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Abstract

This paper studies Pareto efficient income taxation in an economy with finitely-lived individuals whose
income generating abilities evolve according to a two-state Markov process. The study yields three main
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income tax rate is always positive but decreases over time, converging to zero if the time horizon is long
enough. Moreover, the tax rate these individuals face also goes to zero. Second, the earnings distortions
are continuous with respect to the degree of risk aversion at the risk neutral solution. Third, Pareto efficient
income tax systems can be time-consistent even when the degree of correlation in ability types is large.
The condition for time consistency suggests a novel theoretical reason why the classic equity-efficiency
trade off may be steeper in a dynamic environment than previously thought.
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1 Introduction

A central problem in normative public economics is the design of income tax systems. The

fundamental difficulty is that, while individuals’ incomes may be observable, their abilities to earn

income are unobservable (Mirrlees (1971)). Thus, if equity considerations demand that higher

ability individuals should pay a larger share of government spending, those with higher incomes

must pay more taxes. But this raises the possibility that higher ability individuals may avoid their

obligations by reducing their earnings to masquerade as low ability individuals. To mitigate this

possibility, income tax systems must optimally screen ability types which requires distorting the

earnings of individuals downwards. These distortions imply a basic trade-off between equity and

aggregate efficiency.

Much of the literature on the design of income taxation has taken a static perspective. While its

lessons may apply in a dynamic context when individuals’ income generating abilities are constant,

the more relevant case is that in which abilities, while persistent, may vary over time. This case

raises three new theoretical questions. When abilities have some persistence, the efficient screening

of ability types may require that the tax system be non-stationary, making current taxes depend

upon individuals’ past earnings choices. The first question, therefore, is what is the pattern of

distortions in individuals’ earnings choices and how do these vary over time? Moreover, when

abilities are variable, the tax system will impact the allocation of consumption across states

and time. There will be a trade-off between the goals of smoothing consumption and providing

incentives. The second question, therefore, is what are the pattern of distortions in the allocation

of consumption across states and time? Finally, when abilities are variable, it is not clear if

efficient tax systems are time consistent. In the constant ability case, optimal income tax systems

are never time-consistent. Distortionary taxation is necessary to screen ability types, but after

individuals have revealed their abilities, the government will find it optimal to eliminate such

distortions, making the original tax system non credible (Roberts (1984)). However, when abilities

are stochastic, residual uncertainty remains, because an individual may change type. Accordingly,

the government must still screen types in the remaining periods. The third question, therefore, is

under what circumstances are efficient tax systems time consistent?

This paper sheds light on the first and third of these questions. It analyzes a dynamic version of

the classic Mirrlees model in which, in any period, there are two ability types - low and high - and
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individuals’ abilities follow a Markov process. Following the approach of Stiglitz (1982, 1985a),

the paper studies the Pareto efficiency problem of maximizing the expected utility of those who

start out as high ability subject to a given target utility for those who are initially low ability.1 It

then studies whether these efficient allocations are time consistent in the sense that they cannot

be Pareto dominated as information about individuals’ ability types is revealed over time.

The paper begins by assuming that individuals’ per period utility is a quasi-linear function

of consumption and labor, implying that they are risk neutral.2 This makes the consumption

smoothing issue moot and permits a clean focus on the first and third questions. The analysis of

this case yields clear and striking results. With regard to the dynamics of earnings distortions,

the only individuals whose earnings are distorted are those who currently are and have always

been low ability. All other individuals face a zero marginal rate of taxation. Moreover, the degree

to which these perpetual low types have their earnings distorted decreases over time, converging

to zero if the time horizon is long enough. Thus, not only is the fraction of individuals who face a

positive marginal tax rate converging to zero, but the tax rate these individuals are facing goes to

zero. Thus, in a very strong sense, the distortions caused by efficient income tax schemes vanish

over time.

With regard to time consistency, we establish a lower bound on the correlation in types such

that below it the optimal tax system is time consistent. We also find that when the correlation

of types is above this bound, it is governments with higher spending commitments and/or more

ambitious redistributive objectives who find it harder to commit to implement efficient income

tax systems. Accordingly, it is governments with more progressive agendas that will be forced to

pursue their objectives with third best policies. Since these will lead to greater distortions and

larger reductions in aggregate efficiency than second best policies, the result suggests that the

equity-efficiency trade off will be steeper than suggested by static optimal tax theory.

To assess the robustness of our results on earnings distortions, we also study the case of

risk averse individuals. In a two period version of the model with risk aversion, we show that

individuals who are low ability in the second period face a positive marginal tax rate even if they

were previously high ability. Thus, risk neutrality is a necessary condition for our result on earnings

1 This is distinct from the approach of Mirrlees (1971) who characterizes the problem of maximizing an additive
social welfare function.

2 The quasi-linear specification has also proved useful in the study of static optimal income taxation. See, for
example, Diamond (1998), Besley and Coate (1995) and Salanie (2003).
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distortions described above. However, we also provide a general continuity result (for any number

of periods) showing that the distortion in the earnings of individuals who are either currently high

types or who have been previously low types is small for small degrees of risk aversion. Thus, the

basic insight that earnings distortions vanish over time is robust to introducing small amounts of

risk aversion.

The paper contributes to a small but growing literature that approaches the problem of dy-

namic optimal taxation using the mechanism design approach of static optimal tax theory, the

so-called New Dynamic Public Finance.3 This literature was recently reviewed by Kocherlakota

(2006).4 Our paper differs from this recent literature in both focus and style. In terms of focus,

the literature has been primarily concerned with the Utilitarian problem of maximizing aggre-

gate expected utility rather than on characterizing Pareto efficient tax systems. Relatedly, it is

the problem of consumption smoothing (the second question above) rather than the dynamics of

earnings distortions or the problem of time inconsistency (the first and third questions) that has

attracted the most attention. Most papers have assumed that ability types are serially uncor-

related which makes both the first and third questions less interesting, while those papers that

have considered more general stochastic processes (Golosov, Kocherlakota and Tsyvinsky (2003),

Kocherlakota (2005)), have focused their analysis on a study of the implications of the first order

conditions for intertemporal consumption. In terms of style, our model is much simpler than those

in the recent literature. While it does incorporate persistence in abilities, it has only two ability

types, no capital, exogenous interest rates, and, for much of the analysis, risk neutral individuals.

The advantage of these more restrictive assumptions is that they allow us both to provide a com-

plete characterization of second best efficient allocations. Indeed, as far as we are aware, ours is

the first paper to provide a full characterization of second best efficient allocations in a dynamic

stochastic version of the Mirrlees model.

In characterizing second best efficient allocations and studying their time consistency, our pa-

per draws on the dynamic contracting literature. In particular, we follow the analytical approach

employed by Battaglini (2005a) to study a monopoly pricing problem with long-lived consumers

3 This “new” approach is distinct from the “traditional” approach that makes the assumption that the govern-
ment is constrained to use linear taxes (see Chari and Kehoe (1999) for a review).

4 Earlier papers in this style include Brito et al (1991), Diamond and Mirrlees (1978), Ordover and Phelps
(1979), Roberts (1984) and Stiglitz (1985b). See also Berliant and Ledyard (2003) who characterize time consistent
taxation in a two period model with constant ability types.
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whose tastes evolve according to a Markov process. We show that his approach can be fruitfully

applied to the problem of optimal income taxation. The taxation problem is somewhat more

involved than the pricing problem, in part because it involves characterizing the entire Pareto

frontier rather than simply finding the profit maximizing solution. Among other things, char-

acterizing the entire frontier helps us understand the role of the government’s initial spending

commitments and redistributive objectives in determining the time consistency of efficient allo-

cations. Our analysis also extends Battaglini’s work by investigating the robustness of optimal

policies to risk aversion.

The organization of the remainder of the paper is as follows. The next section presents the

model. Section 3 explores the properties of second best efficient allocations under risk neutrality

and draws out the implications for the efficient taxation of labor income. Section 4 studies how

risk aversion modifies the conclusions. Section 5 analyses the time consistency of second best

efficient allocations under risk neutrality and Section 6 concludes.

2 The model

We study an economy with a continuum of individuals that lasts for T periods. There are two

goods - consumption and leisure. In each period t, individuals get utility from consumption xt

and work lt according to the utility function

x1−σt

1− σ
− ϕ(lt),

where ϕ is increasing, strictly convex, and twice continuously differentiable. The parameter σ

measures individuals’ risk aversion. A special case of interest is when σ = 0 and individuals are

risk neutral. Individuals are endowed with l units of time in each period. To avoid having to

worry about corner solutions, we assume that ϕ0(0) = 0 and that liml→l ϕ
0(l) = ∞. Individuals

discount the future at rate δ < 1.

Individuals differ in their income generating abilities. In period t, an individual with income

generating ability θt earns income yt = θtlt if he works an amount lt. There are two ability levels,

low and high, denoted by {θL, θH} where 0 < θL < θH . A fraction µ ∈ (0, 1) of individuals start

out with high ability in period one. However, those who start out as high ability may become low

ability and visa versa. Specifically, each individual’s ability follows a Markov process with support
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{θL, θH} and transition matrix: ⎡⎢⎢⎣ αLL αLH

αHL αHH

⎤⎥⎥⎦ .
Ability types are correlated but not perfectly, so that αLL > αHL > 0 and αHH > αLH > 0.

The economy also has a government. In each period, this government spends an amount G.

While this spending does not directly impact individuals’ utilities, the government must raise the

revenue necessary to finance it. The government can borrow or lend at the exogenously fixed

interest rate which equals 1δ − 1.

A history for an individual at time t consists of a list of his previous t − 1 abilities; i.e.,

ht = {θ1, ..., θt−1}. Let h1 = ∅ denote the history at time 1 and let Ht denote the set of all histories

at time t. Let the notation ht+j º ht mean that ht+j follows ht (i.e., its first t−1 components are

equal to ht). An allocation in this economy is described by (x,y) = {(xt(ht, θt), yt(ht, θt))}Tt=1.

Here (xt(ht, θt), yt(ht, θt)) is the consumption-earnings bundle of those individuals who have ability

θt in period t after history ht ∈ Ht. To be feasible, an allocation must satisfy the aggregate resource

constraint5
TX
t=1

δt−1E[xt(ht, θt) +G] ≤
TX
t=1

δt−1E[yt(ht, θt)].

This says that the present value of consumption and government spending equals the present value

of earnings. Under the allocation (x,y), the expected utility at time t of an individual with ability

θt and history ht is

Vt((x,y), ht, θt;σ) =
TX
τ=t

δτ−tE[
xτ (hτ , θτ )

1−σ

1− σ
− ϕ(

yτ (hτ , θτ )

θτ
) | θt].

In addition to raising the revenue necessary to finance its spending, the government has the

distributional objective of providing those citizens who start out with low ability a lifetime ex-

pected utility of at least u. The government would like to achieve its distributional and revenue

raising goals efficiently and hence would like to implement an allocation that solves the following

5 Obviously, feasibility also demands that individuals’ consumptions in each period be non-negative. However,
we will ignore these constraints in what follows, effectively focusing on the properties of interior allocations.
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problem

max(x,y) V1((x,y), h1, θH ;σ)

s.t. V1((x,y), h1, θL;σ) ≥ u (UL)PT
t=1 δ

t−1E[xt(ht, θt) +G] ≤
PT

t=1 δ
t−1E[yt(ht, θt)]. (R)

In the sequel we refer to this problem as the Efficiency Problem and to allocations that solve it

as efficient allocations.

When individuals are risk averse (σ > 0), an allocation (x,y) solves the Efficiency Problem if

and only if three conditions are satisfied. First, individuals’ consumption levels are constant across

time and states. Second, individuals work up until the point at which their marginal disutility of

work equals the marginal utility of the consumption that work produces. Third, the UL and R

constraints are satisfied with equality. The first condition requires that those who start out with

high ability in period one have constant consumption xH , while those who are low types get xL.

The second condition requires that those who are high types in period one earn an amount yHH

in a period in which they have high ability and an amount yLH when they have low ability where

θHx
−σ
H = ϕ0(yHH/θH) and θLx

−σ
H = ϕ0(yLH/θL). Similarly, those who are low types in period one

earn an amount yHL in a period in which they have high ability and an amount yLL when they have

low ability where θHx
−σ
L = ϕ0(yHL /θH) and θLx

−σ
L = ϕ0(yLL/θL).

In the case of risk neutrality, individuals are indifferent as to the allocation of consumption

across time and states. Thus, for efficiency, all that is important is that individuals’ work decisions

are optimal. An allocation therefore solves the Efficiency Problem if and only if individuals work

up until the point at which their marginal disutility of work equals their marginal product and

the UL and R constraints are satisfied with equality.

If the government can observe individuals’ income generating abilities, it can implement an

efficient allocation with a simple system of lump sum taxes.6 However, we assume that the

6 Let y∗(T, θ) denote the earnings level that would maximize the static utility of an individual with ability

θ ∈ {θL, θH} if he had to pay a lump sum tax T ; that is, y∗(T, θ) maximizes (y−T )1−σ
1−σ − ϕ(y/θ) subject to the

constraint that y/θ ∈ [0, l]. Then, any efficient allocation (x,y) can be implemented as follows. Individuals who
are start out with high ability in period one pay a lump sum tax TH where y∗(TH , θH)−TH = xH . They also pay
this tax in any future period in which they have high ability. In any period in which they have low ability, their tax
burdens are reduced in such a way as to maintain their consumption at the same level. Thus, they pay a tax THL

such that y∗(THL, θL) − THL = xH . In effect, the tax system completely insures them against any consumption
loss resulting from a shock in their income generating ability. The story for those who are start out with low ability
in period one is similar. In the first period, they pay the lump sum tax TL where y

∗(TL, θL)−TL = xL. They also
pay this tax in any future period in which they are low types. In any period in which they experience high ability,
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government is not able to observe individuals’ income generating abilities. This unobservability

constrains the allocations that the government might reasonably achieve. Specifically, allocations

must now satisfy the following set of incentive constraints: for all time periods t and histories ht,

Vt((x,y), ht, θH ;σ) ≥
xt(ht, θL)

1−σ

1− σ
−ϕ(yt(ht, θL)

θH
)+δE[Vt+1((x,y), (ht, θL), θt+1;σ) |θt = θH ] (ICH(ht))

and

Vt((x,y), ht, θL;σ) ≥
xt(ht, θH)

1−σ

1− σ
−ϕ(yt(ht, θH)

θL
)+δE[Vt+1((x,y), (ht, θH), θt+1;σ) |θt = θL ]. (ICL(ht))

These constraints ensure that in any period t after any history ht individuals are always better off

with the bundle intended for them than the bundle intended for any other individual they could

credibly claim to be.7

Given its informational constraints, the best the government can do is to achieve an allocation

that solves the following incentive constrained problem

max(x,y) V1((x,y), h1, θH ;σ)

s.t. UL, R, and ICH(ht) & ICL(ht) for all t & ht.

We refer to this as the Second Best Efficiency Problem and to allocations that solve this as second

best efficient allocations. Our interest lies in understanding what solutions to this problem look

like and how the government may achieve them via tax-transfer systems.

It is important to be clear on the nature of the incentive problems created by the government’s

inability to observe its citizens’ abilities. There are two distinct problems. The first is created by

the government’s desire to redistribute from those citizens who start out with high ability to those

who are initially low ability. If the target level of utility for those who start out with low ability

(u) is sufficiently high, those who are initially high types will have an incentive to masquerade as

low types. This is the incentive problem stressed in the literature on Pareto efficient taxation (see

Stiglitz (1982), (1985a)).

The second incentive problem arises even if all individuals are ex ante identical and is created

by the tension between the desire to provide insurance and the need to provide work incentives.

they would pay a tax TLH such that y∗(TLH , θH) − TLH = xL. Individuals have no incentive to save under this
tax system, as it keeps their marginal utility of consumption constant across time and states.

7 While these incentive constraints consider only one time deviations, the one-stage-deviation principle implies
that they ensure that individuals cannot gain from more complex mis-reporting strategies.
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When individuals are risk averse, efficiency requires that individuals have constant consumption

across time and states. This means that they are fully insured from future ability shocks. But

efficiency also requires that individuals who have higher productivity should provide more labor.

These two goals are mutually inconsistent. This incentive problem is the major focus of the New

Dynamic Public Finance literature.

Notice that the second incentive problem is not operative when individuals are risk neutral

because then providing insurance is not necessary for efficiency. By contrast, the first incentive

problem arises even when individuals are risk neutral, provided that the target level of utility

for those who start out with low ability is high enough. To ensure that this target utility level

is sufficiently high for the first incentive problem to arise, we make the following assumption.

