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Abstract

We ask what redistributions of income and assets are feasible
in a democracy, given the initial assets and their distribution.
The question is motivated by the possibility that if redistribu-
tion is insu¢ cient for the poor or excessive for the rich, they may
turn against democracy. In turn, if no redistribution simultane-
ously satis�es the poor and the wealthy, democracy cannot be
sustained. Hence, the corollary question concerns the conditions
under which democracy is sustainable. Since decisions to save are
endogenous, we solve explicitly for the current growth rates given
any time path of future tax rates. We �nd that the optimal path
of redistribution chosen by the median voter under the constraint
of rebellion by the poor or the wealthy consists of redistributing
as much as possible as soon as possible. However, this path is
time inconsistent unless voters punish governments that deviate
from their promises. Democracies survive in wealthy societies,
with a lower average capital stock when they are more equal.

�We thank Onur Ozgur for comments and for technical assistance.
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1 Introduction

We ask what redistributions of income and assets are feasible in a democ-
racy, given the initial assets and their distribution. The question is moti-
vated by the possibility that if redistribution is insu¢ cient for the poor
or excessive for the rich, they may turn against democracy. In turn,
if no redistribution simultaneously satis�es the poor and the wealthy,
democracy cannot be sustained. Hence, the corollary question concerns
the conditions under which democracy is sustainable.
In a simple model of production and accumulation, where agents

are heterogeneous in their initial wealth, the median voter chooses a
sequence of redistributive tax rates. Decisions to save are endogenous,
which means that they depend on future tax rates and thus future growth
rates. We solve explicitly for the current growth rates given any time
path of future tax rates. We assume that decisions about redistribution
are made in elections and show that no coalition of poor and wealthy
leaves both better o¤than the decision of the median voter (see Theorem
4). Moreover, the identity of the median voter does not change over time
(For a model where it may, see Besley and Coate (1998)). Hence, the
same median voter is decisive at each time with regard to the entire time
path of future redistribution. The median voter, however, must consider
the eventuality of rebellion by the poor or the wealthy. Either of these
groups can establish a dictatorship and impose by force its preferred
path of redistribution. The cost of dictatorship, in turn, is the loss of
freedom. We assume, in the spirit of Sen (1991), that the utility of any
amount of consumption is lower when people are not free to live the lives
of their choosing.
Since the median voter need not choose a constant tax rate, we en-

counter all the richness and all the di¢ culty of the optimal tax literature
(Chamley (1985), (1986), Judd (1985), Benhabib and Rustichini (1997),
Benhabib, Rustichini and Velasco (2001), Chari and Kehoe(1999)). A
further complication arises from the redistribution of tax receipts back
to the agents as transfers, which the agents must incorporate into their
decisions to save. The equilibrium must therefore be solved for all feasi-
ble tax sequences, and the median voter optimizes over these sequences
taking into account equilibrium consequences (see Theorems 1 and 2).
In contrast to earlier results in the related literature which provide neces-
sary conditions that all equilibria must satisfy (Chamley (1986) or Chari
and Kehoe (2000)), we characterize the unique equilibrium, albeit in a
framework which is di¤erent and in some dimensions more restrictive.
(see Theorem 2, Remark 2, and Corollary 1.) Hence the length and
complexity of our proofs.
Results are the following:
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(1) Democracies survive in wealthy countries. Since the freedom of
poor people is already circumscribed by poverty, people have more to
lose from dictatorship when they are wealthier. As a result, they are less
prone to turn against democracy in a uent countries. (see Theorems 5
and 6 , and also see the discussion preceding Theorem 6).
(2) Democracies survive at lower average capital stock in more equal

societies.(See Theorem 6 and Remark 8.)
(3) If the capital stock is high enough at the time democracy is

inaugurated, the median voter can equalize wealth in the �rst period,
and implement zero taxes henceforth. (see Theorems 3 and 6).
(4) The optimal path of redistribution chosen by the median voter

under the constraint of rebellion by the poor or the wealthy consists of
redistributing as much as possible as soon as possible. While redistri-
bution is a con�ictive issue, since future taxes reduce current growth,
everyone wants redistribution to stop at some time. (See Theorem 4)
However, this path is time inconsistent unless voters punish governments
that deviate from their promises (See Corollary 4 and Theorem 7).
(5) Since the median voter, as well as the poor and the wealthy

dictators, want redistribution to end as soon as possible, political regimes
a¤ect growth rates only during the period when future taxes are expected
to be positive.
The �rst result is consistent with the well established fact that the

probability that a democracy would survive rises steeply in per capita
income (Przeworski and Limongi 1977, Przeworski et al. 2000). Between
1951 and 1999, the probability that a democracy would die during any
particular year in countries where it emerged with per capita income
under $1000 was 0.0819, which implies that their expected life was about
twelve years. For countries where democracy was inaugurated when they
had incomes between $1001 and $3000, this probability was 0.0248, for
an expected duration of about forty years. Between $3001 and $6055,
the probability was 0.0099, which translates into about 101 years of
expected life. And no democracy ever fell in a country with a per capita
income higher than that of Argentina in 1975, $6,055 (1985 PPP from
PWT5.6). This is a startling fact, given that throughout history about
seventy democracies collapsed in poorer countries. In contrast, thirty-
seven democracies spent over 1000 years in more developed countries
and not one died.
We do not have systematic knowledge about redistribution. All we

know is that the distribution of market (pre-�sc) incomes seems to be
extremely stable over time, implying that major redistributions of as-
sets are in fact rare. It appears that there are no countries which over
the long run equalized market incomes without some kind of cataclysm.
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The strongest evidence comes from Li, Squire, and Zou (1997), who re-
port that about 90 percent of total variance in the Gini coe¢ cients is
explained by the variation across countries, while few countries show
any time trends. Massive redistributions occurred only as a result of (1)
expropriation of large property as a consequence of foreign occupation
(Japanese in Korea, Soviets in Eastern Europe), (2) revolution (Soviet
Union, China), (3) destruction of large fortunes caused by war (France
according to Piketty 2000), or (4) massive emigration of the poor (Nor-
way, Sweden).
That political regimes, dichotomized as democracies and dictator-

ships, do not a¤ect the rates of growth of total (as distinct from per
capita) income is now generally accepted (Barro 1989, Helliwell 1994,
Przeworski et al. 2000). Young democracies, however, tend to grow at a
slower rate than mature ones (Przeworski et al. 2000), although we do
not know whether this is because they are expected to tax for a longer
period than either kind of dictatorship.
The result about front-loading redistribution is standard and surpris-

ingly robust in the optimal taxation theory. Yet it appears to contradict
the observed patterns: prima facie observation shows that democracies
tend to tax year after a year and, if anything, the tax rate increases as
they grow older.1 In the light of the theoretical intuition, this fact is
deeply puzzling. After all, even the wealthy, who lose from redistribu-
tion, would want it to occur as quickly as possible. A situation in which
asset distribution and factor incomes remain more or less the same and
some redistribution occurs year after a year is costly to everyone over any
longer run. We have no answer to this puzzle. One reason may be time
inconsistency. While the median voter pushes the wealthy to the rebel-
lion constraint early into the life of democracy, growth generates some
slack with regard to this constraint. Hence, the median voter is tempted
to renege on her promises and to vote for a positive amount of redistrib-
ution. Yet if reneging causes economic agents to distrust promises and,
therefore, to reduce their saving rates, such a proposal would not be elec-
torally victorious or a government that implements it by surprise would
su¤er electoral defeat, which means in turn that it would not be made
or implemented. The second reason, due to Meltzer and Richard (1981),
is that because of su¤rage extensions and of ageing, the median voter in
fact became poorer in the course of history of democracies. But then as-

1We regressed in di¤erent ways tax revenues as a proportion of GDP (from World
Development Indicators) and government expenditures (from Penn World Tables) on
regime age, initial or current per capita income, electoral turnout, and proportion of
the population over 65. The coe¢ cient on regime age is never negative, regardless of
the estimator.
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set redistribution should come in spurts following extensions of su¤rage,
and there is no evidence that it did. Finally, the third possibility is
that unequal distribution of non-alienable assets regenerates inequality
of alienable assets even after their initial equalization (see Mukherjee and
Ray 2002)2. The last alternative seems particularly plausible in the light
of the experience of communist countries, which nationalized almost the
entire stock of physical capital and yet continually faced inequality due
to di¤erences in human capital and continued to tax incomes.
The paper is organized as follows. We begin with the description of

the economy and determine the optimal consumption path as a function
of future growth rates, which in turn depend on the future tax rates.
We then solve for equilibrium growth rates for arbitrary future tax se-
quences. With these instruments, we then determine the optimal tax
sequences that will be chosen by the median voter, �rst without any
political constraints. To check that the median voter is indeed decisive
with regard to future tax rates, we show that no coalition between the
poor and the rich could make both better o¤ than the proposal of the
median. Then we focus on the political constraints, assuming that ei-
ther the poor or the rich can rebel against the proposal of the median
voter when her program generates too little or too much redistribution.
This analysis allows us to determine the conditions, in terms of the ini-
tial capital stock and its distribution, under which democracy is and is
not sustainable. Finally, since the optimal program of the constrained
median voter turns out to be time inconsistent, we consider the condi-
tions under which the median voter would not want to depart from the
optimal program.

2 The Economy

2.1 Production
We have a linear production economy where output yt at time t is pro-
duced with capital kt according to the production function

yt = rkt

2In principle, what matters is the equal ownership of assets in total, not asset
by asset, unless the initial equality is undone by di¤erential bequest and capital
markets are imperfect. Since income streams associated with assets like talent or
human capital can be computed an initial wealth endowment, it should, in theory,
be possible to equalize wealth by giving less phsical assets to those under-endowed
with non-alienable assets, provide there are enough physical assets to escape corner
solutions. Thus what should be taxed is endowments, human and physical, rather
than incomes. However in practice it would be an impossible task to compute, or to
elicit truthful estimates of non-alienable assets.
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with r > 1:

2.2 Initial Wealth Distribution
There are n agents, indexed by i: In the initial period t0; they each own
a share of the capital stock, vit0 and

Pn
i=1 v

i
t0
= 1: We denote the shares

of capital owned by agent i at time s as vis: We de�ne k
i
t = v

i
tkt:

2.3 Redistribution Through Taxation
Taxes are redistributive. The tax rate on assets at time t is denoted as
� t; and in each period tax collections are distributed to the agents in
proportion n�1 of the total. We assume that � s 2 [0; ~� ] ; where ~� � 1
for all s.

yit = (1� � t) rvitkt + n�1� trkt = (1� � t) rkit + n�1� trkt:

2.4 Agents
Since redistribution has incentive e¤ects, we have to �rst consider the
general accumulation problem for the agents. Agents use their capital to
produce income, pay proportional taxes on assets, and consume. Their
preferences are assumed to be isoelastic, and their value function is:

V i(kit) = max
ci

(cit)
1�� � 1
(1� �) + �V i(r(1� � t)kit + qit � cit)

where qis is the redistributive transfer agent i receives at time s.
We start by deriving the consumption function for the agent. We

allow for time varying taxes. The �rst-order condition of the agent for
an interior solution is:

cit+1 = c
i
t(�r(1� � t))

1
� (1)

Note that consumption will grow if (�r(1�� s))
1
� > 1. Forward iteration

of the budget constraint kit+1 = r(1� � t)kit � (cit � qit) implies, provided
� t+s < 1 for s = 1; 2:::(See Assumption 2 below), that:

ci0 � qi0 +
tX
j=1

(cij � qij)
"

jY
s=1

(r(1� � s))�1
#
+

tY
s=1

(r(1� � s))�1kit+1

= (r(1� � 0))ki0 (2)

We also have, from the no Ponzi and transversality conditions,

lim
t!1

(
tY
s=1

(r(1� � s))�1)kit+1 = 0 (3)

6



so that (2) becomes

ci0 � qi0 +
1X
j=1

�
cij � qij

� jY
s=1

�
(r (1� � s))�1

�
= (r (1� � 0))ki0 (4)

Iterating the �rst order conditions for the agent we get

cij = c
i
0

jY
s=1

(�r (1� � s))
1
� (5)

which, substituted into (4) gives

ci0�qi0+
1X
j=1

 
ci0

jY
s=1

(�r (1� � s))
1
� � qij

!
jY
s=1

�
(r (1� � s))�1

�
= r (1� � 0) ki0

Solving for ci0, we get

ci0=
(r (1� � 0))ki0�

1 +
P1

j=1

Qj
s=1 �

1
� (r (1� � s))

1��
�

�
+

qi0 +
P1

j=1 q
i
j

Qj
s=1 ((r (1� � s))�1)�

1 +
P1

j=1

Qj
s=1 �

1
� (r (1� � s))

1��
�

�
Thus the agent consumes a fraction �t of the sum of his net capital in-
come (r (1� � t))kit plus the value of transfers that he receives, discounted
at r (1� � t) :

cit=
(r (1� � t))kit�

1 +
P1

j=t+1

Qj
s=t+1 �

1
� (r (1� � s))

1��
�

�
+

qit +
P1

j=t+1 q
i
j

Qj
s=t+1 ((r (1� � s))�1)�

1 +
P1

j=t+1

Qj
s=t+1 �

1
� (r (1� � s))

1��
�

�
=�it

 
(r (1� � t))kit +

 
qit +

1X
j=t+1

qij

jY
s=t+1

�
(r (1� � s))�1

�!!

