 0 is nested, but these values have typically been assumed known. We
allow one or more of them to be unknown real values, in which case Robinson and Marin-
ucci (1997,2001) have justified least squares estimates of the cointegrating vector, as well
as narrow-band frequency-domain estimates, which may be less biased. While consistent,
these estimates do not always have optimal convergence rates, and they have non-standard
limit distributional behaviour. We consider estimates formulated in the frequency domain,
that consequently allow for a wide variety of (parametric) autocorrelation in the short
memory input series, as well as time-domain estimates based on autoregressive transfor-
mation. Both can be interpreted as approximating generalized least squares and Gaussian
maximum likelihood estimates. The estimates share the same limiting distribution, having
mixed normal asymptotics (yielding Wald test statistics with χ2 null limit distributions),
irrespective of whether the integration orders are known or unknown, subject in the latter
case to their estimation with adequate rates of convergence. The parameters describing the
short memory stationary input series are

√
n-consistently estimable, but the assumptions

imposed on these series are much more general than ones of autoregressive moving average
type. A Monte Carlo study of finite-sample performance is included.
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1. INTRODUCTION

Cointegration analysis has developed almost exclusively in the context of processes with non-
fractional integration orders. Most popularly, observed series are assumed to have a single unit
root, such that first differencing produces a weakly dependent, invertible stationary process,
while cointegrating errors also satisfy the latter description. This basic setting has been greatly
extended, to observed series in which twice differencing is required to produce stationary weak
dependence, and to polynomial cointegration; polynomial time trends have also been introduced,
and cointegration with respect to cyclic and seasonal frequencies has been examined. Methods
of estimating cointegrating vectors have been developed which have optimal asymptotic prop-
erties, with a limiting mixed normal distribution, thereby generating Wald test statistics with
a standard, χ2, null limit distribution (see e.g. Phillips and Hansen, 1990, Phillips, 1991a,b,
Johansen, 1991). The latter methods have been justified under the assumption that integra-
tion orders of observed series and cointegrating errors are correctly specified integers, though
it is standard practice to test these integration orders, particularly by unit root tests against
stationary autoregressive (AR) alternatives.
Cointegration can exist between much more general nonstationary (and indeed stationary)

observations, with stationary or nonstationary cointegrating errors. The “optimal” methods
referred to above lose their most desirable properties (such as the χ2 hypothesis tests, for ex-
ample) when integration orders on which they are based are misspecified, while methodology
developed by Engle and Granger (1987) and subsequent authors is not designed to detect such
cointegrating relationships. It is thus desirable to develop the topic in a broader context, nesting
integer-order cases in a more general class and allowing integration orders to be unknown, and
real-valued.
Recently, considerable interest in fractional processes has developed, and knowledge of their

properties and statistical analysis has advanced to the extent that their role in cointegration
analysis can be explored. We consider the following model for the bivariate observed series
(yt, xt):

yt = νxt +∆
β−δu#1t, (1.1)

xt = ∆−δu#2t, (1.2)

for t = 0,±1, .... Throughout, the # superscript attached to a scalar or vector sequence vt has
the meaning

v#t = vt1(t > 0), (1.3)

where 1(·) is the indicator function. In (1.1), (1.2) we employ the difference operator ∆ = 1−L,
where L is the lag operator, and formally, for any real α, α 6= −1,−2, ..,

(1− z)−α =
∞P
j=0

aj(α)z
j , aj(α) =

Γ(j + α)

Γ(α)Γ(j + 1)
, (1.4)

with Γ denoting the gamma function such that Γ(α) =∞ for α = 0,−1,−2, ..., and Γ(0)/Γ(0) =
1; with the prime denoting transposition, ut = (u1t, u2t)

0 is a bivariate covariance stationary
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unobservable process with zero mean and spectral density matrix, f(λ), satisfying

E(u0u
0
j) =

Z π

−π
eijλf(λ)dλ, (1.5)

that is at least nonsingular and continuous at all frequencies; and finally

ν 6= 0, (1.6)

δ ≥ β >
1

2
. (1.7)

The truncation in (1.2) ensures that xt has finite variance (albeit evolving at rate t2δ−1),
and implies that xt = 0, t ≤ 0. The truncation in (1.1) is unnecessary if δ − β < 1/2 (yt − νxt
is covariance stationary without it and “asymptotically covariance stationary” with it) but is
imposed there also for the sake of a uniform treatment, implying that yt = 0, t ≤ 0. In common
parlance, ut is an I(0) vector process, xt is an I(δ) process, as is (due to (1.1), (1.2), (1.6), (1.7))
yt, while the cointegrating error yt − νxt is an I(γ) process, where

γ = δ − β, (1.8)

and we say that (xt, yt) is cointegrated of order (δ, β) (CI(δ, β)). If β = 0, there is no cointe-
gration and ν is not identified.
In (1.1), (1.2) the possibility that δ and/or β are known, but not necessarily integers, does

not lack interest (in particular when δ = 1 is fixed) but allowing both β and δ to be un-
known, thereby avoiding complications and ambiguities due to pre-testing, may be attractive.
Fractional values may be difficult to interpret economically, though aggregation explanations
have been developed, mean-reversion is nicely described, in the present paper’s context β and
δ are just nuisance parameters, while fractional, like non-fractional, cointegration is a kind of
dimensionality-reducing structure.
Simple estimates of ν not requiring knowledge of δ and/or β are readily available. For exam-

ple ordinary least squares (OLS), with or without intercept, is nmin(2δ−1,β)-consistent (except in
the case where δ > β and 2δ−β = 1, in which case it is (nβ/ logn)−consistent), as shown under
mild conditions by Robinson and Marinucci (2001). In case 2δ − 1 < β, the rate of convergence
can be improved upon by using a version of OLS in the frequency domain that focuses on a
slowly degenerating band of low frequencies and thereby reduces the bias that is due to contem-
poraneous correlation between u1t, u2t (Robinson and Marinucci, 1997); these estimates were
applied empirically by Marinucci and Robinson (2001). Both least squares and its narrow-band
counterpart have nonstandard limit distributions, which are unsuitable for use in statistical in-
ference, while their rate of convergence seems capable of still further improvement over some
regions of (δ, β)-space. In the present paper we develop and justify estimates of ν which have
analogously optimal properties, in the presence of possibly unknown δ, β, to those previously
established by, for example, Phillips and Hansen (1990), Phillips (1991a,b), Johansen (1991)
in case δ = β = 1 is known. The estimates of ν are of generalized least squares (GLS) type,
based on a constrained transformed bivariate regression model derived from (1.1), (1.2) and
having the property that regressors are orthogonal to disturbances. We allow for very general
forms of parametric autocorrelation in ut, in which circumstances a frequency-domain form of
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estimate of ν is convenient and flexible, though we also consider a time-domain form based on
autoregressive (AR) transformation.
The model (1.1), (1.2) is perhaps the simplest interesting one possible. Extensions are de-

scribed in Section 5, but our treatment of (1.1), (1.2), with parametric autocorrelation, itself
requires lengthy proofs, whose ideas are relevant to more general models but best conveyed
in a relatively simple setting. Our model presumes the existence of cointegration. The ques-
tion of establishing such existence, or non-existence, is itself especially difficult in our fractional
context, with unknown integration orders. Recently, Robinson and Yajima (2001) have devel-
oped methods for determining fractional cointegrating rank in a multivariate extension of (1.1),
(1.2) based on sequential testing, principal components analysis, and a model choice procedure,
while Marinucci and Robinson (2001) proposed and empirically applied a Hausman-type test
for determining the existence of cointegration in (1.1), (1.2).
Aside from work already mentioned pertaining to (1.1), (1.2), Dolado and Marmol (1996)

considered fractional extension of the fully-modified OLS (FM-OLS) estimate of ν proposed by
Phillips and Hansen (1990) in the CI(1, 1) case, with nonparametric autocorrelation in ut, and
assuming knowledge of γ and δ. Some other work on fractional cointegration has employed an
alternative definition of fractional nonstationarity, replacing (1.1), (1.2) by

ỹt = νx̃t + v
(γ)
1t , t ≥ 1, (1.9)

x̃t = v
(δ)
21 + ...+ v

(δ)
2t , t ≥ 1, (1.10)

where v(γ)1t and v
(δ)
2t are jointly stationary I(γ) and I(δ−1) processes, respectively, with |γ| < 1/2,

1/2 < δ < 3/2. When γ = 0, δ = 1, vt(γ, δ) =
³
v
(γ)
1t , v

(δ)
2t

´0
≡ (u1t, u2t)

0 implies (x̃t, ỹt) ≡
(xt, yt), but more generally, with vt(γ, δ) having spectral density matrix Λ(λ; γ, δ)f(λ)Λ(−λ; γ, δ),
for Λ(λ; γ, δ) = diag

©
(1− eiλ)−γ , (1− eiλ)1−δ

ª
, this is not the case. In particular, (1.10) pro-

vides an alternative definition of nonstationary I(δ) processes to (1.2). Marinucci and Robinson
(1999) termed x̃t and xt respectively Type I and Type II I(δ) processes; suitably normalized
they converge weakly as t→∞ to different forms of fractional Brownian motion. Model (1.9),
(1.10) covers a different range of γ, δ values from (1.1), (1.2), but higher δ can be involved by
extending (1.10) to include two or more unit roots, while γ ∈ (−1/2, 0) could be allowed in (1.1).
Chan and Terrin (1995) developed asymptotic theory for OLS estimates in a general AR process
with fractional innovations, including (1.10). Jeganathan (1999, 2001) considered ML estima-
tion in (1.9), (1.10), stressing pure fractional vt(γ, δ) (corresponding to white noise ut in (1.1),
(1.2)), having innovations with completely known, but not necessarily Gaussian, distribution.
He obtained mixed normal asymptotics for his estimate of ν, in case γ and δ are known, though
including some discussion of their estimation. Again in relation to (1.9), (1.10), with ν a matrix
and both equations vectors but depending still on only two integration orders γ and δ, Kim
and Phillips (2000) consider an alternative extension of FM-OLS to that of Dolado and Marmol
(1996), and its relation to Gaussian maximum likelihood (ML) estimation. They assume para-
metric autocorrelation in vt(γ, δ), obtaining limit distribution theory that differs from that of
Jeganathan (1999, 2001), and from ours, even after replacing their version of fractional Brownian
motion by ours. They also consider estimation of nuisance parameters, and nonstationary v(γ)1t .
In a multivariate semiparametric version of (1.9), (1.10), and allowing also for the possibility
of nonstationary v

(γ)
1t , Velasco (2000) considers a tapered version of local Whittle estimation of
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ν, γ and δ, more particularly taking one Newton step from preliminary estimates with suitable
convergence rates. This produces an estimate of ν which does not have optimal convergence
rate but, unlike ours and those in the other references, is asymptotically normal. In a similar
setting, Hassler, Marmol and Velasco (2002) focus on log periodogram estimation of γ and δ
given preliminary estimation of ν, developing rules of asymptotic inference. Following Cheung
and Lai (1993) a number of empirical analyses of fractional cointegration have been carried out.
Our estimates of ν are described in the following section. Section 3 presents regularity

conditions and the main results, also introducing simpler estimates that are asymptotically
competitive when β > 1. In Appendix A we outline the proofs, which rest heavily on a series of
propositions which are proved in Appendix B. Appendices C and D collect respectively some
results used in the proofs of several propositions, and technical lemmas pertaining to properties
of the aj(α). Section 4 consists of a Monte Carlo study of finite-sample behaviour and Section
5 some final remarks.

