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Abstract

In this paper, we generalize the notion of Pareto-e±ciency to make it

applicable to environments with endogenous populations. Two di®erent
e±ciency concepts are proposed, P -e±ciency and A-e±ciency. The two

concepts di®er in how they treat people that are not born. We show how
these concepts relate to the notion of Pareto e±ciency when fertility is

exogenous. We then prove versions of the ¯rst welfare theorem assuming
that decision making is e±cient within the dynasty. Finally, we give

two sets of su±cient conditions for non-cooperative equilibria of family
decision problems to be e±cient. These include the Barro and Becker

model as a special case.
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1 Introduction

Is the population growth rate too high in Sub-Saharan Africa? Is it too low
in Sweden? These questions are simply the most recent manifestation of two
long-standing questions in Economics and Moral Philosophy { What is the

`optimal' population size for society? And will individual choice of fertility
lead to the `right' size population? (See Malthus (1798), Bentham (1948), and
Mill (1965) for examples, Zimmerman (1989) contains an excellent summary
of the historic debate.)

While there has been a recent increase in interest concerning the deter-
minants of the equilibrium path for population (see Becker and Barro (1988),
Barro and Becker (1989), Boldrin and Jones (2002), Doepke (2000), Fernandez-
Villaverde (2001), and Tertilt (2003); see Nerlove and Raut (1997) for a sur-
vey), surprisingly, little of this literature has used the tools of modern welfare
economics (e.g., Debreu (1962)) to address the normative questions that arise.

A reason for this is that the usual notion of Pareto e±ciency is not well-
de¯ned for environments in which the population is endogenous. To illustrate
this, consider the following example. Compare an allocation with two agents,
who both consume 1 unit of the consumption good, with one where only one
agent is alive, but consumes 2 units of the consumption good. Is one allocation
Pareto-superior to the other? Pareto-e±ciency would involve a comparison of
the two allocations for each person. But since di®erent numbers of people exist
in the two allocations, such a person-by-person comparison seems impossible.

In this paper, we generalize the notion of Pareto-e±ciency to make it appli-
cable to environments with endogenous populations. Three di®erent e±ciency
concepts are analyzed, P -e±ciency, A-e±ciency and sequential P -e±ciency.
The ¯rst two of these di®er in the way that the unborn are treated. In the
¯rst, P-e±ciency, unborn children are treated symmetrically (i.e., they have
utility functions, etc.) with the born agents, but with a limited choice set. In
the second, A-e±ciency, e±ciency is de¯ned only through comparisons among

agents that are born (and hence it is not necessary that the unborn have well
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de¯ned utility functions). Sequential P -e±ciency is a dynamic re¯nement of
P -e±ciency. We show how these concepts relate to the notion of Pareto e±-
ciency when fertility is exogenous. We then prove versions of the ¯rst welfare
theorem for each of them. We also derive some results regarding the existence
of e±cient allocations and planning problems characterizing the set of e±cient
allocations.

To do this, we analyze a formal general equilibrium formulation of fertility
choice. We do this by having each decision maker have a ¯xed set of potential
children, and deciding how many of them will be born. Models of fertility di®er
from standard models of dynamic choice in several ways. We model these as a
standard model with external e®ects across the agents in the economy. First,
we allow for a rich set of potential consumption external e®ects within a family
or dynasty, both running from parent to child (and grandchild, etc.) and from
child to parent. This includes the Barro and Becker (1989) formulation of
fertility along with many others.

In addition to this standard utility externality, we include another, more
subtle one. This is that, from the point of view of the potential children, this
is a model in which their choice set is dependent on the actions of other agents
in the economy. If the parent chooses that they will not be born, they have
e®ectively no choices. If, on the other hand, their parent chooses that they
will be born, they face a standard, non-trivial choice set.

We assume that it is costly to have children. This means that parents bear
a cost for changing their children's choice set. Thus there is an important
interaction e®ect between the two external e®ects. That is, without the con-

sumption external e®ect, parents may not have an incentive to enlarge their
children's choice set.

As is usual in models with external e®ects, there is no presumption that
equilibrium individual behavior will aggregate to an e±cient outcome. How-
ever, in models of fertility, it is commonly assumed that there are mechanisms
for transfers inside the family. Following this logic, we divide the e±ciency
question into two separate pieces, e±cient transfer systems within a dynastic
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family and e±cient trade across dynasties. We show using standard arguments
that if all trade across dynasties is done at common, parametric prices, and
there are no external e®ects across families, equilibrium is e±cient as long as
the dynasty problem is solved e±ciently internally. Second, we give su±cient
conditions for a non-cooperative implementation of the dynastic game to be
e±cient. We show two extreme cases that guarantee e±ciency of the family
game. The ¯rst case is when dynasties are perfectly altruistic, which elimi-
nates the potential time consistency problem among di®erent family members,
and thereby assures e±ciency. This includes the Barro Becker model as a spe-
cial case. Secondly, if contracts between parents and children are rich enough,
so that parents can e®ectively dictate their children's actions, then e±ciency
is also guaranteed, irrespective of the preference details. Other games and
preference speci¯cations may lead to equilibrium ine±ciencies. We provide
examples to illustrate what can go wrong.

Our approach allows us to easily distinguish between two potential causes
of overpopulation that have been at the center of the more recent debates on
population. The ¯rst potential cause are scarce factors and the `crowding'
that results when the population is `large'. The second one is the potential
increase in pollution (e.g., emission of greenhouse gases) as population grows.
We ¯nd that scarce factors do not, in and of themselves, give rise to ine±-
ciencies in population. Rather they are a `pecuniary externality' whose e®ects
are manifested in price changes. This is similar to the arguments made in
Willis (1987) and Lee and Miller (1990). In contrast, if there are true ex-
ternal e®ects that are related to population size, not surprisingly, individual

choices do not necessarily lead to e±cient population sizes. This is true both
when the external e®ects are negative, like pollution, and they are positive, as
some authors model knowledge (see Romer 1987) or human capital (see Lu-
cas (1988).1 Because of their structure, these examples suggest that although

1Interestingly, Keynes was one of the ¯rst authors that argued that population growth

was too low in England in the 1920's, and that this was a cause for a reduction in inventive

activity and hence stagnation. (See Zimmerman 1989)
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population growth rates may be too high in the presence of negative external
e®ects, this is only a statement that overall population is too high, not that
African population is (or Swedish).

There is a small recent literature addressing the question of optimal popu-
lations formally. Willis (1987) also attempts to analyze whether general equi-
librium models with endogenous fertility lead to Pareto e±cient allocations.
This is done, however, without realizing that Pareto e±ciency is not well-
de¯ned. Instead, the author maximizes a planning problem and shows under
what conditions the solution to the planning problem coincides with the com-
petitive equilibrium. Nerlove, Razin and Sadka (1987, 1989) and Razin and
Sadka (1995) have an agenda similar to ours. They mention the di±culty of
de¯ning e±ciency in endogenous population environments and establish the
need for a new concept. However, rather than developing a generalization of
Pareto Optimality, they turn to a characterization of the optimal population
under two alternative social welfare functions { the maximization of average
utility and the maximization of the sum of utilities in a society. Such criteria,
however, typically give one optimal allocation, and are very di®erent in spirit
from an e±ciency concept that usually contains a large number of allocations.
Schweizer (1996) is most directly related to our paper. He proposes an ordinal
welfare criterion, which is based on a type-by-type comparison of di®erent allo-
cations. Versions of the ¯rst and second welfare theorems for the new concepts
are shown to hold under certain conditions. This concept is only de¯ned for
symmetric steady state allocations. In this sense, our concept is signi¯cantly
more general.

Finally, a few authors have pointed out various reasons for why the private
and social costs from having children could di®er. These papers all provide an
informal discussion of what types of externalities could arise in the context of
fertility choice. (examples are Friedman (1972), Chomitz and Birdsall (1991),
Lee and Miller (1991), and Simon (1992)) However, none of these authors
provides a formal concept or the tools to thoroughly address the e±ciency
question.
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The remainder of the paper is organized as follows. In Section 2, we intro-
duce notation. In section 3, we give de¯nitions of our two notions of Pareto
Optimality, give some simple examples and discuss some preliminary proper-
ties. Section 4 contains the development of the analogue of the First Welfare
Theorem for settings in which population is endogenous and the decision mak-
ing unit is a family. In section 5 we show that the Barro and Becker (1989)
model of fertility choice is one example of a model in which our form of dynas-
tic maximization holds and hence population is e±cient. Section 6 is devoted
to discussing various examples of what might cause family maximization to
fail and Section 7 discusses the e®ects of scarce factors and external e®ects
outside the family.

2 Notation and Feasible Allocations

We consider an overlapping generations economy, where each generation makes
decisions about fertility. Each agent is assumed to live only for one period.
The initial population in period 0 is denoted by. P0 = f1; :::; Ng Each person
can give birth to a maximum of ¹f children.2 For each period t, a potential
population Pt is de¯ned recursively Pt ´ Pt¡1 £ F ; where F = f1; :::; ¹fg and
we denote by P the population of all agents potentially alive at any given date.
Then, an individual born in period t is indexed by it 2 Pt, and can be written
as it = (it¡1; it), specifying that it is the itth child of the parent it¡1. We often
simply write i as the length of the vector already indicates the period in which

2Throughout most of the paper, we will assume that the number of children possible is
discrete. This assumption makes most of the ideas we discuss simpler to implement, but

does not come without costs. It introduces indivisibilities in the chioce sets of individual

agents and this property brings with it some technical di±culties (see for example the

discussion on A-e±ciency below). Many of the models of fertility choice (e.g., Barro and
Becker (1989)) allow for non-integer choices. Much of the analysis presented here can be

done in this framework as well{ see Section 5 for an example. Finally, note that we assume

that individuals have children, not couples. This is done to simplify the development that

follows.
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agent was born.
We assume that there are k goods available in each period. There is one

representative ¯rm, which behaves competitively. The technology is charac-
terized by a production set: Y ½ Rk1. In other words, an element of the
production set is an in¯nite sequence of k-tuples, that describes feasible in-
put/output combinations. Note that goods are de¯ned in a broad sense here, it
can include labor, leisure, capital stock, etc. An element of the production set
will be denoted by y 2 Y . We can write y = fytg1t=0, where yt = (y1t ; : : : ; ykt )
is the projection of the production plan onto time t.