Note that �it = �t so the propensity to consume is identical across agents.
The following assumptions assure that 0 < �t < 1 for all t � t0 .

Note that the assumption places no further restrictions on the tax rate
in the initial period t0.
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Assumption 1 � s � ~� s < 1 for all s = t0 + 1; t0 + 2; : : : where t0 is the
initial period.

Assumption 2 �
1
� (r (1� ~� s))

1��
� < 1; �

1
� r

1��
� < 1.

The excluded case where � �t = 1, where �t is the �rst time at which � t =
1; can be dealt with separately. In that case, if � < 1; the Euler equation
(1) holds as an inequality and implies that all assets are consumed in
period �t � 1. The growth rate reverts to zero forever, since transfers
must become zero from then on as well. Furthermore note that if � � 1;
utility becomes unbounded below if consumption is forced to zero. Prior
to �t the Euler equation holds with equality and the consumption savings
problem reduces to a standard �nite horizon problem with all capital
consumed at �t � 1 Since this case is of little interest we will rule it out
by Assumption 2.

2.5 Endogenizing Transfers
Under the redistribution scheme

yit = (1� � t) rkit + n�1� trkt

so that
nX
i=1

yit =
nX
i=1

(1� � t) rvitkt + n�1� trkt = rkt

Without loss of generality we de�ne growth rates as gs = ks
ks�1

so that

kt =

 
tY
s=1

gs

!
k0

Let the transfers be de�ned as:

qi0 = n
�1� 0rk0

qit = n
�1� trkt = n

�1� tr

 
tY
s=1

gs

!
k0

where
nX
i=1

vit = 1; �it = �t

Using the de�nition of the growth rates and transfers we can write

cit = �t

 
r (1� � t) kit +

 
qit +

1X
j=t+1

qij

jY
s=t+1

�
(r (1� � s))�1

�!!

8



(after some algebra) as

cit = �t

 
(1� � t) rkit + n�1

 
� t +

1X
j=t+1

� j

jY
s=t+1

gs(r (1� � s))�1
!
rkt

!
(6)

Each agent�s budget constraint implies

kit+1= (1� � t) rkit + n�1� trkt � cit = (1� � t) rkit + n�1� trkt

��t

 
(1� � t) rkit + n�1

 
� t +

1X
j=t+1

� j

jY
s=t+1

gs(r (1� � s))�1
!
rkt

!
= (1� � t) (1� �t) rkit

+

 
n�1r� t (1� �t)� n�1r�t

 1X
j=t+1

� j

jY
s=t+1

gs(r (1� � s))�1
!!

kt

Summing over agents,

kt+1=
nX
i=1

kit+1 = r

 
(1� � t) (1� �t) + � t (1� �t)

��t

 1X
j=t+1

� j

jY
s=t+1

gs
�
r (1� � s))�1

�!
kt

= r

 
1� �t � �t

 1X
j=t+1

� j

jY
s=t+1

gs(r (1� � s))�1
!!

kt

We have the equilibrium relation describing growth rates for our redis-
tributive economy:

gt+1 = r

 
1� �t � �t

 1X
j=t+1

� j

jY
s=t+1

gs(r (1� � s))�1
!!

(7)

The solution of this equation, describing current growth rate as a func-
tion of future growth rates, would express the growth rates in terms
of an arbitrary sequence of current and future taxes and will allow us
to express the equilibrium of the economy for arbitrary tax sequences.
Then a political system or mechanism would choose the equilibrium by
selecting the tax sequence.
Note right away that if we con�ne ourselves to a tax sequence that

remains constant after the �rst period, � s = � for s > t0, the solution of
the above equation is simple:

gs = r (1� �s) (1� �) (8)
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Note that gs is constant in this case since under constant taxes �s is
also constant. We will not of course restrict our analysis to constant tax
schemes.

2.6 Dynamics of Shares kit
kt

To characterize the equilibrium dynamics of the economy, we �rst de-
scribe the evolution of asset shares from an initial distribution, given the
tax and redistribution schemes. From the agent�s budget constraint we
have:

kit+1= (1� �t) (1� � t) rkit + n�1rkt

�
 
(1� �t) � t � �t

 1X
j=t+1

� j

jY
s=t+1

gs
�
(r (1� � s))�1

�!!

We can express this in terms of shares:

kit+1
kt+1

kt+1
kt

= (1� � t) (1� �t) r
kit
kt
+ n�1r� t (1� �t)

�n�1r�t

 1X
j=t+1

� j

jY
s=t+1

gs(r (1� � s))�1
!

which can be written as

vit+1gt+1= (1� � t) (1� �t) rvit + n�1r� t (1� �t)

�n�1r�t

 1X
j=t+1

� j

jY
s=t+1

gs(r (1� � s))�1
!

and can be solved for vit+1 as

vit+1=
�
(gt+1)

�1 r (1� �t) (1� � t)
�
vit

+(gt+1)
�1 rn�1

 
� t (1� �t)� �t

1X
j=t+1

� j

jY
s=t+1

gs(r (1� � s))�1
!
(9)

where the law of motion for gt+1 is given in (7). Thus if we could solve
for growth rates as functions of future taxes, we could also solve for the
dynamics of the shares.
Note that the second and third terms on the right in the last expres-

sion for vit+1 are independent of i and accrue to everyone, while the �rst
term changes proportionally to initial endowment vit0 : Therefore even if
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shares change, their ordering is una¤ected, and the median voter will be
the same agent in each period.
We can de�ne �it and 	

i
t as follows:

cit= �t

 
vit +

�
n�1 � vit

�
� t + n

�1
1X

j=t+1

� j

jY
s=t+1

gs(r (1� � s))�1
!
rkt = �

i
tkt

kit+1=

 
(1� �t) vit +

�
n�1 � vit

�
� t (1� �t)

�n�1�t
1X

j=t+1

� j

jY
s=t+1

gs(r (1� � s))�1
!
rkt = 	

i
tkt

Note that if � s = � , then �s = �; using (8) and (9) we can solve for:

vit+1 = g
�1r (1� �) (1� �) vit = vit

Therefore, shares vit+1 remain constant. 	
i
t;�

i
t are also constant and

gs = r (1� �) (1� �). That is, in this linear economy with redistri-
bution, initial ownership ratios remain constant if taxes are constant.
Furthermore 	it, �

i
t ,and gs are also constant, irrespective of redistribu-

tions n�1. This is because agents always consume all income other than
capital income, just as in Bertola�s (1993) results in a slightly di¤er-
ent context (He allows for di¤erentially productive labor by introducing
increasing returns to scale.) To see this, note that if � s is constant,
gs = r (1� �) (1� �) : Then, non-capital income minus the fraction of
this income consumed (not including the fraction of capital income con-
sumed), is given by:

n�1r� (1� �)� n�1r��
 1X
j=t+1

jY
s=t+1

gs(r (1� � s))�1
!

=n�1r� (1� �)� n�1r��
�
��1 � 1

�
= 0

Dynamics after a one step redistribution: Suppose the tax rate is
� t0 at t0, and 0 afterwards. Then the shares

vit0+1 = g
�1
t0+1

r
�
(1� �t0) (1� � t0) vit0 + � t0 (1� �t0)n

�1�
In this case gt0+1 = r (1� �t0) = (�r)

1
� : Therefore, if the initial share is

vit0,

vit0+1 = (1� � t0) v
i
t0
+ � t0n

�1:

vit0+s+1 = v
i
t0+s
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� t = 1 produces complete non-distortionary equality in one step. That
is vit0+s = n

�1 for all s = 1; 2; : : : Shares will remain constant however if
� t+s = � for s > 0 even if � < 1.
In order to continue with our analysis and characterize the equilib-

rium, we need to solve the equation

gt+1 = r

 
1� �t � �t

 1X
j=t+1

� j

jY
s=t+1

gs(r (1� � s))�1
!!

which we turn to in the next section.

2.7 The Equilibrium Growth Rates gt for Arbitrary
Tax Sequences

Let xt+1 be the discounted value of tax revenues from t+1 on. We have

xt+1=
1X

j=t+1

� j

jY
s=t+1

gs (r (1� � s))�1

gt+1= r (1� �t � �txt+1)

Then from the de�nition of xt+1 :

xt+1 = xt+2gt+1 (r (1� � t+1))�1 + � t+1gt+1 (r (1� � t+1))�1

= gt+1 (xt+2 + � t+1) (r (1� � t+1))�1

so that

gt+1 =
xt+1 (r (1� � t+1))
(xt+2 + � t+1)

= r (1� �t � �txt+1)

Solving,

xt+1r (1� � t+1) = r (1� �t � �txt+1) (xt+2 + � t+1)

We can express xt+1 as

xt+1 =
r (1� �t) (xt+2 + � t+1)

r (1� � t+1) + r�t (xt+2 + � t+1)
=

(1� �t)
(1� � t+1) (xt+2 + � t+1)�1 + �t

xt+1 =
(1� �t)

(1� � t+1)
�

r(1��t+1)
r(1�� t+2)(xt+3+� t+2)�1+r�t+1

+ � t+1

��1
+ �t

This in turn can be expressed as a continued fraction:

xt+1 =
(1� �t)

(1� � t+1)

0@ (1��t+1)

(1�� t+2)
�

(1��t+2)

(1��t+3)(xt+4+�t+3)
�1

+�t+2
+� t+2

��1
+�t+1

+ � t+1

1A�1

+ �t
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that is

xt+1 =
(1� �t)

�t +
(1�� t+1)

� t+1+
(1��t+1)

�t+1+
(1��t+2)

�t+2+
(1��t+2)
�t+2+:::

=
a1

b1 +
a2

b2+
a3

b3+
a4

b4+
a5

b5+:::

� 0

The non-negativity of xt+1 follows from the non-negativity of all the
elements of the continued fraction. Expressed in terms of the coe¢ cients
and variables of our model, we can de�ne fai; big for i =; 1; 2; ::: as
follows.

De�nition 1 Let

ai = 1� �t+ i�1
2
; bi = �t+ i�1

2
; for i odd

ai = 1� � t+ i
2
; bi = � t+ i

2
; for i even

De�nition 2 (The Recurrence Relation of Continued Fractions)

A (n; t) = bnA (n� 1; t) + anA (n� 2; t)
B (n; t) = bnB (n� 1; t) + a (n)B (n� 2; t)
A (1; t) = a1 = 1� �t; A (0; t) = 0; A (�1; t) = 1;
B (1; t) = b1 = �t; B (0; t) = 1; B (�1; t) = 0

The second argument t indicates that the recurrence relation depends
on the initial values A (1; t) = a1 = 1 � �t; and B (1; t) = b1 = �t; and
are used to de�ne xt. We will suppress the �rst argument t from here
on.