Consider the Utilitarian Problem of maximizing aggregate utility subject to the resource constraint

and the incentive constraints; that is,

max(x,y) µV1((x,y), h1, θH ;σ) + (1− µ)V1((x,y), h1, θL;σ)

s.t. R and ICH(ht) & ICL(ht) for all t & ht.

Then we assume that any solution to this problem violates the utility maintenance constraint UL;

that is, if (x,y) solves the Utilitarian Problem, then it must be the case that V1((x,y), h1, θL;σ) <

u.8

3 The case of risk neutrality

We begin our analysis of second best efficient allocations by studying the case of risk neutrality;

that is, σ = 0. Note that, under this assumption, an allocation (x,y) is efficient if and only if the

earnings path y maximizes Marshallian aggregate surplus

TX
t=1

δt−1E[yt(ht, θt)− ϕ(
yt(ht, θt)

θt
)],

and the consumption path x is such that UL and R hold with equality. The surplus maximizing

earnings path has the property that in any period t after any history ht, yt(θH , ht) must equal

y∗(θH) and yt(θL, ht) must equal y
∗(θL) where y

∗(θ) satisfies the first order condition θ = ϕ0(y/θ).

8 Thus, we are assuming that the government puts more weight on the utility of those who are initially low
types than on those who are initially high types. This would emerge from any social welfare function that is a
strictly concave function of citizen utilities.
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3.1 Solution procedure

To characterize second best efficient allocations, we study the following Relaxed Problem:

max(x,y) V1((x,y), h1, θH ;σ)

s.t. UL, R, and ICH(ht) for all t & ht.

The Relaxed Problem imposes the incentive constraints after any history only for those who are

currently high types. We will first characterize the solution to the Relaxed Problem and then

explain the relationship between the Relaxed and Second Best Problems.

Our first observation about the Relaxed Problem is:

Lemma 1 Suppose that σ = 0 and let (x,y) solve the Relaxed Problem. Then both UL and
ICH(h1) hold with equality.

The reason why the period one incentive constraint is binding is that, if it were not, then by

transferring resources forward in time as necessary, we could assure that none of the incentive

constraints were binding. But then the solution to the Relaxed Problem would involve the surplus

maximizing earnings path and a consumption path that satisfied all the incentive constraints

for the high type. From this allocation, by transferring consumption from the high type to the

low type in each period and after every history as needed, we can construct an allocation that

involves the surplus maximizing earnings levels and consumption levels such that all the incentive

constraints of the high type hold with equality. This allocation can be shown to satisfy all the low

types’ incentive constraints and hence solves the Utilitarian Problem. But this is a contradiction

since this allocation obviously satisfies the UL constraint strictly.

Lemma 1 does not imply that all the incentive constraints are binding because the solution

may involve giving those who are high types in the future sufficient consumption that they are

strictly better off not masquerading as low types. It turns out, however, that this possibility can

be ignored.

Lemma 2 Suppose that σ = 0 and let (x,y) be an allocation satisfying the constraints of the
Relaxed Problem. Then there exists x0 such that (x0,y) satisfies all the constraints and yields the
same value of the objective function as (x,y) but also satisfies ICH(ht) with equality for all periods
t > 1 and all histories ht.

To understand this result, suppose that under the allocation (x,y) an incentive constraint is

not binding for individuals who are high types at some period t > 1 after some history ht =
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(ht−1, θt−1). Then, we can make it bind by reducing the high types’ consumption in that period

and giving the expected present value to those with history ht−1 and ability θt−1 in period t− 1.

If θt−1 = θH then this has no implications for the incentive constraint of the high types in period

t − 1 with history ht−1. The gain in consumption in period t − 1 is exactly offset by the loss in

expected consumption should they remain high types in period t. If θt−1 = θL then the transfer

does have implications for the incentive constraint of the high types in period t− 1 with history

ht−1. On the one hand, masquerading as low types in period t−1 now yields more consumption in

period t− 1. On the other, it yields less consumption in period t if individuals remain high types.

It turns out that because high types are more likely to remain high types than are low types to

become high types, the cost of lower future consumption outweighs the benefit of higher current

consumption so that the incentive constraint still holds. Indeed, the transfer leads the incentive

constraint of the high type in period t− 1 with history ht−1 to be satisfied strictly. However, we

can repeat the process by reducing the consumption of the high type in period t− 1 with history

ht−1 = (ht−2, θt−2) and giving the expected present value to those with history ht−2 and ability

θt−2 in period t− 2. By repeating this process as many times as necessary, we find a consumption

path x0 that satisfies all the incentive constraints with equality except possibly the first period

constraint.

It follows from Lemma 1 and 2 that there is no loss of generality in assuming that in the

solution to the relaxed problem ICH(ht) holds with equality for all t and ht. We can use this fact

to write the expected lifetime utility of an individual with high ability after history ht as

Vt ((x,y), ht, θH ;σ) = Vt ((x,y), ht, θL;σ) +Φ (yt(ht, θL)) +∆EVt+1((x,y), (ht, θL), θt+1;σ)

(1)

where Φ (y) = ϕ(y/θL) − ϕ(y/θH) and ∆EVt+1((x,y), (ht, θL), θt+1;σ) is the difference in the

continuation values for the two types.9 By successively using this equation, we can write the

difference in the continuation values as solely a function of the earnings of an individual who is a

low type in period t and remains one thereafter. Denote by H◦ (ht) the set of histories following

a history ht in which in all the periods including and after t the individual has low ability. Let

h◦t+j denote an element of H
◦ (ht). Then we can use (1) to show:

9 That is, the difference between E[Vt+1((x,y), (ht, θL), θt+1;σ) |θt = θH ] and
E[Vt+1((x,y), (ht, θL), θt+1;σ) |θt = θL ].
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Lemma 3 Let (x,y) be an allocation satisfying ICH(ht) with equality for all periods t and all
histories ht. Then, the utility of an individual with history ht who is a high type in period t can
be written as:

Vt ((x,y), ht, θH ;σ) = Vt ((x,y), ht, θL;σ) +
T−tX
j=0

δj [αHH − αLH ]
j
Φ
¡
yt+j(h

◦
t+j , θL)

¢
. (2)

This result can in turn be used to establish:

Lemma 4 Suppose that σ = 0 and let (x,y) solve the Relaxed Problem. Then the earnings path
y solves the problem:

max
PT−1

j=0 δj [αHH − αLH ]
j Φ
¡
y1+j(h

◦
1+j , θL)

¢
+ u

s.t. G ≤ (1− δ)
PT

t=1 δ
t−1E[yt(ht, θt)− ϕ(yt(ht,θt)θt

)]

−(1− δ)[µ
PT−1

j=0 δj [αHH − αLH ]
j Φ
¡
y1+j(h

◦
1+j , θL)

¢
+ u].

(3)

The problem described in Lemma 4 is straightforward to solve. Letting γ be the multiplier on

the revenue constraint, the associated Lagrangian can be written as

L=
PT

t=1 δ
t−1E[yt(ht, θt)− ϕ(yt(ht,θt)θt

)]−G/(1− δ)

−(µ− 1
γ(1−δ) ){

PT−1
j=0 δj [αHH − αLH ]

j Φ
¡
y1+j(h

◦
1+j , θL)

¢
+ u}.

(4)

The first term is Marshallian aggregate surplus, while the second term represents the loss of

surplus resulting from having to meet the incentive constraints. Letting h∗t = h◦1+(t−1), the first

order conditions are that for all t and ht 6= h∗t

ϕ0(
yt(ht, θt)

θt
) = θt (5)

and for all t and ht = h∗t

(1− µ)[1− ϕ0(yt(h
∗
t , θL)/θL)

θL
] =

∙
1− αHL

αLL

¸t−1
Φ0 (yt(h

∗
t , θL)) (µ−

1

γ(1− δ)
). (6)

As we show in the proof of Proposition 1, the value of the multiplier γ is such that µ > 1/γ (1− δ),

so that the right hand side of (6) is positive.

Before we study the implications of these conditions, we first clarify the relationship between

the Relaxed and Second Best Problems.

Lemma 5 Suppose that σ = 0. Let (x,y) be an allocation with the property that the earnings path
solves the problem described in Lemma 4 and the consumption path is such as to make UL and
ICH(ht) (for all t and ht) hold with equality. Then, (x,y) is a second best efficient allocation.
Conversely, if (x,y) is a second best efficient allocation, then the earnings path must solve the
problem described in Lemma 4.
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It follows from this result that if (x,y) is a second best efficient allocation then the earnings levels

satisfy the first order conditions (5) and (6). In the next sub-section, we use this to derive some

results about the nature of second best efficient allocations. Before doing that, it is worth noting

that the relationship between the Relaxed and Second Best Problems is somewhat non-standard.

In a standard problem, it is the case that any solution to the Relaxed Problem solves the Second

Best Problem. In our problem, those solutions that do not satisfy the constraints with equality

do not necessarily solve the Second Best Problem.

3.2 Second best efficient allocations

We now present our first main result.

Proposition 1 Suppose that σ = 0. Then, in any second best efficient allocation, the earnings of
individuals who are currently, or have at some point been, high types are undistorted (i.e., they earn
y∗(θt) in period t when they have ability θt). The earnings of individuals who are currently and
have always been low types are distorted downwards (i.e., they earn less than y∗(θL)). However,
the extent of this distortion decreases over time and converges to 0 if T is large enough.

Proof: Let (x,y) be a second best efficient allocation. Then, by Lemma 5, the earnings path

solves the problem described in Lemma 4. The first order conditions tell us that for all t and

ht 6= h∗t

ϕ0(yt(ht, θt)/θt) = θt (7)

and for all t and ht = h∗t

(1− µ)[1− ϕ0(yt(h
∗
t , θL)/θL)

θL
] =

∙
1− αHL

αLL

¸t−1
Φ0 (yt(h

∗
t , θL)) (µ−

1

γ(1− δ)
) (8)

If an individual is currently or has at some point been a high type, then ht 6= h∗t and, from (7), it

can be seen that the first order conditions imply that they work up until the point at which their

marginal disutility of work ϕ0(y/θt) equals their wage θt. If an individual is currently and has

always been a low type then ht = h∗t and, from (8), it can be seen that the first order conditions

imply that they work less than the amount at which their marginal disutility of work equals their

wage provided that µ > 1/γ(1 − δ). Since αLL > αHL,
h
1− αHL

αLL

it−1
is decreasing in t and

converges to zero as t → ∞. The first order condition therefore implies that yt(h∗t , θL)/θL is

decreasing in t and (since γ must be positive) converges to y∗(θL)/θL as t→∞.

It only remains to prove that µ > 1/γ(1 − δ). Assume, first that µ = 1/γ(1 − δ). Then (8)

implies that for all t, yt(h
∗
t , θL) = y∗(θL). This means that the earnings levels that solve the
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problem described in Lemma 4 maximize Marshallian aggregate surplus. It follows from Lemma

5 that any second best efficient allocation must solve the Utilitarian Problem

max(x,y) µV1((x,y), h1, θH ; 0) + (1− µ)V1((x,y), h1, θL; 0)

s.t. R and ICH(ht) & ICL(ht) for all t & ht.

But, by assumption, any solution to the Utilitarian Problem must violate the UL constraint.

Next suppose that µ < 1/γ(1− δ). Let y denote an earnings path that solves the problem in

Lemma 4. Let ex be such as to make ICH(ht) (for all t and ht) and UL hold with equality given y.

Then, we will show that (ex,y) cannot solve the Relaxed Problem - a contradiction. To see this,

consider a marginal reduction dy in y1(h1, θL) and choose dx so as to keep the utility of those who

are low ability in period one constant; i.e., so that

ex1(h1, θL)− dx− ϕ(
y1(h1, θL)− dy

θL
) = ex1(h1, θL)− ϕ(

y1(h1, θL)

θL
).

Clearly,

dx =
ϕ0(y1(h1, θL)/θL)

θL
dy.

Note that ICH(h1) is now still satisfied, because the high type now finds the low type’s bundle

less attractive because it involves less earnings. However, the change in revenues is

dR = (1− µ)[dx− dy] = (1− µ)[
ϕ0(y1(h1, θL)/θL)

θL
− 1]dy > 0.

This change is positive since µ < 1/γ(1 − δ) implies that 1− ϕ0(y1(h1,θL)/θL)
θL

< 0. Now take this

revenue increase and divide it among those who are high types in period one; i.e., raise ex1(h1, θH)
by dR/µ. Clearly, this change makes the high types strictly better off, which since it violates none

of the constraints, means that (ex,y) cannot solve the Relaxed Problem. Q.E.D.
The proposition implies that the fraction of individuals in any period whose labor supply is

distorted in any second best efficient allocation is decreasing and converges to zero as t→ T when

T is large. Moreover, the degree to which these individuals have their labor supply distorted also

converges to zero. Thus, in a very strong sense, the distortions caused by imperfect observability

of individuals’ abilities vanish over time.10

10 The properties of second best efficient allocations described in Proposition 1 are similar to the properties
of the monopolist’s optimal contract in Battaglini’s (2005a) pricing problem. Battaglini refers to the first as the
“Generalized No-Distortion at the Top Principle” and the second as the “Vanishing Distortion at the Bottom
Principle”. Formally, Proposition 1 extends Battglini’s result in two ways. First, due to more general functional
forms, here we might have multiple solutions for a given target utility level for those who are initially low ability.
Proposition 1 shows that the two properties are true for any solution. Second, and more importantly, Proposition
1 shows that the two properties hold for any distribution of utilities on the second best Pareto frontier.
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To understand the first part of the proposition, consider a group of individuals at some time

t who share the same history ht. Suppose that at some point in the past these individuals were

high ability so that ht 6= h∗t . By Proposition 1, the earnings of these individuals are undistorted at

time t. This is obviously optimal for those with high ability at time t, so consider those with low

ability. Suppose, to the contrary, that the earnings of these individuals are distorted downwards.

Then, if we were to increase their earnings slightly in period t we would make them better off. Of

course, such a change would also necessitate an increase in the consumption of those who have high

ability at time t to prevent them from masquerading as low types. This will reduce government

revenues. However, this reduction in expected revenues can be financed by a concordant reduction

in the consumption of these individuals in the period τ < t in which they were first high types.

This reduction gives individuals with high ability in period τ and history hτ ¹ ht no incentive to

masquerade as low types. The reason is that the reduction in current consumption is offset by the

increase in expected future consumption at time t. This marginal change in the allocation would

not cause any of the incentive constraints of low ability individuals to be violated since none of

these are binding.

To understand the second part of the proposition, it is useful to contrast it with what would

happen if ability types were constant. With constant types, the earnings of low ability individuals

are distorted downwards and the degree of distortion is constant over time. The size of the

distortion is determined by a simple marginal cost - marginal benefit argument. A lower distortion

increases the Marshallian surplus generated by an individual and therefore obviously increases

welfare. However, it also increases the consumption that needs to be given to individuals with

high ability. This reduces tax revenues for the government and increases the shadow cost of

taxation γ. At the optimum, the marginal increase in surplus is exactly compensated by the

marginal reduction in revenues. With constant abilities the marginal cost/benefit ratio is constant

throughout periods. After any period t, the marginal benefit of a lower distortion is proportional

to the fraction of low types (the constant 1 − µ), because types never change. Similarly, the

marginal cost is constant: it is proportional to the fraction of high types whose consumption must

be raised (the constant µ) and the shadow cost of taxation: µ− 1/γ(1− δ).

When types change over time, the marginal cost/benefit ratio is not constant, because, de-

pending on the realized history, there is a different composition of the population. The marginal

benefit of a lower distortion in the earnings of those individuals who at time t are and have always

14



been low types is proportional to the fraction of such individuals in the population: (1− µ)αt−1LL .

The marginal cost, evaluated at time 1, also depends on the time t of the change. At time

t the consumption of high ability individuals who have previously been low types increases by,

say, ∆Rt. At time t − 1 the expected utility of those who are and have always been low types

increases because they can become high types at time t and benefit from the increase in con-

sumption at that time. Part of this extra expected utility can be taxed away at t − 1, but not

all since incentive compatibility must be satisfied at that time as well. At time t − 1 individ-

uals who have high ability for the first time can not receive less than what they would receive

if they choose the option designed for those who remain low types. Even if we completely tax

away the expected increase in consumption of those who, at time t − 1, are and have always

been low types with a tax Tt−1 such that αLH∆Rt − Tt−1 = 0, those individuals who have high

ability at time t − 1 after previously being low types must receive an increase in consumption

equal to ∆Rt−1 = (αHH∆Rt − Tt−1) − (αLH∆Rt − Tt−1) = (αHH − αLH)∆Rt. Repeating the

same argument, if we try and tax away these gains at t − 2, we must provide an increase in

consumption at time t − 2 for those individuals who have high ability for the first time equal to

∆Rt−2 = (αHH − αLH)∆Rt−1 = (αHH − αLH)
2
∆Rt. Proceeding backward, we arrive to an in-

crease in the consumption of those who are high ability at time 1 proportional to (αHH − αLH)
t−1.