2. ESTIMATES OF COINTEGRATING PARAMETERS

For any sequence {wt}, and any c ≥ 0, introduce the notation
wt(c) = ∆

cw#t , (2.1)

noting (1.3), (1.4). Also define, for c ≥ 0, d ≥ 0,
zt(c, d) = (yt(c), xt(d))

0
. (2.2)

Thus (1.1), (1.2) can be written

zt(γ, δ) = ζxt(γ)ν + u#t , (2.3)

where
ζ = (1, 0)0. (2.4)

In case ut is white noise, with known, nonsingular covariance matrix Ω, and γ and δ are also
known, GLS based on (2.3) and observations (xt, yt), t = 1, ..., n, is motivated by the orthogo-
nality property E

¡
u0tΩ−1ζxt(γ)

¢
= E (u2tu

0
t)Ω

−1ζ = 0. More generally, GLS estimates can also
be constructed in the presence of serial correlation in ut, given known 2n×2n covariance matrix
Σ of u = (u01, ..., u0n)

0. If Σ is a known function of an unknown finite-dimensional parameter
vector θ, we might hope that insertion of sufficiently good estimates of γ, δ and θ, producing
a feasible GLS estimate of ν, will not affect limiting distributional properties. However, Σ and
its estimate can be difficult to handle, both numerically and theoretically, so more convenient
alternatives to such GLS or feasible GLS might be considered.
One such is based on AR transformation. Suppose ut has an AR representation

B(L)ut = εt, (2.5)

where εt is a bivariate sequence that is at least (see Section 3 below) uncorrelated across t with
nonsingular covariance matrix Ω, and

B(s) = I2 −
∞P
j=1

Bjs
j , (2.6)
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where I2 is the 2×2 identity matrix and the Bj are 2×2matrices satisfying conditions prescribed
below. Suppose further that we know functions Ω(h), Bj(h), where h ∈ Rp, p ≥ 1, such that for
some θ ∈ Rp, we have Ω = Ω(θ), Bj ≡ Bj(θ). Define

B(s;h) = I2 −
∞P
j=1

Bj(h)s
j , (2.7)

and then

ea(c, d, h) =
P
t
{B(L;h)ζxt(c)}0 Ω(h)−1 {B(L;h)zt(c, d)} , (2.8)

eb(c, h) =
P
t
{B(L;h)ζxt(c)}0 Ω(h)−1 {B(L;h)ζxt(c)} , (2.9)

where, throughout the paper,
P

t denotes
P

n
t=1. Note that each of the AR transformations

automatically entails a truncation since xt(c) = 0, zt(c, d) = 0, t ≤ 0. Now write

eν(c, d, h) = ea(c, d, h)eb(c, h) , (2.10)

and consider as estimates of ν

eν(γ, δ, θ), eν(γ, δ,bθ), eν(bγ, δ,bθ), eν(γ,bδ,bθ), eν(bγ,bδ,bθ), (2.11)

given estimates bγ, bδ, bθ. The estimates (2.11) respectively consider the cases in which γ, δ and
θ are all known, the integration orders γ and δ are known but θ is not, followed by the cases in
which one or other and then both of γ, δ are unknown and θ is also unknown: eν(γ, δ,bθ) covers
situations familiar from the integer integration order cointegration literature, where for example
γ = 0, δ = 1 is known; eν(bγ, δ,bθ) extends this by assuming knowledge of the integration order
of the observable xt (say δ = 1), but the order of the cointegrating error is not known to be 0;eν(bγ,bδ,bθ) expresses the situation of least knowledge.
The estimates (2.11) are computationally convenient when ut is a finite-degree AR process,

but less so otherwise, for example when ut is a finite-degree moving average (MA) or autore-
gressive moving average (ARMA) sequence, when the Bj(h), though recursively calculable, do
not have a very neat closed form. On the other hand, the spectral density matrix f(λ), defined
in (1.5), has a neat form in such cases, so a frequency-domain approach might be preferred, as
was considered by Phillips (1991a) in the case γ = 0, δ = 1 is known, and one can construct
parametric models for which the gap between tractability of the spectral density on the one
hand, and AR coefficients (or indeed autocovariances) on the other, is even greater (see e.g.
Bloomfield, 1972, Robinson, 1978). A frequency-domain approach also has the advantage of ap-
proaching a well-established form of semiparametric estimate in which f(λ) is a nonparametric
function (see, e.g. Hannan, 1963, in case of regression models, and Phillips, 1991b, in case of
CI(1, 1) cointegration).
To define the frequency-domain estimates, first introduce f(λ;h), a known function of λ ∈

(−π, π] and h ∈ Rp, such that f(λ; θ) = f(λ), see (1.5). In terms of the AR representation (2.5),
we have

f(λ;h) = (2π)−1B(eiλ;h)−1Ω(h)B(e−iλ;h)−1
0
, (2.12)
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so f(λ;h) is of simple form in the finite ARMAmodels, replacingB(eiλ;h)−1 byB(eiλ;h)−1A(eiλ;h),
A and this B both being finite-degree matrix polynomials. (Our assumptions below guarantee
the existence where necessary of matrix inverses.) Define the discrete Fourier transforms

wx(c)(λ) =
1

(2πn)
1
2

P
t
xt(c)e

itλ, wz(c,d)(λ) =
1

(2πn)
1
2

P
t
zt(c, d)e

itλ. (2.13)

Denoting
p(λ;h) = ζ 0f(λ;h)−1, q(λ;h) = ζ 0f(λ;h)−1ζ, (2.14)

put

a(c, d, h) =
P
j
p(λj ;h)wx(c)(−λj)wz(c,d)(λj), (2.15)

b(c, h) =
P
j
q(λj ;h)

¯̄
wx(c)(λj)

¯̄2
, (2.16)

where λj = 2πj/n, j = 1, ..., n. Define

bν(c, d, h) = a(c, d, h)

b(c, h)
. (2.17)

Corresponding to the five estimates (2.11) we may consider also

bν(γ, δ, θ), bν(γ, δ,bθ), bν(bγ, δ,bθ), bν(γ,bδ,bθ), bν(bγ,bδ,bθ). (2.18)

From the orthogonality properties of the complex exponential function (see (B.3) below),
it readily follows that when ut is a priori white noise, so that Bj(h) ≡ 0, j ≥ 1, f(λ;h) =
(2π)−1Ω(h), we have eν(c, d, h) ≡ bν(c, d, h), so corresponding members of (2.11) and (2.18) are
identical. Otherwise, when ut is believed to be autocorrelated, they differ, but under regularity
conditions all members of (2.11) and (2.18) have the same first-order asymptotic properties, as
shown in Theorem 1 of the following section.
The CI(1, 1) literature has stressed error-correction model (ECM) formulations, on which

parameter estimation can be based. We can rewrite (2.3) (see Cheung and Lai, 1993) as

∆δzt = −ζ(1−∆β)
©
∆δ−β(1,−ν)zt

ª
+ v#t , (2.19)

with zt = zt(0, 0) = (yt, xt)
0 and vt = (u1t + νu2t, u2t)

0. When δ = β = 1, (2.19) reduces
to the triangular ECM representation ∆zt = ζ(1,−ν)zt−1 + v#t of Phillips (1991a,b) for the
CI(1, 1) case. In this case, the estimates of Phillips (1991b) reduce, for ut white noise, to GLS
based on (2.19), but his GLS in general differs in finite samples from ours, and in addition
the orthogonality property resulting from his ECM representation differs from ours resulting
from (2.3) with γ = 0, δ = 1. His E (u2,t−1v0tGζ) = 0 holds for all matrices G, while our
E
¡
u2tu

0
tΩ
−1ζ

¢
= 0 is only insensitive to replacing Ω by a nonsingular matrix whose upper

right and lower right elements are in the same ratio as ours. Again for β = δ = 1, Phillips
(1991a) based on (2.19) a frequency-domain approximate Gaussian pseudo-ML estimate of ν. It
is readily shown that this is equivalent to a corresponding Gaussian pseudo-ML estimate based
on (2.3). In case ut is known to be white noise, this is equivalent to the OLS estimate of ν
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in the extended regression yt(γ) = νxt(γ) + µxt(δ) + w#t , where µ = E(u1tu2t)/E(u
2
2t) and

wt = u1t − µu2t, namely ν(γ, δ), where

ν(c, d) =

P
t x

2
t (d)

P
t xt(c)yt(c)−

P
t xt(c)xt(d)

P
t xt(d)yt(c)P

t x
2
t (c)

P
t x

2
t (d)− {

P
t xt(c)xt(d)}2

, (2.20)

to extend Phillips’ (1991a) observation in the CI(1, 1) case. Further, ν(γ, δ) can be shown to be
equivalent to the GLS estimate eν(γ, δ, θI) = bν(γ, δ, θI), with θI consisting of the three distinct
elements of Ω(γ, δ), where

Ω(c, d) = n−1
P
t
[yt(c)− ν̄(c, d)xt(c), xt(d)]

0 [yt(c)− ν̄(c, d)xt(c), xt(d)] . (2.21)

Thus, our GLS approach can be seen to include Gaussian pseudo-ML estimation as a special
case, where particular estimates of Ω are used, this interpretation continuing to apply when
autocorrelation in ut is incorporated (where, based on (2.19) in the CI(1, 1) case, Phillips,
1991b, employed a semiparametric version of GLS, involving smoothed nonparametric estimation
of f(λ) across a coarser grid than the Fourier frequencies, following Hannan, 1963.)

3. CONDITIONS AND MAIN RESULTS

We present first a series of regularity conditions.

Assumption 1. The process ut, t = 0,±1, ..., has representation

ut = A (L) εt, (3.1)

where

A (s) = I2 +
∞X
j=1

Ajs
j , (3.2)

and the Aj are 2× 2 matrices such that :
(i)

det {A (s)} 6= 0, |s| = 1; (3.3)

(ii) A(eiλ) is differentiable in λ with derivative in Lip (η) , η > 1/2;

and in addition, with k·k denoting the Euclidean norm:

(iii) the εt are independent and identically distributed vectors with mean zero, positive definite
covariance matrix Ω, and E kεtkq <∞, q ≥ 4, q > 2/(2β − 1).

Notice that (ii) implies
∞P
j=1

j kAjk < ∞, because the derivative of A(eiλ) has Fourier coeffi-

cients jAj , whence Zygmund (1977, p.240) can be applied. Further, this also implies
∞P
j=1

j kAjk2 <
∞, which, along with the condition in (iii), enables us to apply the functional limit theorem
of Marinucci and Robinson (2000) (developing earlier work of Akonom and Gourieroux, 1987,
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Silveira, 1991) to the nonstationary process xt (γ) , as is required to characterize the limit distri-
bution of our estimates of ν. Further, due to (i), B(eiλ) (see (2.6)) satisfies the same smoothness
condition as A(eiλ) in (ii), and thus

∞X
j=1

j kBjk <∞, (3.4)

which implies the required conditions on the Bj in our other proofs, in particular of Propositions
1 and 2. It is Proposition 1’s proof that employs the strongest conditions, and even here (ii) could
be relaxed to bounded differentiability of A(eiλ), but our present conditions seem satisfactorily
mild, easily covering stationary and invertible ARMA systems. The moment assumption on εt
is satisfied, for any β > 1/2, by Gaussianity.
The above assumption, with (1.1), (1.2), (1.6), (1.7), suffices in order to establish Theorem

1 below for the infeasible estimates eν (γ, δ, θ) and bν (γ, δ, θ) , but in order to insert estimated
parameters further conditions are required. It is convenient to denote by Θ the set of all
admissible values of bθ; often we may take Θ to be a bounded set, in part to satisfy stationarity
conditions, while compactness of Θ would help to ensure existence of bθ.
Assumption 2.

(i) f (λ; θ) = f (λ) .
(ii) f (λ;h) has determinant bounded away from zero on ([−π, π]×Θ).
(iii) f (λ;h) is boundedly differentiable in h on ([−π, π]×Θ), with derivative that is contin-

uous in h at h = θ for all λ.
(iv) f (λ; θ) is differentiable in λ, with derivative satisfying a Lipschitz condition of order

greater than 1/2 in λ.
(v) (∂/∂h) f (λ;h) is differentiable in λ at h = θ, with derivative satisfying a Lipschitz

condition of order greater than 1/2 in λ.

Given correct specification (i), these assumptions seem innocuous, again being easily satisfied
by standard stationary and invertible ARMA parameterizations, for example, and could be
slightly relaxed at cost of greater proof detail.

Assumption 3.