Theorem 1 xt = limn!1
A(n)
B(n)

; the limit exists and is �nite if � s 2
[0; 1] : Furthermore, equilibrium growth rates are given by

0 � gt+1 = r(1� �t � �txt+1) =
xt+1 (r (1� � t+1))
(xt+2 + � t+1)

� r

Proof: See Appendix.
It is easy to show in fact that when � t+s = � , the solution for gt+1

given in Theorem 1 reduces to g = r (1� �) (1� �). To see this notice
that

lim
k!1

Qk = lim
k!1

�
1� � (1� �)� (1� �)

� 1� �

�k
=

"
�

�(1��)+�
�(1��)
�(1��)+�

�
�(1��)+�

�(1��)
�(1��)+�

#
(10)

13



This is easy to compute because the matrix Q is stochastic, with row
sums equal to unity, so it converges to the matrix evT where e is a
column vector of ones, and v is the characteristic vector belonging to
the unit root of the transpose of Q, normalized so that vT e = 1. Given
C (1) = A (0) = 0; A (1) = a1 = (1� �) ; D (1) = B (0) = 1; B (1) =
b1 = �;

�
A (1)
C (1)

�
=

"
�

�(1��)+�
�(1��)
�(1��)+�

�
�(1��)+�

�(1��)
�(1��)+�

#�
A (1)
C (1)

�
;

�
B (1)
D (1)

�
=

"
�

�(1��)+�
�(1��)
�(1��)+�

�
�(1��)+�

�(1��)
�(1��)+�

#�
B (1)
D (1)

�

x =
A (1)
B (1) =

� (1� �)
�� + � (1� �) =

� (1� �)
�

= �
�
��1 � 1

�
but

g = r (1� �� �x) = r
�
1� �� ��

�
��1 � 1

��
= r (1� �) (1� �)

as expected.

For another example, the growth rates for a tax sequence that has
a tax of � t0 in the initial period t0 and zero tax rates afterwards is

g = r (1� �t0) = r
�
�
1
� r

1��
�

�
= (�r)

1
� , because the �rst period taxes

are non-distortionary. However, if the tax rate at t0+1 is � t0+1 and zero
afterwards, we can compute�

A (1)
C (1)

�
=

�
0 1
0 1

� �
1� �t0 (1� � t0+1)�t0 (1� � t0+1)

� t0+1 1� � t0+1

�
�
�
1� �t0
0

�
�
B (1)
D (1)

�
=

�
0 1
0 1

� �
1� �t0 (1� � t0+1)�t0 (1� � t0+1)

� t0+1 1� � t0+1

�
(11)

�
�
�t0
1

�
where �t0 =

�
1 +

P1
j=t0+1

Qj
s=t0+1

(�
1
� (r (1� � s))

1��
�

��1
with tax se-

quence f� t0 ; � t0+1; 0; 0; : : :g.

We will make use of the following Lemma in section 3.2.
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Lemma 1 If � � 1; then gs � � > 0:

Proof. By the de�nition for the solution of xs+1; we have gs+1 =
xs+1(r(1��s+1))
(xs+2+�s+1)

= r(1��s��sxs+1). If xs+1 ! 0 so that gs+1 =
xs+1(r(1��s+1))
(xs+2+�s+1)

!
0: However we also have gs+1 ! r(1 � �s+1) > 0 since Assumptions 1
and 2 imply that �s is bounded away from zero and one, but this is a
contradiction. If alternatively xs+2 !1 so that xs+1(r(1��s+1))

(xs+2+�s+1)
! 0; then

gs+2 =
xs+2(r(1��s+2))
(xs+3+�s+2)

� 0; but then gs+2 ! r(1��s+2��s+2xs+2)! �1;
which again is a contradiction. Q.E.D.
Note that � < 1 is possible under our assumptions, so the economy

can in fact shrink if the maximal tax rate ~� is set to hold forever since
then g = (�r (1� ~�))

1
� ; which can be less than unity.

3 Democracy: Median Voter Model

3.1 The Optimal Tax Sequence for theMedian Voter
The value function for the median voter indexed as voter i is:

V
�
kt0 ; k

i
t0
; t0
�
=

1X
n=t0

�n�t0
(cin)

1�� � 1
(1� �)

Iterating the Euler Equation for future consumption we obtain:

V
�
kt0 ; k

M
t0
; t0
�
= (1� �)�1

�
cit0
�1��0@1 + 1X

n=t0+1

�n�t0

 
nY

s=t0+1

(�r (1� � s))
1
�

!1��1A
� (1� �)�1 (1� �)�1

where cit0 is given by (6). Then we have:

V
�
kt0 ; k

M
t0
; t0
�
=
X1��
t0 Z�t0 � (1� �)

�1

(1� �)

15



where

�t0 =

 
1 +

1X
j=t0+1

jY
s=t0+1

�
1
� (r (1� � s))

1��
�

!�1

Xt0 =

 
(1� � t0) vMt0 + n

�1� t0 + n
�1

1X
j=t0+1

� j

jY
s=t0+1

gs(r (1� � s))�1
!
rkt0

=
�
(1� � t0) vMt0 + n

�1 (� t0 + xt0+1)
�
rkt0

Yt0 =

0@1 + 1X
n=t0+1

�n�t0

 
nY

s=t0+1

�r (1� � s))
1
�

!1��1A
=

 
1 +

1X
n=t0+1

 
nY

s=t0+1

�
1
� (r (1� � s))

1��
�

!!

Z�t0 = �
1��
t0
Yt0 =

 
1 +

1X
j=t0+1

jY
s=t0+1

�
1
� (r (1� � s))

1��
�

!�

Theorem 2 a)If preferences are logarithmic (� ! 1), then the median
voter chooses an optimal tax sequence such that limm!1 �m = 0, b) If
initial redistribution is not restricted so that 0 � � t0 � ~� t0 = 1, then
the optimal tax sequence is f1; 0; 0:::g, c) If 0 � � t0 � ~� t0 < 1, then
f� t0 ; 0; 0:::g ; is not an optimal tax sequence.

Remark 1 This is the standard optimal tax result under commitment.
We use logarithmic preferences to simplify the proof, but we conjecture
that the result holds more generally. Note that we allow the upper bound
on the initial period tax rate to be less than 1, that is ~� t0 � 1, which sig-
ni�cantly complicates the proof because the poor median voter may not
be able to equalize wealth in the initial period.

Remark 2 In contrast to existing literature (see Chamley (1986) or
Chari and Kehoe (1999)) which gives necessary conditions that equi-
libria must satisfy, part (a) in Theorem 2 above as well as Corollary 1
that follows below, characterize the unique equilibrium. The key lies in
the recursive analysis of �rst order conditions, which allows us to deter-
mine, using Kuhn-Tucker conditions, whether the tax will be set at the
upper bound ~� s or at zero, irrespective of the feasible tax sequence that
follows. An inductive argument then permits us to proceed and therefore
our proof is not local. In the Corollary that follows, we obtain Chari and
Kehoe�s (1999) characterization of necessary conditions, requiring that
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taxes stay at the upper bound for a while and then drop to zero or to
the lower bound, possibly following one period in which the tax rate may
be interior. Our results, based on a constructive proof, yields the unique
global optimum in the set of feasible tax sequences.

Proof. a) Assume for a contradiction that lims!1 sup � s > 0. We
start by optimizing with respect to the initial period tax rates, � t0:

@V
�
kt0 ; k

M
t0
; t0
�

@� t0
= Z�t0

�
(1� � t0) rkMt0 + n

�1 (� t0 + xt0+1) rkt0
���

�
�
�vMt0 + n

�1� rkt0
If the median voter is poor , that is if

�
�vMt0 + n�1

�
> 0, and 0 � � t0 �

~� t0 < 1, he sets � t0 = ~� t0, independently of how future taxes are set. If
he is rich, he sets � t0 = 0.
For studying how future taxes are set, we consider:

@V
�
kt0 ; k

M
t0
; t0
�

@�m
= Z�t0X

��
t0

@Xt0

@�m
+ � (1� �)�1X1��

t0
Z��1t0

@Zt0
@�m

=
�
Z�t0X

1��
t0

��
X�1
t0

@Xt0

@�m
+ � (1� �)�1 Z�1t0

@Zt0
@�m

�
Let m > t0.

� (1� �)�1 Z�1t0
@Zt0
@�m

=

 
1 +

1X
n=t0+1

nY
s=t0+1

�
1
� (r (1� � s))

1��
�

!�1

�
�
�� 1

� r(r (1� �m))
1�2�
�

� 1X
n=m

 
nY

s=t0+1;s 6=m

�
�
1
� (r (1� � s))

1��
�

�!

=

 
1 +

1X
n=t0+1

nY
s=t0+1

�
1
� (r (1� � s))

1��
�

!�1

�
�
� (1� �m))�1

� 1X
n=m

 
nY

s=t0+1

�
�
1
� (r (1� � s))

1��
�

�!
< 0

Letting � ! 1 in evaluating the derivative,

� (1� �)�1 Z�1t0
@Zt0
@�m

=(1� �)�1
�
� (1� �m))�1

�
�m�t0 (1� �)

=��m�t0 (1� �m)�1 < 0:
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Now consider:

X�1
t0

@Xt0

@�m
=
��
(1� � t0) vMt0 + n

�1� t0 + n
�1xt0+1

�
rkt0

��1
n�1

@xt0+1
@�m

rkt0

We have, �rst

xt0+1 = lim
n!1

A (2n+ 1)

B (2n+ 1)
=

�
1 0
��Qn

s=t0+1

�
1� �s (1� � s)�s (1� � s)

� s 1� � s

���
1� �t0
0

�
�
1 0
��Qn

s=t0+1

�
1� �s (1� � s)�s (1� � s)

� s 1� � s

���
�t0
1

�

lim
n!1

�
A (2n+ 1)

B (2n+ 1)

�
=

�
1 0
�
26666664

Q1
s=m+1

�
1� �s (1� � s)�s (1� � s)

� s 1� � s

�
�
�
1� �m (1� �m)�m (1� �m)

�m 1� �m

�
�
Qm�1
s=t0+1

�
1� �s (1� � s)�s (1� � s)

� s 1� � s

�

37777775
�
1� �t0
0

�

�
1 0
�
26666664

Q1
s=m+1

1� �s (1� � s)�s (1� � s)
� s 1� � s

�
�
1� �m (1� �m)�m (1� �m)

�m 1� �m

�
�
Qm�1
s=t0+1

�
1� �s (1� � s)�s (1� � s)

� s 1� � s

�

37777775
�
�t0
1

�

where m > t0+1; with the convention that if m = t0+1; we have to de-

�ne, with some abuse of notation,
Qt0
s=t0+1

�
1� �s (1� � s)�s (1� � s)

� s 1� � s

�
=�

1 0
0 1

�
. Note that we have restricted preferences to be logarithmic by let-

ting � ! 1, therefore assuring that �s = � = 1��, so that in evaluating
the derivative we can set @�s

@�m
= 0; for all s;m.3

3The reason for the restriction is that in di¤erentiating with respect to �m we
want � not to be a¤ected. Otherwise, xt0+1 depends on �t which depends on future
taxes as well as �m. In principle if m is large, so that �m is far out relative to
time t0; it will not a¤ect �t0 much, and by zero in the limit. But xt0+1 depends
on all future g�s and x�s, which contain concurrent �m. For tractability, we assume
logarithmic preferences for the median voter�s selection of �m: If we do this, we avoid
the di¤erentiation of �s that appears in all the product matrices above because they
all depend on �m for m � s: Note however that under log preferences the optimal tax
problem does not disappear, (just as it does not in the standard Chamley-Judd case)
even though the savings rate is independent of the return. The di¢ culty remains
in full force because future labor income discounted by the return net of taxes still
depends on tax rates.
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Since the product of stochastic matrices is stochastic,