Since these individuals make up a fraction µ of the population, the marginal cost of a lower dis-

tortion in the earnings of those individuals who at time t are and have always been low types is

proportional to µ (αHH − αLH)
t−1
. Accordingly, the marginal cost/benefit ratio at time t is now

proportional to µ
1−µ

h
αHH−αLH

αLL

it−1
. As the cost/benefit ratio of a lower distortion vanishes over

time,11 the distortion vanishes with it.

Proposition 1 implies that the marginal tax rates individuals face should depend upon their

entire history of earnings. What might such a non—stationary tax system look like? To provide a

feel for this, we will describe a particular tax system that can implement utility allocations on the

Pareto frontier. It should be stressed that this is not the only possibility. Given that individuals

have constant marginal utility of consumption, the allocation of consumption across time or states

is irrelevant for individuals’ utility and this gives a great deal of flexibility in choosing consumption

paths and hence tax systems.

11 This can be seen from the fact that the term in the square parenthesis is lower than one: indeed αHH−αLH
αLL

=

1− αHL
αLL

< 1 because types are positively correlated.
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Consider a particular utility allocation on the Pareto frontier and let y denote the associated

earnings path. This must solve the problem described in Lemma 4. Thus, yt(ht, θH) = y∗(θH)

for all t and ht and yt(ht, θL) = y∗(θL) for all t and all ht 6= h∗t . To simplify notation, let

y∗Lt = yt(h
∗
t , θL) for all t. Now, choose x as follows. First, let the consumption of high types in

any period be constant, so that xt(ht, θH) = x∗H for all t and ht for some x
∗
H . In addition, let

the consumption of those who are currently low types but have previously been high types be

constant, so that xt(ht, θL) = x∗L for all t and ht 6= h∗t . Further, let this consumption be related

to x∗H in the following way:

x∗L = x∗H − (ϕ(y∗(θH)/θH)− ϕ(y∗(θL)/θH)).

Finally, for those who have always been low types let xt(θL;h
∗
t ) = x∗Lt where (x

∗
Lt)

T
t=1 satisfy for

all t

x∗Lt = x∗L − (ϕ(y∗(θL)/θH)− ϕ(y∗Lt/θH)) + δαHL{x∗L − ϕ(y∗(θL)/θL)− (x∗Lt+1 − ϕ(y∗Lt+1/θL))}

+
T−tX
j=2

δjαj−1LL {x∗L − ϕ(y∗(θL)/θL)− (x∗Lt+j − ϕ(y∗Lt+j/θL))}.

It may be verified that x so constructed is such as to make the incentive constraints ICH(ht) (for

all t and ht) hold with equality. To ensure UL also holds with equality, let x
∗
H be chosen so that

when x∗L and (x
∗
Lt)

T
t=1 are defined by the above equations, then V1((x,y), h1, θL; 0) = u.

Now consider the features of a tax system that could implement the allocation (x,y). In

period 1, individuals would face a schedule T1(y) that requires them to pay a tax T1(y
∗(θH)) =

y∗(θH)−x∗H if they earn y∗(θH) and a tax T1(y
∗
L1) = y∗L1−x∗L1 if they earn y

∗
L1. This first period

schedule has a positive marginal rate at income y∗L1 and a zero rate at income y
∗(θH).

12

In the second period, the schedule individuals face depends upon their first period earnings.

Those who earn y∗(θH) in the first period face a schedule T2(y; y
∗(θH)) that requires them to

pay a tax T2(y
∗(θH); y

∗(θH)) = y∗(θH)− x∗H if they earn y∗(θH) and a tax T2(y
∗(θL); y

∗(θH)) =

y∗(θL)−x∗L if they earn y
∗(θL). This tax schedule has zero marginal rates in the neighborhood of

both the income levels y∗(θH) and y
∗(θL). Those who earn y

∗
L1 in the first period, face a schedule

12 Suppose that the government is employing a smooth tax schedule T1(y) with the property that T1(y∗H) =
y∗(θH)−x∗H and T1(y∗L1) = y∗L1−x∗L1. Assuming that future taxes are locally invariant to individuals’ first period
incomes, the schedule must be such that y∗L1 is a local maximizer of y−T1(y)−ϕ(y/θL) and y∗H is a local maximizer
of y−T1(y)−ϕ(y/θH). Since T1(y) is smooth, this requires that T

0
1(y

∗
L1) equal 1−ϕ(y∗L1/θL)/θL which is positive

and that T 01(y
∗
H) equal 1 − ϕ(y∗H/θH)/θH which is zero. Of course, there is no reason that the government need

use such a smooth schedule. It could, for example, set T1(y) equal to infinity for any y other than y∗L1 or y
∗
H . In

this case, the notion of a marginal rate of taxation is not well defined.
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T2(y; y
∗
L1) that requires them to pay a tax T2(y

∗(θH); y
∗
L1) = y∗(θH)−x∗H if they earn y∗(θH) and

a tax T2(y
∗
L2; y

∗
L1) = y∗L2 − x∗L2 if they earn y∗L2. This tax schedule has a zero marginal rate in

the neighborhood of y∗(θH) but a positive marginal rate in the neighborhood of y
∗
L2.

13 Thus,

the tax schedule T2(y; y
∗
L1) has a different marginal rate in the neighborhood of [y

∗
L2, y

∗(θL)] than

T2(y; y
∗(θH)). Since y∗L2 > y∗L1, the tax schedule T2(y; y

∗
L1) has a lower marginal rate in the

neighborhood of y∗L2 than the first period tax schedule.

In the third period, those who had earned y∗(θH) in the first period continue to face the

schedule T2(y; y
∗(θH)) as do those who earned y∗(θH) in the second period. Those who earned

y∗L1 and y∗L2 in the first two periods, face the schedule T3(y; y
∗
L1, y

∗
L2) that requires them to pay a

tax T3(y
∗(θH); y

∗
L1, y

∗
L2) = y∗(θH)−x∗H if they earn y∗(θH) and a tax T3(y∗L3; y∗L1, y∗L2) = y∗L3−x∗L3

if they earn y∗L3. Since y
∗
L3 > y∗L2, the tax schedule T3(y; y

∗
L1, y

∗
L2) involves a lower marginal rate

in the neighborhood of y∗L3 than does the second period tax schedule. As time progresses, more

and more individuals come under the tax schedule T2(y; y
∗(θH)). Moreover, the schedule faced by

those with an uninterrupted history of low earnings Tt(y; y
∗
L1, .., y

∗
Lt−1) converges to the schedule

T2(y; y
∗(θH)).

4 Risk aversion

We now turn to the general case of risk aversion. The problem is significantly more complicated

precisely because risk aversion introduces the incentive problem arising from the trade off between

insurance and work incentives. These complications prevent us from presenting a full characteri-

zation of second best efficient allocations with risk aversion. Rather we restrict attention to the

case in which risk aversion is small. We begin with a general continuity result that establishes that

the distortions in earnings are small when the degree of risk aversion is small. We then provide a

more detailed analysis of the two period case.

4.1 The general case

For all σ, let Ψ(σ) be the set of solutions to the Second Best Problem corresponding to σ and

let V1(σ) denote the value function for the problem; that is, V1(σ) = V1((x,y), θH , h1;σ) for

(x,y) ∈ Ψ(σ). Our first result is:

Lemma 6 The value function V1(σ) is continuous at σ = 0.

13 Again, this assumes that future taxes are locally invariant to second period earnings.
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This result tells us that the problem is well-behaved as a function of the risk aversion parameter.

Next we show that as the degree of risk aversion gets smaller, the earnings levels converge to

those that are optimal under risk neutrality.

Lemma 7 For all ε > 0 there exists a σε > 0 and an earnings path y
∗ which solves the problem

described in Lemma 4 such that if σ ∈ (0, σε) and (x,y) ∈ Ψ(σ) then:

1

T
[
TX
t=1

sup
ht+1∈Ht+1

|yt(ht+1)− y∗t (ht+1)|] ≤ ε.

Combining these results, we obtain our second main result:

Proposition 2 For any ε > 0, there exists a σε > 0 such that if σ ∈ (0, σε), in any second best
efficient allocation, the distortion in the earnings of individuals who are either currently high types
or who have previously been high types is less than ε. Furthermore, when T is sufficiently large,
for any ε > 0 there exists a σε > 0 and a tε such that if σ ∈ (0, σε), in any second best efficient
allocation, the distortion in the earnings of individuals who have always been low types is less than
ε in periods t ∈ {tε, ..., T}.

Thus, the only individuals whose earnings are significantly distorted in any period t are those

who were initally low types and have remained low types. This is a declining fraction of the

population. Moreover, if T is large enough, then as t → T the distortion in the earnings of even

these individuals vanishes. The bottom line then is that the basic lesson of the analysis of the risk

neutral case - namely, that distortions vanish - is robust to the introduction of small amounts of

risk aversion.

4.2 The two period case

To solve for second best efficient allocations we again consider the Relaxed Problem obtained by

ignoring the incentive constraints for low types. This is tractable because there are only three

incentive constraints. While we are no longer able to prove generally that second best efficient

allocations must solve the Relaxed Problem, we can show that this is the case for σ sufficiently

small.

Lemma 8 Suppose that T = 2. Then, there exists a σ > 0 such that if σ ∈ (0, σ), (x,y) is a
second best efficient allocation if and only if it solves the Relaxed Problem.

By analyzing the first order conditions for the Relaxed Problem, we are able to establish:

Proposition 3 Suppose that T = 2. Then, there exists a σ > 0 such that if σ ∈ (0, σ), in any
second best efficient allocation, the earnings of individuals who are high types in either period
are undistorted. The earnings of individuals who are low types in either period are distorted
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downwards. However, the degree of distortion in the earnings of those who become low types in
the second period converges to 0 as σ → 0. Moreover, those who are low types in both periods earn
more in the second period.

This proposition shows that once we introduce risk aversion, the result that in any second best

efficient allocation only those who remain low types have their labor supply decisions distorted no

longer holds. Those who start out as high types and become low types in the second period, also

work less than the efficient amount. However, the basic pattern of earnings in any second best

efficient allocation is the same as in the risk neutral case. In particular, the earnings of those who

remain low types are increasing.

With risk aversion, the allocation of consumption across time and states is relevant for indi-

viduals’ utility and this explains why the earnings of individuals with history HL are distorted

downwards. Reducing these earnings level lessens the incentive of those with history HH to pre-

tend they have history HL. In the risk neutral case, this problem could be handled by increasing

the consumption of those with history HH and taking the expected discounted value from high

ability individuals in the first period. But, because individuals want to smooth their consumption,

this intertemporal reallocation is no longer without cost.

What can be established about the allocation of consumption across time and states in a second

best efficient allocation? Our next proposition addresses this.

Proposition 4 Suppose that T = 2. Then, there exists a σ > 0 such that if σ ∈ (0, σ), in any
second best efficient allocation the consumption of individuals who are high types in the first period
goes up if they remain high types in the second period and down if they become low types. Similarly,
the consumption of individuals who are low types in the first period goes up if they are high types
in the second period and down if they are low types. Moreover, for both low and high types, the
marginal utility of consumption in the first period is strictly less than the expected marginal utility
of consumption in the second period.

Thus, when compared with efficient allocations there are two distinct distortions in the allo-

cation of consumption. First, the allocation of consumption across states is distorted in the sense

that individuals are not fully insured. If they are low types in the second period, their consump-

tion is lower than if they are high types. This is obviously a necessary condition for incentive

compatibility. Second, the allocation of consumption across time is distorted in the sense that

individuals consume more than is optimal in the first period. This is a particular application of the

result first established by Rogerson (1985) and since generalized and applied to optimal taxation
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by Golosov, Kocherlakota, and Tsyvinsky (2003).14 The intuition is the following. Because of the

incentive compatibility constraint, low types will supply less labor and enjoy lower consumption

in each period. The marginal utility of consumption of low types, therefore, is higher than the

marginal utility of high types in period two. Suppose, to the contrary, that the marginal utility

of consumption in the first period were higher than the expected marginal utility in the second

period for some type. If we reduce the second period consumption of high and low types by some

amount ∆ incentive compatibility is preserved, since the utility of low types is reduced by more

than that of high types. This reduction frees ∆ units of consumption that can be used to increase

consumption in the first period. But then, since the marginal increase in utility at t = 1 is higher

that the expected reduction at t = 2, the change creates a Pareto improvement: and we have a

contradiction.

Constructing a tax system that can implement second best efficient allocations with risk aver-

sion is a more complex problem because of the need to simultaneously provide correct earnings

and savings incentives. Moreover, it is not the case that we can infer marginal rates of taxation

from the distortions in earnings and consumption across periods. In particular, there is no general

guarantee that, under a tax system in which marginal rates reflect the distortions associated with

a particular second best efficient allocation, individuals will select the bundles intended for them.

We refer the interested reader to Kocherlakota (2005) for a detailed analysis of this problem.

5 Time consistency

Imagine that at the beginning of period one the government announces a tax/transfer system de-

signed to implement a particular utility allocation on the second best Pareto frontier. Individuals’

period one earnings choices would then reveal their period one types. If the government could use

this information to design a new tax/transfer system that was better for all individuals and raised

just as much revenue, one might imagine that it would be tempted to do so. In this case, we will

say that the original tax/transfer system is not time consistent.

This notion of time consistency is based on Pareto dominance. The underlying idea is that it

14 It is worth noting that we establish that the inequality is strict, while Golosov, Kocherlakota and Tsyvinsky
(2003) prove only a weak inequality. Following Rogerson (1985), their argument is based on Jensen’s Inequality.
However, to obtain a strict inequality this argument requires that consumption levels are state contingent. That
this is indeed the case in every period of a general T period model is yet to be proven and is by no means an
obvious result.
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is likely to be politically difficult for a government to make policy changes that reduce the benefits

previously promised to some group of society. This might be regarded as unfair even by those who

are not affected. It would however be much harder to argue that a policy change that increases

all citizens’ utility should not be chosen. Accordingly, if a previously announced policy cannot be

Pareto dominated, then there will exist political forces to help it survive. But in the case of Pareto

dominance, a policy will be removed and hence would not be time consistent. While other notions

of time consistency could doubtless be proposed, in our view, this is a natural way of modelling

it.

Up to this point, we have ignored this time consistency problem, implicitly assuming that the

government can credibly commit to the ex ante optimal tax/transfer system. The equilibrium

characterized in Section 4, is therefore a Ramsey equilibrium (Ramsey (1927)): the government

determines the optimal policy given individuals’ reaction functions. However, it is well known that

even benevolent governments find it ex post optimal to depart from Ramsey optimal policies.15

In a model like ours, distortionary taxation is necessary to extract individuals’ private information

but after individuals have revealed it, the government can improve their welfare by eliminating

distortions (Roberts (1984)). This means that optimal tax systems in dynamic models with con-

stant ability types can be ex post Pareto dominated and hence are not time consistent according

to our definition.

In this section we show that when individuals’ types can vary stochastically the time-inconsistency

problem (as we have defined it) may not arise. To analyze the issue we return to the case of risk

neutral individuals. We also impose the additional assumption that the marginal disutility of

labor is convex; i.e., ϕ000(l) ≥ 0.16 This assumption guarantees that Φ00 > 0 which in turn implies

that the Lagrangian for the maximization problem in Lemma 4 is strictly concave and that the

efficient earnings levels are unique.

We begin by providing a formal definition of time consistency. We will work directly with

allocations rather than the tax-transfer systems that generate them. It is to be understood that a

particular tax/transfer system is time consistent if and only if the allocation it generates is time

consistent. Consider then a particular second best efficient allocation (x∗,y∗) and imagine that

15 The classic reference is Kydland and Prescott (1977). See Chari, Kehoe and Prescott (1988) and Stokey (1989)
for general discussion and surveys of the literature.

16 This condition is satisfied by most common cost functions such as quadratic, logarithmic or exponential.
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we are at the beginning of some period t ≥ 2. At that point, the government knows the histories

of all the individuals in the economy but not their period t types. Consider a group of individuals

with history ht. We are interested in whether the government can change the future allocation

intended for these individuals in such a way as to make them better off while still raising the same

revenue from them.

Let (xht ,yht) denote a future allocation for those individuals who at time t have history ht;

i.e.,

(xht ,yht) = {(xt+j(ht+j , θt+j), yt+j(ht+j , θt+j)) | ∀ ht+j º ht}T−tj=0 .