An allocation is (z; y), where z = (z1; :::; zN ; z(1;1); :::z(N;¹p); :::), with
zi=(xi; f 1i ; : : : ; f

¹f
i ) for each agent i 2 Pt. The interpretation is that xi 2 Rk

is i's consumption and fji 2 f0; 1g; j = 1; : : : ; ¹f , is i's fertility choices: fji = 1
means child j is born, and f ji = 0 means child j is not born.

Each allocation implicitly de¯nes a subset of the potential population that
is actually born. Given an allocation (z; y), let It(z) be the set of people born
in period t (note that this only depends on z and not on y). Formally,

It(z) = fit = (it¡1; it) 2 Pt s:t: f itit¡1 = 1g

and let I(z) be the set of people that are alive at some point in time, i.e.
I(z) =

S
t It(z).

We assume that each (potential) agent is described by both an endowment
of goods and a utility function. We will use the notation (ei; 0; : : : ; 0) 2 Rk£F
to denote individual i's endowment. Note that we have assumed that individ-
uals are `endowed' with no children by assumption.

To simplify, we assume that preferences are described by a utility function.
This is denoted by ui(z) which we allow to depend on the entire allocation.
This is done to allow for the possibility of external e®ects across members of

the same family. When it is important to distinguish between the choices that
individual i makes from the rest of the allocation, we will use the notation
ui(xi; fi; z¡i). Below, we will place restrictions on the extent to which ui can
depend on z¡i.
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There is an important, qualitative assumption implicit in this construction.
This is that we have assumed that all agents, even those that are not born, have
well de¯ned preferences. But of course it is not clear what the utility of not
born people should be. There is a long-standing debate in the moral philosophy
literature about how this problem should be handled (see for example Singer
(1993)). As will become clear later, how this issue is resolved will partly
determine which allocations are e±cient and which are not. Our strategy
therefore is to model the utility of a not born (or unborn) person in a very
general way, and ultimately let the researcher pick a formulation appropriate
for a speci¯c problem. Our general formulation includes the following examples

u(zi; fi; z¡i) = f itit¡1u(zi; fi)

u(zi; fi; z¡i) = u(zi) + ¯
¹fX

j=1

fji u(z(i;j); f(i;j))

u(zi; fi; z¡i) =

8
<
:
u(zi; fi) if f itit¡1 = 1

¹u if f itit¡1 = 0

u(zi; fi; z¡i) = fji u(z(i;j)) + ®
¹fX

k=1

f ki u(z(i;k); f(i;k))

In the ¯rst example, the utility of a person who is not born is normalized to
zero. The second example is an example of an altruistic utility function, where
parents derive utility only from their born o®-springs. In the third example,
the utility of an unborn person is a constant, but may or may not be higher
than the utility from a particular consumption bundle of a born person. In
the last example, unborn people derive utility from their born siblings.

For the most part, the entirety of the theory can be developed without
making any speci¯c assumptions about what these preferences are like, how-
ever, and this will be the strategy that we adopt. When discussing particular

examples, it will be necessary to go into more detail, of course.
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Each individual has a consumption set which, as is standard in models with
external e®ects, is allowed to depend on the choices of other agents. Since we
want to focus on modelling fertility decisions, we will restrict this dependence
across agents to the fertility choices of the agent's parents, grandparents, etc.
In particular, we assume that the consumption set of an unborn agent contains
only one element, his endowment. Note that this assumption is made for
convenience only and does not contain any content. With this convention,
unborn people can always be included in feasibility constraints and family
budget constraints, since they cancel out by construction. Formally, we write

zit 2 Zit (z¡it) =

8
<
:
(eit; 0; : : : ; 0) if f itit¡1 = 0

Ẑ if f itit¡1 = 1

where Ẑ µ Rk £ f0; 1g ¹f . Note that the dependence of the consumption set
on other people's choices is of a very limited nature. In particular, only the
fertility decision of a person's ancestors is relevant. This means that if a
person is born, no further choices of other agents a®ect the consumption set of
an agent. Depending on the details of the model, Ẑ can be de¯ned so that it
embodies certain joint restrictions on the consumption and fertility choices of
the individual. For example, it is natural to assume that child bearing takes
time directly from the parents and so it may not be possible to have 10 children
and still consume, or supply to the labor market, the full endowment of leisure.

Note that we have assumed that Ẑ does not depend on the choices of other
agents beyond this. It is also natural to assume that (ei; 0; : : : ; 0) 2 Zi(z¡i)
for all i and all z¡i:

Since this formulation of consumption sets is static in nature, they do not
allow for the possibility of capital formation inside the households. This can
still be modeled by including it in the production set, however.

Most models of fertility also have a transferable cost of child production.
Let c(fi) 2 Rk+ be the goods cost, as a function of person i's fertility choice.

Assumption 1 c(0) = 0 and c(f ) is strictly increasing in f .
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We can now de¯ne feasibility for this environment.

De¯nition 1 An allocation fz; yg is feasible if

1. zi 2 Zi(z¡i)8i

2.
P
i2Pt
xi+

P
i2Pt
c(fi) =

P
i2Pt
ei + yt for all t.

3. y 2 Y

This formulation, as general as it seems, is missing some obvious details.
We assume that individuals live for only one period and that fertility decisions

are made by individuals, not couples. These choices were made to keep the
notational burden to a manageable level.

3 E±cient Allocations

The discussion above turns models with an endogenous set of agents to one
with a ¯xed set of agents, but with restrictions on what `unborn' agents can
choose, and external e®ects in preferences. An advantage of this construction
is that we can use, as a ¯rst cut, the normal notion of Pareto E±ciency. We
call this concept P-e±ciency, where the P refers to populations. This concept
treats born and unborn people symmetrically. It is not clear, however, that this
is the best way of thinking about the issue. Alternatively, one might want to
consider concepts that treat born and unborn asymmetrically. Consider again
the example from the introduction, where the only two feasible allocations are
either one person alive consuming 1 unit of the consumption good or two people
alive consuming 0.5 each. Call these two allocations z and ẑ respectively. Any
reasonable de¯nition of e±ciency should include the z allocation among its

e±cient allocations, as the only other feasible allocation makes an agent that
is always alive strictly worse o®. However, whether one would also like the
second allocation to be e±cient is debatable. On the one hand, one could
argue that going from ẑ to z makes one person strictly better o® and no one
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worse o® as the second person is not alive under z. This would then make
z superior to ẑ and hence ẑ would be ine±cient. Alternatively, associating
low utility with not being alive (say 0) and factoring not born people into
the utility comparison would lead one to argue that ẑ is also e±cient, as z
would make person 2 strictly worse o®. These two perspectives di®er in their
treatment of born vs. unborn people. Since it's not obvious what the right
perspective is, we will provide two di®erent e±ciency concepts, one that treats
born and unborn people symmetrically (P -e±ciency) and one that treats them
very di®erently (A-e±ciency).

3.1 P-E±ciency

P -e±ciency does not distinguish between agents that are born and not born
in its treatment beyond what is implicit in feasibility and preferences. It is
de¯ned as follows.

De¯nition 2 A feasible allocation (z; y) = (f(xi; fi)gi2P ; y) is P-e±cient if
there is no other feasible allocation (ẑ; ŷ) such that

1. ui(x̂i; f̂i; ẑ¡i) ¸ ui(xi; fi; z¡i) for all i 2 P

2. ui(x̂i; f̂i; ẑ¡i) > ui(xi; fi; z¡i) for at least one i 2 P .

3.1.1 Examples

Following, we give some simple examples of what it means for an allocation
to be P -e±cient. Consider a two period setting with only one agent alive
in the ¯rst period. Assume that ¹f = 2 so that only two potential children
can be born. Thus, the set of potential agents is: P0 = f1g, P1 = f1; 2g,
P = f1; (1; 1); (1; 2)g.

Assume that there are two goods, consumption, c, and time, `, so that
k = 2, and that the parent as well as each potential child is endowed with
`e ¸ 0 units of time. Assume there is no utility from leisure, and therefore
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time is either supplied in the market, `, or used for child-rearing. It takes
µ > 0 units of time to birth a child. For simplicity, assume there is no goods
cost of having a child. Since agents i = (1; 1); (1; 2) cannot have children, they
trivially supply their entire endowment of time to the market `i = `e, if born.

The production function is assumed to be static with c = F (`f ) = w`f

where `f is the amount of labor hired by the ¯rm. An allocation can then be
described by the vector z = (c1; `1; f1; f2; c(1;1); `(1;1); c(1;2); `(1;2)).

Utility of agent 1 is given by:

u1(z) = u(c1) + ¯
£
f1u(c(1;1)) + f2u(c(1;2))

¤
;

where u is strictly increasing and concave with u(0) = 0, and 0 < ¯ < 1
is a discount factor determining the weight that a parent puts on its child's

consumption. Note that we have assumed that the two children are treated
symmetrically and that the parent gets 0 utility for children that are not born.
The utility of the potential children is given by:

u(1;i)(z) = u(c(1;i));

This is basically a two period version of the Barro and Becker model with-
out capital. Feasibility in this simple environment requires that

c1 = w[`e ¡ µ(f1 + f2)], that
f1c(1;1) + f2c(1;2) · w(f1 + f2)`e, and that each agent be assigned an

element of his consumption set, i.e. c(1;i) = 0, and `(1;i) = `e if fi = 0.
Examples of E±cient and Ine±cient Populations:

Consider the 4 distinct allocations, z¤, ẑ, ~z, and z̧ de¯ned by:
z¤ = (w`e; 0; 0; 0; 0; `e; 0; `e),
ẑ = (w(`e¡ µ); 0; 1; 0;w`e; 0; 0; `e),
~z = (w(`e¡ 2µ); 0; 1; 1;w`e; 0;w`e; 0),

z̧ = (w(`e¡ 2µ); 0; 1; 1; 2w`e; 0; 0; 0),
Assume that µ is small enough such that consumption is always interior,

i.e. µ < `e2 . Allocation z
¤ has no children being born. Allocation ẑ has exactly

one child (the ¯rst of the two possible children) born. In allocation ~z both
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potential children are being born. Finally, in allocation z̧, both children are
born, but (1; 2) is `exploited' by (1; 1) and has no own consumption. Table 1
below summarizes the utilities for the 3 potential people for all four allocations.
It follows immediately from the table that, irrespective of parameters, both

Table 1: Utilities for various allocations

Allocation Parent (1; 1) (1; 2)
z¤ u(wle) 0 0
ẑ u(wle¡ µ) + ¯u(wle) u(wle) 0
~z u(wle¡ 2µ) + 2¯u(wle) u(wle) u(wle)
z̧ u(wle¡ 2µ) + ¯u(2wle) u(2wle) 0

~z and z̧ are P-e±cient, since these allocations are strictly preferred to any
other allocations by (1; 2) and (1; 1) respectively. In addition, depending on
parameters, z¤ and ẑ can also be P-e±cient. For example, if ¯ = 0 then z¤

is P-e±cient, since any other allocation would make the parent strictly worse
o®. The allocation ẑ can also be strictly preferred by the parent (and therefore
P -e±cient) for moderate values of ¯ and µ. Generally speaking, the parent's
ranking of z¤; ẑ, and ~z depends on the weight the parent puts on children's
consumption, ¯, the cost of raising children, µ, the concavity of u, along with
the productivity of labor, as measured by w. From the parents point of view,
having extra children gives him additional labor in period 2, which needs to
be weighted against the (utility) cost of having the child.