= lim
n!1

@A (2n+ 1)

@�m
=
�
1 0
�
26666664

�
1� am am
bm 1� bm

�
�
�
���
1 �1

�
�
�
cm 1� cm
fm 1� fm

�

37777775
�
1� �
0

�

= lim
n!1

@B (2n+ 1)

@�m
=
�
1 0
�
26666664

�
1� am am
bm 1� bm

�
�
�
���
1 �1

�
�
�
cm 1� cm
fm 1� fm

�

37777775
�
�
1

�

where �
1� am am
bm 1� bm

�
=

1Y
s=m+1

�
1� � (1� � s)� (1� � s)

� s 1� � s

�
� 0

and �
cm 1� cm
fm 1� fm

�
=

m�1Y
s=t0+1

�
1� � (1� � s)� (1� � s)

� s 1� � s

�
� 0:

Multiplying out, we obtain:

lim
n!1

@A (2n+ 1)

@�m
= [� (1� am) + am] (cm � fm) (1��) = � lim

n!1

@B (2n+ 1)

@�m

@xt0+1
@�m

= lim
n!1

@
�
A(2n+1)
B(2n+1)

�
@�m

= lim
n!1

�
@A(2n+1)
@�m

�
B (2n+ 1)�

�
@B(2n+1)
@�m

�
A (2n+ 1)

(B (2n+ 1))2

= lim
n!1

�
@A(2n+1)
@�m

�
(B (2n+ 1) + A (2n+ 1))

(B (2n+ 1))2

To evaluate this, note that using the property that the product of sto-
chastic matrices is stochastic,

lim
n!1

A (2n+ 1) = [1 0]

�
1� zn zn
yn 1� yn

� �
1� �
0

�

lim
n!1

B (2n+ 1) = [1 0]

�
1� zn zn
yn 1� yn

� �
�
1

�
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@xt0+1
@�m

= lim
n!1

�
@A(2n+1)
@�m

�
(B (2n+ 1) + A (2n+ 1))

(B (2n+ 1))2

= lim
n!1

�
@A(2n+1)
@�m

�
(1� zn (1� �) + zn (1� �))

(B (2n+ 1))2

= lim
n!1

�
@A(2n+1)
@�m

�
(B (2n+ 1))2

=
[� (1� am) + am] (cm � fm) (1� �)

limn!1 (B (2n+ 1))
2

Since limn!1 (B (2n+ 1) + A (2n+ 1)) = 1; limn!1 (B (2n+ 1)) (1 +
A(2n+1)
B(2n+1)

) = 1; limn!1 (B (2n+ 1))
�1 = 1 + xt0+1. Therefore,

@xt0+1
@�m

= [� (1� am) + am] (cm � fm) (1� �) (1 + xt0+1)
2

To evaluate (cm � fm) let�
cnm 1� cnm
fnm 1� fnm

�
=

t0+nY
s=t0+1

�
1� � (1� � s)� (1� � s)

� s 1� � s

�
�
cm 1� cm
fm 1� fm

�
=

m�1Y
s=t0+1

�
1� � (1� � s)� (1� � s)

� s 1� � s

�
Note that for n = 1;�

c1m � f 1m
�
= 1� � (1� � t0+1)� � t0+1 = (1� �) (1� � t0+1) > 0

Then for (cn�1m � fn�1m ) given,

(cnm � fnm)

=
�
1�1

� �1� � (1� � t0+n)� (1� � t0+n)
� t0+n 1� � t0+n

� �
cn�1m 1� cn�1m

fn�1m 1� fn�1m

� �
1
0

�
Evaluating

(cnm � fnm)=
�
cn�1m � fn�1m

�
(1� �) (1� � t0+n) > 0

(cm � fm)=
m�1Y
s=t0+1

(1� �) (1� � s) = �m�1�t0
m�1Y
s=t0+1

(1� � s) � 0
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Therefore

@xt0+1
@�m

=
[� (1� am) + am] (1� �)
(limn!1B (2n+ 1))

2 �m�1�t0
m�1Y
s=t0+1

(1� � s) (12)

= [� (1� am) + am] (1 + xt0+1)
2 �m�t0

m�1Y
s=t0+1

(1� � s) � 0

Thus

X�1
t0

@Xt0

@�m
=
�
(1� � t0) vMt0 + n

�1� t0 + n
�1xt0+1

��1
(13)

�n�1
�
[� (1� am) + am] (1 + xt0+1)

2� �m�t0 m�1Y
s=t0+1

(1� � s)

Let Qt0;m : f� t0 ; � t0+1:::g ! R+ be given by

Qt0;m=
�
(1� � t0) vMt0 + n

�1 (� t0 + xt0+1)
��1

n�1
�
[� (1� am) + am] (1 + xt0+1)

2�
=

�
n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

�
[� (1� am) + am] (1 + xt0+1)

This implies

@V
�
kt0 ; k

M
t0
; t0
�

@�m
=
�
Z�t0X

1��
t0

��
X�1
t0

@Xt0

@�m
+ � (1� �)�1 Z�1t0

@Zt0
@�m

�
=Zt0�

m�t0 (1� �m)�1
 
Qt0;m

mY
s=t0+1

(1� � s)� 1
!

Since @xt0+1
@�s

� 0; s > t0 and 0 � am < 1, if the median voter is poor,
that is vMt0 � n�1, then Qt0;m is bounded above:

Qt0;m <

�
n�1(1 + xt0+1)

vMt0 + n
�1xt0+1

�
(1 + xt0+1)

where xt0+1 =
P1

j=t0+1
~� j
Qj
s=t0+1

gs(r (1� ~� s))�1. We also have (1� � s) �
1 since 0 � � s � ~� s < 1. If lims!1 sup � s > 0, then there exists an in-
�nite subsequence f� sig where 0 < � � � si. It follows that there exists
a least ~m � t0 + 1 such that

�
Qt0;m

Q ~m
s=t0+1

(1� � s)� 1
�
< 0. This

implies that �m = 0 for m � ~m, which is a contradiction. Hence,
lims!1 sup � s = 0 which proves part (a) of the Theorem.
We can further analyze Qt0;m to determine how the tax sequence is

related to the constraints on initial 0 � � t0 � ~� t0 � 1. If ~� t0 = 1; the poor
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median voter sets � t0 = 1: In that case
�

n�1(1+xt0+1)

(1�� t0)vMt0+n
�1(� t0+xt0+1)

�
= 1.

In fact this implies that initial redistribution has achieved full equality.
Further redistributions are unnecessary since shares will remain equal,
and will only work to the detriment of growth since @gt0+1

@�s
= ��@xt0+1

@�s
�

0. To prove this, we write, assuming � t0 = 1,

@V
�
kt0 ; k

M
t0
; t0
�

@� t0+1
=Zt0 (1� � t0+1)

�1
�
[� (1� at0+1) + at0+1]
(limn!1B (2n+ 1))

(1� � t0+1)� 1
�

=Zt0 (1� � t0+1)
�1

�

0BB@ [� (1� at0+1) + at0+1] (1� � t0+1)�
(1� at0+1) at0+1

� �1� � (1� � t0+1)� (1� � t0+1)
� t0+1 1� � t0+1

� �
�
1

� � 1
1CCA

=Zt0 (1� � t0+1)
�1

0BB@ [� (1� at0+1) + at0+1] (1� � t0+1)�
(1� at0+1) at0+1

� ��0
!0

� � 1

1CCA
=Zt0 (1� � t0+1)

�1
�
[� (1� at0+1) + at0+1] (1� � t0+1)

[�0 (1� at0+1) + !0at0+1]
� 1
�

(14)

where 1 > �0 > �, 1 > !0 > �, and !0 = �� t0+1 + (1� � t0+1) >
(1� � t0+1). Thus,

[�(1�at0+1)+at0+1](1�� t0+1)
[�0(1�at0+1)+!0at0+1]

< 1, implying
@V (kt0 ;kMt0 ;t0)

@� t0+1
<

0; hence � t0+1 = 0. Now, to proceed by induction, assume � s = 0 for
s = t0 + 1; : : : ;m� 1 where m > t0 + 1, and consider

@V
�
kt0 ; k

M
t0
; t0
�

@�m
= Zt0�

m�t0 (1� �m)�1
�

[� (1� am) + am]
(limn!1B (2n+ 1))

(1� �m)� 1
�

Note that from the de�nition of B (2n+ 1) and the assumption that
� s = 0 for s = t0 + 1; : : : ;m� 1, we can write the above as:

@V
�
kt0 ; k

M
t0
; t0
�

@�m
=Zt0�

m�t0 (1� �m)�1

�

0BBB@ [� (1� am) + am] (1� �m)�
1 0
� �1� am am

bm 1� bm

� �
1� ��
0 1

�m�t0�1 ��
1

� � 1
1CCCA
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Now, we note that
�
1� ��
0 1

�m�t0�1
=

�
1� z z
0 1

�
, so that

@V
�
kt0 ; k

M
t0
; t0
�

@�m
= Zt0�

m�t0
�

� (1� am) + am
(�+ (1� �) z) (1� am) + am

� (1� �m)�1
�
< 0

(15)
This implies that �m = 0: This proves part (b) of the Theorem. 4 Note
however that if ~� t0 < 1, then if � s = 0 for s > t0,

�
Qt0

Qm
s=t0+1

(1� � s)� 1
�
>

0, so that �m > 0; which is a contradiction. Therefore if ~� t0 < 1; � s = 0
for s > t0 is not an optimizing choice, as claimed in part (c).
Q.E.D.

We can further re�ne Theorem 2 to pin down the optimal tax se-
quence for the poor median voter.

Corollary 1 If ~� t0 < 1, there exists an ~m > t0 with �̂ ~m 2 [0; ~� ~m] such
that f~� t0 ; ~� t0+1; ::~� ~m�1; �̂ ~m; 0; 0; :::g is the optimal tax sequence chosen by
the median voter. Furthermore, ~m , which can be taken as a measure of
the degree of redistribution, is non-increasing in vMt0 .

Proof: To study the optimal tax sequence when � t0 = ~� t0 < 1; we
note the following

Qt0;t0+1=

�
n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

�

�

0BB@ [� (1� at0+1) + at0+1]�
(1� at0+1) at0+1

� �1� � (1� � t0+1)� (1� � t0+1)
� t0+1 1� � t0+1

� �
�
1

�
1CCA

4In the remarks following Theorem 1, equation (10), we showed that if � s =

� ,
�
1� � (1� �) � (1� �)

� 1� �

�k
converges, as k ! 1, to

"
�

�(1��)+�
�(1��)

�(1��)+�
�

�(1��)+�
�(1��)

�(1��)+�

#
. It is

easy to compute Qt0 for constant � s = � > 0 as well, since in that case xt0+1 =
�
�
��1 � 1

�
, am =

�(1��)
�(1��)+� : Then

Qt0 =

�
n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

�
� 1

because [� (1� am) + am] (1 + xt0+1) = 1. But then
Qm
s=t0+1

(1� � s) � 1 =�
Qt0 (1� �)

m�t0 � 1
�
< 0 for large m if � > 0. It is of course possible to com-

pute am and xt0+1 for policies which keep � s = � or � s = ~� s for a �nite number of
periods from t0+1 on and then set taxes to zero, as suggested by equation (11), and
check for the optimality of this sequence.
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=

�
n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

�0BB@ [� (1� at0+1) + at0+1]�
(1� at0+1) at0+1

� ��0
!0

�
1CCA

as in equation (14), where 1 > �0 > �, 1 > !0 > �, and !0 = �� t0+1 +
(1� � t0+1) > (1� � t0+1). If Qt0;t0+1 � 1, we set � s = 0 for s > t0.
If Qt0;t0+1 > 1, we set � t0+1 = �̂ t0+1 such that Qt0;t0+1 (1� �̂ t0+1) = 1,
provided � t0+1 � ~� t0+1, and we set � s = 0 for s > t0 + 1. (Note from 15

that
@V (kt0 ;kMt0 ;t0)