The future allocation implied by the efficient allocation (x∗,y∗) is denoted (x∗ht ,y
∗
ht
). Let R∗t (ht)

be the expected revenues raised from those individuals under (x∗ht ,y
∗
ht
); that is,

R∗t (ht) =
T−tX
j=0

δjE[y∗t+j(ht+j , θt+j)− x∗t+j(ht+j , θt+j) | ht].

Now consider the problem:

max(xht ,yht ) Vt ((x,y), ht, θH ;σ)

s.t. Vt ((x,y), ht, θL;σ) ≥ Vt ((x
∗,y∗), ht, θL;σ)PT−t

j=0 δ
jE[yt+j(ht+j , θt+j)− xt+j(ht+j , θt+j) |ht ] ≥ R∗t (ht)

and ICH(ht+j) & ICL(ht+j) for all ht+j º ht and j = 0, 1, ..

(PI
ht
)

Thus, we seek to maximize the expected utility of those individuals with history ht who are high

types at time t, subject to the constraints that: (i) those who are low types in period t with

history ht obtain at least as much utility as they obtain under (x
∗
ht
,y∗ht), (ii) the same expected

revenue is raised from these individuals as under (x∗ht ,y
∗
ht
), and, (iii) the incentive compatibility

constraints for these individuals in period t and beyond are satisfied. Clearly, (x∗ht ,y
∗
ht
) satisfies

all the constraints of this problem. If (x∗ht ,y
∗
ht
) solves it, then the government cannot change the

future allocation intended for individuals with history ht in such a way as to make them better off

while still raising the same revenue from them. Therefore, we say that (x∗,y∗) is time consistent

if for all periods t ≥ 2 and all histories ht, (x∗ht ,y
∗
ht
) is a solution to PI

ht
.

We now have:

Lemma 9 Suppose that σ = 0 and let (x∗,y∗) be a second best efficient allocation. Then, (x∗,y∗)
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is time consistent if and only if

αLH
αHH

≥
µ− 1

γ(1−δ)

1− 1
γ(1−δ)

(9)

where γ is the Lagrange multiplier associated with the maximization problem described in Lemma
4 that is solved by y∗.

The intuition underlying this result is the following. When ability types are perfectly correlated,

under the Ramsey tax system the government faces no residual uncertainty in period two and

beyond. Because of this, it could impose lump sum taxes from that point on and eliminate all

distortions in individuals’ labor supply. Accordingly, Ramsey optimal taxes can never be time

consistent. When types are stochastic, residual uncertainty remains because an individual may

change type. Thus, the government must still screen types in the remaining periods. Condition (9)

guarantees that the ex post optimal distortion is the same as the ex ante optimal distortion. When

this is the case, two competing forces offset each other. On the one hand, in order to create a Pareto

improvement, the government must introduce a new tax system that involves less distortions than

the original one. This necessitates increasing the earnings of those individuals whose earnings are

distorted who, by Proposition 2, are those who currently are and always have been low types.

On the other hand, increasing the earnings of these individuals requires compensating increases

in consumption for those individuals with the same history who have become high types. When

condition (9) is satisfied, these compensating increases in consumption are sufficient to offset the

revenue gains from the higher earnings of those who are still low types and the net impact on

revenue is negative.

From Lemma 9, we can derive our third main result:

Proposition 5 Suppose that σ = 0 and let (x∗,y∗) be a second best efficient allocation. Then
(i) if αLH/αHH ≥ µ, (x∗,y∗) is time consistent, and, (ii) if αLH/αHH ∈ (0, µ) there exists a
threshold Ω∗ such that (x∗,y∗) is time consistent if and only if G+ (1− δ)u ≤ Ω∗.

To understand how this result follows from the Lemma, note that the right hand side of condition

(9) is increasing in γ and converges to µ as γ approaches∞. Accordingly, condition (9) is necessar-

ily satisfied when αLH/αHH exceeds µ which implies part (i).
17 In the intermediate case, whether

the condition is satisfied depends upon the precise value of the Lagrange multiplier γ associated

17 It is interesting to note that when µ is equal to the fraction of high ability types in the stationary distribution
of the Markov process describing the evolution of the individuals’ income generating abilities, the condition in (i)
is satisfied if αHH ≤ (1 + αLH)/2.
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with y∗. The smaller it is, the more likely is the condition to be satisfied. Since γ represents the

marginal value of a unit relaxation in the government’s revenue requirement, the degree to which

it exceeds 1/µ(1 − δ) will depend upon the tightness of the incentive constraints. This in turn

will depend on the size of the revenue requirement G and on the amount of redistribution the

government intends to do as measured by u.18

This proposition has two interesting implications. First, no matter how strong the correlation

between types, if it is anything less than perfect, there are conditions under which the Ramsey

optimal policy will be sustainable. This justifies our claim in the introduction that Pareto efficient

income tax systems can be time-consistent even when the degree of correlation in ability types is

large. Second, in the case in which αLH/αHH ∈ (0, µ), Pareto efficient tax systems will be time

consistent only when the government’s revenue requirement and its redistributive goals are “not

too large”. Thus, ceteris paribus, a government that starts with higher spending commitments

(for example, higher debt to repay) or more ambitious redistributive objectives will find it harder

to implement second best optimal policies.

This second implication suggests a theoretical reason why the classic equity-efficiency trade off

(see, for example, Okun (1975)) may be steeper than previously thought. A well-known lesson of

public economics is that achieving stronger equity objectives requires more distortionary taxation

which reduces the size of the aggregate pie. Indeed, the Mirrlees model is designed precisely to

illustrate and quantify this trade off. Proposition 6 suggests that, in dynamic economies, stronger

equity objectives might lead second best optimal policies to be time inconsistent. This will force

governments to achieve their equity objectives with third best policies.19 These will lead to

greater distortions and larger reductions in the aggregate pie than suggested by the Mirrlees

model.

18 Proposition 5 is related to Battaglini’s (2005a) result on the renegotiation proofness of the monopolist’s optimal
contract. Formally, it extends his result by showing which points on the second best frontier are time consistent.
In particular, it shows that those involving a higher target utility for those who are initially low ability are less
likely to be time consistent.

19 Understanding what these third best policies look like is a challenging problem because when the government
cannot commit, the Revelation Principle does not hold. In a two period Principal-Agent model with variable types,
Battaglini (2005b) fully characterizes the optimal renegotiation proof contract extending the Revelation Principle
to this dynamic environment. He shows that when the second best optimal contract is not time consistent, the
third best optimal contract involves the agent playing a mixed strategy. The optimal contract induces the high
type agent to partially pool with the low type in the first period; and the degree of pooling monotonically increases
with the level of types’ persistence. Berliant and Ledyard (2003) also study third best policies in a two period
optimal tax model with a continuum of constant ability types. They provide conditions under which the optimal
tax scheme involves screening types with distortionary taxes in the first period and non-distortionary lump sum
taxes in the second period. These second period lump sum taxes depend only upon first period earnings.
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6 Conclusion

The problem of optimal taxation in a world in which individuals’ income generating abilities, while

persistent, may vary over time raises three general theoretical questions. First, what is the pattern

of distortions in individuals’ earnings choices and how do these vary over time? Second, what are

the pattern of distortions in the allocation of consumption across states and time? Third, under

what circumstances are efficient tax systems time consistent? This paper has tried to shed light

on these questions by investigated Pareto efficient income taxation in a simple dynamic economy

with individuals whose income generating abilities evolve according to a two-state Markov process.

The bulk of the analysis has assumed that individuals are risk neutral which makes the problem

of consumption smoothing moot and permits a clean focus on the first and third questions. With

respect to earnings distortions, the paper shows that, in the risk neutral case, in any period the

only individuals who face a positive marginal income tax rate are those who started with low

ability and have always been low ability. This is a declining fraction of the population, converging

to zero if the time horizon is long enough. In addition, the tax rate these individuals face decreases

over time, also converging to zero if the time horizon is long enough. Thus, in an efficient income

tax system, earnings distortions vanish over time.

The paper shows that with risk aversion, the result that any individual who is currently

a high type or who has been previously a high type faces a zero marginal tax rate no longer

holds. However, it also shows that the distortion in the earnings of these individuals is small

for small degrees of risk aversion. Thus, the basic insight that earnings distortions vanish is

robust to introducing small amounts of risk aversion. When risk aversion is high, the tendency

toward efficiency that this paper identifies would still be a force in shaping optimal taxes but other

considerations arise. Thus, our results should be considered a starting point for the understanding

of the pattern of earnings distortions rather than a definitive account.

With respect to time consistency, the paper shows that, in the risk neutral case, Pareto efficient

income tax systems can be time-consistent even when the degree of correlation in ability types is

large. Moreover, time consistency is more likely when governments have less progressive policy

agendas (i.e., lower spending and less redistribution). As we have argued, this provides a theoret-

ical rationale for believing that the equity-efficiency trade off may be steeper than suggested by

the static Mirrlees model.
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7 Appendix

Proof of Lemma 1: It is obvious that UL holds with equality, so we will just show that ICH (h1)

is binding. Let (bx, by) solve the relaxed problem and suppose that ICH (h1) is not binding. Without

loss of generality, we can assume that for all t > 1 and histories ht, the constraint ICH(ht) is not

binding. To see this, suppose that for some time period bt and some history ht = {θ1, ..., θt−1},

ICH(ht) were binding. Suppose first that θ1 = θH . Then consider the allocation (x, by) in which
xt(ht, θH) = bxt(ht, θH) + ε; xt(ht, θL) = bxt(ht, θL);

and x1(h1, θH) = bx1(h1, θH)− δt−1εPr ((ht, θH) |θ1 = θH )

for ε > 0 and all the remaining consumptions are unchanged. Observe that the expected utility

of a high type in period one under this allocation is exactly the same as under (bx, by) because
E[

TX
t=1

δt−1xt(ht, θt) |θ1 = θH ] = E[
TX
t=1

δt−1bxt(ht, θt) |θ1 = θH ].

It follows that (x, by) satisfies ICH(h1) and yields the same value of the objective function as (bx, by).
It is also satisfies R and UL. Next suppose that θ1 = θL. Then consider the allocation (x, by) in
which

xt(ht, θH) = bxt(ht, θH) + ε; xt(ht, θL) = bxt(ht, θL);
and x1(h1, θL) = bx1(h1, θL)− δt−1εPr ((ht, θH) |θ1 = θL )

for ε > 0 and all the remaining consumptions are unchanged. Observe that the expected utility

of a low type in period one under this allocation is exactly the same as under (bx, by) because
E[
∞X
t=1

δt−1xt(ht, θt) |θ1 = θL ] = E[
∞X
t=1

δt−1bxt(ht, θt) |θ1 = θL ].

It follows that (x, by) satisfies UL. It also yields the same value of the objective function as (bx, by)
and satisfies R. Moreover, since ICH (h1) is not binding under (bx, by) it will not be binding under
(x, by) for ε sufficiently small.
It follows from this that (bx, by) solves the Efficiency Problem

max(x,y) V1((x,y), h1, θH ; 0)

s.t. UL and R.

28



This means that the earnings path by maximizes Marshallian aggregate surplus
TX
t=1

δt−1E[yt(ht, θt)− ϕ(
yt(ht, θt)

θt
)],

and the consumption path bx is such that UL and R hold with equality. Moreover, for all t and

histories ht the constraints ICH(ht) are satisfied but slack. Now, by transferring consumption

from the high type to the low type in each period and after every history, create an alternative

consumption path ex that for all t and histories ht makes the constraints ICH(ht) bind when the

earnings path is by. The allocation (ex, by) so created can be shown to satisfy for all t and histories
ht the constraints ICL(ht) (see the proof of Lemma 5 below). Moreover, it strictly satisfies the

UL constraint and (given constant marginal utility) solves the Utilitarian Problem

max(x,y) µV1((x,y), h1, θH ; 0) + (1− µ)V1((x,y), h1, θL; 0)

s.t. R and ICH(ht) & ICL(ht) for all t & ht.

But, by assumption, if (x,y) solves the Utilitarian Problem, then it must be the case that

V1((x,y), h1, θL; 0) < u - a contradiction. Q.E.D.

Proof of Lemma 2: Let (x,y) be an allocation satisfying the constraints of the Relaxed Problem.

We will show that for all t = 2, ..., T we can find xt such that the allocation (xt,y): (i) satisfies all

the constraints and yields the same value of the objective function as (x,y), (ii) satisfies ICH(hτ )

with equality for all periods τ ∈ {2, ..., t} and all histories hτ , and, (iii) is identical to (x,y) for

all periods τ > t and all histories hτ . This implies the result.

We prove our claim by induction. Consider the claim for t = 2. Suppose that ICH (h2) is not

binding after some history h2. Suppose first that h2 = {θL}, so that the high type was a low type

in period 1. Since ICH (h2) is not binding, there must exist some ε > 0 such that:

V2((x,y), h2, θH ; 0) = x2(h2, θL)− ϕ(
y2(h2, θL)

θH
) + δE[V3((x,y), h2, θL, θ3; 0) |θ2 = θH ] + ε

Now let x2 satisfy

x22(h2, θH) = x2(h2, θH)− ε; x22(h2, θL) = x2(h2, θL)

x21(h1, θL) = x1(h1, θL) + δαLHε; x
2
1(h1, θH) = x1(h1, θH)

and otherwise equals x. Thus, all we have done is to take consumption away from the high type

after history h2 and give the expected discounted value to the low type in period one. Clearly,
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this does not effect the value of the objective function. Nor does it effect the R or UL constraints.

It satisfies the ICH(h2) constraint with equality by construction. We need to check that the

ICH(h1) constraint is satisfied; i.e., that:

V1((x
2,y), h1, θH ; 0) ≥ x21(h1, θL)− ϕ(

y1(h1, θL)

θH
) + δE[V2((x

2,y), h1, θL, θ2; 0) |θ1 = θH ].

We have that:

V1((x
2,y), h1, θH ; 0) = x21(h1, θH)− ϕ(

y1(h1, θH)

θH
) + δE[V2((x

2,y), h1, θH , θ2; 0) |θ1 = θH ].

= V1((x,y), h1, θH ; 0)

≥ x1(h1, θL)− ϕ(
y1(h1, θL)

θH
) + δE[V2((x,y), h1, θL, θ2; 0) |θ1 = θH ].

= x21(h1, θL)− δεαLH − ϕ(
y1(h1, θL)

θH
) + δE[V2((x

2,y), h1, θL, θ2; 0) |θ1 = θH ] + δεαHH

≥ x21(h1, θL)− ϕ(
y1(h1, θL)

θH
) + δE[V2((x

2,y), h1, θL, θ2; 0) |θ1 = θH ]

where the third equality follows from the fact that (x,y) satisfies ICH(h1) and the fifth follows

from the fact that αHH ≥ αLH .

Next suppose that h2 = {θH} so that the high type was also a high type in period 1. Again,

there must exist some ε > 0 such that:

V2((x,y), h2, θH ; 0) = x2(h2, θL)− ϕ(
y2(h2, θL)

θH
) + δE[V3((x,y), h2, θL, θ3; 0) |θ2 = θH ] + ε.

Again, we will show that we can find an alternative allocation that yields at least the same value

of the objective function, satisfies all the constraints of the relaxed problem and has the property

that ICH (h2) is binding. Now let x
2 be defined by:

x22(h2, θH) = x2(h2, θH)− ε; x22(h2, θL) = x2(h2, θL)

x21(h1, θH) = x1(h1, θH) + δαLHε; x
2
1(h1, θL) = x1(h1, θL)

and equals x otherwise. Thus, all we have done is to take consumption away from the high type

after history h2 and give the expected discounted value to the high type in period 1. Clearly, this

does not effect the value of the objective function. Nor does it effect the R or UL constraints. It

satisfies the ICH(h2) constraint with equality by construction and has no effect on the ICH(h1)

constraint.

Now suppose that the claim is true for τ = 2, ..., t− 1 and consider the claim for t. Since the

claim is true for t − 1, we can find xt−1 such that: (i) the allocation (xt−1,y) satisfies all the
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constraints and yields the same value of the objective function as (x,y), (ii) satisfies ICH(hτ )

with equality for all periods τ ∈ {2, ..., t − 1} and all histories hτ , and, (iii) is identical to (x,y)

for all periods τ > t − 1 and all histories hτ . If (xt−1,y) is such that ICH (ht) is binding for

all histories ht then we can simply let x
t = xt−1. If this is not the case, there must exist some

history ht such that ICH (ht) is not binding. Again, there are two possibilities, ht = {ht−1, θL}

and ht = {ht−1, θH}. In either case, in the same manner as above, we can find ex such that the
allocation (ex,y): (i) yields the same value of the objective function as (xt−1,y) (and hence (x,y)),
(ii) satisfies ICH(ht) with equality, and, (iii) equals (x

t−1,y) (and hence (x,y)) for all periods

τ > t and all histories hτ . If ht = {ht−1, θH} then ex will also satisfy ICH(hτ ) with equality for

all periods τ ∈ {2, ..., t − 1} so we can let xt = ex. If ht = {ht−1, θL} and αHH > αLH , then

ICH(ht−1) will hold strictly. However, in this case, since the claim is true for τ = t − 1 we can

find bx such that the allocation (bx,y): (i) satisfies all the constraints and yields the same value of
the objective function as (ex,y), (ii) satisfies ICH(hτ ) with equality for all periods τ ∈ {2, ..., t−1}

and all histories hτ , and, (iii) is identical to (ex,y) for all periods τ > t − 1 and all histories hτ .