(i) There exists K <∞ such that

|bγ|+ ¯̄̄bδ ¯̄̄ ≤ K, (3.5)

and κ > max (0, 1− β) such that

bγ = γ +Op

¡
n−κ

¢
, bδ = δ +Op

¡
n−κ

¢
; (3.6)

(ii) bθ = θ +Op(n
− 1
2 ), where θ ∈ Θ. (3.7)
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Condition (3.5) is innocuous if bγ and bδ optimize over compact sets, as is standard for implic-
itly defined estimates. The convergence rates required in Assumption 3 are all less than those
achieved of estimates (2.11) and (2.18) of ν in Theorem 1 below. In fact (ii) could be relaxed
to the rate on bγ and bδ of (i) if f (λ;h) is smoother in h than required in Assumption 2, in
particular if it is analytic in h (as in the ARMA case). We prefer our milder Assumption 2, and
the relatively brief proof that (ii) affords, because n1/2−consistency of parameter estimates in
short memory time series models is familiar, for example in case of Whittle estimates, see eg.
Hannan (1973). On the other hand, we might be content to assume κ = 1/2 in (3.6).
The n1/2−consistency and asymptotic normality of estimates of nonstationary integration

orders (and of parameters corresponding to θ in nonstationary fractional models), based on
scalar series was established by Velasco and Robinson (2000), for Type I processes (see (1.10)).
By bounding a measure of distance between Type I and Type II processes, Robinson (2002)
showed that the same results hold for Type II processes, thereby checking (3.6) and (3.7) for
estimates of δ and elements of θ identified by the u2t process. Robinson (2002) likewise checked
(3.6) and (3.7) for estimates (computed from residuals) of γ and elements of θ identified by
{u1t} , employing a preliminary estimate of ν, which satisfies a rate of convergence condition.
This is satisfied by OLS when γ + δ ≥ 1, but not when γ + δ < 1, where it is, however, satisfied
by the narrow-band OLS estimate of Robinson and Marinucci (1997, 2001), using a bandwidth
that increases sufficiently slowly; the strength of this rate condition is due in part to allowing
the compact set of admissible values of γ to be arbitrarily large - if this is suitably reduced the
condition can be relaxed so as to be satisfied by OLS even when γ + δ < 1, so long as δ > 3/4.
The only gap left in fully checking Assumption 3 is due to the fact that in general methods based
on the bivariate series zt are appropriate in order to estimate part of θ. However the extension
of Velasco and Robinson’s (2000) theory to cover bivariate series, and the subsequent adaptation
to our setting, seems straightforward, while if A(s) is a priori diagonal the only parameter not
estimated by two univariate procedures is the off-diagonal element of Ω, which is estimated by
an obvious side calculation, to satisfy (ii).
Unless β is close to 1/2, (3.6) is capable of being satisfied also by “semiparametric” estimates

of γ and δ, which might in any case be employed at an initial stage in determining the parametric
model for f . On the other hand, from the viewpoint of a full cointegration analysis, efficient
estimates of γ, δ and θ are desirable, suggesting construction of a Gaussian pseudo-ML approach,
estimating all parameters jointly, which is computationally more onerous than the kind of step-
by-step approach we have envisaged, but undoubtedly possible; asymptotic properties have yet
to be explicitly derived, but the problem of differing convergence rates encountered by Saikkonen
(1995) in a different setting can be avoided by concentrating out ν first.
We introduce notation to describe the limit distribution of our estimates. Denote by W (r)

the 2× 1 vector Brownian motion with covariance matrix Ω, and define (Type II-see Marinucci
and Robinson, 1999) fractional Brownian motion

W (r;β) =

rZ
0

(r − s)β−1

Γ (β)
dW (s) , (3.8)

and then define fW (r;β) = ξ0B (1)−1W (r;β) , (3.9)

10



where
ξ = (0, 1)

0
. (3.10)

By “⇒” we will mean convergence in the Skorohod J1 topology of D [0, 1] .

Theorem 1. Let (1.1), (1.2), (1.6), (1.7) and Assumptions 1-3 hold. Then, denoting by ν∗

any of the estimates in (2.11) or (2.18), we have as n→∞,

nβ (ν∗ − ν)⇒
q (0)

1Z
0

fW (r;β)2 dr


−1

2πζ0B (1)0Ω−1
1Z
0

fW (r;β) dW (r) , (3.11)

where q(0) = q(0; θ) is given by (2.14).

The proof is outlined in Appendix A, by a series of propositions whose proofs appear in
Appendix B. The rate of convergence in (3.11) seems to be optimal for any regular parametric
estimate in this model. Theorem 1 desirably implies that we can estimate ν as well, asymp-
totically, not knowing γ and/or δ and/or θ as knowing them, subject to the rate conditions of
Assumption 3, with the implication that efficiency of estimation of γ, δ and θ does not matter
if the only concern is estimating and testing ν.
The variates ζ 0B (1)0Ω−1W (r) and fW (r;β) are uncorrelated and thus, by Gaussianity, in-

dependent, so (3.11) indicates mixed normal asymptotics. As a consequence of this, and of the
Propositions in Appendix A, we have

Corollary 1. Denoting by b∗ any of the quantities eb(γ, θ), eb(bγ, θ), eb(γ,bθ), eb(bγ,bθ), b(γ, θ),
b(bγ, θ), b(γ,bθ), b(bγ,bθ), using (2.9) or (2.16), as n→∞, the Wald statistics

b∗ (ν∗ − ν)
2 →d χ

2
1. (3.12)

The form of the limit distribution in (3.11), where spectral properties of ut at only zero
frequency are involved, and the nonstationarity of xt(γ), suggest simpler forms of estimate than
(2.11), (2.18). We replace p(λj ;h), q(λj ;h) by p(0;h), q(0;h), and thence consider

ν(γ, δ, θ), ν(γ, δ,bθ), ν(bγ, δ,bθ), ν(γ,bδ,bθ), ν(bγ,bδ,bθ), (3.13)

where

ν(c, d, h) =
a(c, d, h)

b(c, h)
, (3.14)

in which
a(c, d, h) = p(0;h)

P
t
zt(c, d)xt(c), b(c, h) = q(0;h)

P
t
x2t (c), (3.15)

after applying (B.3) below. If we act on the belief that ut is white noise, (3.13) is identical to
(2.11), (2.18), but to cover other circumstances we have:
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Theorem 2. Let (1.1), (1.2), (1.6), (1.7) and Assumptions 1-3 hold. Then, denoting by ν◦

any of the estimates in (3.13), we have as n→∞, with p(0) = p(0; θ) given by (2.14):
(i) for 1/2 < β < 1,

n2β−1 (ν◦ − ν)⇒
q (0)

1Z
0

fW (r;β)2 dr


−1

p(0)
πR
−π

f(λ)ξ(1− e−iλ)−βdλ; (3.16)

(ii) for β = 1,

n (ν◦ − ν) ⇒
q (0)

1Z
0

fW (r;β)
2
dr


−1

×
p(0)

∞P
s=0

ψ−s + 2πζ
0B (1)0Ω−1

1Z
0

fW (r; 1) dW (r)

 , (3.17)

where
ψs = E(u0u

0
s)ξ; (3.18)

(iii) for β > 1,

nβ (ν◦ − ν)⇒
q (0)

1Z
0

fW (r;β)
2
dr


−1

2πζ0B (1)0Ω−1
1Z
0

fW (r;β) dW (r) . (3.19)

If ut is white noise, so f(λ) ≡ f(0), we have p(0)f(λ)ξ ≡ 0 and (3.16) becomes ν◦ =
ν + op(n

1−2β), but Theorem 1 applies here, with the sharp result (3.11); also, p(0)
P∞

s=0 ψ−s =
p(0)ψ0 = 2πp(0)f(0)ξ = 0, so (3.17) reduces to (3.11). For autocorrelated ut, when β > 1, (3.19)
indicates that (3.13) still does as well as (2.11), (2.18), but when β = 1 the convergence rate in
(3.17) is as good but the desirable mixed-normal asymptotics are lacking, due to “second-order
bias” (cf Phillips, 1991a,b) appearing as the first term in the second factor on the right of (3.17),
and when β < 1, in (3.16), not only are mixed-normal asymptotics lacking but convergence is
slower. Indeed, for 1/2 < β < 1 (3.13) never converges faster, and nearly always converges
slower, than OLS of yt on xt. From Propositions 6.1, 6.2 and 6.5 of Robinson and Marinucci
(2001), OLS is n2δ−1-consistent when γ+ δ = 2δ−β < 1, n2δ−1/ logn-consistent when γ+ δ =
2δ−β = 1 and γ > 0, n-consistent when δ = 1, γ = 0, and nβ-consistent when γ+δ = 2δ−β > 1,
so over the intersection of these regions with 1/2 < β = δ − γ < 1 the rate in (3.16) is equalled
when γ = 0 and exceeded when γ > 0, indicating that proper fractional differencing without
proper accounting for I(0) autocorrelation can do worse than simple methods based on unfiltered
data.
Focusing more closely on γ = 0, where the central case (ii) is that of I(1) xt, while the

widespread evidence of unit root behaviour based on tests against AR alternatives cannot be
taken very seriously from a fractional viewpoint (see Diebold and Rudebusch, 1991, Robinson.
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1994), it might be reasonable to interpret this as suggesting that integration orders may often
be close to 1, but either greater or less than 1, when the discontinuity in Theorem 2 at β = 1
makes use of (3.13) questionable. Even when β > 1, the detailed corrections for autocorrelation
in (2.11) and (2.18) might be expected to produce better finite-sample properties than (3.13),
which is based on an appeal to asymptotic theory due to a high degree of nonstationarity in
xt(γ), while the extra computational burden of (2.11) and (2.18) does not seem prohibitive.
Because this discussion indicates that it is less important than Theorem 1, and because its proof
is in part embodied in that of Theorem 1 and in part straightforwardly uses Theorems 4.1, 4.3
and 4.4 of Robinson and Marinucci (2001), we have omitted the proof of Theorem 2. Theorem
4.3 of Robinson and Marinucci (2001) can also be applied to justify narrow-band frequency-
domain versions of (3.13) which, at cost of introducing a user-chosen bandwidth, eliminate the
second-order bias term in (3.17) and thereby achieve the asymptotics in (3.11), corresponding
to an idea due to Phillips (1991b) in a semiparametric setting for the CI(1, 1) case β = δ = 1.

4. MONTE CARLO EVIDENCE

With the main aim of studying the effect of estimating integration orders γ, δ on our esti-
mates of ν and their distributional properties, a small Monte Carlo study was carried out in
the simplest case where in (1.1), (1.2) we know that the ut are serially uncorrelated, so Aj ≡ 0
a priori in (3.2). The treatment of autocorrelation in ut looms large in the rest of the paper,
and corresponding Monte Carlo analysis is warranted, but a reasonably representative analysis,
perhaps looking at more than one time series model, with varying degrees of autocorrelation and
comparing the performance of (2.11), (2.18) and (3.13), as well as varying scale and contem-
poraneous correlation parameters, would add considerable space to this already lengthy paper.
There are two parts to our Monte Carlo investigation, the first comparing performance in frac-
tional circumstances of estimates assuming both γ and δ are known with ones where both are
estimated, and the second focusing on the standard case (γ, δ) = (0, 1), and considering also
estimates in which one of γ or δ is estimated. We generated Gaussian ut with covariance matrix
Ω having ijth element ωij , varying the correlation ρ = ω12 /(ω11 ω22 )

1/2 (taking values 0, 0.5,
-0.5, 0.75) and variance ratio τ = ω22/ω11 (taking values 0.5, 1, 2). The parameter ρ heavily in-
fluences the “simultaneous equation bias” in (1.1), regressors and disturbances being orthogonal
only when ρ = 0, while τ affects the signal-to-noise ratio in (1.1), with increase in τ generally
being associated with an increase in precision in estimation of ν. Our estimates are invariant to
ν 6= 0 and also to a scale factor of Ω, and so we fixed ν = ω11 = 1 with no loss of generality.
In the first part of the study we employed all six (γ, δ) combinations of γ = 0, 0.4 with

δ = 0.6, 1.2, 2:

(γ, δ) = (0, 0.6) , (0, 1.2) , (0, 2) , (0.4, 0.6) , (0.4, 1.2) , (0.4, 2) . (4.1)

The fourth case, (0.4, 0.6), does not satisfy (1.7), but is included to illustrate the case β ≤ 1/2
discussed briefly in point 1 of Section 5 below. In the first case, (0, 0.6), the bias of OLS is so
strong as to determine the rate of convergence when ρ 6= 0 (see Robinson and Marinucci, 1997),
while in the remaining four cases OLS achieves the optimal rate. Table I records the convergence
rates of OLS when ρ 6= 0, OLS when ρ = 0, and the optimal rates (achieved in Theorem 1 and
also, in the (0.4, 0.6) case, by Hualde and Robinson, 2001).
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TABLE I
CONVERGENCE RATES:

OLS WITH ρ 6= 0, ρ = 0 AND OPTIMAL RATES
(γ, δ) (0, 0.6) (0, 1.2) (0, 2) (0.4, 0.6) (0.4, 1.2) (0.4, 2)

OLS, ρ 6= 0 n.2 n1.2 n2 n.2/ logn n.8 n1.6

OLS, ρ = 0 n.6 n1.2 n2 n.2 n.8 n1.6

Optimal n.6 n1.2 n2 n.5 n.8 n1.6

We generated 1000 series of lengths n = 64, 128, 256, and computed the Infeasible estimate
νI and Feasible estimate νF , given by

νI = bν(γ, δ, θI) = eν(γ, δ, θI), (4.2)

νF = bν(bγ,bδ, θF ) = eν(bγ,bδ, θF ), (4.3)

for bγ,bδ to be described subsequently, and θI , θF representing 3 × 1 vectors of estimates of
θ = (ω11 , ω12 , ω22 )

0 given by ΩI = Ω(γ, δ), ΩF = Ω(bγ,bδ), with the definition (2.21). Then
we have νI = ν(γ, δ), νF = ν(bγ,bδ) (see (2.20)). Thus, we compare an optimal estimate (νI)
in case γ, δ are known (one that is familiar from the unit root cointegration literature in case
(γ, δ) = (0, 1)) with one (νF ) where γ, δ are unknown, and replaced by estimates.
We computed bδ by variants of the univariate Whittle procedure of Velasco and Robinson

(2000), using untapered xt for δ < 1, and for δ ≥ 1 using untapered ∆xt and adding back 1.
The estimation of memory parameters of nonstationary series by means of integer-differenced
stationary and invertible observations incurs no loss of efficiency (cf Robinson, 1994), but our
use of the actual δ may favour νF . On the other hand, Velasco and Robinson’s (2000) estimates
based on untapered data are proved to be n1/2-consistent only when the memory parameter
is less than 3/4, so our application of their procedure to first-differenced untapered data when
δ = 2 is not supported by their results, and may lead to inferior νF compared to ones using
memory parameter estimates which incorporate suitable tapering. We computed bγ from the
same type of procedure based on the yt−νOxt, where νO is the Ordinary least squares estimate

νO =

P
t xtytP
t x

2
t

. (4.4)

Robinson and Marinucci (1997) have demonstrated how νO can be improved upon by a narrow-
band frequency domain OLS procedure. This would presumably lead to an improvement in bγ,
and thence in νF , but it involves choice of a bandwidth number, and in the purely “parametric”
context of the current paper we prefer the more familiar and simpler νO, whose performance as
an estimate of ν we also compare with νI and νF .
Tables II and III respectively show the Monte Carlo bias (defined as the estimate minus ν

averaged across replications) and standard deviation (SD) of νI , νF and νO, across all cases
(4.1), and for all three values of τ , but for ρ = 0.5 only. The tables for ρ = 0,−0.5, 0.75
have been omitted to save space, but our discussion reflects them equally. For all ρ, τ , bias
tends to decrease in absolute value as β increases, as rates of convergence predict. Bias tends
to vary inversely with τ , but this is very noticeable only in the cases (0, 0.6), (0.4, 0.6). Of
the three estimates, in general νI not surprisingly performs best, followed by νF and then νO:
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it is reassuring that while νF is damaged by nuisance parameter estimation, it nevertheless
emerges as worthwhile relative to OLS, whose bias is unacceptably large in the cases (0, 0.6),
(0.4, 0.6), even for n = 256, except, of course, when ρ = 0, when it tends to do better than
νF for (0.4, 0.6). While the bias of νI is virtually unaffected by varying ρ, there is evidence
that the bias of νF somewhat increases in absolute value with |ρ| , with sign opposite to that of
ρ. Biases tend to decrease with n, though some noticeable increases are observed for νF when
(γ, δ) = (0.4, 0.6). As anticipated, SD tends to decrease as τ and n increase. The SD of both νI
and νF shows some tendency to decrease as |ρ| increases, though it frequently increases in case
of νF when (γ, δ) = (0, 0.6) or (0.4, 0.6), its much greater imprecision relative to νI supporting in
the latter case a conjecture offered in point 1 of Section 5 below. Otherwise, the close similarity
in variability of νI and νF for n = 256 is encouraging. For n = 64, the change in sign of ρ is
associated with some small improvement. Often νO is more precise than νF , and even νI , when
either n is small or (γ, δ) = (0, 0.6) or (0.4, 0.6) .
We next examine the accuracy of the large sample χ2 approximation of Corollary 1, looking

at the rejection frequencies of Wald tests. Define the Wald statistics WI = bI (νI − 1)2 and
WF = bF (νF − 1)2 , where

bI = b
¡
γ, θI

¢
= eb ¡γ, θI¢ = v (γ, δ) , (4.5)

bF = b
¡bγ, θF ¢ = eb ¡bγ, θF ¢ = v

³bγ,bδ´ , (4.6)

with

v (c, d) =
n
nP

t x
2
t (c)

P
t x

2
t (d)− {

P
t xt(c)xt(d)}2

o
P

t x
2
t (d)

P
t bε2t (c, d) , (4.7)

where bεt (c, d) are residuals from the OLS regression of yt(c) on xt(c) and xt(d); v (c, d) is the
usual OLS estimate of variance of the estimated coefficient of xt(c) in the OLS regression of
yt(c) on xt(c) and xt(d). Tables IV-VII contain rejection frequencies under the null hypothesis
ν = 1 corresponding to nominal Type I error probabilities α = 0.05, 0.10, for the four values of
ρ but for τ = 1 only, the results for τ = 0.5 and 2 being very similar. The results for WI are
on average too large, but only slightly, and performance here seems very satisfactory over all
(γ, δ) and ρ. The rejection frequencies of WF do decrease significantly in n but are overall too
large, worst when (γ, δ) = (0, 0.6) , and tend to decrease in β for |ρ| ≥ 0.5. Some results, for
γ = 0, δ = 0.6, 1.2 only, were also obtained for larger n; in particular when n = 1024 decreases
of about 30% were typically achieved over n = 256.
For the second part of the Monte Carlo study, we focus on the familiar case (γ, δ) = (0, 1) , but

include now also the “intermediate” estimates discussed in Section 2, employing prior knowledge
of either γ or δ,

νγ = ν(0,bδ) = bν(0,bδ, θγ) = eν(0,bδ, θγ), (4.8)

νδ = ν(bγ, 1) = bν(bγ, 1, θδ) = eν(bγ, 1, θδ), (4.9)

where θγ , θδ consist of the appropriate elements of Ω(0,bδ), Ω(bγ, 1), respectively. In this case
νO has the same rate of convergence as νI , νF , νγ , νδ, being n-consistent, but lacks the mixed
normal asymptotics. We employed the same values of ρ and τ as before, with also ρ = 0.25.
Table VIII reports Monte Carlo bias and SD. The best and worst estimates, when ρ 6= 0, are
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again νI and νO respectively, but though νδ (which correctly assumes δ = 1) is second-best, νγ
(which correctly assumes γ = 0) is inferior to νF ; this is all the more surprising because γ is
more problematic to estimate than δ as it uses residuals. In νF the contributions to bias from
estimation of γ and δ may partly cancel, while even when n = 64 the bias of νγ is never so
large as to cause serious concern. As before, SD is much less variable. For |ρ| ≥ 0.5, νO clearly
performs worst, but there is little difference between the optimal estimates, though for small n,
νI seems best, followed closely by νδ, with almost identical values for νγ and νF .
Table IX reports rejection frequencies under the null, including now results for Wγ =

bγ (νγ − 1)2 , Wδ = bδ (νδ − 1)2, where

bγ = b
¡
0, θγ

¢
= eb ¡0, θγ¢ = v

³
0,bδ´ , (4.10)

bδ = b
¡bγ, θδ¢ = eb ¡bγ, θδ¢ = v (bγ, 1) , (4.11)

and

WO =
n (νO − 1)2

P
t x

2
tP

t (yt − νOxt)
2 , (4.12)

though WO does not have a limiting null χ21 distribution. The rejection frequencies of WI are
the most accurate, followed by Wγ , the discrepancy increasing with |ρ|. Even for ρ 6= 0, WO

often does better than Wδ and WF , which perform quite similarly; the effect of estimating γ is
dominant, and use of an improved preliminary estimate of ν, such as that proposed by Robinson
and Marinucci (1997, 2001), or iteration, may be warranted.

5. FINAL COMMENTS

Our treatment of a bivariate system in a parametric setting is quite general, in that a very
wide range of models for the I(0) input series ut is covered, while our regularity conditions seem
to afford little scope for relaxation. Nevertheless, there are significant aspects not explored in
the paper.

1. Our case β > 1/2 includes the familiar CI(1, 1) setting, but 0 < β < 1/2 is also of interest.
As discussed by Hualde and Robinson (2001), xt (γ) is then “asymptotically stationary”
and it is possible to obtain n1/2-consistent and asymptotically normal estimates, with
limiting variance that is affected by the estimation (and the efficiency of estimation) of
one or more of γ, δ and θ, because the requirement κ > 1 − β on κ in (3.6) still appears
to be relevant when β < 1/2, but (3.6) is unachieveable then because bγ, bδ are at most
n1/2-consistent, no matter the values of γ and δ; see eg. Velasco and Robinson (2000).

2. In view of the literature on non-fractional cointegration, there would be empirical interest
in incorporating also in (1.1) and/or (1.2) deterministic components. Modification of
the theory to cover polynomial time trends seems relatively straightforward, though our
fractional focus suggests allowing for possibly non-integral powers of t in studying the
relative importance of stochastic and deterministic trends, as Robinson and Marinucci
(2000) did in connection with OLS and its narrow-band modification, while if such powers
are unknown the extension is decidedly non-trivial.
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3. Extension of our methods and theory to vector yt and xt, and matrix ν, seems straightfor-
ward when there is no variation in integration orders across elements of xt and yt − νxt.
However, multivariate data invite consideration not only of multiple cointegrating relation-
ships but also of observables and/or cointegrating errors with differing integration orders,
which would raise particular questions of identifiability and complicate estimation.

4. Our parametric treatment of autocorrelation in ut follows a classical economic time series
tradition and allows parsimony, but the unit root cointegration literature has stressed
a nonparametric approach. Nonparametric estimation of f (λ) should lead to the same
outcomes as in Theorems 1 and 2, and corresponds in (2.11) to taking Bj = 0, j > p,
but letting p go slowly to infinity in the asymptotic theory, while in (2.18) or (3.13)
weighted autocovariance or periodogram estimation might be used. The forms (3.13)
would be easiest to handle technically, while in (2.18), the variation in f (λj) across the n
Fourier frequencies might be dealt with by techniques like those used by Robinson (1991,
pp.1354, 1355), or alternatively one can employ estimates which are constant over slowly
degenerating bands, as proposed in Hannan (1963) and employed by Phillips (1991b) in
the CI(1, 1) case. In any event, the slow convergence of nonparametric estimates of f is of
concern because even the refinement of (3.7) mentioned in the discussion of Assumption
3 (ii) requires a convergence rate arbitrarily close to n−1/2 as β → 1/2. In principle
nκ−1/2−consistent nonparametric spectral estimates can be found, for any κ > 0 (where,
for example, κ depends on kernel order, see eg Cogburn and Davis, 1974), though, as β is
unknown, one can never be sure that the κ achieved is sufficient.