@�m
< 0 because am is independent of �m; implying that

�̂ t0+1 is unique, although not necessarily less than ~� t0+1.) Otherwise if
� t0+1 > ~� t0+1, we set � t0+1 = �̂ t0+1 = ~� t0+1 and choose �̂ t0+2 so that
Qt0;t0+2 (1� ~� t0+1) (1� �̂ t0+2) = 1, provided �̂ t0+2 � ~� t0+2. If �̂ t0+2 >
~� t0+2, we continue setting � s = �̂ s = ~� s; s > t0 + 1 until the �rst s = s

0

where Qt0;t0+s0
�Qs0�1

s=t0+1
(1� �̂ s)

�
(1� �̂ s0) = 1 and � s0 � ~� s, and then

we set � s = 0 for s > s0. To prove that this is the optimal sequence of
taxes, we have to show that Qt0;m

Qm
s=t0+1

(1� �̂ s)� 1 < 0 for m > s0 so

that
@V (kt0 ;kMt0 ;t0)

@�m
< 0 if �m > 0, which is a contradiction. We will make

heavy use of the averaging properties of stochastic matrices.
Let �n be the �rst non-zero tax rate where n > s0. Then

Qt0;s0
s0Y

s=t0+1

(1� � s) =
�

n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

�
[� (1� as0) + as0 ]

� (1 + xt0+1)
s0Y

s=t0+1

(1� � s)

=

�
n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

�

�

0BB@ (� (1� as0) + as0)
Qs0

s=t0+1
(1� � s)�

(1� as0) as0
�Qs0

s=t0+1

�
1� � (1� �̂ s)� (1� �̂ s)

�̂ s (1� �̂ s)

� �
�
1

�
1CCA

=

�
n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

�0BB@(� (1� as0) + as0)
Qs0

s=t0+1
(1� � s)�

(1� as0) as0
� ��
!

�
1CCA

=

�
n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

� 
(� (1� as0) + as0)

Qs0

s=t0+1
(1� � s)

� (1� as0) + as0!

!
= 1
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with 1 > ! > � and 1 > � > �. Now let�
1� z z
y 1� y

�
=

�
1� � (1� �̂n)� (1� �̂n)

�̂n (1� �̂n)

� �
1� ��
0 1

�n�1�s0
=

�
1� � (1� �̂n)� (1� �̂n)

�̂n (1� �̂n)

� �
1� q q
0 1

�
=

�
1� z z

(1� q) �̂n q�̂n + (1� �̂n)

�
so

Qt0;s0
s0Y

s=t0+1

(1� � s) =
�

n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

�

�
 
(� (1� as0) + as0)

Qs0

s=t0+1
(1� � s)

� (1� as0) + as0!

!

=

�
n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

� s0Y
s=t0+1

(1� � s)

�

0BB@
�
(1� an) an

� � 1� z z
(1� q) �̂n q�̂n + (1� �̂n)

� �
�
1

�
�
(1� an) an

� � 1� z z
(1� q) �̂n q�̂n + (1� �̂n)

� �
�
!

�
1CCA

Qt0;s0
s0Y

s=t0+1

(1� � s) =
�

n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t + xt0+1)

� s0Y
s=t0+1

(1� � s)

�

0BB@
�
(1� an) an

� � � (1� z) + z
� (1� q) �̂n + q�̂n + (1� �̂n)

�
�0 (1� an) + !0an

1CCA
=

�
n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

� s0Y
s=t0+1

(1� � s)

�
�
[(1� an) (� (1� z) + z) + an (� (1� q) �̂n + q�̂n + (1� �̂n))]

�0 (1� an) + !0an

�
=

�
n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

� s0Y
s=t0+1

(1� � s)

�
�
[(1� an) (�+ z (1� �)) + an (1� �̂n) + an (� (1� q) �̂n + q�̂n)]

�0 (1� an) + !0an

�
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where �
1� z z

(1� q) �̂n q�̂n + (1� �̂n)

� �
�
!

�
=

�
�0

!0

�
We also have

Qt0;n

nY
s=t0+1

(1� � s)=
�

n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

� nY
s=s0+1

(1� � s)
!

0BB@ [� (1� an) + an]
Qs0

s=t0+1
(1� � s)�

(1� an) an
� �1� z z

y 1� y

� �
�
!

�
1CCA

=

�
n�1(1 + xt0+1)

(1� � t0) vMt0 + n�1 (� t0 + xt0+1)

�
 
[� (1� an) + an] (1� �̂n)

Qs0

s=t0+1
(1� � s)

�0 (1� an) + !0an

!

Since

[(1� an) (�+ z (1� �)) + an (1� �̂n) + an (� (1� q) �̂n + q�̂n)]
> [� (1� an) + an] (1� �̂n)

comparing Qt0;s0
Qs0

s=t0+1
(1� � s) with Qt0;n

Qn
s=t0+1

(1� � s) yields

1 = Qt0;s0
s0Y

s=t0+1

(1� � s) > Qt0;n
nY

s=t0+1

(1� � s)

and
@V (kt;kit;t)

@�n
< 0; contradicting �n > 0; and therefore � s = 0 for s > s0.

Also from the de�nition of Qt0;m and the fact that � t0 = ~� t0 irrespective
of vMt0 if the median agent is poor, it follows that ~m is decreasing in vMt0 .
QED.

Finally, in case the median voter is rich, that is if vMs > n�1; we have
the following:

Corollary 2 If the median voter is rich, he sets the tax sequence to
f0; 0; 0; : : :g.
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Proof. Intuitively this is obvious. Formally, for use in later theo-
rems,

@V
�
kt0 ; k

M
t0
; t0
�

@�m
=
�
Z�t0X

1��
t0

��
X�1
t0

@Xt0

@�m
+ � (1� �)�1 Z�1t0

@Zt0
@�m

�
=Zt0�

m�t0

  
n�1(1 + xt0+1)

vMt0 +
�
n�1 � vMt0

�
� t0 + n

�1xt0+1

!

�
�

� (1� am) + am
(�+ (1� �) z) (1� am) + am

�
� (1� �m)�1

!
< 0

from (15) and from noting that
�

n�1(1+xt0+1)

vMt0
+(n�1�vMt0 )� t0+n

�1xt0+1

�
< 1 if n�1 <

vMt0 Q.E.D.

3.2 Political Constraints
We can now study the political constraints on the median voter that
prevent him from implementing the preferred tax scheme: if the median
voter is poor, he wants � t0 = 1 and � t0+s = 0 for s = 1; 2; : : :, whereas if
the median voter is rich, he wants � t0+s = 0 for s = 0; 1; 2; : : :
There is a pivotal agent w on the right whose share of initial capi-

tal, larger than the average share, is denoted by vwt0 : He prefers the tax
scheme � t0+s = 0 for s = 0; 1; 2; : : :. The pivotal agent on the left, p, has
an initial share of capital smaller than or equal to the share of the median
voter: vpt0 � vit0. This agent wants � t0 = 1 and � t0+s = 0 for s = 1; 2; : : :,
a complete redistribution in the �rst period followed by zero taxes after-
wards. If in any period, the pivotal agents receive less discounted utility
under democracy than under their preferred authoritarian regime, they
will institute an authoritarian regime.

Assumption 3 Let ta be the �rst period in which an authoritarian regime
is established. Then � ta 2 [0; 1] ; and � s 2 [0; ~� s] ; where ~� s < 1 for all
s > ta.

This assumption allows the pivotal agent to reset initial taxes when
she reverts to an authoritarian regime. We assume, for simplicity, that
once established, an authoritarian regime lasts forever.
To sustain democracy, the median voter has to accommodate by set-

ting taxes that will keep the pivotal agents on the right and left from
establishing authoritarian regimes. Since the median voter is poor, we
start by analyzing the tax sequence that the poor median voter must
set to keep the rich pivotal agent from establishing right-wing authori-
tarianism. In the next section we will study the conditions under which
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the median voter can simultaneously prevent left and right authoritarian
regimes.
Under log preferences the Euler equations are:

ct+1 = �r (1� � t+1) ct

and the median voter�s discounted utility is

V
�
kt0 ; k

i
t0
; t0
�
=

1X
t=t0

�t�t0 log ct

V
�
kt0 ; k

i
t0
; t0
�
= log ct0 + � log ct0�r (1� � t0+1) + �2 log ct0 (�r)

2 (1� � t0+1) (1� � t0+2) + :::

V
�
kt0 ; k

i
t0
; t0
�
=(1� �)�1 log cit0 + � (1� �)

�2 log �r +
1X

n=t0+1

�n�t0 log
nY

s=t0+1

(1� � s)

Iterating the budget forward, as before,

cit0 =�t0

 
(1� � t0) rkit0 + n

�1

 
� t0 +

1X
j=t0+1

� j

jY
s=t0+1

gs(r (1� � s))�1
!
rkt0

!

=�t0

 
(1� � t0) vit0 + n

�1

 
� t0 +

1X
j=t0+1

� j

jY
s=t0+1

gs(r (1� � s))�1
!!

rkt0

where �t0 = � = 1 � �; and vit0 is the initial share of the median
voter: Note: If � s = 0; s > t0

V
�
kt0 ; k

i
t0
; t0
�
= (1� �)�1 log ct0 + � (1� �)

�2 log �r

Thus under democracy median voter chooses taxes so that
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t0
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=Maxf�g1t0

(1� �)�1 log ct0+� log (1� �)
�2 �r+

1X
n=t0+1

�n�t0 log
nY

s=t0+1

(1� � s)

while agent with share vwt0 gets

V wD
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kt0 ; k

w
t0
; t0
�
= (1� �)�1 log cwt0+� (1� �)

�2 log �r+
1X

n=t0+1

�n�t0 log
nY
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The alternative strategy of the rich pivotal agent is to switch to au-
thoritarianism and implement zero taxes. We assume that discounted
utility or value is scaled down under authoritarianism so that the dis-
counted utility of the rich pivotal agent becomes:

V wA
�
kt0 ; k

w
t0
; t0
�
= �w

�
(1� �)�1 log ct0 + � (1� �)

�2 log �r
�

ct0 =�
�
(1� � t0) vwt0 + n

�1� t0
�
rkt0

=�vwt0rkt0

where

�w< 1 if (1� �)�1 log
�
�vst0rkt0

�
+ � (1� �)�2 log �r > 0

�w> 1 if (1� �)�1 log
�
�vst0rkt0

�
+ � (1� �)�2 log �r < 0

�w < 1 if 1 >
(�r)��(1��)

�1

�vst0rkt0
=
k�

kt0

�w� 1 if 1 < (�r)��(1��)
�1

�vst0rkt0
=
k�

kt0

where k�=
(�r)��(1��)

�1

�vst0r

Therefore
�
k�

kt0

�1��w
< 1

Before proceeding with a formal analysis, we will explore the features
and content of our assumption about the costs of dictatorship, that is of
�w:
First let us note a technical point: �w represents the cost of author-

itarianism imposed on the discounted utility stream, not on period by
period utility. If we had imposed it on period by period utility, the Euler
equation would have been a¤ected during a period where we cross from
�w at or above one to below one: agents anticipating the changes in mar-
ginal utility across periods due to the switch in �w would change their
savings. For simplicity therefore we impose the cost on lifetime utility.
Note that if we constrained initial capital to a range where �w < 1;
and the economy grew, then period by period costs are the same as the
lifetime utility costs: since �w remains constant, savings and the growth
of consumption is una¤ected by �w:Note also that �w jumps precisely
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when the value function crosses zero, so the value function remains con-
tinuous. To keep track, we de�ne �w = �wL if �w < 1 and �w = �wH if
�w � 1:
The speci�cation with �w assures that, for any capital stock level and

shares, utility is weakly lower under authoritarianism than it would be
under democracy. Without costs of reverting to an authoritarian regime
implicit in the �w; democracy may be unsustainable: the rich pivotal
agent would always prefer to prevent a redistribution by the median
voter and to implement zero taxes5. However, if �w < 1; the pivotal
agent may still �nd it advantageous to incur the costs of authoritarian-
ism, if the redistribution of shares through taxation by the median voter
proves su¢ ciently costly. To highlight the features of our speci�cation
of the costs of authoritarianism and compare it to alternatives, before a
formal analysis we present a simpli�ed graphical exposition. The value
of sticking with democracy for the rich pivotal agent depends on the
tax sequence chosen by the median voter, as well as on the stock of
capital and its distribution across agents. By way of example, consider
a fully redistributive tax sequence of the form f1; 0; 0:::g that the me-
dian voter would like to impose, and let us analyze whether it will be
sustainable under democracy. In this illustrative example we ignore the
incentive constraints of the poor pivotal agent, although we will incor-
porate them into our analysis later on. It is relatively straightforward to
study whether a particular tax system is �unsustainable� in the initial
period, but �sustainability�will require that the tax sequence remain
sustainable not just initially but at all points in the future as well. We
leave a formal study of �sustainability� for later, and proceed with an
illustrative example for the initial period.
Let n = 10; vw = 0:11; � = 0:97; r = 1:07; �wH = 1:2; �wL = 0:8.