This shows two things that are important. First, any fertility level can be
P -e±cient for the right choice of parameters. Second, fertility can never be
ine±ciently high as z̧ and ~z are always e±cient independent of ¯, µ, and the

functional form for u(¢). This second property is fairly general and is discussed
in detail below. Also note that z̧ is P -e±cient even though it would never be
chosen by rational parents (due to strict concavity of u(¢)).

Next we will show that the set of e±cient allocations can change if siblings
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care about each other. Change the utility for agents i = (1; 1); (1; 2) to

ui(z) = u(ci) + fi¸u(c¡i); ¸ > 0

That is, an agent who is alive derives utility from his sibling's consumption.
Then if ¸ is large enough, z̧ is no longer e±cient as (1; 1) would prefer his
sibling to consume more and is willing to give up some own consumption to
achieve this. Note, however, that it is still true that, irrespective of parameters,
there cannot be a superior allocation that has strictly fewer people being born.

Allowing children to derive utility from their parent's utility can also alter
the set of e±cient allocations. Suppose that u1(~z) > u1(ẑ), that is, the parent
strictly prefers having both children. Then it follows from Table 1 that alloca-
tion ẑ is ine±cient as ~z is weakly preferred by (1; 1) and strictly preferred by
1 and (1; 2). Now change the utility function so that children (if born) derive
utility from their parent's consumption:

u(1;i) = u(c(1;i)) + fi´u(c1); ´ > 0

Then for ´ large enough, the ¯rst child (1; 1) strictly prefers ẑ over any other
allocation.3 But this immediately implies that ẑ is P-e±cient, as any other
allocation would make (1; 1) strictly worse o®. In this case, ẑ is e±cient not
because the parent strictly prefers having only one child, but because the loss in
utility to the ¯rst child due to the reduction in the parent's consumption when
having the second child is too large. This is fundamentally a time consistency
problem in preferences: The parent and the ¯rst child di®er in their relative
assessments of the utility of the 3 agents.

Finally, we allow the utility of unborn children to depend on the other
agents in the economy. In this case, it is no longer true that fertility cannot
be too high. Change the utility function of agents i = (1; 1); (1; 2) to

ui = u(ci) + ´u(c1)

3More precisely, ´ > u(2w`e)¡u(w`e)
u(w`e¡µ)¡u(w`e¡2µ) is needed to guarantee that the ¯rst child prefers

ẑ over even the most favorable allocation in which the second child is born.
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Under this speci¯cation, it may happen that agents (1; 1) and (1; 2) prefer not
being born at all. For ´ and µ large enough, the children care more about
the loss of direct consumption utility by the parent than they do about their
own consumption, and hence, they would prefer that their parents not have
children. If, in addition, ¯ is small then the parent may also strictly prefer
allocation z¤ over anything else, and hence for the right parameters, z¤ is the
only e±cient allocation. This last example shows that if we allow the utility
of unborn to vary with the consumption of other people than it is possible for
fertility to be ine±ciently high.

As the examples show, even in fairly simple environments, which allocations
are e±cient can be a complex question, turning, in part, on somewhat arbitrary
choices about how the utility function of the unborn is de¯ned. Intuitively,
however, one expects that in `normal' circumstances, when it is better to be
born than not, it is not possible to ¯nd an improving allocation with fewer
people alive. As can be seen however, this depends on the implicit assumption
that the unborn do not care about the consumption levels of other family
members (´ = ¸ = 0). This is considered formally Section 3.1.3.

3.1.2 Pareto E±ciency as a special case

A natural question to ask is whether or not this de¯nition of P-e±ciency re-
duces to the standard one when population is exogenous. That is, given a
sequence of planned fertilities, fi, for everyone in the economy, Pareto Opti-
mal allocations of consumption goods can be de¯ned in the usual way among
those potential agents that are in I(z). In general, it will not be true that
a P -e±cient allocation will be Pareto Optimal in this sense without further
restrictions on the preferences of the unborn. That is, an alternative consump-
tion plan might improve the welfare of all the agents that are born (i.e., for all
i 2 I(z)), but lower the utility of some unborn agent (i.e., some i 2 PnI (z)).
Because of this, the original allocation would be P-e±cient even though it
is not Pareto Optimal among the set of born agents. A su±cient condition
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that this not be the case is that unborn agents are indi®erent between all con-
sumption allocations of the born agents. We will denote this utility level by
¹ui.

Assumption 2 If i 2 PnI(z) \ PnI(z0), then ui(z) = ui(z0) = ¹ui.

Under this assumption, if an allocation is P-e±cient, then the correspond-
ing allocation of consumption goods is Pareto Optimal for the ¯xed sequence
of populations. For completeness, we include this as a Proposition:

Proposition 1 If Assumption 2 holds, and if the allocation (z¤; y¤) = ((x¤i ; f¤i )i2P ; y¤)
is P-e±cient, then the consumption allocation (x¤; y¤) = ((xi)i2I; y¤) is Pareto
Optimal among the agents in I(z¤).

3.1.3 Less people can never be P¡better

We return now to the discussion above on the possibility of P-ranking alter-
native populations. As noted above, most people when thinking about this

problem would, as a ¯rst approximation, assume that the unborn do not have
preferences. The natural way to model this is in our setting is to restrict at-
tention to environments where Assumption 2 holds, that is, the unborn agents
are indi®erent about the consumption allocation among those agents that are
born.

Under this assumption and under the further assumption that the alloca-
tion (z¤; y¤) does not give any agent i 2 I (z¤) a lower level of utility than she
has when not born (¹ui), it follows that there can be no P-superior allocations
in which i 2 PnI(z¤). Formally,

Proposition 2 If preferences satisfy Assumption 2, if the allocation (z¤; y¤)
satis¯es ui(z¤) > ¹ui for all i 2 I (z¤), and if the allocation (z0; y0) is P -Pareto
Superior to (z¤; y¤), then I(z¤) µ I(z0).
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Proof. If not, then there is some j 2 I(z¤)nI(z0). Hence, uj(z0) = ¹uj. But,
by assumption, uj(z¤) > ¹uj since j 2 I (z¤). Thus, uj(z0) < ¹uj < uj(z¤), a
contradiction. ¤

The proof of Proposition 2 is straightforward. The key thing is thus not
how to prove it given the assumptions that are made, but rather that the
assumptions are necessary.4 That these assumption are necessary follows from
the examples given above. In particular, in those examples, Assumption 2
implies that people that are not born cannot be altruistic towards their siblings
and/or parents.

The result above shows that there is a sense in which P¡e±ciency is a
very `conservative' notion. That is, it treats `born' and `unborn' agents sym-
metrically when constructing improving allocations, and because of this it is
not possible for fertility to be P -ine±ciently high (as long as being unborn is
the worst outcome).

3.1.4 A Planner's Problem

A planner's problem is often used to identify e±cient allocations. In standard
environments, the equivalence between Pareto e±cient allocations and the
solution to maximizing a weighted sum of utilities subject to feasibility can be
established under very mild assumptions. A similar result can be obtained in
our context, although it is a bit trickier. Below we give a planner's problem
and show that the solution to this problem is P-e±cient.

Proposition 3 Pick any sequence faigi2P s.t. ai > 0 8i 2 P. Suppose
(z¤; y¤) is a solution to the following problem:

max
z;y

X

i2P
aiui(z) s:t: feasibility (1)

and suppose that
P
i2P aiui(z¤) < 1. Then (z¤; y¤) is P-e±cient.

4Note also that if not being born is the best thing in the world, then the opposite

conclusion will hold: If (z¤; y¤) satis¯es ¹ui > ui(z) 8i 2 P nI(z¤) and 8z 2 Z and if (z 0; y0)

is superior to (z¤; y¤), then I(z¤) ¶ I(z0).

17



Proof.
Suppose not. Then there exists a feasible (ẑ; ŷ) and j 2 P s.t. uj(ẑ) > uj(z¤)
and ui(ẑ) ¸ ui(z¤) 8i 2 P . But then (and here the ¯niteness assumption is
crucial)

P
i2P aiui(ẑ) >

P
i2P aiui(z¤). A contradiction. ¤

Note that the reverse is not necessarily true.

3.1.5 Existence

One would like to know whether the proposed e±ciency concept is always well-
de¯ned. Speci¯cally, are there situations in which it does not exist? Under
fairly weak conditions the set of P-e±cient allocations is non-empty as can be
seen in the next proposition.

Proposition 4 Assume utility functions are continuous and uniformly bounded
above and below, that Ẑ ½ Rk£F is closed, that Y ½ Rk1 is closed in the prod-
uct topology and that the set of feasible allocations bounded period by period,
then the set of P -e±cient allocations is non-empty.

Proof. Pick 0 < ± < 1. Then de¯ne ait = ±t
jPt j for i 2 Pt, where jPtj de-

notes the number of elements in Pt. Now consider the following maximization
problem

max
z;y

1X

t=0

X

i2Pt
aitui(z) s.t.

zi 2 Zi(z¡i)8iX

i2Pt
xi +

X

i2Pt
c(fi) =

X

i2Pt
ei + yt8t:

The arguments used in Jones and Manuelli (1990) can be used to show that
the objective function in this problem is continuous in the product topology.