APPENDIX A: OUTLINE OF PROOF OF THEOREM 1

Though the proof of (3.11) for the time-domain estimates (2.11) is not contained in that
for the frequency-domain estimates (2.18), nevertheless the proof for the latter does involve
approximation in the time domain so that many of the steps are similar. Thus, because it
entails the greater technical challenge, computational elegance and generality, we give the proof
only for (2.18).
Consider first the infeasible estimate bν (γ, δ, θ) . We have

zt (c, d) = ζxt (c) ν + vt (c, d) , (A.1)

where
vt (c, d) = (u1t (c− γ) , xt (d))

0
. (A.2)

Thus bν (c, d, h)− ν =
e (c, d, h)

b (c, h)
, (A.3)

where
e (c, d, h) =

X
j

p (λj ;h)wx(c) (−λj)wv(c,d) (λj) . (A.4)

From (1.2), (A.2), vt (γ, δ) = u#t , so that

bν (γ, δ, θ)− ν =
e (γ)

b (γ)
, (A.5)
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where
b (γ) = b (γ, θ) =

X
j

q (λj)
¯̄
wx(γ) (λj)

¯̄2
, (A.6)

e (γ) = e (γ, δ, θ) =
X
j

p (λj)wx(γ) (−λj)wu (λj) , (A.7)

with
wu (λ) =

1

(2πn)
1
2

X
t

ute
itλ, (A.8)

p (λ) = p (λ; θ) , q (λ) = q (λ; θ) . (A.9)

Also define

e∗ (γ) =
X
m

(
ζxm (γ)−

m−1X
s=1

Bsζxm−s (γ)

)0
Ω−1εm, (A.10)

e∗∗ (γ) = ζ 0B (1)0 Ω−1
X
m

xm−1 (γ) εm, (A.11)

b∗ (γ) =
X
m

(
ζxm (γ)−

m−1X
s=1

Bsζxm−s (γ)

)0
Ω−1

(
ζxm (γ)−

m−1X
s=1

Bsζxm−s (γ)

)
, (A.12)

b∗∗ (γ) =
q (0)

2π

X
m

x2m (γ) . (A.13)

Now (3.11) for bν (γ, δ, θ) follows on establishing the following six propositions.
Proposition 1. As n→∞,

e (γ)− e∗ (γ) = op
¡
nβ
¢
. (A.14)

Proposition 2. As n→∞,

e∗ (γ)− e∗∗ (γ) = op
¡
nβ
¢
. (A.15)

Proposition 3. As n→∞,

n−βe∗∗ (γ)⇒ ζ 0B (1)0Ω−1
1Z
0

fW (r;β) dW (r) . (A.16)

Proposition 4. As n→∞,

b (γ)− b∗ (γ) = op
¡
n2β

¢
. (A.17)

Proposition 5. As n→∞,

b∗ (γ)− b∗∗ (γ) = op
¡
n2β

¢
. (A.18)
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Proposition 6. As n→∞,

n−2βb∗∗ (γ)⇒ q (0)

2π

1Z
0

fW (r;β)2 dr, (A.19)

where the right side is almost surely positive.

To prove (3.11) for the remaining four estimates in (2.18), it suffices to consider only bν(γ, δ,bθ)
and bν(bγ,bδ,bθ) as the proof for the other, intermediate cases, will essentially be implied. It thus
remains to show that bν(γ, δ,bθ)− bν(γ, δ, θ) = op

¡
nβ
¢
, (A.20)

bν(bγ,bδ,bθ)− bν(γ, δ,bθ) = op
¡
nβ
¢
. (A.21)

We have first bν(γ, δ,bθ)− ν =
e(γ, δ,bθ)
b(γ,bθ) , (A.22)

so that, from (A.3), the left side of (A.20) is

e(γ, δ,bθ)− e(γ, δ, θ)

b(γ,bθ) + e(γ, δ, θ)

(
1

b(γ,bθ) − 1

b(γ, θ)

)
. (A.23)

In view of Propositions 1-6, the proof of (A.20) follows on establishing the following two propo-
sitions.

Proposition 7. As n→∞,

e(γ, δ,bθ)− e(γ, δ, θ) = op
¡
nβ
¢
. (A.24)

Proposition 8. As n→∞,

b(γ,bθ)− b(γ, θ) = op
¡
n2β

¢
. (A.25)

To prove (A.21), note that

bν(bγ,bδ,bθ)− ν =
e(bγ,bδ,bθ)
b(bγ,bθ) , (A.26)

so from (A.22) the left side of (A.21) is

e(bγ,bδ,bθ)− e(bγ,bδ, θ)− e(γ, δ,bθ) + e(γ, δ, θ)

b(bγ,bθ)
+
e(bγ,bδ, θ)− e(γ, δ, θ)

b(bγ,bθ) − e(γ, δ,bθ)
b(bγ,bθ)b(γ,bθ) {b(bγ, θ)− b(γ, θ)}

− e(γ, δ,bθ)
b(bγ,bθ)b(γ,bθ)

n
b(bγ,bθ)− b(bγ, θ)− b(γ,bθ) + b(γ, θ)

o
, (A.27)
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and (A.21) follows from Propositions 1-8 on establishing the following four propositions.

Proposition 9. As n→∞,

e(bγ,bδ, θ)− e(γ, δ, θ) = op
¡
nβ
¢
. (A.28)

Proposition 10. As n→∞,

e(bγ,bδ,bθ)− e(bγ,bδ, θ)− e(γ, δ,bθ) + e(γ, δ, θ) = op
¡
nβ
¢
. (A.29)

Proposition 11. As n→∞,

b(bγ, θ)− b(γ, θ) = op
¡
n2β

¢
. (A.30)

Proposition 12. As n→∞,

b(bγ,bθ)− b(bγ, θ)− b(γ,bθ) + b(γ, θ) = op
¡
n2β

¢
. (A.31)

APPENDIX B: PROOFS OF PROPOSITIONS

Proof of Proposition 1

Write e (γ) as

ζ 0

n

X
j

∞X
l=−∞

B
0
le
−ilλjΩ−1

∞X
m=−∞

Bme
imλj

X
s

xs (γ) e
−isλj

X
t

ute
itλj , (B.1)

taking Bl = 0, l < 0, B0 = I2, Bl = −Bl, l > 0. We can rewrite this as

ζ 0

n

X
s

X
t

X
j

∞X
l=−∞

B
0
l−se

−i(l−s)λjΩ−1
∞X

m=−∞
Bm−tei(m−t)λjxs (γ) e−isλjuteitλj

=
∞X

m=1

∞X
r=−∞

(X
s

Bm−s+rnζxs (γ)

)0
Ω−1

X
t

Bm−tut, (B.2)

because X
j

eitλj = n, t = 0,mod (n) ;= 0, otherwise. (B.3)

The expectation of the absolute value of the difference between (B.2) and the truncated (with
respect to m) sum

nX
m=1

∞X
r=−∞

(X
s

Bm−s+rnζxs (γ)

)0
Ω−1

X
t

Bm−tut (B.4)
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is bounded by

K
∞X

m=n+1

E °°°°°
∞X

r=−∞

X
s

Bm−s+rn
sX

v=1

as−vu2v

°°°°°
2

E

°°°°°X
t

Bm−tut

°°°°°
2
 1

2

, (B.5)

with at = at (β), where throughout K denotes a generic positive constant. The second expecta-
tion is bounded by

tr

X
t

X
s

πZ
−π

Bm−tf (λ)B0
m−se

i(s−t)λdλ

 ≤ K

πZ
−π

°°°°°X
t

Bm−te−itλ
°°°°°
2

dλ

≤ K
X
t

kBm−tk2 ≤ K
∞X

t=m−n
kBtk2 (B.6)

for m > n. The first expectation in (B.5) is bounded by

tr


πZ
−π

∞X
r=−∞

X
s

sX
v=1

Bm−s+rnas−ve−ivλf22 (λ)
∞X

q=−∞

X
t

tX
w=1

B
0
m−t+qnat−we

iwλdλ



≤ K

πZ
−π

°°°°°
∞X

r=−∞

X
s

sX
v=1

Bm−s+rnas−ve−ivλ
°°°°°
2

dλ

≤ K
∞X

r=−∞

X
s

∞X
q=−∞

X
t

°°Bm−s+rn
°°°°Bm−t+qn

°°min(s,t)X
v=1

as−vat−v,

(B.7)

where fii(λ) is the (i, i)th element of f(λ), and thus is bounded. From Lemma D.2, (B.7) is
bounded by

Kn2β−1
Ã ∞X
l=0

kBlk
!2

= O
¡
n2β−1

¢
, (B.8)

using (3.4). It follows that (B.5) is bounded by

Knβ−1/2
∞X

m=n+1

Ã ∞X
t=m−n

kBtk2
!1/2

≤ Knβ−1/2
∞X

m=1

Ã ∞X
t=m

kBtk2
!1/2

≤ Knβ−1/2
∞X

m=1

∞X
t=m

kBtk

≤ Knβ−1/2
∞X
j=1

j kBjk = O(nβ−1/2), (B.9)
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again using (3.4).
Next, the expectation of the absolute value of the difference between (B.4) and

nX
m=1

∞X
r=−∞

(X
s

Bm−s+rnζxs (γ)

)0
Ω−1εm (B.10)

is bounded by

K
nX

m=1

E °°°°°
∞X

r=−∞

X
s

Bm−s+rn
sX

v=1

as−vu2v

°°°°°
2

E

°°°°°
0X

t=−∞
Bm−tut

°°°°°
2
 1

2

. (B.11)

Proceeding as in (B.6), the second expectation is bounded by K
P∞

t=m kBtk2 , so since the first
expectation is bounded by (B.8), it follows that (B.11) is bounded by

Knβ−
1
2

∞X
m=1

Ã ∞X
t=m+1

kBtk2
! 1

2

= O(nβ−
1
2 ), (B.12)

as in (B.9). The expectation of the absolute value of the difference between (B.10) and e∗ (γ) is
bounded by

K
nX

m=1

E °°°°°X
r>0

X
s

Bm−s+rn
sX

v=1

as−vu2v

°°°°°
2
 1

2

≤ Knβ−
1
2

nX
m=1

"X
r>0

X
s

°°Bm−s+rn
°°2# 1

2

≤ Knβ−
1
2

nX
m=1

" ∞X
t=m

kBtk2
# 1
2

, (B.13)

which is O(nβ−1/2), to complete the proof.

Proof of Proposition 2

Consider first the difference

ζ 0
X
m

mX
s=1

B
0
m−sdm−1,s (γ)Ω

−1εm, (B.14)

where dm−1,s (γ) = xm−1 (γ) − xs (γ) . Because there is a contribution to the mean only when
s = m, (B.14) has expectation

−
X
m

ζ0Ω−1E [εmε0m] ξ = −nζ0ξ = 0. (B.15)

(B.14) has variance c1 + c2 + c3, where

c1 =
X
m

X
q

mX
s=1

qX
t=1

ζ 0B
0
m−sΩ

−1E
£
εmε

0
q

¤
Ω−1Bq−tζE [dm−1,s (γ) dq−1,t (γ)] , (B.16)
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c2 =
X
m

X
q

mX
s=1

qX
t=1

ζ 0B
0
m−sΩ

−1E [εmdq−1,t (γ)]E
£
ε0qdm−1,s (γ)

¤
Ω−1Bq−tζ, (B.17)

and c3 is a fourth cumulant term to be described subsequently. We have

dm−1,s (γ) = u2,m−1 (−β)− u2,s (−β)

=
sX

v=1

(am−1−v − as−v)u2v +
m−1X
v=s+1

am−1−vu2v1 (s ≤ m− 2) ,

(B.18)

with a−1 = 0.
Considering first c1, there is a contribution only when q = m, and then |E [dm−1,s (γ) dq−1,t (γ)]|

is ¯̄̄̄
¯̄
πZ
−π

f22 (λ) rsm(−λ)rtm(λ)dλ
¯̄̄̄
¯̄ ≤ K


πZ
−π

f22 (λ) |rsm(λ)|2 dλ
πZ
−π

f22 (λ) |rtm(λ)|2 dλ

1/2

≤ K(rsmrtm)
1/2, (B.19)

writing

rsm(λ) =
sX

v=1

(am−1−v − as−v)eivλ +
m−1X
v=s+1

am−1−veivλ1 (s ≤ m− 2) ,

(B.20)

rsm =
sX

v=1

(am−1−v − as−v)2 +
m−1X
v=s+1

a2m−1−v1 (s ≤ m− 2) . (B.21)

Then (B.19) is bounded by K {|m− s− 1| |m− t− 1|}1/2mmax(0,2β−2), on taking t = m − 2
in Lemma D.3 for s ≤ m − 2, then noting that rm−1,m = 0, and that rmm =

m−1P
v=1

(am−v −
am−1−v)2 + 1 = O(mmax(0,2β−2)), on applying Lemma D.3 with s = m − 1, t = m. It follows
that

|c1| ≤ K
X
m

mmax(0,2β−2)


mX
j=0

j
1
2 kBjk


2

= O (n) 1(1/2 < β ≤ 1) +O
¡
n2β−1

¢
1(β > 1). (B.22)

Next, note that c2 is zero unless m = q = s = t, so c2 = O (n) = o(n2β). Finally, the fourth
cumulant term, c3, involves the fourth cumulant of εm, εq, xm−1 (γ)− xs (γ) , xq−1 (γ)− xt (γ) ,
which is easily seen to be zero unless m = q = s = t, so that c3 = O (n) also.
It remains to show that

ζ 0
X
m

(
B (1)−

mX
s=1

Bm−s

)0
xm−1 (γ)Ω−1εm = op

¡
nβ
¢
. (B.23)
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Clearly the left side has mean zero. Its variance is, from arguments similar to those above,
bounded by

K
X
m

°°°°°B (1)−
m−1X
s=0

Bs

°°°°°
2

Ex2m−1 (γ)E kεmk2 ≤ K
X
m

Ã ∞X
s=m

kBsk
!2

m2β−1, (B.24)

because Ex2m (γ) = O(m2β−1) from Robinson and Marinucci (2001). Then, (B.24) is o
¡
n2β

¢
from the Toeplitz lemma, to complete the proof.