The value function of the rich pivotal agent under democracy where the
median voter fully redistributes, V wD; and under authoritarianism where
taxes are zero, V wA; can be plotted as follows:

5See however section ?? where a revolution succeeds with probability less than 1.
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V wD and V wA

The rich pivotal agent will prefer to revert to an authoritarian regime
if kL < kt0 < kH . If we con�ne our attention to the �rst period only,
and ignore the incentive constraints of the poor pivotal agent, we see
that democracy can be sustained if kt0 � kH or kt0 � kL: Of course
democracy may become unsustainable along the growth path in the fu-
ture, and agents who foresee this will take it into account in making
their current decisions (see section 4.2 below). The �gure above nev-
ertheless illustrates the crucial feature of our particular speci�cation of
the costs of authoritarianism: whether a particular tax sequence, in
this case f1; 0; 0:::g ; is sustainable or not, depends on the level of capi-
tal, that is, the �sustainability of democracy�is wealth dependent (see
equation 19). By contrast, we may consider simple CRRA preferences,
U(c) = �w (1� �)�1 c(1��); �w < (>) 1; � < (>) 1. In the CRRA case
it is easy to show that the sustainability under democracy of a partic-
ular tax sequence depends on parameters and shares, but not on the
stock of capital. The wealth dependence of �sustainability�which we
are trying to capture would be absent in this case. To introduce wealth
dependence into the CRRA case, we may modify preferences either as
U(c) = �w (1� �)�1

�
c(1��) � 1

�
; which is the proper generalization of

the logarithmic case, and amounts to introducing a di¤erential �xed cost
that favors utility under democracy over utility under authoritarianism.
As in the logarithmic case, care must be given to set �w above or below
unity as utility is positive or negative. An alternative speci�cation of
utility under authoritarianism that also delivers wealth dependence is
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U(c) = (1� �)�1 c(1��)�w : Here as well, if utility under democracy is to
dominate utility under authoritarianism, �w must be set above or below
unity, as consumption c is above or below unity. A common feature
of all these non-homothetic speci�cations is that at some low level of
consumption, utility levels under democracy and authoritarianism co-
incide (in the latter case as in the log case for example, at c = 1): At
higher consumption or wealth levels (since consumption is proportional
to wealth) agents receive higher utility under democracy than under au-
thoritarianism because a marginal unit of consumption produces more
utility in a democratic society than in an authoritarian one: the slope
of utility is steeper under democracy. At lower levels of consumption,
where the utility levels under democracy and dictatorship are close, a
left dictatorship that redistributes in order to raise the endowment of the
poor may be preferred by the left, and a right dictatorship that prevents
the democratic implementation of redistributive taxes may be preferred
by the right. At higher wealth levels however, beyond a threshold

�
kH
�
,

dictatorship is longer be attractive because it is not worth it.
An undesirable aspect of the speci�cation of preferences is the follow-

ing. If we set �w > 1 for 1 < (�r)��(1��)
�1

�vst0
rkt0

; as discounted utility becomes

unbounded at high or low capital stocks, democracy always dominates:
the bene�ts of blocking the median voter�s redistribution and enforc-
ing zero taxes will outweigh the costs of an authoritarian regime for
the pivotal agent at intermediate levels of the capital, but not for suf-
�ciently high or low levels. While it may be reasonable to think that
the utility di¤erence between repressive regimes and democratic ones
grow in proportion to wealth and consumption, our logarithmic prefer-
ence speci�cation is unrealistic in its implication that the high costs of
dictatorship necessarily overwhelm redistributive considerations at very
low levels of wealth. Therefore under our speci�cation of preferences,
it may be sensible to con�ne attention to wealth levels above a certain
threshold.
An alternative approach is to adopt a the speci�cation that sets

�w = 1 for 1 < (�r)��(1��)
�1

�vst0
rkt0

: Thus when wealth is low, the agents are

indi¤erent to regime, but at higher wealth levels, democracy dominates
dictatorship. The above arguments and reasoning still hold, and the
�gure above still has an intersection at kH ; but the lower intersection at
kL now disappears.6 Indeed we can now set �w to switch from unity to

6Yet another approach is to introduce wealth dependendce into discounted utility
through production where, for example, dictatorship becomes more detrimental to
productive activity at higer levels of capital. We will not pursue this approach in
this paper.
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below unity at any level at or above k�:7 However, the assumption that
the poor do not care at all about freedom is indeed hard to swallow. As
Dasgupta (1993) puts it, the view that the poor do not care about the
freedoms associated with democracy �is a piece of insolence that only
those who don�t su¤er from their lack seem to entertain." (See also Sen
1994.)
While the above �gure and analysis are illustrative, the sustainability

or unsustainability of democracy cannot be studied in terms of a partic-
ular tax scheme. The median voter would seek to construct feasible tax
sequences, and conditions for sustainability or unsustainability must be
given in terms of initial aggregate wealth, the wealth shares and other
parameters, that hold for all feasible tax sequences. This will be done
in section 4.
For our analysis in subsequent sections we also de�ne the discounted

utility under the left wing dictatorship. The poor agent implements
� t0 = 1 to achieve full asset equality, and therefore has discounted utility:

V pA
�
kt0 ; k

M
t0
; t0
�
= �p

�
(1� �)�1 log

�
�n�1rkt0

�
+ � (1� �)�2 log �r

�
(16)

where �p is de�ned analogously to the case of rich pivotal agent, so that

�p< 1 if (1� �)�1 log
�
�n�1rkt0

�
+ � (1� �)�2 log �r > 0

�p� 1 if (1� �)�1 log
�
�n�1rkt0

�
+ � (1� �)�2 log �r � 0

or

�p< 1 if 1 >
(�r)��(1��)

�1

�n�1rkt0
=
k��

kt0

�p� 1 if 1 � (�r)��(1��)
�1

�n�1rkt0
=
k��

kt

where k��=
(�r)��(1��)

�1

�n�1r
> k� =

(�r)��(1��)
�1

�vwt0r

Therefore
�
k��

kt0

�1��p
< 1

In this section, we only consider the case where the right pivotal
agent can overthrow democracy and establish an authoritarian regime.

7A switch below k� would also be possible, but since discounted utility is negative,
�w would �rst shift above unity and then to below unity after k�; but this may
produce multiple intersections.
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The poor median voter M , to preserve democracy starting at time t0,
must set the sequence of taxes � t0+s; s = 0; 1; : : : to maximize, for all
t = t0 + s;

Maxf�g1t0
(1� �)�1 log �

 
(1� � t0) vMt0 + n

�1

 
� t0 +

1X
j=t0+1

� j

jY
s=t0+1

gs(r (1� � s))�1
!!

rkt0

+ � (1� �)�2 log �r +
1X

n=t0+1

�n�t0 log

nY
s=t0+1

(1� � s)

subject to, for all t � t0

(1� �)�1 log �
�
(1� � t0) vwt0 + n�1

�
� t0 +

P1
j=t0+1

� j
Qj
s=t0+1

gs(r (1� � s))�1
��
rkt0

+� (1� �)�2 log �r +
P1

n=t0+1
�n�t0 log

Qn
s=t0+1

(1� � s)
� �w

�
(1� �)�1 log

�
�vwt0rkt0

�
+ � (1� �)�2 log �r

�
(17)

The dynamics of shares evolve as described before: if taxes are constant
from t0 + 1 onwards, the shares are also constant at vws = (1� �) vwt +
n�1� for all s > t0: We will ignore the constraint by the poor pivotal
agent for the moment, until the next section.

Theorem 3 a. If preferences are logarithmic, under democracy the
poor median voter will choose a tax sequence limt!1 � t = 0.

b. If preferences are logarithmic and �̂ t0 = 1; then f1; 0; 0:::g is an
optimal tax sequence for the poor median voter.

c. Let k� = (�r)��(1��)
�1

�vwt0
r

: Then, �̂ t0 = 1 i¤
�
vwt0
n�1

��
k�

kt0

�1��w
� 1:

Remark 3 It is not surprising that the parts a and b of Theorem 2 also
apply in the case of political constraints. If it is optimal to set taxes to
zero in the limit without having to keep the rich pivotal agent in check,
then it will be optimal to do so in the presence of a rich pivotal agent
as well, since the rich pivotal agent prefers zero taxes. For t su¢ ciently
large, the incentive constraints of the rich pivotal agent will be slack, so
the the optimal tax policy is not time consistent. However, see Corollary
4 and Theorem 7 below.

Remark 4 The optimal policy of the median voter can be implemented
as a stationary policy. Suppose the share of the median voter is vit. After
the �rst period, where the poor median voter sets � t0 = ~� t0, the ratios of
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these shares will change. Consider the stationary policy where tax rates
are set as a function of the ratio of shares: � s = f

�
vis
1=n

�
. If political sys-

tem could commit to an optimal choice of a tax sequence, the trajectory
of growth rates and shares would be determined, and the solution can
then be expressed as a stationary tax policy that maps the equilibrium
shares into the optimal tax rates independently of time, because agents
making consumption decisions take shares as given.

Proof: Consider rewriting the above maximization as a Lagrangian:

L
�
kt0 ; k

M
t0
; kwt0 ; t01

�
=

Maxf�g1t0
(1� �)�1 log �

 
(1� � t0) vMt0 + n

�1

 
� t0 +

1X
j=t0+1

� j

jY
s=t0+1

gs(r (1� � s))�1
!!

rkt0

+ � (1� �)�2 log �r +
1X

n=t0+1

�n�t0 log
nY

s=t0+1

(1� � s)

+
1X
t=t0

�t

0B@(1� �)
�1 log �

�
(1� � t0) vwt0 + n�1

�
� t0 +

P1
j=t0+1

� j
Qj
s=t0+1

gs(r (1� � s))�1
��
rkt

+� (1� �)�2 log �r +
P1

n=t0+1
�n�t0 log

Qn
s=t0+1

(1� � s)
��w

�
(1� �)�1 log

�
�vwt0rkt0

�
+ � (1� �)�2 log �r

�
1CA

+ �1t� t + �2t (1� � t)

where �t are Lagrange multipliers on the incentive compatibility con-
straints and �it; i = 1; 2 are the multipliers for constraints � t � 0 and
� t � 1: Note that for the above problem, setting the tax rate to zero
forever is feasible, and therefore the feasible set of tax sequences is not
empty.
The Lagrange multipliers f�sg

1
s=t0+1

must be appropriately chosen.
The incentive constraints map the space of feasible tax sequences into
the di¤erence of the two value functions, a space that is not necessarily
bounded since the di¤erence depends on `n kt. Lagrange multipliers
must be in the dual of that space. First, we note that at each time t the
coe¢ cient of `n kt in the continuation value of the right pivotal agent in
the constraint,

(1� �)�1 log �
 
(1� � t0) vwt0 + n

�1

 
� t0 +

1X
j=t0+1

� j

jY
s=t0+1

gs(r (1� � s))�1
!!