It follows from our assumptions that the set of allocations that are feasible
is closed in the product topology. By assumption the feasible set is bounded
and hence, it follows that it is compact in the product topology. Therefore a
maximum exists. Since utility functions are uniformly bounded, the weights
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as chosen guarantee convergence of the in¯nite sum. Hence we can use Propo-
sition 3 to conclude that such a maximizer is P-e±cient. This concludes the
proof. ¤

The assumptions that utility is uniformly bounded is stronger than is neces-
sary. Jones and Manuelli (1990) and Alvarez and Stokey (1998) have examples
showing how this can be relaxed for special cases of interest. Similarly, the
assumption that the set of feasible allocations is bounded can be built up from
assumptions at the individual level (see Bewley (1972)).

3.2 A-e±ciency

This section describes the second e±ciency concept. It is a natural modi¯ca-
tion of P-e±ciency, which treats born and not born potential people asym-
metrically.

De¯nition 3 A feasible allocation (z; y) = (f(xi; fi)gi2P ; y) is A-e±cient if
there is no other feasible allocation (ẑ; ŷ) such that

1. ui(x̂i; f̂i; ẑ¡i) ¸ ui(xi; fi; z¡i) 8i 2 I (z)\ I (ẑ)

2. ui(x̂i; f̂i; ẑ¡i) > ui(xi; fi; z¡i) for some i 2 I(z)\ I (ẑ)

This de¯nition di®ers from P-e±ciency in that only a subset of the po-
tential population is considered when making utility comparisons across allo-
cations. An allocation is superior if no one who is alive in both allocation is
worse o®, and at least one person alive under both allocations is strictly better
o®. Since utility comparisons are only made for the agents that are in fact
born, (i.e., i 2 I (z)\ I(ẑ)) it has the added advantage of not requiring utility
functions to be de¯ned for agents that are not born. We call it A-e±ciency
because only `alive' agents are considered.
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3.2.1 Relationship between A- and P -e±ciency.

Intuitively, one suspects the set of A-e±cient allocations to be a subset of the
set of P-e±cient allocations since it is `easier' to ¯nd a superior allocation.
Since utility improvements are not required under A-e±cient allocations for
those agents not born in a candidate `blocking' allocation, in the typical case,
the set of A-e±cient allocations consists of those P-e±cient allocations for
which no parent can be made better o® by decreasing fertility. While this is
true for most examples, consider the following counter-example. There is one
initial parent with two potential children. There are no costs of child-rearing.
Both the parent and the ¯rst child have an endowment of 1 if born, while the
second child has no endowment. Utility functions for the parent and the ¯rst
child are ui(ci) = ci, whereas the second child if born is altruistic towards his
sibling u(1;2) = f2[ln(1 + c3) + u(1;1)]. Consider the allocation

z = fc1 = 1; f1 = 1; f2 = 0; c(1;1) = 1; c(1;2) = 0g

This allocation is A-e±cient, since there is no other allocation that makes
any of the alive person strictly better o®. Yet is is not P -e±cient, as it is
dominated by the following allocation

ẑ = fc1 = 1; f1 = 1; f2 = 1; c(1;1) = 1; c(1;2) = 0g

The second child strictly prefers being born and not consuming anything over
not being born, therefore z is not P -e±cient.

Examples like the above are rare and do not seem very robust. They are
related to the fact that in our setting, two alternative de¯nitions of Pareto
Optimality are not equivalent. Consider a slight variation of P -e±ciency:

De¯nition 4 A feasible allocation (z; y) = (f(xi; fi)gi2P ; y) is P0-e±cient if
there is no other feasible allocation (ẑ; ŷ) such that
ui(x̂i; f̂i; ẑ¡i) > ui(xi; fi; z¡i) for all i 2 P

The analog of this concept for exogenous fertility models is called weak
Pareto e±ciency, and under mild assumptions, it is equivalent to the usual
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notion of Pareto e±ciency. Focusing on environments in which the same is true
here (i.e., environments such that the set of P -e±cient allocations coincides
with the set of P 0-e±cient allocations), also rules out examples like the one
given above. If an allocation is superior only when it bene¯ts everyone in
P strictly, then obviously it also bene¯ts everyone alive strictly. Hence, in
such environments, the set of A-e±cient allocations is a subset of the set of
P -e±cient allocations.

Examples of allocations that are P-e±cient and not A-e±cient are more
common. The reason is that it is simpler to ¯nd a superior allocation that
needs to bene¯t only a subset of the population and allows one to ignore ev-
eryone else. This means that in many environments, we expect the set of
A-e±cient allocations to be considerably smaller than the set of P -e±cient al-
locations. The fact that there are counterexamples to this general proposition
seems to be related to the indivisibility of fertility choice and the potential
utility jump a person can experience when going from unborn to being born.
If it was possible to be half-born (or ²-born), and if utility was continuous in
the degree of being born, then we suspect that an allocation that is superior
in the A-sense would also be superior in the P -sense. This would then imply
that A-e±ciency would be a subset of P -e±ciency.

3.2.2 Existence

There is a slight problem with A-e±ciency { A-e±cient allocations may not
exist. There are examples in which cycles occur and then no allocation is
A-e±cient. Again, these situations are rare, however. For example, any allo-
cation that maximizes a linear combination of the utilities of the agents alive in
period 0 is A-e±cient as long as this maximizer is unique (for given weights).
Typically uniqueness would be guaranteed by assuming enough concavity on
utility functions. Here, because of the indivisibilities in fertility choice, there
is no natural way to guarantee this.
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3.3 Sequential P-E±ciency

This section brie°y describes a re¯nement of P -e±ciency that we call sequen-
tial P-e±ciency. The re¯nement proceeds sequentially { one ¯rst tries to make
generation 0 as happy as possible. Then, having children is only e±cient inso-
far it bene¯ts generation 0 (either directly by providing utility or indirectly by
providing labor etc.). If a parent is indi®erent between having a child and not,
only then is the welfare of the children taken into consideration. Similarly,
for later generations, fertility in period t is only e±cient if it does not make
anyone from a previous generation worse o®. Formally:

De¯nition 5 A feasible allocation (z; y) is sequentially P-e±cient if 8T @(ẑ; ŷ)
such that

1. (ẑ; ŷ) is feasible

2. ui(ẑ) ¸ ui(z)8i 2
S
t·T Pt

3. ui(ẑ) > ui(z) for some i 2 PT .

This concept is similar in spirit to A-e±ciency as it also introduces an
asymmetry between people that are alive and those that are not alive. But in
addition, it introduces an asymmetry between generations. In this sense the
concept has more the °avor of a welfare criterion than an e±ciency concept. In
particular, when fertility is exogenous, this concept will typically give a much
smaller set than the set of Pareto e±cient allocations. The reason is that
the concept is heavily biased towards the initial generation. Later generations
count only in as much as earlier generations are indi®erent. On the other
hand, sequential P-e±ciency has two nice features: it is a strict subset of P-
e±ciency and it always exists. The proofs are omitted here, but are available
upon request.
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4 Cooperation within the Family and the First

Welfare Theorem

Our economy has external e®ects both in utility and in consumption sets, but
this is of a very limited type. In particular, by construction, the only agents in
the economy that can a®ect i's consumption set are individual agents that are

in i's \family," but were born before agent i. Moreover, in our description of
the consumption sets, these agents can only a®ect i's choice set through their
fertility decisions. In keeping with this structure, in this section we examine
the validity of the First Welfare Theorem under the assumption that within a
family (but not across families) individual agents are `cooperative.' That is,
we formulate a notion of dynastic maximization that corresponds to a Pareto
criterion within the dynasty.

We show that as long as all external e®ects are con¯ned within the family,
families view themselves as not a®ecting prices and, within the family, decision
making satis¯es this notion of cooperation, then fertility choices are e±cient.
In the next section, we address the question: Under what conditions do non-
cooperative formulations of the dynastic decision problem lead to `cooperative'
dynastic decisions in the sense required here.

Assumption 3 (No negative externalities)
We assume that ui is monotone increasing in xj, that is each agent is weakly
better o® when any other agent's consumption is increased. Thus, there are
no negative external e®ects in consumption.

De¯nition 6 A Dynastic Structure, D, is a partition of the population. That
is, P = [¿D¿ , where D¿ \ Dº = ; if ¿ 6= º, and for all D¿ 2 D, D¿ 6= ;. A
Dynasty is a member of this partition, D¿ .

Assumption 4 (Positive externalities only within a Dynasty)
We assume that if z and z0 are two allocations such that zi = z0i for all i 2 D¿ ,
then, uj(z) = uj(z0) and Zj(z) = Zj(z0) for all j 2 D¿ .
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The idea behind a dynastic structure is to isolate the totality of external
e®ects within an associated group. For models with fertility endogenous, the
external e®ects are typically limited to the dynasty that an agent belongs to.
Thus, by assumption, agents i and j must necessarily belong to the same
dynasty if it¡k = j for some k, meaning that j is a predecessor of i. It
also follows that all agents with a common predecessor must be in the same
dynasty (since a dynastic structure is a partition, and they must both be
in the same dynasty as their common ancestor). It follows that under the
maintained assumptions there are at most N dynasties in a given economy,
each corresponding to a di®erent period 0 agent.

We suspect that this separation between agent groups that are `externality
linked' is likely to be useful more generally however.

Next, we de¯ne what it means for an allocation to be optimal for a given
dynasty at a given price sequence. Intuitively, an allocation is dynastically
maximizing if and only if there is no way of increasing the utility of every
member of the dynasty without increasing overall spending by the dynasty.
Since there is more than one way to treat the utility of those potential agents
who are not in fact born in a given allocation, we will have several di®er-
ent concepts of maximizing within the family. The ¯rst one corresponds to
extendedP -e±ciency, and, the second to sequential P-e±ciency.

Before de¯ning a notion of family optimization, we need to specify an
ownership structure for the ¯rm. To simplify, we will assume the ¯rm is
owned only by members of the initial generation. So let Ãi specify the fraction
of the ¯rm that belongs to i, i 2 P0. For a well-de¯ned ownership structure,

we need Ãi ¸ 0, and
P
i2P0 Ãi = 1.

De¯nition 7 Given (p; y; z¡¿), a dynastic allocation z¿ = fzigi2D¿ 2 Z¿ is
said to be Dynastically P -maximizing if @ẑ = (ẑ¿ ; z¡¿) s.t.

1. ẑi 2 Zi(ẑ¡i) for all i 2 D¿ .