We can then let xt = bx. Q.E.D.
Proof of Lemma 3: From (1) we have that:

Vt ((x,y), ht, θH ;σ) = Vt ((x,y), ht, θL;σ) +Φ (yt(ht, θL)) +∆EVt+1((x,y), (ht, θL), θt+1;σ)

In addition, we can write

∆EVt+1((x,y), (ht, θL), θt+1;σ) = δ (αHH − αLH)Vt+1((x,y), (ht, θL), θH ;σ)

+δ (αHL − αLL)Vt+1((x,y), (ht, θL), θL;σ).

But from (1) we know that:

Vt+1((x,y), (ht, θL), θH ;σ) = Vt+1 ((x,y), (ht, θL), θL;σ) +Φ (yt+1((ht, θL), θL))

+∆EVt+2((x,y), (ht, θL, θL), θt+2;σ)

= Vt+1 ((x,y), (ht, θL), θL;σ) +Φ (yt+1((ht, θL), θL))

+δ (αHH − αLH)Vt+2((x,y), (ht, θL, θL), θH ;σ)

+δ (αHL − αLL)Vt+2((x,y), (ht, θL, θL), θL;σ).
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Thus, it is the case that

∆EVt+1((x,y), (ht, θL), θt+1;σ) = δ (αHH − αLH)Φ (yt+1((ht, θL), θL))

+δ2 (αHH − αLH)
2
Vt+2((x,y), (ht, θL, θL), θH ;σ)

+δ2 (αHH − αLH) (αHL − αLL)Vt+2((x,y), (ht, θL, θL), θL;σ).

But again from (1) we have that

Vt+2((x,y), (ht, θL, θL), θH ;σ) = Vt+2((x,y), (ht, θL, θL), θL;σ) +Φ (yt+2((ht, θL, θL), θL))

+δ (αHH − αLH)Vt+3((x,y), (ht, θL, θL, θL), θH ;σ)

+δ (αHL − αLL)Vt+3((x,y), (ht, θL, θL, θL), θL;σ).

So that

∆EVt+1((x,y), (ht, θL), θt+1;σ) = δ (αHH − αLH)Φ (yt+1((ht, θL), θL))

+δ2 (αHH − αLH)
2Φ (yt+2((ht, θL, θL), θL))

+δ3 (αHH − αLH)
3
Vt+3((x,y), (ht, θL, θL, θL), θH ;σ)

+δ3 (αHH − αLH)
2 (αHL − αLL)Vt+3((x,y), (ht, θL, θL, θL), θL;σ).

Repeated application of this argument yields

∆EVt+1((x,y), (ht, θL), θt+1;σ) =
T−tX
j=1

δj [αHH − αLH ]
j Φ
¡
yt+j(h

◦
t+j , θL)

¢
,

and we have the claimed expression. Q.E.D.

Proof of Lemma 4: Let (x,y) solve the Relaxed Problem. Then by Lemmas 1 and 2 we may

assume with no loss of generality that x is such that (x,y) satisfies UL and all the incentive

constraints with equality. Thus, by Lemma 3 we can write the value of the objective function as

V1((x,y), h1, θH ; 0) =
T−1X
j=0

δj [αHH − αLH ]
j Φ
¡
y1+j(h

◦
1+j , θL)

¢
+ u (10)

The resource constraint can be written as G ≤ (1− δ)
PT

t=1 δ
t−1E[yt(ht, θt) − xt(ht, θt)]. By

definition, we know that

V1((x,y), h1, θH ; 0) =
TX
t=1

δt−1E[xt(ht, θt)− ϕ(
yt(ht, θt)

θt
) |θ1 = θH ],
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and

V1((x,y), h1, θL; 0) =
TX
t=1

δt−1E[xt(ht, θt)− ϕ(
yt(ht, θt)

θt
) |θ1 = θL ].

Thus,

TX
t=1

δt−1E[xt(ht, θt)] = µ
TX
t=1

δt−1E[xt(ht, θt) |θ1 = θH ] + (1− µ)
TX
t=1

δt−1E[xt(ht, θt) |θ1 = θL ]

= µ[V1((x,y), h1, θH ; 0) +
TX
t=1

δt−1E[ϕ(
yt(ht, θt)

θt
) |θ1 = θH ]

+(1− µ)[V1((x,y), h1, θL; 0) +
TX
t=1

δt−1E[ϕ(
yt(ht, θt)

θt
) |θ1 = θL ]

= µV1((x,y), h1, θH ; 0) + (1− µ)V1((x,y), h1, θL; 0) +
TX
t=1

δt−1E[ϕ(
yt(ht, θt)

θt
)].

Substituting this into the resource constraint, yields

G ≤ (1− δ)
TX
t=1

δt−1E[yt(ht, θt)− µV1((x,y), h1, θH ; 0)

−(1− µ)V1((x,y), h1, θL; 0)− ϕ(
yt(ht, θt)

θt
)].

Using Lemma 3 and UL we can write this as

G ≤ (1− δ)
TX
t=1

δt−1E[yt(ht, θt)− ϕ(
yt(ht, θt)

θt
)] (11)

−(1− δ)[µ
TX
j=0

δj [αHH − αLH ]
j Φ
¡
y1+j(h

◦
1+j , θL)

¢
+ u].

Thus, it follows that the earnings path y must maximize the objective function (10) subject to

the constraint (11). Q.E.D.

Proof of Lemma 5: Let (x,y) be an allocation with the property that the earnings path

solves the problem described in Lemma 4 and the consumption path is such as to make UL and

ICH(ht) (for all t and ht) hold with equality. We know that (x,y) is a solution to the Relaxed

Problem. To show that it solves the Second Best Problem, all we need show is that the low type’s

incentive constraint ICL(ht) is satisfied for all t and ht. For a given period t and history ht, this

requires showing that

xt(ht, θL)− ϕ(
yt(ht, θL)

θL
) + δE[Vt+1((x,y), (ht, θL), θt+1; 0) |θt = θL ]

≥ xt(ht, θH)− ϕ(
yt(ht, θH)

θL
) + δE[Vt+1((x,y), (ht, θH), θt+1; 0) |θt = θL ]
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or, equivalently, that

xt(ht, θL)− xt(ht, θH) ≥ ϕ(
yt(ht, θL)

θL
)− ϕ(

yt(ht, θH)

θL
) (12)

+δE[Vt+1((x,y), (ht, θH), θt+1; 0)− Vt+1((x,y), (ht, θL), θt+1; 0) |θt = θL ]

From the fact that ICH(ht) holds with equality, we have that

xt(θL, ht)− xt(θH , ht) = ϕ(
yt(θL, ht)

θH
)− ϕ(

yt(θH , ht)

θH
) (13)

δE[Vt+1((x,y), θt+1, (ht, θH), 0)− Vt+1((x,y), θt+1, (ht, θL), 0) |θt = θH ].

We can use this to prove the desired inequality.

Note first that

δE[Vt+1((x,y), θt+1, (ht, θH), 0)− Vt+1((x,y), θt+1, (ht, θL), 0) |θt = θH ]

is at least as big as

δE[Vt+1((x,y), (ht, θH), θt+1; 0)− Vt+1((x,y), (ht, θL), θt+1; 0) |θt = θL ].

To see this, denote the difference between the former and the latter by ∆. Computing this

difference yields

∆ = (αHH − αLH)[Vt+1((x,y), θH , (ht, θH); 0)− Vt+1((x,y), θH , (ht, θL); 0)]

+(αHL − αLL)[Vt+1((x,y), θL, (ht, θH); 0)− Vt+1((x,y), θL, (ht, θL); 0)].

By assumption under the allocation (x,y) all the incentive constraints for the high type are

binding. Thus, by the same argument used to establish Lemma 3, we can write

Vt+1((x,y), θH , (ht, θH); 0)− Vt+1((x,y), θH , (ht, θL); 0)

= Vt+1((x,y), θL, (ht, θH); 0) +

T−(t+1)X
j=0

δj [αHH − αLH ]
jΦ(yt+1+j(θL, (ht, θH)

o
t+1+j))

−Vt+1((x,y), θL, (ht, θL); 0)−
T−(t+1)X
j=0

δj [αHH − αLH ]
jΦ(yt+1+j((θL, (ht, θL)

o
t+1+j)).

Substituting this expression into the expression for ∆ yields

∆ = (αHH−αLH)
T−(t+1)X
j=0

δj [αHH−αLH ]j(Φ(yt+1+j((ht, θH)ot+1+j , θL))−Φ(yt+1+j((ht, θL)ot+1+j , θL))
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Observe now from the first order conditions that for all j

ϕ0(
yt+1+j((ht, θH)

◦
t+1+j , θL)

θL
) = θL,

while (since γµ (1− δ) > 1)

ϕ0(
yt+1+j((ht, θL)

◦
t+1+j , θL)

θL
) ≤ θL.

Thus, for all j, yt+1+j((ht, θH)
◦
t+1+j , θL) ≥ yt+1+j((ht, θL)

◦
t+1+j , θL). Since Φ

0 ≥ 0, it follows that

the above difference is non-negative.

It is also the case that

ϕ(
yt(ht, θL)

θH
)− ϕ(

yt(ht, θH)

θH
) ≥ ϕ(

yt(ht, θL)

θL
)− ϕ(

yt(ht, θH)

θL
)

To see this, note first that for all t and histories ht, yt(ht, θL) is less than yt(ht, θH). Second, note

that when yt(ht, θL) is less than yt(ht, θH) the function

f(θ) = ϕ(
yt(ht, θL)

θ
)− ϕ(

yt(ht, θH)

θ
)

is increasing in θ. It follows from these two claims and from (12) and (13) that ICL(ht) is satisfied.

Conversely, let (x,y) be a solution to the Second Best Problem. We need to show that the

earnings path y solves the problem described in Lemma 4. Suppose not. Then (x,y) cannot solve

the Relaxed Problem. Let (x0,y0) be a solution to the Relaxed Problem with y0 6= y. Then by

Lemma 4, we know that y0 solves the problem described in Lemma 4. Moreover, we can assume

by Lemmas 1 and 2 without loss of generality that x0 is such that (x0,y0) satisfies ICH(ht) with

equality for all ht and that UL binds. But then it follows by the above argument that (x
0,y0)

satisfies ICL(ht) for all t and ht. This is a contradiction. Q.E.D.

Proof of Lemma 6: Recall that an allocation in this economy is described by (x,y) = {(xt(ht, θt), yt(ht, θt))}Tt=1
or, equivalently, (x,y) = {(xt(ht+1), yt(ht+1))}Tt=1. Let z denote the set of all allocations. We

can define a metric on z in the following way. For each t, let

dt((xt, yt), (x
0
t, y

0
t)) = sup

ht+1∈Ht+1

k(xt(ht+1), yt(ht+1)), (x0t(ht+1), y0t(ht+1))k

where k·k is the standard Euclidean norm on <2. Then, define

d((x,y), (x0,y0)) =
1

T
[
TX
t=1

dt((xt, yt), (x
0
t, y

0
t))].
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The set of allocations z together with the metric d(·, ·) is a metric space.

Let Ω(σ) denote, for each σ ∈ [0, 1), the subset of allocations satisfying the constraints of the

Second Best Problem and let Ψ(σ) be the set of solutions corresponding to σ. Let V1(σ) denote

the value function for the problem. We first note the following useful fact.

Fact A.1: The constraint set correspondence Ω(σ) of the Second Best Problem is upper hemi

continuous.

Proof: Since all the constraints of the problem are expressed as weak inequalities and involve con-

tinuous functions, each of them defines a compact valued, upper hemi continuous correspondence.

By Theorem 14.24 in Aliprantis and Border [1994] the intersection of these correspondences is

also upper hemi continuous. ¥

We can now prove the Lemma. Let ε > 0 be given. Then we must show that there exists σε > 0

such that for any σ ∈ (0, σε) we have that

|V1(σ)− V1(0)| < ε.

We begin by demonstrating the existence of σε > 0 such that for any σ ∈ (0, σε) we have that

V1(σ) ≥ V1(0) − ε. This is accomplished by showing the existence of σ > 0 and an allocation

(x(σ),y(σ)) with the property that for any σ ∈ [0, σ): (i) V1((x(σ),y(σ)), θH , h1;σ) is continuous

in σ, (ii) (x(σ),y(σ)) ∈ Ω(σ), and (iii) V1((x(0),y(0)), θH , h1; 0) = V1(0).

We begin by constructing the allocation (x(σ),y(σ)). As a building block, we take an allocation

(x∗,y∗) which is optimal with risk neutrality (i.e., (x∗,y∗) ∈ Ψ(0)) and is such that the consump-

tion levels make UL and ICH(ht) (for all t and ht) hold with equality. Working backwards, we start

the construction with period T . For all σ and all hT choose (xT (hT+1;σ), yT (hT+1;σ)) such that:

(i) (xT (hT , θL;σ), yT (hT , θL;σ)) = (x
∗
T (hT , θL), y

∗
T (hT , θL)), (ii) yT (hT , θH ;σ) = y∗T (hT , θH), and,

(iii)
xT (hT , θH ;σ)

1−σ

1− σ
=

xT (hT , θL;σ)
1−σ

1− σ
+ ϕ(

yT (hT , θH ;σ)

θH
)− ϕ(

yT (hT , θL;σ)

θH
).

Thus, (xT (hT+1;σ), yT (hT+1;σ)) is equal to (x
∗
T (hT+1), y

∗
T (hT+1)) except for the high type’s

consumption which is designed to maintain the incentive constraint ICH(hT ) with equality.

The function (xT (hT+1;σ), yT (hT+1;σ)) is continuous in σ and (xT (hT+1; 0), yT (hT+1; 0)) =

(x∗T (hT+1), y
∗
T (hT+1)).
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Now go to period T−1. For all σ and all hT−1 choose (xT−1(hT ;σ), yT−1(hT ;σ)) such that: (i)

(xT−1(hT−1, θL;σ), yT−1(hT−1, θL;σ)) = (x
∗
T−1(hT−1, θL), y

∗
T−1(hT−1, θL)), (ii) yT−1(hT−1, θH ;σ) =

y∗T−1(hT−1, θH), and, (iii)

xT−1(hT−1, θH ;σ)
1−σ

1− σ
=

xT−1(hT−1, θL;σ)
1−σ

1− σ
+ ϕ(

yT−1(hT−1, θH ;σ)

θH
)− ϕ(

yT−1(hT−1, θL;σ)

θH
)

+δ[αHH(
xT (hT−1, θH , θH ;σ)

1−σ

1− σ
)− ϕ(

yT (hT−1, θH , θH ;σ)

θH
))

+αHL(
xT (hT−1, θH , θL;σ)

1−σ

1− σ
)− ϕ(

yT (hT−1, θH , θL;σ)

θL
))

−αHH(
xT (hT−1, θL, θH ;σ)

1−σ

1− σ
)− ϕ(

yT (hT−1, θL, θH ;σ)

θH
))

−αHL(
xT (hT−1, θL, θL;σ)

1−σ

1− σ
)− ϕ(

yT (hT−1, θL, θL;σ)

θL
))]

That is, xT−1(hT−1, θH ;σ) is chosen to make the high type’s incentive constraint bind given the

other period T − 1 choices and what is going to happen in period T .

Keep going this way through period 2. Let R(σ) denote the expected present value of revenues

at the beginning of period 2 under the allocation so constructed; that is,

R(σ) =
TX
t=2

δt−2E[yt(ht, θt;σ)]−
TX
t=2

δt−2E[xt(ht, θt;σ) +G].

Similarly, let V (σ) denote the expected utility at the beginning of period 2 of an individual whose

first period ability was θL under this allocation; that is,

V (σ) =
TX
t=2

δt−2E[
xτ (hτ , θτ ;σ)

1−σ

1− σ
− ϕ(

yτ (hτ , θτ ;σ)

θτ
) | θ1 = θL].