r

> (1� �)�1 log �
�
vwt0 + n

�1 (1 + xt+1)
�
r

remains is bounded: Since gt+1 = r (1� �t � �txt+1) yields xt+1 =
��1(1 � gt+1

r
) � 1, gt+1 � r, and 0 < �, by Assumptions 1 and 2, xt+1is

35



bounded. Therefore Lagrange multipliers f�sg
1
s=t0+1

must be chosen so
that �s`n ks = �s`n kt0

Qs
t0+1

gn goes to zero appropriately. Note that
from Theorem 1 and its Corollary we have 0 < � � gs � r for s > t0, so
we need to set Lagrange multipliers f�sg

1
s=t0+1

to shrink at a rate faster
than t�1; unless constraints are slack

�
�t0 = 0

�
in which case Lagrange

multipliers f�sg
1
s=t0+1

can all be set to zero. The latter case occurs if �w

is su¢ ciently small and the median voter can assure that the right wing
pivotal agent will not initiate an authoritarian regime even if � t0 = 1: In
that case �2t0 > 0; and from (18) below, it can be set so that �t0 = 0:
This means that assets are fully equalized across agents in the �rst pe-
riod, incentive constraints no longer bind, and tax rates are set to zero
for all future dates. Note that we also have to resort to Assumption 2
to prevent all capital from being consumed at once.
Let �̂ t0 be the �rst period optimal tax. The �rst-order conditions

with respect to � t0 are

dL
�
kt; k

M
t ; t

�
d� t0

=
��
�vMt0 + n

�1� rkt0�X�1
t0
Z+�t0

�
Xw
t0

��1
Z
�
�vwt0 + n

�1� rkt0+�1t0��2t0 = 0
(18)

and

�t0 =

��
vMt0 � n�1

�
kt0
�
X�1
t0 Z � �1t + �2t�

Xw
t0

��1
Z
�
�vwt0 + n�1

�
kt0

where

Z =��1 = (1� �)�1 ; Xt0 =

 
(1� � t0) vMt0 + n

�1

 
� t0 +

1X
j=t0+1

� j

jY
s=t0+1

gs(r (1� � s))�1
!!

rkt0

Xw
t0
=

 
(1� � t0) vwt0 + n

�1

 
� t0 +

1X
j=t0+1

� j

jY
s=t0+1

gs(r (1� � s))�1
!!

rkt0

Note that if �w 6= 1 and � t0 = 0; the constraint on the utility of the
wealthy pivotal agent would be slack, so we would have �t0 = 0: As is
clear from the above, in this case the poor median voter would redis-
tribute so that �2t > 0, which implies that if the median voter is poor,
� t0 > 0:
The �rst order conditions with respect to �m are

@L
�
kt0 ; k

M
t0
; t0
�

@�m
=
@V
�
kt0 ; k

i
t0
; t0
�

@�m
+

mX
t=t0

�t
@V wD (kt; k

w
t ; t)

@�m
+�1m��2m = 0

where kit0is the median voter�s initial wealth. In previous sections we
had, under CRRA preferences,

dV
�
kt0 ; k

i
t0
; t0
�

d�m
=
�
Z�t0X

1��
t0

��
(Xt0)

�1 dXt0
d�m

+ � (1� �)�1t (Zt0)
�1 dZt0
d�m

�
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which becomes, for log preferences (� = 1) ;

dV
�
kt0 ; k

i
t0
; t0
�

d�m
=Z

 
(Xt0)

�1 dXt0
d�m

� (1� �) (1� �m)�1
1X
n=m

�n�t0

!

=Z

�
(Xt0)

�1 dXt0
d�m

� (1� �) (1� �m)�1 �m�t0 (1� �)�1
�

=Z

�
(Xt0)

�1 dXt0
d�m

� (1� �m)�1 �m�t0
�

This is as in section 3:1, where we let � ! 1 to evaluate the derivative;

� (1� �)�1 Z�1t
dZt
d�m

=(1� �)�1
�
� (1� �m))�1

�
�m�t (1� �)

=��m�t (1� �m)�1 < 0

Similarly, for m > t;

dV wD (kt; k
w
t ; t)

d�m

=
�
Z�t (X

w
t )

1����(Xw
t )

�1 dX
w
t

d�m
+ � (1� �)�1t0 (Zt0)

�1 dZt0
d�m

�
= Z

�
(Xw

t )
�1 dX

w
t

d�m
� (1� �m)�1 �m�t0

�
where

X!
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(1� � t) vwt + n�1

 
� t +

1X
j=t+1

� j

jY
s=t+1

gs(r (1� � s))�1
!!

rkt

For m = t;using log preferences directly from above,

dV wD (kt; k
w
t ; t)

d� t
=
�
Z (Xw

t )
�1� ���vwt + n�1� rkt�

Thus

dL (kt; kit; t)
d�m

=Z

�
(Xt0)

�1 dXt0
d�m

� (1� �m)�1 �m�t0
�

+
�
Z (Xw

m)
�1� ���vwm + n�1� rkm�

+
m�1X
t=t0+1

�tZ

�
(Xw

m)
�1 dX

w
m

d�m
� (1� �m)�1 �m�t

�
+�t0Z

��
Xw
t0

��1 dXw
t0

d�m
� (1� �m)�1 �m�t0

�
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If we let � ! 1, from the Corollary to Theorem 2,

�
Z�s (X

w
s )

1����(Xw
s )

�1 @X
w
s

@�m
+ � (1� �)�1 (Zs)�1

@Zs
@�m

�
=Z

�
(Xw

s )
�1 @X

w
s

@�m
� (1� �m)�1 �m�t0

�
< 0

where Z = 1=1� � and from the proof of Theorem 2, for � ! 1,

lim
m!1

��
Z�t0X

1��
t0

��
(Xt0)

�1 @Xt0

@�m
+ � (1� �)�1 (Zt0)

�1 @Zt0
@�m

��
=Z

�
(Xt0)

�1 @Xt0

@�m
� (1� �m)�1 �m�t0

�
< 0

These imply that part of the expression for
@L(kt0 ;kit0 ;t0)

@�m
; apart from the

term �1m � �2m becomes negative. So, limm!1 �1m � �2m > 0 which
implies that limm!1 �m = 0: This proves part (a) of the Theorem.
If � t0 = 1, since from the Corollary to Theorem 2

Z

�
(Xw

m)
�1 dX

w
m

d�m
� (1� �m)�1 �m�t

�
< 0;

we can use the same inductive argument as part (b) of Theorem 2 to

establish that Z
�
(Xt)

�1 @Xt
@�m

� (1� �m)�1 �m�t0
�
< 0. It follows so that

f1; 0; 0:::g is an optimal tax sequence, which proves part (b).
We now analyze the constraints on � t for various cases.8 The con-

straint implies, for t � t0:

(1� �)�1 log
�
�
�
(1� � t) vwt + n�1 (� t + xt+1)

�
rkt
�

+� (1� �)�2 log �r +
1X

n=t+1

�n�t log
nY

s=t+1

(1� � s)

��w
�
(1� �)�1 log (�vwt rkt) + � (1� �)

�2 log �r
�

log

�
�rkt ((1� � t) vwt + n�1 (� t + xt+1))

(�vwt rkt)
�w

�
�� (1� �w) � (1� �)�1 log �r � (1� �)

1X
n=t+1

�n�t log
nY

s=t+1

(1� � s)

8Note that we do that for the log period-utility function. The log forms in the
constraint are obtained after simplifying the value function using laws of the loga-
rithm.
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Taking exponential of both sides

(�rkt)
1��w ((1� � t) vwt + n�1 (� t + xt+1))

(vwt )
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� (�r)�(1��
w)�(1��)�1
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and solving for � t
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1��w

where

1 � Kt =

0@ 1Y
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we obtain
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�
vwt
n�1

�
k�

kt

�1��w
Kt � xt+1

�
vwt � n�1

= ~�Rt (19)

Note that, since xt+1 � 0, as kt0 ! 1 , so that �w < 1 (or if
kt0 ! 0 when �w > 1 for low kt0 ), the right side becomes larger than
unity. Hence � t0 can be set to 1 . The right side will also exceed 1 if
vwt
n�1

�
k�

kt

�1��w
Kt � xt+1 < 1. Since

@V (kt0 ;k
i
t0
;t0)

@� t0
> 0 as shown before, if

we can show that the condition vwt
n�1

�
k�

kt

�1��w
� 1 implies that � t0 = 1

is feasible, it will be implemented. Set � t0 = 1: From part (b) above
if � t0 = 1; then f1; 0; 0:::g is necessarily the optimal tax sequence, in

which case Kt = 1 and xt+1 = 0; so that ~�Rt =
vwt �n�1

�
vwt
n�1

�
k�
kt

�1��w�
vwt �n�1

� 1
and � t0 = 1 is indeed feasible. This proves su¢ ciency for part (c). To
prove necessity note that from the proof of Theorem 5 below, we have

Kt � 1 + xt+1: If vwt
n�1

�
k�

kt

�1��w
> 1 we have

 
vwt
n�1
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kt

�1��w
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and therefore � t0 � ~�Rt < 1: This proves part (c). QED.

In analogy to Corollary 1 of Theorem 2, we can establish a stronger
result if we replace the exogenous constraints ~� s with the endogenous
political incentive constraints of the rich pivotal agent ~�Rs that must of
course hold period by period.

Corollary 3 There exists anm0 <1 such that f�̂ t0 ; �̂ t0+1; ::�̂m0 ; 0; 0; :::g
is the optimal tax sequence chosen by the median voter. Furthermore m0;
which can be taken as a measure of the degree of redistribution, is non-
increasing in vit:

Proof: We modify Corollary 1 of Theorem 2 to account for the
endogenous constraints, and �rst provide a constructive method for the
solution. The median voter will choose �̂ t0 ; �̂ t0+1; :: such that the rich
pivotal agent�s constraint is binding up to period before m0, and after
m0 he will switch to zero taxes in order not to discourage savings in the
early periods. If the constraint (17) at t = t0 is satis�ed for � t0 = 1;
we have the solution with full redistribution in the initial period, and
future taxes are zero. Otherwise we start by setting f�̂ t0 ; 0; 0; :::g and
solving for the �̂ t0 from the constraint (17) at t = t0 satis�ed with
equality. If �̂ t0 < 1; the constraint is binding and from Theorem 4,
f�̂ t0 ; 0; 0; :::g is not optimal for the median voter. We then reset the
tax sequence as f�̂ t0 ; �̂ t0+1; 0; 0; :::g and solve for �̂ t0 in terms of �̂ t0+1
from the constraint (17) at t = t0; satis�ed with equality, and for � t0+1
such that Qt0;t0+1 (1� � t0+1) = 1 (See Corollary 1 of Theorem 2). If the
constraint (17) at t = t0+1 is satis�ed we have the solution, since the best
solution for the rich pivotal agent is zero future taxes. If the constraint
is not satis�ed at t = t0 + 1, we set f�̂ t0 ; �̂ t0+1; �̂ t0+2; 0; 0; ::g and solve
for (�̂ t0 ; �̂ t0+1; �̂ t0+2) from the constraints (17) at t = t0; at t = t0 + 1,
and from Qt0;t0+2 ((1� � t0+1)) (1� � t0+2) = 1; with the proviso that if
the solution to � t0+2 is negative, we set it to zero. Note that from the
constraints (17) at t = t0 and at t = t0 + 1 we can solve recursively,
�rst for �̂ t0+1 in terms of �̂ t0+2; then for �̂ t0 in terms of �̂ t0+1 and �̂ t0+2;
and then for �̂ t0+2 that satis�es Qt0;t0+2 ((1� � t0+1)) (1� � t0+2) = 1. If
there are multiple solutions, we pick the one that yields the highest
utility to the median voter. If the constraint (17) at t = t0 + 2 is
satis�ed, we have the solution. Otherwise we continue in this manner
until t0 +m0 where the constraint is satis�ed and we have a solution, or
until Qt0;t0+m0

�Qt0+m0

s=t0+1
(1� �̂ s)

�
� 1; so that we can set � t0+m = 0 for

m � m0 so that therefore the constraint (17) will be satis�ed for t0+m0

and beyond.
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We can show thatm0 <1: By construction, the constraint of the rich
pivotal agent is binding for m < m0 so that �̂ t0+m = ~�

R
t0+m

for m < m0:
Since from Theorem 4, we know that limm!1 � t0+m = 0; which implies

Kt0+m ! 1; xt0+m ! 0 and from (19) ~�Rt0+m =
vwt0+m

�n�1
 
vwt0+m

n�1

�
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kt0+m

�1��w
Kt0+m�xt0+m+1

!
vwt0+m

�n�1 !

vwt0+m

 
1�
�

k�
kt0+m

�1��w!
vwt0+m

�n�1 > 0; unless k�

kt0+m
! 1: Thus limm!1 ~�

R
t0+m

> 0;

so we would have limm!1 � t0+m > 0. This yields a contradiction be-
cause then eventually Qt0;t0+m

�Qt0+m
s=t0+1

(1� �̂ s)
�
� 1 for large m: If

k�

kt0+m
! 1 lifetime utility is zero and since �w is multiplicative, there

is no cost of dictatorship at k�

kt0+m
, and therefore taxes must be set to

zero to sustain democracy. However, if limm!1 � t0+m = 0; then limm!1
gt0+m = r (1� �) > 1; so k�

kt0+m
! 1 is impossible.