2. ui(ẑi; ẑ¡i) ¸ ui(zi; z¡i) for all i 2 D¿ .
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3. ui(ẑi; ẑ¡i) > ui(zi; z¡i) for at least one i 2 D¿ .

4.
P
t pt

P
i2D¿\Pt(x̂i + c(f̂i)) · P

i2D¿ \Pt ptei +
P
i2P0\D¿ Ãi

P
t ptyt.

Note: For notational simplicity in what follows, we will use ¦¿ to denote
a dynasties pro¯ts earned, that is, ¦¿ =

P
i2P0\D¿ Ãi

P
t ptyt. Note that this

depends on both prices and the production plan of the ¯rm.
An allocation being Dynastically maximizing corresponds naturally to the

dynasty overall using maximizing behavior given the resources it has available
to it overall. Note that since it is a dynastic budget set that is being optimized
over, it is as if the dynasty is fully free to make any transfers of wealth inside
the dynasty that it chooses. Thus, an allocation being dynastically maximizing

implies that there are no further transfers within the dynasty that can improve
dynastic welfare (in a Pareto sense). Finally, for those agents in the dynasty
that are not born, feasibility requires that x̂i = ei and f̂i = 0, and hence, they
drop out of the dynastic budget constraint entirely.

Next we de¯ne the analogue of a competitive equilibrium among the dy-
nasties in the partition.

De¯nition 8 (p¤; z¤; y¤) is a Dynastic P-equilibrium if

1. for all dynasties, given (p¤; y¤; z¤¡¿), z¤¿ is dynastically P-maximizing.

2. (z¤; y¤) is feasible.

3. Given p¤, y¤ maximizes pro t̄s, i.e. p¤y · p¤y¤ 8y 2 Y .

Lemma 1 Assume dynasty D¿ has at least one member alive at time 0 with
strictly monotone preferences. Let z¤¿ be dynastically P-maximizing for dynasty
D¿ , given prices p and production y. Then ui(z¿ ; z¤¡¿) ¸ ui(z¤¿ ; z¤¡¿) for all
i 2 D¿ implies that

P
t pt

P
i2D¿\Pt(xi + c(fi)) ¸ ¦¿ +

P
t pt

P
i2D¿\Pt ei.

Proof. This will be proved by contradiction. Suppose not. Then there
exists a z¿ such that ui(z¿ ; z¤¡¿) ¸ ui(z¤) for all i 2 D¿ and

P
t pt

P
i2D¿\Pt(xi+
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c(fi)) < ¦¿ +
P
t pt

P
i2D¿\Pt ei. Let j 2 D¿ \ P0 have strictly monotone

preferences. Then construct ~z as follows: ~zi = zi 8i 6= j and ~zj = (zj + ²; fj).
Then 9² > 0 such that the dynastic allocation ~z¿ does not violate the dynastic
budget constraint. Moreover, by Assumption 3 ~z is weakly preferred over z by
all i in the dynasty, and hence also over z¤. Finally, by strict monotonicity,
uj(~z) > uj(z¤). But this contradicts the assumption that z¤¿ was dynastically
P -maximizing. ¤

Proposition 5 Suppose ui(xi; fi; z¡i) is strictly monotone in xi for all i 2 P0.
If (p¤; z¤; y¤) is a Dynastic P-equilibrium, then

P
t pt(

P
i2Pt ei+y

¤
t ) < 1, and

(z¤; y¤) is P -e±cient.

Proof. First, note that since ui(xi; fi; z¡i) is strictly monotone in xi for all
i 2 P0, for the given allocation to be a Dynastic P-equilibrium, it must be
that zi is dynastically P -maximizing, and hence,

¦¿ +
P
t
P
i2Pt ptei < 1, for all ¿ .

Summing over ¿ gives:
P
t pt(

P
i2Pt ei + y

¤
t ) < 1.

Now, (z¤; y¤; p¤) is a Dynastic P-equilibrium and by way of contradiction,
assume that it is not P-e±cient. Then there exists an alternative feasible
allocation (z; y) that is P -superior to (z¤; y¤). That is, ui(z) ¸ ui(z¤) for all
i 2 P and ui(z) > ui(z¤) for at least one i 2 P . W.o.l.g. assume i 2 D¿ .
Then, since z¤¿ was dynastically P-maximizing, and since there are no external
e®ects across dynasties (Assumption 4), for dynasty D¿ it must be that z¿ was
not a®ordable, i.e.

X

t

p¤t
X

i2D¿ \Pt
(xi + c(fi)) > ¦¿ +

X

t

p¤t
X

i2D¿\Pt
ei]

Moreover, by Lemma 1, we know that for all other dynasties the following
must hold.

X

t

p¤t
X

i2D¿\Pt
(xi + c(fi)) ¸ ¦¿ +

X

t

p¤t
X

i2D¿ \Pt
ei]
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Summing up over all dynasties, we get
X

t

p¤t
X

i\Pt
(xi + c(fi)) >

X

t

p¤t [y
¤
t +

X

i\Pt
ei] (2)

Note that the right hand side is ¯nite, and hence the strict inequality is pre-
served. Pro¯t maximization implies that p¤y¤ ¸ p¤y for all other production
plans y 2 Y . Using this, we can rewrite equation 2 as

X

t

p¤t
X

i\Pt
(xi + c(fi)) >

X

t

p¤t [yt +
X

i\Pt
ei] (3)

Finally, feasibility of (x; y) implies that
X

i2Pt
(xi + c(fi)) · yt +

X

i2Pt
ei for all t

Multiplying the above by p¤t and summing up over all t gives
X

t

p¤t
X

i2Pt
(xi + c(fi)) ·

X

t

p¤t [yt +
X

i2Pt
ei]

But this contradicts equation 3. This completes the proof. ¤
Summarizing the results from this section, we see that as long as each

dynasty solves the internal redistribution problem e±ciently, there are no ex-
ternal e®ects across dynasties, and all dynasties take prices as given, dynastic
equilibria are e±cient. In particular, fertility choices are e±cient.

An analogue of the ¯rst welfare theorem also holds for A-e±ciency as well
as for sequential P-e±ciency. The propositions and proofs are very similar to
the above and hence omitted here.

5 Dynastic Games and E±ciency

As is standard in models with external e®ects, equilibrium will naturally in-
volve a mixture of price taking behavior and quantity taking behavior { the
agent takes the prices it faces as ¯xed, and takes the actions, in particular the
fertility choices of the other agents as ¯xed, when making its own consumption
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and fertility choices. Thus, the equilibrium notion is a mixture of Nash and
Walrasian equilibrium.

Exactly what this means depends on the nature of the game being played
by the agents of course. The most straightforward treatment would be to
formulate a game in which agents' choices are simultaneous moves chosen at
time zero. One would then formulate the game in which the action of each
agent included not only his own consumption and fertility choices, but also,
possibly, a complex scheme of transfers to the other agents in his/her own
dynasty. This game would generate a set of equilibrium strategy pro l̄es,
each of these generating an equilibrium outcome in terms of consumption and
fertility decisions. Given the development in the sections above then, the
question would be what types of games would generate equilibrium outcomes
that are dynastically e±cient (in either the P, the A or the sequential P sense).

Since fertility is intrinsically a dynamic decision however, this is not the
typical way (or the best way) to model these types of decisions. Rather, mod-
els of fertility usually have a dynamic game theoretic formulation in which
each agent who is born in period t must choose levels of both consumption
and fertility in period t + 1 as a function of all previous actions chosen by
the preceding agents in his/her dynasty. These actions involve both the con-
sumption and fertility decisions of predecessors as well as the bequests left,
etc.

Further, we only want to think of external e®ects as arising within a dy-
nasty, and want to preserve the notion that each dynasty is `small' relative to
the aggregate. Because of this we will assume that each dynasty views itself

as having no e®ects on prices.
Finally, since these games are dynamic in form, the issue of equilibrium

re¯nements arises quite naturally. Minimally, we will assume subgame per-
fection. Typically we will use something stronger, focusing only on those
subgame perfect equilibria of the supergame that are the limits of subgame
perfect equilibria of ¯nite horizon versions of the dynastic game.

We are thinking of each dynasty as being small and taking prices for goods
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fptg as given. Given prices, each member of every dynasty chooses actions at
from the action set At(fptg; at¡1), where at¡1 is the history of actions taken
before she was born. These actions will typically include at a minimum, fer-
tility decisions, choices of consumption, bequests, etc. The action set depends
on the equilibrium prices and actions taken by the previous generations. Thus,
if an agent's parents decided that she will not be born, her action set will be
the singelton fetg. Thus, formally, each agent has a strategy space St(fptg; ht)
which depends on both equilibrium prices and history of actions to that date.
The strategies st 2 St are chosen to maximize individual utility u(si; s¡i):
Finally the prices are such that markets clear, i.e.

P
i2Pt xi +

P
i2Pt c(fi) =

P
i2Pt ei + yt: for all t:

In context then, the de¯nitions and propositions stated above properly con-
cern the equilibrium outcomes (i.e., the actions along the equilibrium path) of
this dynamic formulation of the choice problems. At this level of generality
of the problem and the types of external e®ects we allow, one can easily con-
struct examples in which the equilibrium outcomes will not be e±cient. What
is perhaps more surprising is that there are natural examples in which this is
not true. That is, the equilibrium outcomes of this dynamic game are e±cient
(P , A and sequential P ).

Throughout this section, we will con¯ne our attention to conditions under
which the equilibrium outcome of the game played within the dynasty, for
given prices, is Dynastically maximizing. Given the results of the previous
section, it follows that if this is true for all dynasties at the equilibrium prices,
the resulting equilibrium allocation is e±cient as well.

The remainder of this section consists of three parts. Sections 5.1 and 5.2
identify su±cient conditions for the equilibrium of the dynasty game to be
e±cient. We ¯nd that the degree of altruism and the richness of contracts
between ancestors and descendants are crucial ingredients. We analyze two
extreme cases. In the ¯rst case dynasties are perfectly altruistic. This includes
the Barro-Becker model as a special case. The altruism eliminates the time
inconsistency problem between parents and their descendants. Due to agree-
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ment between parents and children, contracts between parents and children
can be fairly limited. We ¯nd that in this case allowing for period by period
bequests to ones own children is su±cient for e±ciency. These may need to
be negative in some cases if the dynasties are su±ciently di®erent.5

The second extreme puts no restrictions on preferences, but requires a
rich set of `bequest contracts'. In particular, we show that if the head of the
dynasty has a rich set of transfers that allows him to dictate the behavior of
all descendants, then the time inconsistency problem becomes irrelevant. This
is a very extreme case obviously. The point we want to emphasize here is that
some combination of altruism and richness in bequests is needed to ensure that
the equilibrium outcome of the game is e±cient.