Proof of Proposition 3. Note that ζ 0B (1)0 Ω−1εm has mean zero and variance q (0) /2π;
in view of Theorem 1 of Marinucci and Robinson (2000) and Assumption 1, the proof follows
by Theorem 2.2 of Kurtz and Protter (1991).

Proof of Proposition 4. This is omitted, as it is similar to the proof of Proposition 1 but
significantly easier, especially in view of the norming n−2β rather than n−β.

Proof of Proposition 5. This is likewise omitted due to its similarity to, and simplicity
relative to, the proof of Proposition 2.

Proof of Proposition 6. This follows straightforwardly from Marinucci and Robinson
(2000), the continuous mapping theorem and Assumption 1, and the fact that fW (r;β) is almost
surely non-zero, from (3.8), (3.9).

Proof of Proposition 7. By the mean-value theorem, p(λ;bθ) − p(λ; θ) = (bθ − θ)0P (λ),
where P (λ) is the matrix P (λ;h) = ∂p(λ;h)/∂h, with columns evaluated respectively at θ

(1)
,

θ
(2)
, where

°°°θ(i) − θ
°°° ≤ °°°bθ − θ

°°° , i = 1, 2. Writing P (λ) = P (λ; θ),

sup
λ

°°P (λ)− P (λ)
°° ≤ 2 sup

h∈N�

sup
λ
kP (λ;h)− P (λ)k

+4sup
h∈Θ

sup
λ
kP (λ;h)k 1

³¯̄̄bθ − θ
¯̄̄
≥ �
´
, (B.25)

where � > 0 and N� = {h : kh− θk < �} . Noting Assumption 2 parts (ii) and (iii), since con-
tinuity in h for all λ implies uniform continuity on the compact set [−π, π], the first term on
the right of (B.25) tends to 0 as � → 0. The second term is op(1) as n → ∞ for � > 0 from
Assumption 2 (ii) and (iii) and Assumption 3 (ii). It follows that°°°°°°

X
j

©
P (λj)− P (λj)

ª
wx(γ)(−λj)wu(λj)

°°°°°° = op

X
j

°°wx(γ)(−λj)wu(λj)
°°

= op

(X
t

x2t (γ)
X
t

kutk2
) 1

2

 ,

(B.26)

which is op
¡
nβ+1/2

¢
, where we use the Cauchy inequality, (B.3),

P
t kutk2 = Op (n) andX

t

xt(γ)
2 = Op

¡
n2β

¢
, (B.27)
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from Robinson and Marinucci (2001). Thus, noting Assumption 3 (ii), it remains to show thatX
j

P (λj)wx(γ)(−λj)wu(λj) = op

³
nβ+

1
2

´
. (B.28)

Denote by PL(λ) the partial sum, to L terms, of the Fourier series of P (λ), so

PL(λ) =
LX

l=−L
Ple
−ilλ, Pl =

1

2π

πZ
−π

P (λ)eilλdλ. (B.29)

From Assumption 2 (ii) and (v), and Zygmund (1977, p.64),

sup
λ
kP (λ)− PL(λ)k = O

µ
logL

L

¶
, (B.30)

as L→∞. Thus°°°°°°
X
j

{P (λj)− PL(λj)}wx(γ)(−λj)wu(λj)

°°°°°° ≤ K
logL

L

(X
t

xt(γ)
2
X
t

kutk2
) 1

2

, (B.31)

proceeding as in (B.26). With L = [n
1
2 ], (B.31) is Op

¡
(logn)nβ

¢
= op

³
nβ+

1
2

´
.

On the other hand, for L < n,

X
j

PL(λj)wx(γ)(−λj)wu(λj) =
1

2π

LX
l=−L

Pl

X0

t(l)

xt(γ)ut+l

+
X00

t(l)

xt(γ)ut+l+n +
X
t(l)

000
xt(γ)ut+l−n

 , (B.32)

where X0

t(l)

=
X

1≤t,t+l≤n
,
X00

t(l)

=
X

1≤t,t+l+n≤n
,
X000

t(l)

=
X

1≤t,t+l−n≤n
, (B.33)

on applying (B.3). Looking first at the second and third terms in (B.32), we note that 1 ≤
t, t + l + n ≤ n and 1 ≤ t, t + l − n ≤ n are equivalent, respectively, to 1 ≤ t ≤ −l, for
−L ≤ l ≤ −1, and 1 + n− l ≤ t ≤ n, for 1 ≤ l ≤ L. Then

E

°°°°°°
X00

t(l)

xt(γ)ut+l+n +
X
t(l)

000
xt(γ)ut+l−n

°°°°°° ≤ K |l|
n−1X
s=0

|as(β)| ≤ K |l|nβ, (B.34)

from Lemma D.1. Thus, because Assumption 2 (ii) and (v) implies

∞X
l=−∞

|l| kPlk <∞, (B.35)
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(Zygmund, 1977, p.240), the contribution from the final two terms of (B.32) is Op

¡
nβ
¢
. FinallyX0

t(l)

xt(γ)ut+l = Op

³
nmax(β,1)

´
, (B.36)

uniformly in l, from Lemmas C.1 and C.2, which, with (B.35) and Assumption 3 (ii), completes
the proof of (B.28).

Proof of Proposition 8. This follows similarly to, but more easily than, the proof of
Proposition 7.

Proof of Proposition 9. The left side of (A.28) isX
j

p (λj)
©
wx(bγ) (−λj)− wx(γ) (−λj)

ªn
wv(bγ,bδ) (λj)− wu (λj)

o
(B.37)

+
X
j

p (λj)wx(γ) (−λj)
n
wv(bγ,bδ) (λj)− wu (λj)

o
(B.38)

+
X
j

p (λj)
©
wx(bγ) (−λj)− wx(γ) (−λj)

ª
wu (λj) . (B.39)

Consider first (B.39)). Noting Assumption 2 (ii) and (iv) and proceeding as in the proof of
Proposition 7, define

pL (λ) =
LX

l=−L
ple
−ilλ, pl =

1

2π

πZ
−π

p (λ) eilλdλ, (B.40)

where

sup
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||p (λ)− pL (λ)|| = O

µ
logL

L

¶
,

∞X
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|l| kplk <∞. (B.41)

Thus X
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{p (λj)− pL (λj)}
©
wx(bγ) (−λj)− wx(γ) (−λj)

ª
wu (λj) (B.42)

is bounded in norm by

K logL

L

(X
t

{xt(bγ)− xt(γ)}2
X
t

kutk2
) 1

2

, (B.43)

using the Cauchy inequality and (B.3) again. Now choosing L = [n1/2] and taking c = δ−γ = β,bc = δ − bγ in Lemma C.5, (B.43) is Op

³
(logn)2 nβ−κ

´
= op

¡
nβ
¢
.

On the other hand, for L < n,

X
j
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ª
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2π
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+
X00

t(l)

{xt(bγ)− xt(γ)}ut+l+n +
X
t(l)

000 {xt(bγ)− xt(γ)}ut+l−n
 . (B.44)

As in the proof of Lemma C.5, we can write, for any R ≥ 2,
xt(bγ)− xt(γ) = u2t(bγ − δ)− u2t(−β)

=
R−1X
r=1

(γ − bγ)r
r!

g(r) (u2t;β) +
(γ − bγ)R

R!
g(R) (u2t; δ − γ) ,

(B.45)

where, for a vector or scalar sequence ϕt, and real b ≥ 0,

g(r)(ϕt; b) =
t−1X
s=1

a(r)s (b)ϕt−s, (B.46)

with a
(r)
s (b) = (dr/dbr)as(b) and |γ − γ| ≤ |bγ − γ| . Applying (C.14) of Lemma C.4 with r = R,

c = β, bc = δ − γ, and Assumption 3 (i), indicates that the final term in (B.45) is uniformly
Op

¡
n−Rκtβ+�

¢
, for any � > 0. Thus, the contribution of this term to (B.44) is, by the Cauchy

inequality and (B.41), Op
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¢
, which is op
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on choosing R large enough.

Next, as in (B.34), we have
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000
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applying again Lemma D.1, so on taking account of the (γ − bγ)r factors and invoking Assumption
3 (i) and (B.41), the contribution of the sums

P00
t(l) and

P000
t(l) to (B.44) is Op
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op
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From (C.2) of Lemma C.1 and (C.8) of Lemma C.2 the sum over
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t(l) is
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We next consider (B.38), and again wish to replace p(λ) by pL(λ). First°°°°°°
X
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Noting that vt(bγ,bδ) = ³u1t (bγ − γ) , u2t(bδ − δ)
´0
the second factor in braces isP

t

°°°vt(bγ,bδ)− ut

°°°2 = Op
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¢
from Lemma C.5, so that, choosing L = [n

1
2 ], and using (B.27),

(B.49) is Op

¡
(logn)nβ−κ

¢
= op

¡
nβ
¢
.

Next, proceeding as above, for R ≥ 2,X
j

pL (λj)wx(γ) (−λj)
n
wv(bγ,bδ) (λj)− wu (λj)

o

=
1

2π

LX
l=−L

pl

R−1X
r=1

1

r!

µ
(bγ − γ)

r
0

0 (bδ − δ)r

¶X0

t(l)

xt(γ)g
(r) (ut+l; 0) + op

¡
nβ
¢
,

(B.51)

and the leading term is op
¡
nβ
¢
from (C.3) of Lemma C.1 and (C.9) of Lemma C.2, (B.41) and

Assumption 3 (i).
We are left with (B.37). It is clear from its structure, which involves both the differences

appearing in (B.38) and (B.39), that application of similar arguments to those above will show
it is op

¡
nβ
¢
, so we omit the details.

Proof of Proposition 10. The left side of (A.29) has norm bounded by

Ksup
λ

°°°f(λ;bθ)−1 − f(λ; θ)−1
°°°

X

j

¯̄
wx(bγ) (λj)¯̄2X

j

°°°wv(bγ,bδ) (λj)− wu (λj)
°°°2


1
2

+

X
j

¯̄
wx(bγ) (λj)− wx(γ) (λj)

¯̄2X
j

kwu (λj)k2


1
2

 , (B.52)

and this is clearly Op

¡
nβ−κ+�

¢
for any � > 0, from earlier arguments.

Proof of Proposition 11. Omitted, being similar to but easier than the proof of Proposi-
tion 9.

Proof of Proposition 12. Omitted, in view of the remarks about the proofs of Propositions
10 and 11.