Finally, let S(σ) denote the expected gain in utility for an individual who was high ability in

period 1 from truthfully reporting as opposed to masquerading as a low type; that is,

S(σ) =
PT

t=2 δ
t−2E[xt(θH ,θ2,...,θt;σ)

1−σ

1−σ − ϕ(yt(θH ,θ2,...,θt;σ)θt
) | θ1 = θH ]

−
PT

t=2 δ
t−2E[xt(θL,θ2,...,θt;σ)

1−σ

1−σ − ϕ(yτ (θL,θ2,...,θt;σ)θt
) | θ1 = θH ].

For all σ choose (x1(h1, θ;σ), y1(h1, θ;σ)) such that: (i) y1(h1, θL;σ) = y∗1(h1, θL), and, (ii) the

triple y1(h1, θH ;σ), x1(h1, θH ;σ), and x1(h1, θL;σ) satisfy the following three equalities:

µ(y1(h1, θH ;σ)− x1(h1, θH ;σ)) + (1− µ)(y∗1(h1, θL)− x1(h1, θL;σ))−G+ δR(σ) = 0,

x1(h1, θL;σ)
1−σ

1− σ
− ϕ(

y∗1(h1, θL)

θL
) + δV (σ) = u,
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and,

x1(h1, θH ;σ)
1−σ

1− σ
− ϕ(

y1(h1, θH ;σ)

θH
) + δS(σ)− x1(h1, θL;σ)

1−σ

1− σ
+ ϕ(

y∗1(h1, θL)

θL
) = 0.

These equalities represent a system of three equations in the three unknowns y1(h1, θH ;σ),

x1(h1, θH ;σ), and x1(h1, θL;σ). We know that at σ = 0 the triple y∗1(h1, θH), x
∗
1(h1, θH), and

x∗1(h1, θL) satisfies the above three equalities. Moreover, the Jacobian matrix associated with this

system at σ = 0 is:

J =

⎡⎢⎢⎢⎢⎢⎢⎣
µ −µ −(1− µ)

1 0 0

1 −ϕ0(y1(h1,θH ;σ)θH
)/θH 1

⎤⎥⎥⎥⎥⎥⎥⎦
The determinant of the Jacobian is

detJ = {µ+ (1− µ)ϕ0(
y∗1(h1, θH)

θH
)/θH} = 1

Thus, by the Implicit Function Theorem there exists some σ such that for all σ ∈ [0, σ] there exists

a solution (y1(h1, θH ;σ), x1(h1, θH ;σ), x1(h1, θL;σ)) which is continuous in σ.

Thus, we have constructed for all σ ∈ [0, σ] an allocation (x(σ),y(σ)) that satisfies UL, R,

and ICH(ht) (for all t and ht) with equality and that is continuous in σ. In addition, using an

argument similar to that presented in Lemma 5, we can show that it satisfies ICL(ht) (for all t

and ht).

The next step is to demonstrate the existence of σε > 0 such that for any σ ∈ (0, σε) we have

that

V1(σ) ≤ V1(0) + ε.

Suppose to the contrary that there did not exist such a σε. Then for all n there would exist σn ∈

(0, 1/n) such that V1(σn) > V1(0)+ε. Let (x(σn),y(σn)) denote the optimal allocation associated

with σn and consider the sequence h(x(σn),y(σn))i. Since the constraint set correspondence Ω(σ)

is upper hemi continuous by Fact A.1 and limn→∞ σn = 0, there exists a convergent subsequence

h(x(σk),y(σk))i whose limit point (bx, by) is in Ω(0). This implies that
V1((bx, by), h1, θH ; 0) ≤ V1(0).

But on the other hand the function V1((x,y), h1, θH ;σ) is continuous in (x,y) and σ and hence

V1((bx, by), h1, θH ; 0) = lim
k→∞

V1((x(σk),y(σk)), h1, θH ;σk) ≥ V1(0) + ε.
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¥

Proof of Lemma 7: Let ε > 0 be given and suppose that the claim does not hold. Then for all

n there would exist σn ∈ (0, 1/n) and (x(σn),y(σn)) ∈ Ψ(σn) such that

1

T
[
TX
t=1

sup
ht+1∈Ht+1

|yt(ht+1, σn)− y∗t (ht+1)|] > ε.

for any earnings path y∗ that solves the problem described in Lemma 4. Consider the sequence

h(x(σn),y(σn))i. Since the constraint set correspondence Ω(σ) is upper hemi continuous and

limn→∞σn = 0 there exists a convergent subsequence h(x(σk),y(σk))i whose limit point (bx, by) is
in Ω(0). Moreover, since V1(σ) is continuous at σ = 0 by Lemma 6, we know that

lim
k→∞

V1((x(σk),y(σk)), h1, θH ;σk) = V1((bx, by), h1, θH ; 0)
= V1(0)

This implies that (bx, by) ∈ Ψ(0) and by Lemma 5 we know that this implies that by = y∗ for some
y∗ that solves the problem described in Lemma 4. But since by = limk→∞ y(σk) we know that

1

T
[
TX
t=1

sup
ht+1∈Ht+1

|byt(ht+1)− y∗t (ht+1)|] = lim
k→∞

1

T
[
TX
t=1

sup
ht+1∈Ht+1

|yt(ht+1, σk)− y∗t (ht+1)|] ≥ ε.

This is a contradiction. ¥

Proof of Proposition 2: Beginning with the first part of the Proposition, we first demonstrate

that for any ε > 0 there exists σε > 0 such that if σ < σε and (x,y) ∈ Ψ(σ), then, for any time

period t ≥ 2 and history ht 6= (θL, ..., θL)¯̄̄̄
θ [xt (ht, θ)]

−σ − ϕ0
µ
yt (ht, θ)

θ

¶¯̄̄̄
< ε for θ ∈ {θL, θH}.

Let ε > 0 and suppose that the result does not hold. Then, for all n there exists some σn < 1/n,

an allocation (x(σn),y(σn)) ∈ Ψ(σn), a time period tn ≥ 2 and a history htn 6= (θL, ..., θL) such

that ¯̄̄̄
θxt(htn , θ;σn)

−σn − ϕ0(
yt(htn , θ;σn)

θ
)

¯̄̄̄
≥ ε,

for some θ ∈ {θL, θH}. We know from the fact that Ω(σ) is upper hemi continuous that there

exists a convergent sub-sequence of the sequence of allocations h(x(σn),y(σn))i whose limit point

belongs to Ω(0). Denote this convergent sub-sequence h(x(σk),y(σk))i and let its limit point be
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(bx, by). Since V1(σ) is continuous at σ = 0, we know that (bx, by) ∈ Ψ(0). It follows from Lemma 5

that for all k

θ = ϕ0(
bytk(htk , θ)

θ
).

But we have that for all k ¯̄̄̄
¯ϕ0(

y
tk
(h
tk
,θ,σk)

θ )

xtk(htk , θ, σk)σk
− ϕ0(

ytk(htk , θ, σk)

θ
)

¯̄̄̄
¯ ≥ ε.

Since limk→∞ xtk(htk , θ, σk)
σk = 1, this implies that there must exist ς > 0 such that for suffi-

ciently large k

|ytk(htk , θ, σk)− bytk(htk , θ))| ≥ ς.

The fact that h(x(σk),y(σk))i converges to (bx, by) implies that
1

T
[
TX
t=1

sup
ht+1∈Ht+1

|yt(ht+1, σk)− byt(ht+1)|]→ 0.

Thus, for sufficiently large k,

1

T
[
TX
t=1

sup
ht+1∈Ht+1

|yt(ht+1, σk)− byt(ht+1)|] < ς

T
.

By definition

1

T
[
TX
t=1

sup
ht+1∈Ht+1

|yt(ht+1, σk)− byt(ht+1)|] ≥ 1

T
[|ytk(htk , θ, σk)− bytk(htk , θ)|].

But, for sufficiently large k

1

T
[
TX
t=1

sup
ht+1∈Ht+1

|yt(ht+1, σk)− byt(ht+1)|] ≥ 1

T
|ytk(htk , θ, σk)− bytk(htk , θ))| ≥ ς

T
.

This is a contradiction.

To complete the proof of the first part of the Proposition, it only remains to show that for any

ε > 0 there exists σε > 0 such that if σ < σε and (x,y) ∈ Ψ(σ), then¯̄̄̄
θH [x1 (h1, θH)]

−σ − ϕ0
µ
y1 (h1, θH)

θH

¶¯̄̄̄
< ε.

This can be done by following the exact same steps.

For the second part of the Proposition, we need to show that, when T is sufficiently large, for

any ε > 0 there exists a σε > 0 and a tε such that if σ ∈ (0, σε), then for any t ∈ {tε, ..., T} and

history h∗t = (θL, ..., θL): ¯̄̄̄
θL [xt (h

∗
t , θL;σ)]

−σ − ϕ0
µ
yt (h

∗
t , θL;σ)

θL

¶¯̄̄̄
< ε.
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Let ε > 0. From Proposition 1, we know that for T sufficiently large, for any ε0 > 0 there exists a

tε0 such that if (x,y) ∈ Ψ(0), then, for time periods t ∈ {tεo , ..., T} and history h∗t = (θL, ..., θL)

|y∗(θL)− yt (h
∗
t , θL)| < ε0.

By Lemma 7, for any ε1 > 0 and any T there exists a σε1 > 0 and earnings path y∗ which

solves the problem described in Lemma 4 such that if σ ∈ (0, σε1) and (x,y) ∈ Ψ(σ) then for all

t ∈ {1, ..., T}

|yt(h∗t , θL;σ)− y∗t (h
∗
t , θL)| < ε1.

Combining these implies that for T sufficiently large, when σ ∈ (0, σε1)

|y∗(θL)− yt(h
∗
t , θL;σ)| < ε0 + ε1

for t ∈ {tε0 , ..., T}. Noting that θL = ϕ0 (y∗(θL)) and choosing ε0 and ε1 appropriately yields the

result. ¥

Proof of Lemma 8: In the two-period model, an allocation can be fully described by

(x,y) = {(xL, xH , xLL, xLH , xHL, xHH); (yL, yH , yLL, yLH , yHL, yHH)}.

Thus, (xL, yL) is the consumption-earnings bundle intended for those individuals who have low

ability in period one; (xLL, yLL) is the period two bundle intended for those who have low ability

in both periods; and so on. The Second Best Problem can be written as:

max[
(xH)

1−σ

1− σ
−ϕ(yH/θH)] + δ[αHH(

(xHH)
1−σ

1− σ
−ϕ(yHH/θH)) +αHL(

(xHL)
1−σ

1− σ
−ϕ(yHL/θL))].

s.t. [
(xL)

1−σ

1− σ
−ϕ(yL/θL)]+δ[αLL(

(xLL)
1−σ

1− σ
−ϕ(yLL/θL))+αLH(

(xLH)
1−σ

1− σ
−ϕ(yLH/θH))] ≥ u (UL)

[µxH + (1− µ)xL +G] + δ[µ(αHHxHH + αHLxHL) + (1− µ)(αLHxLH + αLLxLL) +G]

≤ [µyH + (1− µ)yL] + δ[µ(αHHyHH + αHLyHL) + (1− µ)(αLHyLH + αLLyLL)]. (R)

(xH)
1−σ

1− σ
− ϕ(yH/θH) + δ[αHH(

(xHH)
1−σ

1− σ
− ϕ(yHH/θH)) + αHL(

(xHL)
1−σ

1− σ
− ϕ(yHL/θL))]

≥ (xL)
1−σ

1− σ
− ϕ(yL/θH) + δ[αHH(

(xLH)
1−σ

1− σ
− ϕ(yLH/θH)) + αHL(

(xLL)
1−σ

1− σ
− ϕ(yLL/θL))] (IC(H))

(xL)
1−σ

1− σ
− ϕ(yL/θL) + δ[αLH(

(xLH)
1−σ

1− σ
− ϕ(yLH/θH)) + αLL(

(xLL)
1−σ

1− σ
− ϕ(yLL/θL))]

≥ (xH)
1−σ

1− σ
− ϕ(yH/θL) + δ[αLH(

(xHH)
1−σ

1− σ
− ϕ(yHH/θH)) + αLL(

(xHL)
1−σ

1− σ
− ϕ(yHL/θL))] (IC(L))
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(xHH)
1−σ

1− σ
− ϕ(yHH/θH) ≥

(xHL)
1−σ

1− σ
− ϕ(yHL/θH) (IC(HH))

(xHL)
1−σ

1− σ
− ϕ(yHL/θL) ≥

(xHH)
1−σ

1− σ
− ϕ(yHH/θL) (IC(HL))

(xLH)
1−σ

1− σ
− ϕ(yLH/θH) ≥

(xLL)
1−σ

1− σ
− ϕ(yLL/θH) (IC(LH))

(xLL)
1−σ

1− σ
− ϕ(yLL/θL) ≥

(xLH)
1−σ

1− σ
− ϕ(yLH/θL) (IC(LL))

The Relaxed Problem eliminates the incentive constraints IC(L), IC(HL) and IC(LL). Let (x,y)

solve the Relaxed Problem. To prove the Lemma it suffices to show that there exists a σ > 0 such

that if σ ∈ (0, σ) then the eliminated constraints are satisfied.

It is straightforward to show using similar arguments to those used in the proof of Lemma 5

that if an allocation (x,y) satisfies the constraints IC(H), IC(HH) and IC(LH) with equality

and if the earnings levels are such that yH ≥ yL, yHH ≥ yHL and yLH ≥ yLL, then the allocation

satisfies the constraints IC(L), IC(HL) and IC(LL). By a similar argument used in the proof of

Lemmata 6 and 7, we know that in the solution to the Relaxed Problem the earnings levels converge

to those that solve the problem in Lemma 4 and hence the earnings monotonicity conditions will

be satisfied for σ sufficiently small. Thus, to prove the Lemma it suffices to show that if (x,y)

solves the Relaxed Problem, then for sufficiently small σ, the constraints IC(H), IC(HL) and

IC(LL) bind.

Fact A.2: Let (x,y) solve the Relaxed Problem. Then, the constraints IC(HL) and IC(LL) bind.

Proof: The Lagrangian for the Relaxed Problem is

L =
(xH)

1−σ

1− σ
− ϕ(yH/θH) + δ[αHH(

(xHH)
1−σ

1− σ
− ϕ(yHH/θH)) + αHL(

(xHL)
1−σ

1− σ
− ϕ(yHL/θL))] (14)

+λU{
(xL)

1−σ

1− σ
− ϕ(yL/θL) + δ[αLH(

(xLH)
1−σ

1− σ
− ϕ(yLH/θH)) + αLL(

(xLL)
1−σ

1− σ
− ϕ(yLL/θL))]}

+λH{
(xH)

1−σ

1− σ
− ϕ(yH/θH) + δ[αHH(

(xHH)
1−σ

1− σ
− ϕ(yHH/θH)) + αHL(

(xHL)
1−σ

1− σ
− ϕ(yHL/θL))]

−(xL)
1−σ

1− σ
+ ϕ(yL/θH)− δ[αHH(

(xLH)
1−σ

1− σ
− ϕ(yLH/θH)) + αHL(

(xLL)
1−σ

1− σ
− ϕ(yLL/θL))]}

+λHH{
(xHH)

1−σ

1− σ
− ϕ(yHH/θH)−

(xHL)
1−σ

1− σ
+ ϕ(yHL/θH)}

+λLH{
(xLH)

1−σ

1− σ
− ϕ(yLH/θH)−

(xLL)
1−σ

1− σ
+ ϕ(yLL/θH)}

+λR{µ[(yH − xH) + δ(αHH(yHH − xHH) + αHL(yHL − xHL))]

+(1− µ)[(yL − xL) + δ(αLH(yLH − xLH) + αLL(yLL − xLL))]}.
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The first order conditions for the high type’s consumptions imply that

(xH)
−σ =

λRµ

1 + λH
, (15)

(xHH)
−σ =

λRµ

1 + λH + λHH/δαHH
, (16)

and

(xHL)
−σ =

λRµ

1 + λH − λHH/δαHL
.

Those for the low type’s consumptions imply that:

(xL)
−σ =

λR(1− µ)

λU − λH
, (17)

(xLL)
−σ =

λR(1− µ)

λU − αHL
αLL

λH − λLH/δαLL
, (18)

and

(xLH)
−σ =

λR(1− µ)

λU − αHH
αLH

λH + λLH/δαLH
. (19)

With respect to earnings levels, the first order conditions for the high type’s earnings imply:

ϕ0(yH/θH)

θH
=

λRµ

1 + λH
,

ϕ0(yHH/θH)

θH
=

λRµ

1 + λH + λHH/δαHH
,

and

ϕ0(yHL/θL)

θL
=

λRµ− ϕ0(yHL/θH)
θH

λHH
δαHL

(1 + λH)
. (20)

Those for the low type imply that:

ϕ0(yL/θL)

θL
=

ϕ0(yL/θH)
θH

λH + λR(1− µ)

λU
, (21)

ϕ0(yLL/θL)

θL
=

λLH
δαLL

ϕ0(yLL/θH)
θH

+ λR(1− µ)

λU − αHL
αLL

λH
, (22)
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and

ϕ0(yLH/θH)

θH
=

λR(1− µ)

λU − αHH
αLH

λH + λLH/δαLH
. (23)

We first show that λHH > 0. Suppose, to the contrary, that λHH = 0. Then it follows from the

first order conditions for the high type’s consumptions that xHL = xHH . But from the conditions

describing the high type’s earnings levels if λHH = 0, we have that:

ϕ0(yHL/θL)

θL
=

ϕ0(yHH/θH)

θH

which implies that yHL/θL < yHH/θH . But then, since xHH = xHL, it is clear that IC(HH)

would be violated.