The last section gives some examples of ine±cient equilibrium outcomes.
The examples illustrate what can cause intra-family decisions to be ine±cient.
The ¯rst example emphasizes that solutions to intra-generational dynamic
games can be ine±cient if bequests are not allowed to be negative. We then
show that allowing negative bequests may still not be enough to solve the time
inconsistency problem between parents and children. The section concludes
with an example demonstrating that not every time inconsistency has to lead
to an ine±ciency.

5.1 The Barro Becker Model

One of the principle economic models of fertility is that pioneered in the two
papers Becker and Barro (1988) and Barro and Becker (1989). In this section,
we show how our approach to e±cient fertility can be applied to that class of

5>From a formal point of view, this problem is similar to that studied in the Clubs
literature: When is it true that a non-cooperative formulation gives rise to e±cient out-

comes? (See Scotchmer (1997) for an example.) However, the mechanism at work here is

quite di®erent. In club and other local public good environments, e±ciency is guaranteed

by competition between the di®erent clubs for members. Here, since the dynasty is the
analog of a club, no such competition across clubs is possible. Rather, here it is the natural

allignment of incentives within a family that guarantees e±ciency within the group.
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models. In that approach, at each date, t, the individuals alive make decisions
about their own consumption, how many children to have and how large a
bequest to leave each child. To make the model more tractable, B&B assume
that fertility can take on any positive value, not just integers. Because of this,
the analysis of the previous sections do not directly apply to the B&B model.
The modi¯cations necessary are straightforward however.6

We generalize the B&B framework here by allowing for more than one
period-zero person. Each initial agent is the dynastic head of his own dynasty.
We allow dynasties to di®er in their initial capital stock k¿0, child-rearing costs
µ¿t , discount factor ¯

¿ , and skill a¿t . Let wt be the wage per skill unit at time t
and rt return on capital. We also use a more general utility function. For most
parts in this section, it is enough to focus on one dynasty. For these cases we
drop the superscript ¿.

In the Barro and Becker model, it is assumed that each agent alive in
period t, it, must choose his current consumption level, xt(it), his fertility
level, ft(it) 2 [0; ¹f] and a bequest level for each of his children, subject to his
own budget constraint:

ptxt(it) + c(ft(it)) +
Z ft(it)

0
bit(it+1)dit+1 · ptet(it) + bit¡1(it)

Note that this includes the bequest that he has received from his own parents,
bit¡1(it). It is assumed that his preferences are given recursively by:

Ut(it) = u(xt(it)) + ¯g(ft(it))
Z ft(it)

0
Ut+1(it+1)dit+1:

Each agent in each dynasty views the entire sequence of prices as given when
making this choice.

Since it is our goal to establish that an equilibrium is sequentially P-
e±cient, when prices are determined by the interaction of multiple price-taking
dynasties, we must ¯rst have a precise de¯nition of what the equilibrium is.

6Details on this are available in the appendix to this paper online. See Golosov, Jones

and Tertilt (2003) at http://www.econ.umn.edu/~lej/lejresearch.html
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To do this, we will model the formulation above as an in¯nite horizon game
in which each period each child that is born must make decisions as given
above. Then, the natural question is how does a time period t decision maker
conjecture the future utility of his children? Of course, the answer is that they
must correspond to the actual utility levels that these children receive if they
optimally respond to the bequests that they receive from their parents, etc.
That is, it should be that the sequence of consumption/fertility/bequest plans
should be a Subgame Perfect Equilibrium (SPE) of this in¯nite horizon game.
Of course, there are typically many SPE's of in¯nite horizon games involving
di®erent `threats' of `punishments' on the o® equilibrium path. There is no
easy way to select among these di®erent equilibria, but one selection criterion
that is often used is that it not be too dependent on the assumption that
time lasts forever. That is, it should be the limit of the equilibria of the ¯nite
horizon truncations of the in¯nite horizon game. This is the criterion that we
will use below. Formally, our de¯nition of equilibrium is:

De¯nition 9 An equilibrium are prices fptg and fx¿t(i); f¿t (i)gt;i for each dy-
nasty ¿ such that

1. For each dynasty ¿ , fx¿t (i); f¿t (i)gt;i is the limit of the subgame perfect
equilibrium outcome of the ¯nite dynasty game.

2. The allocation is feasible.

To prove that the BB equilibrium is sequentially P-e±cient, it needs to
be shown that all dynasties are sequentially P-maximizing in the dynastic BB

game. The details for this are available in Golosov, Jones and Tertilt (2003),
where a T period truncation of the in¯nite horizon game is de¯ned. It is then
shown that the subgame perfect equilibrium outcome of this game coincides
with the dynastic head choosing his most preferred outcome, and moreover
that this is unique. This result depends on the following four assumptions:

Assumption 5 u(¢) is continuous, strictly increasing, strictly concave and
u(0) = 0.
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Assumption 6 Assume c(f ) = µf .

Assumption 6 implies that f1c(f2) = c(f1f2) which will be used below.

Assumption 7 Assume that g(¢) satis¯es g(x)g(y) = g(xy).

Assumption 8 Assume that H(F;X) ´ g(F )F u(X=F ) is strictly concave in

(F;X).

Then, we have:

Proposition 6 Let the allocation z = fz¿g¿ , where z¿ = (c¿t ; f ¿t ; k¿t+1)t, to-
gether with prices fwt; rtg be a BB equilibrium as de¯ned in De¯nition 9.
Then, under Assumptions 5-8, along the equilibrium path, all dynasties are
dynastically sequentially P-maximizing given prices.

Given this result, we can then state the main result of this section:

Theorem 1 Let the allocation z = fz¿g¿ , where z¿ = (c¿t ; f¿t ; k¿t+1)t, together
with prices fwt; rtg be a BB equilibrium as de¯ned in De¯nition 9. Then,
under Assumptions 5-8, z is sequentially P-e±cient.

Proof. This follows immediately from the ¯rst welfare theorem (for se-
quentially P-maximizing dynasties) together with Proposition 6 above: z¿ is
sequentially P-maximizing for each dynasty ¿ by Proposition 6, it is also fea-
sible, since it is an equilibrium, there are no externalities across dynasties by
assumption, hence it must be sequentially P -e±cient. ¤

Note that an immediate corollary to Theorem 1 is that the equilibrium
allocation is also P-e±cient. This follows from the fact that the set of sequen-

tially P -e±cient allocations is a strict subset of the set of P -e±cient alloca-
tions. That it is also A-e±cient follows from the fact that, for each dynasty,
the equilibrium allocation is the unique maximizer of the utility function of
the dynasty head at the equilibrium prices.
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In the above we have assumed that it is feasible for parents to leave negative
bequests to their children. One would like to know whether this is a necessary
assumption. Assume that there is a non-negativity constraint on bequests,
k¿t ¸ 0. Note that if all dynasties were identical, then this constraint would
never be binding in equilibrium, and hence the equilibrium allocation would
still be (sequentially) P -e±cient. If dynasties are heterogeneous, but not too
di®erent, then the same logic would still apply by continuity. However, if the
heterogeneity is big, then prohibiting negative bequests can indeed lead to an
ine±ciency in the B&B environment, as we will see in Section 5.3.

5.2 Dynastic Dictators

In this section, we again model the rate of growth of population as the equi-
librium outcome of a game played within a dynasty, but deviate from the
assumption that preferences are perfectly time consistent. Without this as-
sumption something extra must be added to guarantee that, given prices, the
outcome within the family is dynastically maximizing. The strategy that we
will adopt is to allow for virtually any type of preferences but to also allow
a rich set of `bequest contracts' for the dynastic head to chose among. This
allows the initial generation to `force' its most preferred outcome even if this
is not what the subsequent generations would choose if left on their own.

In a sense, this result, which is fairly intuitive, is at the opposite extreme
from the one given in the previous section. Taken together, they imply if the
head has a su±ciently rich set of transfers which he can use to manipulate
bequests, the family equilibrium outcome will be dynastically maximizing.
The richness that is needed in order to insure this depends, quite naturally,
on the extent of time consistency problems within the family.

We will con¯ne our attention to a single dynasty, ¿, and will assume that
this dynasty has only a single member at time 0.

Consider an in¯nite horizon game with t running from 0 on. In period
0, the head chooses his own consumption, x0, his own fertility, f0, and his
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bequests, b0. We will allow for b0 to be fully dependent on the consump-
tion and fertility decisions of his descendents. That is, b0 is a family of real-
valued functions indexed by it, t = 0; 1; :::, i = 1; :::; ¹f, b0(¢; it), with domain
given by ´ t = (x0; f0; x1(1); f1(1); b1(1; 1); :::; x1( ¹f ); f1( ¹f); b1( ¹f ; 1); :::). Then,
b0(´t¡1; xt(it); ft(it); bt(it+1; it); it) is the bequest that the head leaves to indi-
vidual it in period t is the history up to period t¡ 1 is ´ t¡1 and it takes action
(xt(it); ft(it); bt(it+1; it)). We do not restrict b0 to be non-negative.

It's best to think of b0, as the result of setting up a trust, with detailed
descriptions of subsidies, etc. For example, it might give a speci¯c payout for
any direct descendant ¯nishing college.

In period t > 0, all members of the dynasty alive at the time take as
given the history up to that point, denoted by ht¡1, and including both ´t¡1

and b0, and make simultaneous and independent decisions about their own
consumption, their own fertility and any bequests that they wish to leave to
their direct descendants. These are denoted by xt(it) 2 Rk, ft(it) 2 F =
f0; 1g ¹f , and bt(it+1; it) 2 R ¹f , respectively. We assume that if ft(it+1; it) = 0,
then, bt(it+1; it) = 0 as well.

We assume that the actions taken by player it in period t are constrained
to satisfy:

ptxt(it) + c(ft(it)) +
P ¹f
it+1=0 bt(it+1; it)

· ptet(it) + bt¡1(it; it¡1) + b0(´ t¡1; xt(it); ft(it); bt(it+1; it); it).