APPENDIX C: TECHNICAL LEMMAS

Lemma C.1. Uniformly in l ∈ [−L,L], L < n,

E

X0

t(l)

xt(γ)ut+l

 = O
³
nmax(β,1)

´
, (C.1)
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E

X0

t(l)

g(r)(u2t;β)ut+l

 = O
³
(logn)rnmax(β,1)

´
, (C.2)

E

X0

t(l)

xt(γ)g
(r)(ut+l; 0)

 = O
³
(logn)rnmax(β,1)

´
. (C.3)

Proof. The proofs are very similar, and in fact are possible under milder conditions following
techniques of Robinson and Marinucci (2001), and we just discuss the proof of (C.3), which is
slightly the most complicated. Writing Γs = E (u2tut+s) , the left side is

X0

t(l)

t−1X
s=1

as(β)
t+l−1X
q=r

a(r)q (0)Γs+l−q, (C.4)

which has norm bounded by

X
t

nX
q=r

¯̄̄
a(r)q (0)

¯̄̄X
s

kΓsk = O ((logn)rn) (C.5)

for β < 1, uniformly in l, and by

nβ−1
X
t

nX
q=r

¯̄̄
a(r)q (0)

¯̄̄X
s

kΓsk = O
¡
(logn)rnβ

¢
(C.6)

for β ≥ 1, by Lemma D.4 and Assumption 1, to complete the proof.
Lemma C.2. Uniformly in l ∈ [−L,L], L < n,

V

X0

t(l)

xt(γ)ut+l

 = O
¡
n2β

¢
, (C.7)

V

X0

t(l)

g(r)(u2t;β)ut+l

 = O
¡
(logn)2rn2β

¢
, (C.8)

V

X0

t(l)

xt(γ)g
(r)(ut+l; 0)

 = O
¡
n2β+η

¢
, (C.9)

for any η > 0.

Proof. The results follow from minor modifications of the proof of Theorem 5.1 of Robinson
and Marinucci (2001). There are only two differences. The first is that the sums in the latter
reference are over t ∈ [1, n], whereas the Lemma requires uniformity in l for sums over t(l). But
because the t(l) are just a subset of [1, n], this follows easily. The second difference is that in
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(C.8) and (C.9) (though not in (C.7)), the weights a(r)s (β) and a
(r)
s (0) that are involved are not

covered by the weights of Robinson and Marinucci (2001), due to the presence of log factors. But
allowance for such log factors is readily made, and they contribute the (logn)2r and nη factors
in (C.8) and (C.9). We observe that the regularity conditions of Robinson and Marinucci (2001)
are noticeably weaker than those on ut in the present paper.

Lemma C.3. For i = 1, 2, and uniformly in r ≥ 1 and t ≥ 2,

E
n
g(r)(uit; 0)

2
o
= O(1), (C.10)

and for c > 1/2

E
n
g(r)(uit; c)

2
o
= O((log t)2rt2c−1). (C.11)

Proof. For any c ≥ 0,

E
n
g(r)(uit; c)

2
o

=
t−1X
s=1

t−1X
v=1

a(r)s (c)a(r)v (c)

πZ
−π

fii(λ)e
i(s−v)λdλ

=

πZ
−π

fii(λ)

¯̄̄̄
¯
t−1X
s=1

a(r)s (c)eisλ

¯̄̄̄
¯
2

dλ ≤ K

πZ
−π

¯̄̄̄
¯
t−1X
s=1

a(r)s (c)eisλ

¯̄̄̄
¯
2

dλ

≤ K
t−1X
s=1

a(r)s (c)2. (C.12)

From Lemmas D.1 and D.4, this is bounded by the right sides of (C.10) and (C.11), for c = 0
and c > 1/2 respectively.

Lemma C.4. For i = 1, 2, κ > 0, uniformly in t ∈ [1, n], r ≥ 1,
g(r)(uit;bc) = Op(t

1/2) (C.13)

if bc = Op(n
−κ), and

g(r)(uit;bc) = Op(t
c+�) (C.14)

for any � > 0, if bc = c+Op(n
−κ), c > 1/2.

Proof. By the Cauchy inequality, for any c ≥ 0,
¯̄̄
g(r)(uit;bc)¯̄̄ ≤ (t−1X

s=1

a(r)s (bc)2 t−1X
s=1

u2is

)1/2
. (C.15)

From Lemma D.5, for � > 0,

t−1X
s=0

a(r)s (bc)2 = Op

Ã
t−1X
s=0

{log(s+ 1)}2r (s+ 1)2(c+�−1)
!
, (C.16)

where c = 0 or c > 1/2. Thus, with
Pt−1

s=1 u
2
is = Op (t) , the bounds (C.13) and (C.14) follow.
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Lemma C.5. For i = 1, 2, if bc = c+Op (n
−κ) , κ > 0, uniformly in t ∈ [1, n], as n→∞

uit(−bc)− uit = Op

¡
n−κ

¢
, c = 0, (C.17)

uit(−bc)− uit (−c) = Op

³
n−κtc−1/2 log t

´
, c > 1/2. (C.18)

Proof. We have, for c ≥ 0,

uit(−bc)− uit(−c) =
t−1X
s=1

{as(bc)− as(c)}ui,t−s, (C.19)

with uit(0) = uit. By Taylor’s theorem, for any R ≥ 2,

as(bc)− as(c) =
R−1X
r=1

a(r)s (c)
(bc− c)r

r!
+ a(R)s (c)

(bc− c)R

R!
, (C.20)

where |c− c| ≤ |bc− c| , so we can write (C.19) as
R−1X
r=1

(bc− c)r

r!
g(r)(uit; c) +

(bc− c)R

R!
g(R)(uit; c). (C.21)

Taking c = 0, (C.10) and (C.13) indicate that (C.21) is Op (n
−κ) + Op

¡
n−Rκt1/2

¢
, whence

(C.17) is proved by choosing R large enough and observing that t ≤ n. In the same way, (C.18)
is proved because (C.21) is Op

¡
n−κtc−1/2 log t

¢
+ Op

¡
n−Rκtc+η

¢
for η > 0, due to (C.11) and

(C.14).

APPENDIX D: LEMMAS CONCERNING THE as WEIGHTS

Lemma D.1. For c ∈ [c0, C0] , c0 > 0, C0 <∞, s ≥ 0,

|as (c)| ≤ K0 (1 + s)
c−1

, (D.1)

|as (c)− as+1 (c)| ≤ K0 (1 + s)c−2 , (D.2)¯̄̄
a(r)s (c)

¯̄̄
≤ K0R (log (1 + s))r (1 + s)c−1 , 1 ≤ r ≤ R, (D.3)

where K0 <∞ depends only on c0 and C0 and K0R <∞ depends only on c0, C0 and R.

Proof. First, (D.1) is familiar from Stirling’s approximation, or derivable by induction,
while (D.2) follows easily from the identity as+1 (c) =
{(s+ c) / (s+ 1)} as (c) . To prove (D.3), introduce the digamma function and its derivatives

ψ (x) =
d

dx
logΓ (x) , ψ(r) (x) =

drψ (x)

dxr
, (D.4)
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which exist for r ≥ 1 and x > 0. We deduce from the chain rule that

a(r)s (c) =
r−1X
i=0

τ i

n
ψ(i) (s+ c)− ψ(i) (c)

o
a(r−1−i)s (c) , (D.5)

with the convention that ψ(0) (·) = ψ (·), a(0) (·) = a (·) , and for finite constants τ i, 0 ≤ i ≤ r−1.
Now from Gradshteyn and Ryzhik (1994, p.95), for x > 0

ψ (x) =
∞X
i=0

x− 1
(i+ 1) (x+ i)

− η, (D.6)

where η is Euler’s constant. Thus for x > 0

|ψ (x)| ≤
[x]X
i=0

(i+ 1)
−1
+ |x− 1|

∞X
i=[x]+1

i−2 + η

≤ log (x+ 1) + 1 + η ≤ K log (x+ 1) , (D.7)

where [.] denotes integer part and K is independent of x. Also, for l ≥ 1,

ψ(l) (x) = (−1)l+1 l!
∞X
i=0

(x+ i)−l−1 , (D.8)

so that ¯̄̄
ψ(l) (x)

¯̄̄
≤ l!(x−l−1 +

x−l

l
) ≤ K0R (1 + x)

−l
, (D.9)

1 ≤ l ≤ r ≤ R, for x ≥ c0. The proof is completed by applying (D.5) recursively, (D.9), and
noting that |log (s+ c+ 1)| ≤ K0 log (s+ 1) .
Lemma D.2. Uniformly in s, t ∈ [1, n] , for c > 1

2

min(s,t)X
v=1

as−v (c) at−v (c) = O
¡
n2c−1

¢
. (D.10)

Proof. From (D.1), the left side of (D.10) is bounded in absolute value by
K
Pn

v=1 v
c−1 (v + |s− t|)c−1 . Since (v + |s− t|)c−1 ≤ vc−1 for c ≤ 1 and (v + |s− t|)c−1 ≤

Knc−1 for c > 1, (D.10) readily follows.

Lemma D.3. For 1 ≤ s ≤ t− 1, c > 1/2,
sX

v=1

{at−v(c)− as−v(c)}2 +
tX

v=s+1

a2t−v(c) ≤ K(t− s)tmax(0,2c−2). (D.11)
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Proof. Writing as = as (c) , for 1 ≤ v ≤ s, at−v − as−v = 0, c = 1, while for c 6= 1 we have
from (D.2)

|at−v − as−v| ≤
tX

r=s+1

|ar−v − ar−1−v| ≤ K
tX

r=s+1

(r − v)c−2 . (D.12)

Now (D.12) is bounded on the one hand by K (s+ 1− v)c−1 1(c < 1) +Ktc−11(c > 1), and on
the other by K (t− s)

n
(s+ 1− v)c−2 1 (c < 2) + tc−21 (c ≥ 2)

o
. It follows that (D.12) is also

bounded by

K (t− s)
1
2 (s+ 1− v)

c− 3
2 ,

1

2
< c < 1, (D.13)

K (t− s)
1
2 t

c−1
2 (s+ 1− v)

c
2−1 , 1 < c < 2, (D.14)

K (t− s)
1
2 tc−

3
2 , c ≥ 2. (D.15)

Thus
Ps

v=1 {at−v(c)− as−v(c)}2 is bounded by

K (t− s)
sX

v=1

(s+ 1− v)2c−3 ≤ K (t− s) ,
1

2
< c < 1, (D.16)

K (t− s) tc−1
sX

v=1

(s+ 1− v)c−2 ≤ K (t− s) t2(c−1), 1 < c < 2,

(D.17)

K (t− s) t2c−3s ≤ K (t− s) t2(c−1), c ≥ 2, (D.18)

that is by K (t− s) tmax(0,2c−2), c > 1/2. On the other hand, for all c > 1/2

tX
v=s+1

a2t−v ≤ K (t− s)
2c−1

, (D.19)

whence the result immediately follows.

Lemma D.4. For r ≥ 1
a(r)s (0) = 0, s < r (D.20)

and ¯̄̄
a(r)s (0)

¯̄̄
≤ Kr (log (s+ 1))

r−1

(s− r + 1)
, s ≥ r, (D.21)

where Kr <∞ depends only on r.

Proof. On taking logs in (1.4) and differentiating with respect to α we have

− log (1− z) (1− z)
−α
=
∞X
s=0

a(1)s (α) zs. (D.22)
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Evaluating this expression at α = 0 gives a(1)0 (0) = 0 and a
(1)
s (0) = s−1, s ≥ 1. This proves the

lemma for r = 1. For r > 1 we differentiate (D.22) r − 1 times and evaluate at α = 0 to get

{− log (1− z)}r =
∞X
s=0

a(r)s (0) zs. (D.23)

Clearly a(r)s (0) = 0, s < r. Also, we have the recursion

∞X
s=0

a(r)s (0) zs = − log (1− z)
∞X
s=0

a(r−1)s (0) zs, r ≥ 2. (D.24)

It follows that

a(r)s (0) =
a
(r−1)
r−1 (0)

s− r + 1
+

a
(r−1)
r (0)

s− r
+ ...+ a

(r−1)
s−1 (0) , s ≥ r > 1. (D.25)

If (D.21) is true with r replaced by r − 1 we have¯̄̄
a(r)s (0)

¯̄̄
≤ Kr−1 (log (s+ 1))

r−2
½

1

1. (s− r + 1)
+

1

2 (s− r)
+ ...+

1

1. (s− r + 1)

¾
≤ 2Kr−1 {log (s+ 1)}r−2 log (s+ 1)

s− r + 1
≤ Kr

(log (s+ 1))r−1

s− r + 1
(D.26)

for Kr ≥ 2Kr−1. The proof thus follows by induction.