We now show that λLH > 0. Again, suppose to the contrary, that λLH = 0. Then it follows

from the first order conditions for the low type’s consumptions and the fact that αHH
αLH

≥ αHL
αLL

that

(xLL)
−σ =

λR(1− µ)

λU − αHL
αLL

λH
≤ λR(1− µ)

λU − αHH
αLH

λH
= (xLH)

−σ.

It follows that xLH ≤ xLL. But from our analysis of earnings levels, if λLH = 0 then

ϕ0(yLL/θL)

θL
=

λR(1− µ)

λU − αHL
αLL

λH
≤ λR(1− µ)

λU − αHH
αLH

λH
=

ϕ0(yLH/θH)

θH

which implies that yLL/θL < yLH/θH . But then it is clear that IC(LH) would be violated. ¥

Now consider the Relaxed Utilitarian Problem given by

maxµ[ (xH)
1−σ

1−σ − ϕ(yH/θH)] + δ[αHH(
(xHH)

1−σ

1−σ − ϕ(yHH/θH)) + αHL(
(xHL)

1−σ

1−σ − ϕ(yHL/θL))]

+(1− µ)[ (xL)
1−σ

1−σ − ϕ(yL/θL)] + δ[αLL(
(xLL)

1−σ

1−σ − ϕ(yLL/θL)) + αLH(
(xLH)

1−σ

1−σ − ϕ(yLH/θH))]

s.t. R, IC(H), IC(HH), & IC(LH).

Following the logic of Lemma 7, it is straightforward to show that as σ converges to 0, the earnings

levels that solve this problem converge to those that solve the Utilitarian Problem when σ = 0;

namely, the surplus maximizing levels. In addition, we have that:

Fact A.3: Let (x,y) solve the Relaxed Utilitarian Problem. Then, for sufficiently small σ, the

constraints IC(L), IC(HL) and IC(LL) bind.

Proof: Showing that IC(HL) and IC(LL) bind follows the proof of Fact A.2. Suppose then that

IC(L) does not bind. Then, we first note that it must be that for any ε > 0 there is a σε such
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that if σ < σε then xHK − xLK < ε for K ∈ {H,L}. To see this assume by contradiction that for

any σ > 0 either xHH − xLH ≥ ε, or xHL− xLL ≥ ε. Then, for sufficiently small σ it must be the

case that both xHH − xLH ≥ ε and xHL − xLL ≥ ε. This follows from the fact that the incentive

compatibility constraints are binding in period 2 and hence

(xHH)
1−σ

1−σ − (xHL)
1−σ

1−σ = ϕ(yHH/θH)− ϕ(yHL/θH)

(xLH)
1−σ

1−σ − (xLL)
1−σ

1−σ = ϕ(yLH/θH)− ϕ(yLL/θH)

But as σ becomes small ϕ(yHH/θH) converges to ϕ(yLH/θH) and ϕ(yHL/θH) converges to ϕ(yLL/θH).

Thus, (xHH)
1−σ

1−σ − (xHL)
1−σ

1−σ converges to (xLH)
1−σ

1−σ − (xLL)
1−σ

1−σ which implies that xHH − xHL con-

verges to xLH − xLL.

Given this, consider a marginal decrease in xHH by ∆
µ(xHH)

−σ , a decrease in xHL by
∆

µ(xHL)
−σ ,

and a marginal increase in xLH by ∆
(1−µ)(xLH)−σ

, and in xLL by ∆
(1−µ)(xLL)−σ

. This change

maintains the incentive constraints at time 2. For example, the incentive constraint after history

(θH , θH) is given by

(xHH − ∆
µ(xHH)

−σ )
1−σ

1− σ
− ϕ(yHH/θH) =

(xHL − ∆
µ(xHL)

−σ )
1−σ

1− σ
− ϕ(yHL/θH)

which is maintained for small ∆. In addition, this change keeps expected utility at time 1 constant.

Expected utility at time 1 as a function of ∆ is

W (∆) = µ{ (xH)
1−σ

1− σ
− ϕ(yH/θH) + αHH(

(xHH − ∆
µ(xHH)

−σ )
1−σ

1− σ
− ϕ(yHH/θH))

+αHL(
(xHL − ∆

µ(xHL)
−σ )

1−σ

1− σ
− ϕ(yHL/θH))}+ (1− µ){ (xL)

1−σ

1− σ
− ϕ(yL/θL)

+αLH(
(xLH +

∆
(1−µ)(xLH)−σ

)1−σ

1− σ
− ϕ(yLH/θH)) + αLL(

(xLL +
∆

(1−µ)(xLL)−σ
)1−σ

1− σ
− ϕ(yLL/θL))}.

Differentiating, we obtain

W 0(0) = −µ{αHH(
1

µ
) + αHL(

1

µ
)}+ (1− µ){αLH(

1

1− µ
) + αLL(

1

1− µ
)}

= 0.

However, expected consumption at time 1 decreases. Expected consumption at time 1 as a function

of ∆ is

C(∆) = µ{xH + αHH(xHH −
∆

µ (xHH)
−σ ) + αHL(xHL −

∆

µ (xHL)
−σ )}

+(1− µ){xL + αLH(xLH +
∆

(1− µ) (xLH)
−σ ) + αLL(xLL +

∆

(1− µ) (xLL)
−σ )}.
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Differentiating, we obtain

C 0(0) = −{αHH(
1

(xHH)
−σ ) + αHL(

1

(xHL)
−σ )}+ {αLH(

1

(xLH)
−σ ) + αLL(

1

(xLL)
−σ )}.

We know that xHH > xLH and xHL > xLL and hence

C0(0) < −{(αHH − αLH)(
1

(xLH)
−σ ) + (αHL − αLL)(

1

(xLL)
−σ )}.

Moreover, since yLH > yLL for sufficiently small σ, we have that xLH > xLL and hence

C 0(0) < −{ (αHH − αLH) + (αHL − αLL)

(xLL)
−σ } = 0.

This implies that the resources constraint can be relaxed without violating the other constraints:

a contradiction.

Now consider the incentive constraint IC(L). This is given by

(xH)
1−σ

1− σ
− ϕ(yH/θH) + αHH(

(xHH)
1−σ

1− σ
− ϕ(yHH/θH)) + αHL(

(xHL)
1−σ

1− σ
− ϕ(yHL/θH))

≥ (xL)
1−σ

1− σ
− ϕ(yL/θH) + αLH(

(xLH)
1−σ

1− σ
− ϕ(yLH/θH)) + αLL(

(xLL)
1−σ

1− σ
− ϕ(yLL/θL))).

If the incentive constraint IC(L) is not binding then we know that xH = xL and yH > yL.

Moreover, as σ converges to 0 we know that yHH converges to yLH and yHL converges to yLL. In

addition, as we have argued, xHH converges to xLH and xHL converges to xLL. It follows that

the incentive constraint IC(L) must be violated - a contradiction. ¥

As noted above, if an allocation (x,y) satisfies the constraints IC(H), IC(HH) and IC(LH)

with equality and the earnings levels are monotonic, then it satisfies the constraints IC(L),

IC(HL) and IC(LL). We can therefore use Fact A.3 to deduce that there exists a σ > 0

such that if σ ∈ (0, σ), (x,y) solves the Utilitarian Problem if and only if it solves the Relaxed

Utilitarian Problem.

Fact A.4: Let (x,y) solve the Relaxed Problem. Then, for sufficiently small σ, the constraint

IC(L) binds.

Proof: Suppose that for sufficiently small σ the constraint IC(L) in the Relaxed Problem does

not bind. Let (x∗,y∗) solve the Relaxed Problem. Then we know from the utility maintenance

constraint that

V1((x
∗,y∗), h1, θL;σ) ≥ u
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In addition, since the incentive constraint is not binding, we have that

V1((x
∗,y∗), h1, θH ;σ) ≥

(x∗L)
1−σ

1− σ
− ϕ(y∗L/θH) + δE[V2((x

∗,y∗), (h1, θL), θ2;σ) |θ1 = θH ].

Now let (xo,yo) solve the Relaxed Utilitarian Problem. Then we know by assumption that

V1((x
o,yo), h1, θL;σ) < u. In addition, since all the incentive constraints are binding, we have

by Lemma 3

V1((x
o,yo), h1, θH ;σ) = V1((x

o,yo), h1, θL;σ) +Φ (y
o
L) + δ(αHH − αLH)Φ (y

o
LL) .

But, on the other hand, we know that since the second period incentive constraints are binding

in the Relaxed Problem and the first period constraint is not binding, then we have:

V1((x
∗,y∗), h1, θH ;σ) ≥ V1((x

∗,y∗), h1, θL;σ) +Φ (y
∗
L) + δ(αHH − αLH)Φ (y

∗
LL)

≥ u+Φ (y∗L) + δ(αHH − αLH)Φ (y
∗
LL) .

But given that IC(L) is not binding the earnings levels converge to those that solve the Relaxed

Utilitarian Problem; namely, the surplus maximizing levels. This implies that

V1((x
∗,y∗), h1, θH ;σ) > V1((x

o,yo), h1, θH ;σ).

Thus,

µV1((x
∗,y∗), h1, θH ;σ) + (1− µ)V1((x

∗,y∗), h1, θL;σ)

> µV1((x
o,yo), h1, θH ;σ) + (1− µ)V1((x

o,yo), h1, θL;σ),

which contradicts the fact that (xo,yo) solves the Relaxed Utilitarian Problem. ¥

The result now follows from Facts A.2 and A.4. Q.E.D.

Proof of Proposition 3: It follows from the first order conditions for the high types’ consump-

tions and earnings derived in the proof of the previous Lemma and the fact that λHH > 0 that

yH and yHH are set efficiently, while yHL is distorted downwards. It is also clear from the first

order conditions that yLH is set efficiently. To prove that yL is distorted downwards, we need to

show that
ϕ0(yL/θL)

θL
=

ϕ0(yL/θH)
θH

λH + λR(1− µ)

λU
< (xL)

−σ =
λR(1− µ)

λU − λH

From the condition that yL satisfies, we know that

ϕ0(yL/θL)

θL
(λU − λH) + λH{

ϕ0(yL/θL)

θL
− ϕ0(yL/θH)

θH
} = λR(1− µ)
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Thus,
ϕ0(yL/θL)

θL
+

λH
(λU − λH)

{ϕ
0(yL/θL)

θL
− ϕ0(yL/θH)

θH
} = λR(1− µ)

(λU − λH)

and we have that
ϕ0(yL/θL)

θL
>

ϕ0(yL/θH)

θH
,

which yields the result since λU − λH > 0. To prove that yLL is distorted downwards, we need to

show that

ϕ0(yLL/θL)

θL
=

λLH
δαLL

ϕ0(yLL/θH)
θH

+ λR(1− µ)

λU − αHL
αLL

λH
< (xLL)

−σ =
λR(1− µ)

λU − αHL
αLL

λH − λLH/δαLL

From the condition that yLL satisfies, we know that

ϕ0(yLL/θL)

θL
(λU −

αHL

αLL
λH −

λLH
δαLL

) +
λLH
δαLL

{ϕ
0(yLL/θL)

θL
− ϕ0(yLL/θH)

θH
} = λR(1− µ)

Thus,

ϕ0(yLL/θL)

θL
+

λLH/δαLL
λU − αHL

αLL
λH − λLH/δαLL

{ϕ
0(yLL/θL)

θL
−ϕ

0(yLL/θH)

θH
} = λR(1− µ)

λU − αHL
αLL

λH − λLH/δαLL

and we have that
ϕ0(yLL/θL)

θL
>

ϕ0(yLL/θH)

θH
,

which yields the result since λU − αHL
αLL

λH − λLH/δαLL > 0.

That the degree of distortion in the earnings of those who becomes low types in the second

period converges to 0 as σ → 0 follows from Proposition 2. Thus, it only remains to show that

yLL > yL. From the first order conditions for the low type’s earnings, we know that

ϕ0(yLL/θL)

θL
(λU −

αHL

αLL
λH)−

λLH
δαLL

ϕ0(yLL/θH)

θH
= λR(1− µ)

and that
ϕ0(yL/θL)

θL
λU −

ϕ0(yL/θH)

θH
λH = λR(1− µ).

It will be shown in the next proposition that xL > xLL. This implies from the first order conditions

for xL and xLL that [αLL − αHL]λHδ < λLH . Thus,

λR(1− µ) =
ϕ0(yLL/θL)

θL
(λU −

αHL

αLL
λH)−

λLH
δαLL

ϕ0(yLL/θH)

θH

<
ϕ0(yLL/θL)

θL
(λU − λH) +

µ
1− αHL

αLL

¶
λHΦ

0(yLL/θH)
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Since, by (17), as σ → 0 we have that (λU − λH)→ λR(1− µ), we can write:

1− ϕ0(yLL/θL)

θL
<

µ
1− αHL

αLL

¶
λH

λR(1− µ)
Φ0(yLL/θH)

Consider now (21), again (17) implies

1− ϕ0(yL/θL)

θL
' λH

λR(1− µ)
Φ0(yLL/θH)

>

µ
1− αHL

αLL

¶
λH

λR(1− µ)
Φ0(yL/θH)

Therefore:
ϕ0(yLL/θL)

θL
>

ϕ0(yL/θL)

θL

and the result follows by the convexity of ϕ. Q.E.D.

Proof of Proposition 4: For the first statement we need to show that xH ∈ (xHL, xHH) and

xL ∈ (xLL, xLH). The first claim follows immediately from the first order conditions for the high

types’ consumption (see the proof of Fact A.2) and the fact that (as shown in the proof of Fact A.2)

λHH is positive. For the second claim, note first that since (as shown in the proof of Proposition 3)

yLL ≤ yLH the incentive constraint IC(LH) implies that xLL < xLH . Thus, if xL /∈ (xLL, xLH),

then either it is the case that xL ≤ xLL < xLH or it is the case that xLL < xLH ≤ xL.

Suppose the former. Then, from the first order conditions for xL and xLL,

λR(1− µ)

λU − λH
≥ λR(1− µ)

λU − αHL
αLL

λH − λLH/δαLL
.

This implies that [αLL − αHL]λHδ ≥ λLH . But this means that

αHH

αLH
λH − λLH/δαLH ≥

αHH

αLH
λH − λH [αLL − αHL]/αLH = λH

and hence that
λR(1− µ)

λU − (αHHαLH
λH − λLH/δαLH)

≥ λR(1− µ)

λU − λH
.

From the first order conditions for xL and xLH this implies that (xLH)
−σ ≥ (xL)−σ which means

that xLH ≤ xL - a contradiction.

Suppose then that xLL < xLH ≤ xL. From the first order conditions for xL and xLH ,

λR(1− µ)

λU − λH
≤ λR(1− µ)

λU − (αHHαLH
λH − λLH/δαLH)

.
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This implies that λLH ≤ δ(αHH − αLH)λH . But this means that

αHL

αLL
λH + λLH/δαLL ≤

αHL

αLL
λH + (αHH − αLH)λH/αLL = λH

and hence that
λR(1− µ)

λU − αHL
αLL

λH − λLH/δαLL
≤ λR(1− µ)

λU − λH
.

From the first order conditions for xL and xLL this implies that (xLL)
−σ ≤ (xL)−σ which means

that xLL ≥ xL - a contradiction.

For the second statement, we need to show that for K ∈ {L,H}

(xK)
−σ < αKH(xKH)

−σ + αKL(xKL)
−σ.