The action of player 0 must satisfy:

p0x0 +
P
t
P
it b0(´t¡1; xt(it); ft(it); bt(it+1; it); it) + c(f0) · p0e0 for all

ht.

Let z1 denote a complete description of the levels of consumption and
fertility for every player for every time period, and denote by

ẑ1 = (x̂0; f̂0; x̂1(1); f̂1(1); :::x̂1( ¹f ); f̂1( ¹f); :::)
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that history that maximizes the utility of player 0, i.e., u0(ẑ1) ¸ u0(z1)
for every other feasible path through the tree, z1. Further, assume that ẑ1

is the unique maximizer of u0, that is, if z1 is feasible and z1 6= ẑ1 then
u0(ẑ1) > u0(z1).

Consider the family of bequest functions given by:

If (´t¡1; xt(it); ft(it); bt(it+1; it)) = (^́t¡1; x̂t(it); f̂t(it); b̂t(it+1; it)),
b0(´t¡1; xt(it); ft(it); bt(it+1; it) = ptxt(it)+c(ft(it))+bt(it+1; it)¡(ptet(it)+

bt¡1(it; it¡1))

and if, (´t¡1; xt(it); ft(it); bt(it+1; it)) 6= (^́t¡1; x̂t(it); f̂t(it); b̂t(it+1; it))

b0(´t¡1; xt(it); ft(it); bt(it+1; it) = ¡[ptet(it) + bt¡1(it; it¡1)].

Note that under this speci¯cation, if at any time any player deviates from
the path ^́1, then for that person, and for all subesquent generations, the only
feasible choice is to have x = 0, and f = (0; 0; ::0).

Assumption 9 We will asssume that if z is a sequence of consumptions and
fertilities throughout the tree, such that xi = 0 and fi = (0; 0:::0), then ui(z) =
0.

That is, if an agent has no consumption for himself and no children at all,
his utility is independent of the allocations received by other members of the
dynasty. (The choice of 0 is just a normalization, but we are assuming that it
is 0 no matter what happens to what other people.)

Assumption 10 Assume that ui(ẑ1) > 0 for all i 2 I(ẑ1).

Proposition 7 Under Assumptions 9 and 10, ẑ1 is a subgame perfect equi-
librium outcome of the game. It is also the unique subgame perfect equilibrium
outcome that is the limit of subgame perfect equilibria of the ¯nite horizon
truncations of the game.

The proof is immediate and is not included.
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5.3 Examples

In this section, we give a variety of examples to illustrate why equilibria may
fail to be e±cient. Keeping up with the spirit of this section, we focus on
ine±ciencies originating within a dynasty. That is, all examples have at least
one dynasty that in equilibrium is not dynastically maximizing given prices.
Section 6 will look at instances in which an equilibrium fails to be e±cient
despite maximizing behavior of all dynasties.

At the beginning of Section 5 we said that an equilibrium in this environ-
ment would involve a mixture of Nash and Walrasian equilibrium as it always
involves a game among family members as well as market transactions across
dynasties. In particular, we focus on sub-game perfect Nash equilibria. The
exact properties of such an equilibrium will depend on the details of the game,
in particular on the action space of the agents. To further clarify this equilib-
rium concept, we will de¯ne action sets and the equilibrium concept in detail
for the ¯rst example. For the subsequent examples, much of the details are
omitted.

5.3.1 Credit Constrained Dynasties

In Section 5.1 we emphasized that allowing parents to make negative bequests
to their children is a crucial assumption to guarantee e±ciency of the equilib-
rium in the B&B model. Following is a simple 2-period example illustrating
why this is a necessary assumption. There are 2 dynasties, indexed by their
period 0 members, i 2 P0 = f1; 2g. Assume ¹f = 1 so that each dynastic
head can at most have one child. Then P1 = f(1; 1); (2; 1)g. The dynasties
di®er in their labor endowment pro l̄es. The labor endowments of the ¯rst
dynasty are `e1 = 1; `e(1;1) = 0, whereas the second dynasty has the reversed
pro l̄e, `e2 = 0; `e(2;1) = 1. The utility functions for the dynastic heads i = 1; 2

are ui(z) = c¾i + ¯c¾(i;1), while children care about their own consumption only,
u(i;1)(z) = c¾(i;1). The utility of being unborn is normalized to the utility of zero
consumption. Let 1 > ¾ > 0. There is a linear technology that transforms
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labor into the consumption good F (`f) = a`f . There is no capital and no
storage technology. There is a small cost of having a child, µ > 0.

The actions of each (potential) agent are constrained to be in the respective
budget set. Let w0; w1 be the period 0 and 1 wages respectively, and let R be
the gross interest rate. Then the budget set for the period 0 agents is

Bi(w0; R) = f(ci; bi; fi; `i)jci + bi + fiµ · w0`i; `i · `ei ; `i; ci; bi ¸ 0; fi 2 f0; 1gg

and for the period 1 agents:

B(i;1)(w1; R; bi) = f(c(i;1); `(i;1)jc(i;1) · w1`(i;1) + Rbi; `(i;1) · `e(i;1); c(i;1) ¸ 0g:

An equilibrium is an allocation and prices (w0; w1; R) such that

1. For i = 1; 2 the following holds

(a) (ci; bi; fi; `i) 2 Bi(w0; R)
(b) (c(i;1); `(i;1)) 2 B(i;1)(w1; R; bi)
(c) (ci; bi; fi; `i; c(i;1); `(i;1)) is a subgame perfect Nash equilibrium of the

game between players i and (i; 1).

2. Pro¯t maximization: w0 = w1 = a

3. Market clearing:
Goods market in period 1: c1 + c2 · F (`1 + `2)
Goods market in period 2: c(1;1) + c(2;1) · F (`(1;1) + `(2;1))
Bond market: b1 + b2 = 0

The only equilibrium allocation of this example is quite degenerate:

z = fc1 = 1; f1 = f2 = 0; c2 = c(1;1) = c(2;1) = 0g

The corresponding equilibrium prices are w1 = w2 = a;R = 0. To see why
this is an equilibrium, recall that bequests are constrained to be positive. In
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equilibrium, the second dynasty has an income of 0 in period 1, and cannot
borrow against the income of the child. This implies that the only feasible
fertility choice is f2 = 0. For dynasty 1, the interest rate R = 0 means that
for any bequest choice c(1;1) = 0, this together with µ > 0 implies an optimal
fertility choice f1 = 0.

For small µ and/or large ¯, this equilibrium is P- as well as A- ine±cient,
because the following allocation is superior in both senses:

ẑ = ff1 = f2 = 1; c1 = c2 =
1¡ 2µ

2 ; c(1;2) = c(2;1) = 0:5g

The intuition is that not allowing negative bequests e®ectively rules out inter-
dynasty trade in equilibrium. Both dynasties would be better o®, if the ¯rst
dynasty would lend some of their period 1 income to the second dynasty. This
example illustrates that preventing parents from leaving debt to their children
reduces a dynasty's ability to borrow.

5.3.2 Inability of Parent to Consume from Child's Income

The next example illustrates an issue that comes up in a slightly more general
formulation. In this example the parent lives for two periods and is not altru-
istic. The lack of altruism means that there is no bene¯t from having children,
so equilibrium fertility is zero. The child would like to compensate the parent
for the costs of child-bearing. But this does not happen in equilibrium because
of a commitment problem. Hence, the equilibrium is dynastically ine±cient.

Suppose people live for two periods. The utility function of an agent born
in t is ut = c¾t + ¯c¾t+1. Each agent is endowed with one unit of labor when
young, there is no utility from leisure. The production function is F (K;L) =
K®L(1¡®). Assume capital depreciates fully after one period (± = 1). Agents
can have children when young, it costs µ units of the consumption good to

produce one child. Let ft denote the number of children a person born in t
has. Parents can leave bequests to their children, but they are not allowed
to be negative. Hence, the budget constraint for a young agent is cyt + ft(µ +
bt+1)kt+1 · wt + bt and for an old agent cot+1 · 1 + rtkt+1.
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Claim: There exists a CE with co¤0 = 0, f¤0 = 0, b¤1 = 0, r¤1 = 0 , and k¤1 = 0
and the economy does not survive beyond period 0.

Proof: To verify that this is an equilibrium, one needs to ¯nd prices such
that the allocation is consistent with consumer optimization and pro¯t maxi-
mization. Consider the consumer ¯rst. Given r¤1 = 0 and ± = 1, the return on
savings is zero, hence there is no incentive to save, and k¤1 = 0 follows imme-
diately. The return on kids is also zero (assuming negative bequests are not
possible!). Therefore, since children are costly, the utility-maximizing number
of children is f¤0 = 0. Since the consumer has no income in period 1, it follows
that co¤1 = 0. Next, consider ¯rm optimization:

max
L;K
Y ¡ w¤L¡ r¤K = max

L;K
F (K;L) ¡ w¤L

The only wage at which the pro¯t-maximizing output is Y = 0 is w¤ = 1.
And given w¤ = 1 the above is indeed an equilibrium. ¤

The above is an example of a model where fertility is P -ine±ciently low
in equilibrium. Everyone could be made strictly better o® by having some
children, but no one would privately choose to do so. The reason for this
problem is in the ownership structure. The return to an additional unit of
labor is in¯nity, and the cost is ¯nite, yet no one \produces" extra labor (i.e.
children), because the returns belong to someone else (the child). This issue
would not arise if parents were allowed to make negative bequests to their
children. Leaving a negative bequest to the child would allow a parent to reap
the returns from producing an additional unit of labor. The private bene¯t
from having a child would then no longer di®er from the social return.

5.3.3 Kids and Drugs

However, simply allowing negative bequests is not always enough to eliminate
an ine±ciency of the above kind. In some environments, an even richer bequest
structure would be necessary to ensure that the dynamic game played within
the family leads to an e±cient outcome. Following is an example of this point.
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There is one initial old person and one potential child, P = f1; (1; 1)g. The
parent derives utility from her own consumption and from the consumption of
her child: u1 = u(c1)+f1¯u(c(1;1)), where u(¢) is strictly concave. The child has
preferences over consumption, c(1;1), and drugs, d(1;1): u(1;1) = c(1;1) + °d(1;1).
People in each period are endowed with one unit of leisure. There is a static
technology converting labor into consumption and drugs, c+d · F (`) = w`. It
costs µ units of the consumption good to produce a child. Suppose ° > 1, then
(1; 1) (if born) will consume only drugs and none of the consumption good.
Then the following is an equilibrium allocation: z = fc1 = w; f1 = 0; c(1;1) =
0; d(1;1) = 0g. The reason for not having children is that knowing that their o®-
springs would be drug-addicts, the parent prefers not to have any children. But
note that, assuming µ is not too large, z is not P-e±cient, since the following
allocation is P -superior: ẑ = fc1 = w ¡ µ; f1 = 1; c(1;1) = w; d(1;1) = 0g.