Lemma D.5. Let bc = c + Op (n
−κ) , κ > 0 such that 0 ≤ c < K and |bc| ≤ K for some

K < ∞, and suppose c satisfies |c− c| ≤ |bc− c| . Then uniformly in s ∈ [0, n) as n →∞, and
for any � > 0,

a(r)s (c) = Op

³
(log (s+ 1))r (s+ 1)c+�−1

´
(D.27)

as n→∞.

Proof. From Lemma D.1 and Lemma D.4 we have, for any � > 0¯̄̄
a(r)s (c)

¯̄̄
≤

¯̄̄
a(r)s (c)

¯̄̄
1 (|bc− c| ≤ �) +

¯̄̄
a(r)s (c)

¯̄̄
1 (|bc− c| > �)

≤ K (log (s+ 1))
r

Ã
(s+ 1)

c+�−1
+ (s+ 1)

K−1 |bc− c|M
�M

!
≤ K (log (s+ 1))

r
³
(s+ 1)

c+�−1
+ (s+ 1)

K−1
n−Mκ

´
(D.28)

for any M ≥ 1. We may choose M ≥ (K − c− �) /κ which, with s ≤ n, completes the proof.
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TABLE II
MONTE CARLO BIAS OF νI , νF , νO FOR ρ = 0.5, 1000 REPLICATIONS

n = 64 n = 128 n = 256
τ γ δ νI νF νO νI νF νO νI νF νO

0 .6 .002 -.056 .269 .004 -.019 .223 .002 -.013 .185
0 1.2 .001 -.002 .010 .000 -.001 .003 .000 .000 .001

.5 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 .6 -.002 -.119 .472 .013 -.136 .441 .008 -.119 .404
.4 1.2 .002 -.013 .052 .002 -.003 .030 .001 -.002 .016
.4 2 .000 -.001 .000 .000 .000 .000 .000 .000 .000
0 .6 .001 -.040 .194 .003 -.014 .160 .001 -.010 .133
0 1.2 .001 -.002 .007 .000 -.001 .002 .000 .000 .001

1 0 2 .000 .000 -.001 .000 .000 .000 .000 .000 .000
.4 .6 -.001 -.040 .341 .009 -.073 .318 .006 -.086 .291
.4 1.2 .001 -.009 .038 .001 -.002 .022 .001 -.001 .012
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
0 .6 .001 -.029 .137 .002 -.009 .113 .001 -.007 .094
0 1.2 .000 -.001 .005 .000 .000 .002 .000 .000 .000

2 0 2 .000 .000 .000 .000 .000 .000 .000 .000 .000
.4 .6 -.001 -.060 .241 .007 -.070 .225 .004 -.061 .206
.4 1.2 .001 -.007 .027 .001 -.002 .015 .000 -.001 .008
.4 2 .000 .000 .000 .000 .000 .000 .000 .000 .000

TABLE III
MONTE CARLO SD OF νI , νF , νO FOR ρ = 0.5, 1000 REPLICATIONS

n = 64 n = 128 n = 256
τ γ δ νI νF νO νI νF νO νI νF νO

0 .6 .142 .345 .140 .081 .119 .105 .048 .064 .079
0 1.2 .030 .033 .031 .012 .013 .013 .005 .005 .005

.5 0 2 .004 .004 .004 .001 .001 .001 .000 .000 .000
.4 .6 .599 3.27 .284 .387 2.48 .244 .262 .968 .196
.4 1.2 .083 .110 .094 .043 .050 .056 .023 .026 .031
.4 2 .011 .011 .013 .003 .003 .004 .001 .001 .001
0 .6 .101 .247 .100 .058 .085 .075 .034 .046 .057
0 1.2 .021 .024 .022 .009 .009 .009 .004 .004 .004

1 0 2 .003 .003 .003 .001 .001 .001 .000 .000 .000
.4 .6 .426 2.39 .203 .276 1.80 .174 .187 .741 .140
.4 1.2 .059 .079 .067 .031 .036 .040 .016 .018 .022
.4 2 .008 .008 .009 .002 .002 .003 .001 .001 .001
0 .6 .072 .176 .071 .041 .061 .053 .025 .033 .040
0 1.2 .015 .017 .016 .006 .007 .006 .003 .003 .003

2 0 2 .002 .002 .002 .000 .000 .001 .000 .000 .000
.4 .6 .305 1.67 .145 .197 1.26 .124 .134 .493 .100
.4 1.2 .042 .056 .048 .022 .026 .029 .012 .013 .016
.4 2 .005 .006 .007 .002 .002 .002 .001 .001 .001
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TABLE IV
REJECTION FREQUENCIES OF WI AND WF FOR ρ = 0, 1000 REPLICATIONS

α = .05 α = .10
n 64 64 128 128 256 256 64 64 128 128 256 256

γ δ WI WF WI WF WI WF WI WF WI WF WI WF

0 .6 .072 .194 .049 .125 .052 .090 .131 .261 .099 .166 .116 .137
0 1.2 .059 .198 .062 .136 .048 .097 .113 .260 .110 .208 .122 .161
0 2 .054 .184 .057 .122 .058 .102 .109 .255 .108 .199 .120 .167
.4 .6 .077 .154 .055 .097 .062 .076 .126 .234 .095 .159 .110 .132
.4 1.2 .060 .193 .050 .115 .051 .076 .125 .254 .109 .176 .099 .131
.4 2 .051 .177 .071 .133 .059 .104 .108 .238 .123 .201 .121 .157

TABLE V
REJECTION FREQUENCIES OF WI AND WF FOR ρ = 0.5, 1000 REPLICATIONS

α = .05 α = .10
n 64 64 128 128 256 256 64 64 128 128 256 256

γ δ WI WF WI WF WI WF WI WF WI WF WI WF

0 .6 .064 .238 .054 .152 .052 .116 .128 .322 .113 .224 .105 .178
0 1.2 .067 .203 .057 .132 .053 .097 .122 .289 .108 .202 .104 .157
0 2 .065 .201 .055 .133 .059 .108 .116 .272 .112 .193 .111 .160
.4 .6 .055 .255 .057 .180 .051 .153 .137 .338 .115 .274 .107 .231
.4 1.2 .067 .231 .051 .153 .049 .110 .127 .312 .102 .207 .092 .168
.4 2 .065 .184 .055 .114 .058 .095 .122 .254 .114 .187 .111 .149

TABLE VI
REJECTION FREQUENCIES OF WI AND WF FOR ρ = −0.5, 1000 REPLICATIONS

α = .05 α = .10
n 64 64 128 128 256 256 64 64 128 128 256 256

γ δ WI WF WI WF WI WF WI WF WI WF WI WF

0 .6 .062 .227 .059 .166 .059 .129 .128 .311 .120 .231 .109 .203
0 1.2 .047 .209 .074 .161 .052 .095 .105 .292 .129 .225 .100 .149
0 2 .049 .199 .073 .163 .063 .112 .110 .264 .129 .222 .109 .157
.4 .6 .070 .263 .057 .190 .062 .163 .108 .332 .117 .268 .122 .239
.4 1.2 .056 .238 .061 .167 .050 .109 .120 .318 .117 .222 .103 .174
.4 2 .049 .186 .074 .146 .066 .094 .097 .248 .134 .214 .105 .152

TABLE VII
REJECTION FREQUENCIES OF WI AND WF FOR ρ = 0.75, 1000 REPLICATIONS

α = .05 α = .10
n 64 64 128 128 256 256 64 64 128 128 256 256

γ δ WI WF WI WF WI WF WI WF WI WF WI WF

0 .6 .069 .332 .050 .259 .052 .247 .120 .416 .107 .337 .104 .327
0 1.2 .066 .231 .054 .144 .053 .100 .127 .311 .099 .217 .112 .158
0 2 .054 .221 .042 .144 .064 .104 .122 .293 .104 .208 .112 .150
.4 .6 .065 .430 .058 .372 .060 .339 .108 .502 .115 .451 .108 .428
.4 1.2 .065 .292 .048 .195 .057 .141 .130 .383 .110 .278 .111 .199
.4 2 .064 .210 .054 .130 .060 .097 .123 .267 .110 .193 .112 .148
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TABLE VIII
MONTE CARLO BIAS(SD) OF νI , νγ , νδ, νF , νO, FOR δ = 1, γ = 0, 1000 REPLICATIONS

τ 1 1 2 2 .5 .5
ρ n 64 256 64 256 64 256

νI -.002(.041) .000(.009) -.001(.029) .000(.007) -.003(.058) .000(.013)
νγ -.002.(043) .000(.009) -.001(.031) .000(.007) -.002(.060) -.001(.013)

0 νδ -.002(.043) .000(.009) -.001(.030) .000(.007) -.002(.060) .000(.013)
νF -.001(.044) .000(.009) -.001(.031) .000(.007) -.002(.061) .000(.013)
νO -.002(.040) .000(.009) -.002(.029) .000(.007) -.003(.056) .000(.013)
νI .000(.004) .000(.009) .000(.029) .000(.006) .000(.057) .000(.012)
νγ -.005(.044) .000(.009) -.004(.031) .000(.006) -.007(.062) -.001(.012)

.25 νδ .002(.042) .000(.009) .001(.030) .000(.006) .002(.058) .000(.013)
νF -.002(.044) .000(.009) -.002(.031) .000(.006) -.003(.062) -.001(.013)
νO .014(.040) .004(.009) .010(.029) .003(.006) .020(.056) .005(.013)
νI .001(.035) .000(.008) .001(.025) .000(.006) .001(.049) .000(.011)
νγ -.010(.043) -.001(.008) -.007(.030) .000(.006) -.014(.060) -.001(.011)

.5 νδ .004(.037) .000(.008) .003(.026) .000(.006) .005(.052) .000(.012)
νF -.005(.043) .000(.008) -.003(.031) .000(.006) -.006.(060) -.001(.012)
νO .030(.040) .007(.010) .021(.028) .005(.007) .041(.056) .010(.014)
νI .000(.033) .000(.008) .000(.024) .000(.006) .000(.046) .000(.011)
νγ .009(.040) .001(.009) .007(.029) .001(.006) .013(.056) .001(.012)

-.5 νδ -.003(.035) .000(.008) -.002(.025) .000(.006) -.004(.049) .000(.012)
νF .004(.039) .001(.009) .003(.028) .000(.006) .005(.055) .001(.012)
νO -.028(.039) -.007(.010) -.020(.028) -.005(.007) -.039(.054) -.010(.014)
νI .001(.026) .000(.006) .000(.019) .000(.004) .001(.037) .000(.009)
νγ -.016(.042) -.001(.007) -.012(.030) -.001(.005) -.023(.059) -.001(.010)

.75 νδ .004(.031) .000(.007) .003(.022) .000(.005) .005(.043) .000(.010)
νF -.008(.042) -.001(.007) -.005(.030) -.001(.005) -.010(.059) -.001(.010)
νO .044(.043) .011(.011) .031(.030) .008(.007) .061(.060) .015(.015)
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TABLE IX
REJECTION FREQUENCIES OF WI ,Wγ ,Wδ,WF ,WO FOR δ = 1, γ = 0, 1000 REPLICATIONS

α .05 .10
ρ n WI Wγ Wδ WF WO WI Wγ Wδ WF WO

64 .061 .055 .199 .200 .058 .122 .125 .267 .264 .122
0 128 .053 .053 .126 .126 .052 .107 .107 .191 .191 .113

256 .048 .048 .090 .090 .046 .118 .115 .154 .153 .109
64 .069 .077 .192 .204 .075 .124 .130 .270 .275 .137

.25 128 .051 .056 .130 .130 .069 .116 .117 .203 .197 .114
256 .051 .051 .092 .089 .064 .102 .105 .143 .149 .119
64 .066 .106 .199 .218 .126 .127 .175 .266 .297 .213

.5 128 .056 .067 .137 .140 .126 .113 .129 .209 .202 .201
256 .053 .064 .085 .095 .107 .095 .117 .146 .159 .180
64 .047 .104 .196 .223 .131 .110 .174 .274 .309 .210

-.5 128 .068 .086 .145 .159 .121 .114 .148 .221 .218 .205
256 .045 .061 .093 .100 .119 .101 .123 .148 .156 .199
64 .066 .185 .211 .254 .212 .122 .262 .280 .333 .331

.75 128 .052 .116 .153 .156 .204 .099 .190 .217 .224 .330
256 .056 .094 .102 .115 .197 .109 .159 .170 .170 .306
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