Define υ (x) = (x)1−σ/(1− σ) and υ(xi) = vi for i = K,KL,KH. Consider a decrease in υK by

φ (which can be positive or negative) and a contextual increase of υKL and υKH by φ
δ . After this

change the utility maintenance constraint and the incentive compatibility constraints at t = 1 and

2 are obviously satisfied, since utilities at t = 2 change by the same amounts and the net present

value of the expected utility of reporting K at t = 1 is unchanged. It must be that this change

does not relax the resources constraint, therefore:

∂

∂φ

∙
υ−1 (υK − φ) + δ

µ
αKLυ

−1
µ
υKL +

φ

δ

¶
+ αKHυ

−1
µ
υKH +

φ

δ

¶¶¸
= 0 (24)

where υ−1(·) is the inverse of υ. By Jensen’s Inequality, we have:

0 =

µ
αKH

υ0 (υKH)
+

αKL

υ0 (υKL)

¶
− 1

υ0 (υK)
>

µ
1

αKHυ0 (υKH) + αKLυ0 (υKL)

¶
− 1

υ0 (υK)

which implies (xK)
−σ < αKH(xKH)

−σ + αLL(xKL)
−σ. Q.E.D.

Proof of Lemma 9: Consider a particular period t ≥ 2 and some history ht. We are interested

in knowing when (x∗ht ,y
∗
ht
) will be a solution to Problem PI

ht
. This is clearly the case if ht 6=

h∗t = {θL, ...θL} since Proposition 2 tells us that (x∗ht ,y
∗
ht
) is first best efficient. Therefore we focus

attention on the history h∗t .

Observe that the program PI
h∗t
is identical to the Second Best Problem, but for two exceptions.

On the one hand, the reservation value of those with history h∗t who are low types at time t is their

expected continuation value Vt ((x
∗,y∗), h∗t , θL; 0) instead of u. On the other hand, the revenue

requirement is not G/(1 − δ), but the expected revenue generated from individuals with history
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h∗t by (x
∗,y∗). We will exploit this similarity to solve the program PI

h∗t
in the same way as we

did the Second Best Problem. However, a certain amount of work is necessary to show that the

equivalent of Lemma 1 holds for the Relaxed Problem corresponding to PI
h∗t
.

To this end, consider first the following Revenue Maximization Problem:

max
(xh∗t

,yh∗t
)

T−tX
j=0

δjE[yt+j(ht+j , θt+j)− xt+j(ht+j , θt+j) |h∗t ]

s.t. Vt
¡
(xh∗t ,yh∗t ), h

∗
t , θL; 0

¢
≥ Vt ((x

∗,y∗), h∗t , θL; 0)

and ICH(ht+j) & ICL(ht+j) ∀ ht+j º h∗t ∀ j = 0, 1, ..

Thus, we maximize the expected present value of revenues that can be extracted from individuals

with history h∗t at time t subject to the constraint that those with low ability at time t have at

least as much utility as under (x∗h∗t ,y
∗
h∗t
) and the incentive constraints. Let (xRh∗t ,y

R
h∗t
) denote the

solution to the revenue maximizing problem. We can immediately apply Lemmata 1-5 to this

problem and conclude that the earnings path yRh∗t solves the problem

max
yh∗t

(1− δ)
T−tX
j=0

δjE[yt+j(ht+j , θt+j)− ϕ(yt+j(ht+j , θt+j)/θt+j) |h∗t ]

−(1− δ)[Pr(θt = θH |h∗t )
T−tX
j=0

δj [αHH − αLH ]
j
Φ
¡
yt+j(h

∗
t+j , θL)

¢
+ Vt ((x

∗,y∗), h∗t , θL; 0)]

We can now establish:

Fact A.5: If (9) holds, then for any h∗t+j, y
∗
t+j(h

∗
t+j , θL) > yRt+j(h

∗
t+j , θL).

Proof: Since Pr(θt = θH |h∗t ) = αLH , for any history h
∗
t+j , y

R
t+j(h

∗
t+j , θL) satisfies the first order

condition

αLL
αLH

[1−
ϕ0(yRt+j(h

∗
t+j , θL)/θL)

θL
] =

∙
1− αHL

αLL

¸j
Φ0
¡
yRt+j(h

∗
t+j , θL)

¢
. (25)

Under our assumption that ϕ000 ≥ 0 the revenues are a strictly concave function of each yt+j ,

implying that revenues are decreasing in yt+j(h
∗
t+j , θL) on the interval [y

R
t+j(h

∗
t+j , θL),∞). From

(6) we have that y∗t+j
¡
h∗t+j , θL

¢
solves:∙

1− αHL

αLL

¸1−t
γ (1− δ) (1− µ)

γµ(1− δ)− 1 [1−
ϕ0(y∗t+j(h

∗
t+j , θL)/θL)

θL
] =

∙
1− αHL

αLL

¸j
Φ0
¡
y∗t+j(h

∗
t+j , θL)

¢
.

(26)
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Using (9): ∙
1− αHL

αLL

¸1−t
γ (1− δ) (1− µ)

γµ(1− δ)− 1

≥
∙
1− αHL

αLL

¸−1
γ (1− δ) (1− µ)

γµ(1− δ)− 1 >
αLL
αLH

So the right hand side of (26) is larger than the right hand side of (25), and concavity of the

revenue function implies that y∗t+j(h
∗
t+j , θL) > yRt+j(h

∗
t+j , θL). ¥

We can now show that the equivalent of Lemma 1 holds for the Relaxed Problem corresponding

to PI
h∗t
.

Fact A.6: Let (xh∗t , yh∗t ) solve the Relaxed Problem corresponding to P I
h∗t
in which the incentive

compatibility constraints for the low types are ignored. Then ICH(h
∗
t ) holds with equality.

Proof: Assume, by contradiction, that ICH(h
∗
t ) is not binding. Following the same argument as

in Lemma 1, it follows that (xh∗t ,yh∗t ) must be efficient starting from h∗t . Therefore, using Lemma

7 and Proposition 2

yt+j(h
∗
t+j , θL) > y∗t+j(h

∗
t+j , θL) > yRt+j(h

∗
t+j , θL)

for any j ≥ 0, while for all histories ht+j 6= h∗t+j

yt+j(h
∗
t+j , θL) = y∗t+j(h

∗
t+j , θL) = yRt+j(h

∗
t+j, θL).

Since revenues are strictly decreasing on the interval [yRt+j(h
∗
t+j , θL),∞), it follows that the tax

revenues generated by (xh∗t ,yh∗t ) must be strictly lower than the revenues generated by the ex

ante optimal solution (x∗ht ,y
∗
ht
) starting from h∗t : but this is a contradiction because then the

revenues constraint would be violated. ¥

Given Fact A.6, we can apply Lemmata 2-5 and conclude that (x∗h∗t ,y
∗
h∗t
) will be a solution to

PI
h∗t
if and only if y∗h∗t is a solution to the problem

maxyht
PT−t

j=0 δ
j [αHH − αLH ]

j Φ
¡
yt+j(h

∗
t+j , θL)

¢
+ Vt ((x

∗,y∗), h∗t , θL; 0)

s.t. R∗ (h∗t ) (1− δ) ≤ (1− δ)
PT−t

j=0 δ
jE[yt+j(ht+j , θt+j)− ϕ(yt+j(ht+j, θt+j)/θt+j) |h∗t ]

−(1− δ)

⎡⎢⎢⎣ Pr(θt = θH |h∗t )
PT−t

j=0 δ
j [αHH − αLH ]

j Φ
¡
yt+j(h

∗
t+j , θL)

¢
+Vt ((x

∗,y∗), h∗t , θL; 0)

⎤⎥⎥⎦ (PS
h∗t
)
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Accordingly, to prove the result we need to show that y∗h∗t is a solution to the problem if and only

if (9) holds.

Since Pr(θt = θH |h∗t ) = αLH , the Lagrangian of PS
h∗t
is:

Lh∗t =
T−tX
j=0

δj [αHH − αLH ]
j Φ
¡
yt+j(h

∗
t+j , θL)

¢
+

[γS (1− δ)]

(1− γSαLH(1− δ))

T−tX
j=0

δjE[yt+j(ht+j , θt+j)− ϕ(yt+j(ht+j , θt+j)/θt+j) |h∗t ]

where we have divided through by 1−γSαLH(1−δ) and omitted the constants Vt ((x∗,y∗), h∗t , θL; 0)

and R∗ (h∗t ) .We denote the Lagrange multiplier γS to distinguish it from the analogous multiplier

γ for the program solved by y∗. Let ySh∗t denote the solution to this program. Under our assumption

that ϕ000 ≥ 0 the Lagrangian is a strictly concave function of each yt+j and the solution is unique.

We can now prove the Lemma:

Sufficient condition: If (9) is satisfied, then y∗h∗t is a solution to problem PS
h∗t
. We proceed in

three steps.

Step 1. We first show that

γS (1− δ)αLL
γSαLH(1− δ)− 1 ≤

∙
1− αHL

αLL

¸1−t
γ (1− δ) (1− µ)

γµ(1− δ)− 1 (27)

Assume, by contradiction, that this inequality is not true. The optimal solution ySt+j
¡
θL;h

∗
t+j

¢
satisfies the first order condition:

γS (1− δ)αLL
γSαLH(1− δ)− 1 [1−

ϕ0(ySt+j(h
∗
t+j , θL)/θL)

θL
] =

∙
1− αHL

αLL

¸j
Φ0
¡
ySt+j(h

∗
t+j , θL)

¢
(28)

if ht+j 6= h∗t+j ; and it would be fully efficient otherwise. If (27) is not true, then after any history

h∗t+j , concavity of the Lagrangian implies that the solution ySt+j(h
∗
t+j , θL) of (28) is strictly larger

than the ex ante optimal solution y∗t+j(h
∗
t+j , θL). Moreover, from Fact A.5 we know that that the ex

ante optimal solution y∗t+j(h
∗
t+j , θL) is larger than the revenue maximizing solution y

R
t+j(h

∗
t+j , θL).

Accordingly,

ySt+j(h
∗
t+j , θL) > y∗t+j(h

∗
t+j , θL) > yRt+j(h

∗
t+j, θL).

Since tax revenues are strictly decreasing on the interval [yRt+j(h
∗
t+j , θL),∞), this would imply

that the revenues corresponding to the earnings path ySh∗t are strictly lower than under the ex ante

optimal solution y∗h∗t : it follows that the revenue constraint (P
S
h∗t
) is not satisfied - a contradiction.

53



Step 2. Next we show that:

γS (1− δ)αLL
γSαLH(1− δ)− 1 ≥

∙
1− αHL

αLL

¸1−t
γ (1− δ) (1− µ)

γµ(1− δ)− 1 (29)

Assume, by contraction, that (29) is not true. We know by the analogue of Lemma 4 that if ySh∗t

solves problem PS
h∗t
and the consumption levels xSh∗t are such as to make ICH(ht+j) for all j and

ht+j º h∗t and the low type’s utility constraint hold with equality given y
S
h∗t
, then (xSh∗t ,y

S
h∗t
) must

solve problem PI
h∗t
. But if (29) is not true, then after any history h∗t+j the solution ySt+j(h

∗
t+j , θL)

of (28) is smaller and hence more distorted than the ex ante optimal solution y∗t+j(h
∗
t+j , θL). Since

the solution on any other history would be efficient both under y∗h∗t and y
S
h∗t
, we would have that

aggregate surplus is lower under (xSh∗t ,y
S
h∗t
) than under (x∗h∗t ,y

∗
h∗t
). But this is a contradiction since

in this case it is impossible that all the constraints of program PI
h∗t
are satisfied and its value is

strictly larger than Vt ((x
∗,y∗), h∗t , θH ; 0).

Step 3. From Steps 1 and 2 it follows that

γS (1− δ)αLL
γSαLH(1− δ)− 1 =

∙
1− αHL

αLL

¸1−t
γ (1− δ) (1− µ)

γµ(1− δ)− 1 .

From (28) and (26) it follows that y∗h∗t solves P
S
h∗t
as claimed.

Necessary condition: If (9) is not satisfied, then y∗h∗t is not a solution to problem PS
h∗t
.

If (9) does not hold, then (26) and (25) imply that after any history h∗t+j , y
∗
t+j(h

∗
t+j, θL) is

smaller than the revenue maximizing solution yRt+j(h
∗
t+j , θL). Let yh∗t be an earnings path such that

for any history h∗t+j , yt+j(h
∗
t+j , θL) ∈ (y∗t+j(h∗t+j , θL),min{yRt+j(h∗t+j , θL), y∗(θL)}) but otherwise

equals y∗h∗t . Then this earnings path raises strictly more revenue and yields a strictly higher level of

the objective function than does y∗h∗t . Accordingly, y
∗
h∗t
is not a solution to problem PS

h∗t
. Q.E.D.

Proof of Proposition 6: Let Ω = G + (1− δ)u. Then, if (x∗,y∗) is a second best efficient

allocation, Lemma 5 tells us that y∗ = y∗(Ω) where y∗(Ω) solves the problem

max
T−1X
j=0

δj [αHH − αLH ]
j
Φ
¡
y1+j(h

◦
1+j , θL)

¢
+ u

s.t. Ω ≤ (1− δ)
TX
t=1

δt−1E[yt(ht, θt)− ϕ(yt(ht, θt)/θt)]

−(1− δ)[µ
T−1X
j=0

δj [αHH − αLH ]
j
Φ
¡
y1+j(h

◦
1+j , θL)

¢
].
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Let γ(Ω) denote the associated Lagrange multiplier. Condition (9) of Lemma 9 implies that, when

αLH
αHH

∈ (0, µ), there is a threshold γ > 1
µ(1−δ) such that (x

∗,y∗) is time consistent if and only if

γ(Ω) ≤ γ. Let Ω be the maximum value of Ω such that the above problem has a solution. Let Ω

be the largest value of Ω such that there exists an efficient allocation in which those who are low

types in period one have expected utility u and none of the high types’ incentive constraints are

violated. To prove the Proposition, we will demonstrate that as Ω increases from Ω to Ω, γ(Ω)

increases from 1
µ(1−δ) to ∞.

Define the functions

Λ1 (y) =
Φ0 (y)

1− ϕ0(y/θL)
θL

which is increasing in y; and

Λ2 (t, γ) =

∙
1− αHL

αLL

¸1−t
(1− µ)

1− 1
γ(1−δ)

which is decreasing in γ. We know from our characterization of y∗(Ω) that, for any t:

Λ1 (y
∗
t (θL;h

∗
t ;Ω)) = Λ2 (t, γ(Ω)) .

For all other histories, y∗t (θL;ht;Ω) is efficient.

Now consider the pure Revenue Maximization Problem:

max
(x,y)

TX
t=1

δt−1E[yt(ht, θt)− xt(ht, θt)]

s.t. V1((x,y), h1, θL; 0) ≥ u

and ICH(ht) & ICL(ht) for all t & ht.

Let (xR,yR) denote the solution to this problem. As in the proof of Lemma 9, we can immediately

apply Lemmata 1-5 to this problem and conclude that the revenue maximizing earnings path

earnings path yR solves the problem:

max
y
(1− δ)

TX
t=1

δt−1E[yt(ht, θt)− ϕ(yt(ht, θt)/θt)]

−(1− δ)[µ
T−1X
j=0

δj [αHH − αLH ]
j
Φ
¡
y1+j(h

◦
1+j , θL)

¢
+ u].

It is easy to see that:

Λ1
¡
yRt (h

∗
t , θL)

¢
= lim

λ→∞
Λ2 (t, λ) = 1− µ,
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while for all other histories yRt (ht, θL) is efficient. Note also that y
R is completely independent of

Ω.

Now consider two values of Ω, eΩ,Ω0 ∈ (Ω,Ω) such that eΩ > Ω0. We claim that γ(eΩ) > γ(Ω0).

Suppose, to the contrary, that γ(eΩ) ≤ γ(Ω0). Then, we have that along the history h∗t for any

time period t, °°°yRt (h∗t , θL)− y∗t (h
∗
t , θL; eΩ)°°° =

°°°Λ−11 Λ2 ³t, γ(eΩ)´− Λ−11 (1− µ)
°°°

≥
°°Λ−11 Λ2 (t, γ(Ω0))− Λ−11 (1− µ)

°°
=

°°yRt (h∗t , θL)− y∗t (h
∗
t , θL;Ω

0)
°°

so that the difference between the revenue maximizing income level yRt (h
∗
t , θL) and the con-

strained efficient income y∗t (h
∗
t , θL; eΩ) is not smaller than the difference between yRt (h

∗
t , θL) and

y∗t (h
∗
t , θL;Ω

0). Since these differences must have the same sign and since revenues are concave in

yt, it follows that y
∗(eΩ) cannot generate more revenues than y∗(Ω0). This is a contradiction sinceeΩ > Ω0.

To see that as Ω → Ω, γ(Ω) → 1
µ(1−δ) note that as Ω → Ω the incentive compatibility

constraints for the high types become non-binding, so taxation becomes efficient. This implies

that γ(Ω) → 1
µ(1−δ) . Similarly as Ω converges to Ω, γ(Ω) must converge to infinity, otherwise

some resources would be left to the high type and tax revenues would not be maximized. Q.E.D.
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