Note that the above ine±ciency does not disappear with negative bequests.
Instead, the parent would need a `tax and transfer' system so that she can
discourage the use by the child of the good the parent does not want the child
to consume. Also note that more subtle disagreements between generations
can cause similar issues. A very natural form of dissent would arise if parents
and grand-parents di®er in their evaluation of their child/grand-child.

5.3.4 Time Inconsistent Preferences and E±ciency

The last two examples demonstrated that preferences that are time inconsis-
tent across generations often lead to ine±cient equilibrium outcomes. How-
ever, this does not have to be the case. This section gives an example of
an e±cient equilibrium in the presence of time inconsistent preferences. This
example is interesting because it does not maximize the utility of the initial
generation and therefore is very di®erent from the B&B model.

Assume there is one dynasty, lasting for two periods. Hence P = f1; (1; 1)g.
There are three goods, leisure, a consumption good, and drugs. Each agent
is endowed with one unit of leisure. There is a technology using labor and

41



producing both the consumption goods and drugs, c + d · F (`) = w`. The
cost of having a child is µ > 0. There is no storage technology, hence it is
impossible for the parent to leave a bequest. The utility function of the parent
is

ln(c1) + f ln(c(1;1))

and the child

ln(c(1;1)) + ln(d(1;1))

For small µ, the equilibrium of this game is straightforward:
z = fc1 = w ¡ µ; f = 1; c(1;1) = d(1;1) = w

2g. This obviously does not maximize
the parent's welfare. There is a disagreement about drugs between the parent
and the child, and the parent would prefer that the child consumed less drugs.
But this disagreement does not lead to an ine±ciency in this example, as
any other allocation would make the child strictly worse o®. Note that the
same would not be true if there was a storage technology and thus bequests
would be feasible. In that case, the time inconsistency would indeed lead to
an ine±ciency.

6 Is Population Growth too High?

In many discussions, it is taken as a given by policymakers that fertility is `too
high' in developing countries. There is typically little given in terms of the
reasons behind this view although several auxilliary concerns are mentioned.
These include the overall scarcity of factors as well as the role of population
size and density in determining pollution. In this section, we use the tools
developed above to identify which of these concerns do and do not give rise to
sub-optimal population growth rates.
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6.1 Scarce Factors, Crowding and E±cient Fertility

If land is scarce, or if there are other ¯xed factors, will there be too many people
in a competitive equilibrium? In the policy debate it is often argued that
because resources are scarce, fertility decisions a®ect society as a whole, and
should therefore not be left entirely to individuals. The logic provided is that
since parents do not take into account that having another child decreases the
land available per capita for the next generation, that this means that private
and social costs of an extra child do not coincide and hence an ine±ciency
arises. This logic is sometimes used to justify family planning programs.

In this section we argue that this logic is a fallacy. The e®ect that an
additional child has on wages (by increasing the aggregate labor supply) is
analogue to the e®ect that an individual's increase in labor supply has on
aggregate labor and thereby wages. These e®ects are channelled through prices
and therefore do not lead to an ine±ciency. Thus, this is an example of a
pecuniary externality.

To see this, consider an example in which there are three goods in each

period. The ¯rst is land, the second is leisure, while the third is a consump-
tion good. All agents are endowed with one unit of leisure, which they supply
inelastically to ¯rms if they are born. Those agents alive in period 0, indexed
by i = 1; :::; N are also endowed with holdings of land, Ai. Let ¹A =

P
i2P0 Ai

These holdings are sold to the ¯rm, and subsequently used forever. The pro-
duction function is static with:

yt = F (A; `f),
where F is assumed CRS.
Pro¯t maximization on the part of the ¯rm then implies that the dynastic

P -equilibrium price of land traded in period 0 is given by:
q0 =

P
tFA( ¹A;Nt)pt,

where Nt is the size of the population in period t, and pt is the equilibrium
time zero price of one unit of the consumption good in period t. Similarly, the
real wage rate must be:
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wt=pt = F`( ¹A;Nt).
Thus, in keeping with intuition, if, for whatever reason, N̂t > Nt for all

t, and holding pt ¯xed, the sale price of land (and the implicit rental price
as well) is higher while the equilibrium real wage rate must be lower. That
is, because land is scarce, if parents choose to have more children, real wages
must be lower. In this sense, one parent would, across equilibria, lower the
realized wage for all children by increasing his fertility choice. In this sense,
there is `crowding' of scarce resources.

Despite this fact, it is easy to see that all of the assumptions of Proposition
5 are satis¯ed. Because of this, it follows that the equilibrium fertility levels
chosen will be sequentially P-e±cient (and hence P-e±cient as well) as long
as individual dynastic decision making is done e±ciently.

To get some intuition for the above result, consider the following question:
Is it possible to eliminate some agent i at time t from the equilibrium allocation
to makes the remaining Nt¡ 1 people strictly better o® due to their increased
wages? To see that this is impossible, consider total output at time t minus the
compensation that i receives for his labor input: F ( ¹A;Nt)¡w. In equilibrium
w = FN. This together with the assumption that F ( ¹A;Nt) is concave in Nt,
implies immediately that F ( ¹A;Nt) ¡ w is greater than total output without
i, F ( ¹A;Nt ¡ 1). Hence, it is impossible to make the remaining Nt ¡ 1 agents
strictly better o®. The reason is that while less labor leads to higher wages, it
at the same time decreases returns to the ¯xed factor by even more.

Note that this result holds independent of the form of preferences and
thus, although the B&B formulation is one example where this is true, the

conclusion is actually much more general.

6.2 Pollution, Congestion and External E®ects Across

Families

In contrast to the example presented above, if there are true external e®ects,
the equilibrium need not be e±cient. Recall, however, from Proposition 2 that
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no superior allocation can involve fewer people as long as the utility of unborn
people is a constant that is lower than the utility from being alive. So with
negative externalities, the equilibrium can either involve ine±ciently many
people in the sequential sense, or ine±ciently many people in the P -sense, if
one is willing to violate the assumptions of Proposition 2. If positive external-
ities are present in an economy, then the equilibrium can have ine±ciently low
fertility, both in the sequential and the P-sense. Following is a simple example
to illustrate these points.

Assume that there are N dynasties, each identical, each lasting only two
periods. There are two goods, leisure and a consumption good, with a CRS
production function between the two given by c = w`. We also assume that
with each unit of output, one unit of pollution is produced, and assume that
labor is inelastically supplied. The time endowment, if born, is 1.

Under this speci¯cation, it follows that if each dynasty has f children,
consumption in the second period is:

c(i;j) = w i = 1; : : : ; N j = 1; : : : ; fi.
Thus, the total amount of pollution in period 2 is s2 =

P
i fi.

Assume that the utility function of individuals in the ¯rst generation is
given by:

ui(ci; f1; f2; :::; ¹f ; c(i;1); c(i;2); :::; c(i; ¹f ); s2) = ci + ¯
P
c(i;1) + ´s2.

We are interested in pollution here, so assume ´ < 0. The utilities of agents
alive in period 2 are given by:

u(i;j)(ci; f1; f2; :::; ¹f; c(i;1); c(i;2); :::; c(i; ¹f); s2) = ¯c(i;j) + ´s2. The utility
if not born is normalized to 0.

The cost of bearing a child is µ > 0. The choice problem of an individual
in period 0 making the fertility choice can be written as

max
f
w + f(¯w ¡ µ) + ´s2

Assuming that ¯w¡µ > 0, the parent will always choose to have themaximum
number of children, f ¤ = ¹f. By symmetry, the same is true for all dynasties,
which leads to an equilibrium externality s¤2 = N ¹f. The equilibrium utility of
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a period 1 agent therefore is

u(z¤) = w + ¹f(¯w ¡ µ + ´N)

It is clear that as long as ¯w ¡ µ + ´N < 0, that is, if ´ < 0 is large enough in
absolute value, then all parents could be made strictly better o® by lowering
utility to f = 0 for everyone. Hence, in this case, the equilibrium allocation,
z¤, is not sequentially P-e±cient. However, z¤ will be P-e±cient as long as
¯w + ´N > 0, i.e. as long as being alive and enduring the externality is
better than not being alive. On the other hand, if ¯w + ´N < 0, then the
potential children would also gain by not being born, and for this case z¤ is
not P-e±cient.

Finally, consider a positive externality, ´ > 0. This is for example relevant
in models with human capital if there are positive external e®ects in knowl-
edge accumulation (see Romer (1987) and Lucas (1988) for examples of this).
Assume now that ¯w¡µ < 0, that is, the private returns on having a child are
negative. Then in equilibrium, f ¤ = 0. Suppose further that ¯w¡µ+´N > 0,
then the social returns on having a child are higher than the private returns.
Thus, the equilibrium is not e±cient in either sense. The allocation f̂ = ¹f
is strictly superior both in the sequential and in the P -sense, since it gives
strictly higher utility to everyone in the economy, parents and children.

The above examples show that it is far from obvious that fertility is too
high in Africa and too low in Sweden. Per-person pollution, for example, is
likely to be much higher in rich countries compared to poor ones. This would
imply that the negative externality is a bigger problem in Sweden, implying
that it's the Swedes that are having too many babies. On the other hand, if
the positive externality is important, then perhaps all countries are having too
few children.
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7 Conclusion

In this paper, we have presented three extensions of the notion of Pareto Op-
timality for models in which fertility is endogenous, P-e±ciency, A-e±ciency
and sequential P-e±ciency. We have shown that, although there are alway ex-

ternal e®ects in these models, if they are con¯ned to the family and the family
makes optimal decisions, the time series of populations that is generated is
optimal. We have shown that the most popular economic model of fertility
choice, Barro and Becker (1989), satis¯es these assumptions and hence, in that
model, population is e±cient. Finally, we have shown that the presence of ex-
ternal e®ects can cause indivdually optimal fertility choices to be sub-optimal
from a social point of view and that this bias depends on the direction of the
external e®ect.
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