As in Corollary 1 of Theorem 2, m0 is non-increasing in vit0 since
Qt0;t0+s is increasing in v

i
t0
for any s.

QED
The tax sequence in the above Theorem and Corollary is not time

consistent, since the median voter will want to reset taxes at and beyond
time ~m once the incentive constraint of the rich pivotal agent is not
binding. In the absence of legal commitment devices or reputational
considerations associated with violation of campaign promises in terms
of low future saving rates or electoral losses, the median voter will always
set taxes so that the constraints of the rich pivotal agent is binding.
Of course voters will always prefer to vote for someone who does have
reputational and re-election concerns and faces costs associated with
violations of campaign promises, since discounted utility will be higher
if initially announced taxes are not reset. (See Theorem 7) But if such
costs and concerns are absent, the only time consistent equilibrium is
the one where the rich pivotal agent�s constraint binds perpetually. If
in addition, however, there are exogenous constraints on taxes such that
� t � ~� t, we have:

� t =Min

0BB@v
w
t � n�1

�
vwt
n�1

�
k�

kt

�1��w
Kt � xt+1

�
vwt � n�1

; ~�

1CCA (20)

Corollary 4 The tax sequence along which 19 holds for all t is time
consistent. Unless g = r (1� �) (1� ~�) > 1; the economy will not grow.

Proof: If kt grew, then since vws � n�1;
�
k�

kt

�1��w
! 0 and
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vwt �n�1
�

vwt
n�1

�
k�
kt

�1��w
Kt�xt+1

�
vwt �n�1

becomes greater than unity. Thus the in-
centive constraints of the rich pivotal agent do not bind, and eventually
� s = ~� s. QED

Thus the consequences of time consistency in the absence of repu-
tational considerations are quite drastic since it is a stretch to expect
that the ad-hoc exogenous constraints on taxes will be low enough not
to extinguish growth.

3.3 Coalitions of Rich and Poor
If the median voter is to be decisive at each time with regard to the entire
path of future taxes, then at no time can a coalition of the poor and the
rich make at least one better o¤and the other no worse o¤ relative to the
proposal of the median. Hence, we need to check whether the poor and
rich pivotal agents can improve their utility by forming a stable coalition
against the median voter under democracy. Here a stable coalition will
require that the incentive constraint for the two pivotal agents hold
period by period, and that the maximized discounted utility of the poor
agent subject to the constraint that the rich agent�s utility is at least as
large as what he gets under the tax sequence chosen by the median voter
under democracy exceeds the discounted utility the poor agent receives
under tax sequence chosen by the median voter under democracy.
If we maximize the discounted utility of the poor agent subject to

incentive constraints of the rich and with the additional constraint that
the poor agent is no worse o¤ than he was under the tax sequence imple-
mented by the median voter, the poor agent will be forced to implement
the same tax sequence as the median voter. The reason is that the poor
pivotal agent is even more anxious to redistribute early on. However if
he were to do so he would make the rich pivotal agent worse o¤, so the
best he can do is to duplicate the median voter�s tax scheme. Formally,

Theorem 4 There is no tax sequence that satis�es all incentive con-
straints and that can make the poor pivotal agent better o¤ than he is
under the tax scheme chosen by the median voter, while making the rich
pivotal agent no worse o¤.

Proof: First we note that the value functions of the poor pivotal
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agent, the median voter and the rich pivotal agent are given by
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where i = p;M;w for the poor, median and rich agents. First we note
that the value functions of the poor agent, the median voter and the rich
agent are identical except with respect to the terms (1� � t0) vit:Changing
taxes for periods after t0 a¤ects consumptions of these agents in the same
way, by changing �rst period consumption as well as its rate of growth.
Changing � t0 however a¤ects �rst period consumptions di¤erentially.
Since we have decreasing marginal utility, changes in consumption will
have larger e¤ects on the utility of the poor agent and smaller e¤ect on
the utility of the rich agent.
Assume that the poor agent implements a tax sequence

�
� pt0 ; (�

p
s)
1
s=t0+1

	
that improves his payo¤ relative to the taxes chosen by the median
voter

�
�Mt0 ; (�

M
s )

1
s=t0+1

	
; respects all incentive constraints, and leaves the

rich agent no worse o¤. If this change makes the median voter better
o¤ as well, we have a contradiction, since the median voter could have
chosen those tax rates to start with. Suppose then that these tax rates,�
� pt0 ; (�

p
s)
1
s=t0

	
; make the median voter worse o¤.
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Since the value functions are continuous in the shares vit0, from the Inter-
mediate Value Theorem, there exist vpMt0 2

�
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such that
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We take the smallest vpMt0 and vwMt0 for which the above holds.
For a graphical illustration, let V p (v) be the discounted utility value

of the poor pivotal agent as a function of his share under his pre-
ferred taxes

�
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p
s)
1
s=t0+1

	
; and V m (v) be the same under the taxes�

�Mt0 ; (�
M
s )

1
s=t0+1

	
preferred by the median voter. Then the conditions

above imply:

Double-Crossing

V m (v) and V p (v) must intersect at least cross, as drawn, to satisfy
the conditions above, but of course they may cross more than twice.
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we have 
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and if the �rst intersection of value functions for vt0 � vMt0 is at vwMt0 ; we
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which is a contradiction. Thus, it is not possible for the poor agent to
implement a tax sequence

�
� pt0 ; (�

p
s)
1
s=t0+1

	
that improves his payo¤ rel-

ative to the taxes chosen by the median voter
�
�Mt0 ; (�

M
s )

1
s=t0+1

	
; respects

all incentive constraints, and leaves the rich agent no worse o¤. QED
While we derived the result above for log preferences, it should be

possible to establish the same result using the same argument for more
general preferences.
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4 Sustainability of Democracy

4.1 Unsustainability
In the Theorem below we study conditions for unsustainability, taking
into account the incentive constraints of both the poor and the rich
pivotal agent. Note that the conditions for unsustainability are not for
particular tax sequences but are given in terms of initial stocks and
parameters only. The harder issue of �sustainability�is taken up in the
next section.
First however we must more fully explore the strategies of the rich

and poor pivotal agents. If the median voter chooses a tax sequence
under which the rich pivotal agent �nds it optimal to revolt, the poor
pivotal agent will also want to revolt, rather than passively accept a
right-wing rule with zero taxes, since both pivotal agents will bear the
costs of the autocratic regime: it is better to su¤er autocracy under
one�s pre¤erred tax sequence than under the tax sequence set by the
other class. So we assume that if the tax sequence chosen by the median
induces the right to revolt, the revolution will succeed with probability
�; but the left will counter-revolt and come to power with proability
1� �: Similarly, if the tax sequence chosen by the median voter induces
the left to revolt, the revolution will succeed with probability 1 � �0;
but the right will counter-revolt and come to power with proability �0:
Of course it may be reasonable to assume that it makes no di¤erence
whether the right or the left initiates the revolution, in which case we
can set � = �0:

Theorem 5 Let k�� = (�r)��(1��)
�1

�n�1r and k� = (�r)��(1��)
�1

�vwt0
r

: If preferences

are logarithmic, democracy is not sustainable if�
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�
< (1� �)

�
kt0
k��

��p � vpt0
n�1

��0�p
+ �

�
kt0
k��

��w � vwt0
n�1

��w�
where � =

n�1�vpt0
(vwt0�v

p
t0
)
: For � 2 (0; 1) this condition holds if the prob-

ability of a successful revolution by the initiating group is close to 1
(�0 ! 0; � ! 1) ; and either kt0 is close to k

��; or if both �p and �w are
close to 1: It fails to hold if � is su¢ ciently close to 1 or 0:

Remark 5 The term � is a measure of the skewness of the income
distribution: its denominator measures the range of the distribution while
the numerator measures how far the poor is from the average. If � = 0;
the poor agent is at the mean and the tax sequence (0; 0; :::) is acceptable

47



to all, while if 1 � � = vwt0
�n�1

(vwt0�v
p
t0
)
= 0; the rich agent is at the mean and

the tax sequence (1; 0; :::) is acceptable to all.

Proof: As seen above, in the log case we have that for the rich
pivotal agent
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The constraint for the poor pivotal agent is0BB@
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Manipulating the constraint algebraically, as we did for the rich agent�s
constraint in section 3.2, we get,
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As kt0 ! 0 (so that �p > 1) or kt0 ! 1 (so that �p < 1), the right
side becomes negative, so the incentive constraint of the poor is always
satis�ed.
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The rich pivotal agent�s constraint also needs modi�cation. We get
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Combining the poor agents�s incentive constraint with the constraint
(23) for the rich agent, democracy is unsustainable if ~�Rt < ~�Lt ; which
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implies
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The above inequality implies that the feasible interval for � t0 under
democracy;

�
~�Lt0 ; ~�

R
t0

�
\ [0; 1] ; is empty: the highest acceptable tax to

the right is lower than the lowest acceptable tax to the left. Note that
this inequality cannot hold if kt0 ! 0 (so that �w > 1) or kt0 ! 1 (so
that �w < 1), since the right side goes to zero while the left is positive.
From (24), we obtain

(1 + xt+1)�t <

��
vpt
n�1

��0�p �
k��

kt

�1��p
(vwt � n�1) +

�
vwt
n�1

�1��w(1��) �
k�

kt

�1��w
(n�1 � vpt )

�
(vwt � vpt )

(25)
where

�t =

0@ 1Y
n=t+1

 
nY

s=t+1

(1� � s)
!(1��)�n�t1A = K�1

t

If this condition holds, ~�Rt0 < ~�Lt0 so the feasible set is empty. Setting
(1 + xt+1)�t =

(1+xt+1)
Kt

we can interpret the numerator as the one plus
the bene�t from transfers, and the denominator as the cost of tax dis-
tortions. If �m = 0 for m > t; it becomes equal to 1. We now show that
(1 + xt+1)�t � 1: We have

�
(1 + xt+1)

Kt

�
<

��
vpt
n�1

��0�p �
k��

kt

�1��p
(vwt � n�1) +

�
vwt
n�1

�1��w(1��) �
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�1��w
(n�1 � vpt )

�
(vwt � vpt )

(26)
and have to show that

0 <

�
(1 + xt+1)

Kt

�
= (1 + xt+1)�t < 1

Note that for the sequence � s = 0; s > t0; xt0+1 = 0; �t0 = 1; so
in this case (1 + xt0+1)�t0 = 1. We will maximize (1 + xt0+1)�t0 with
respect to tax sequences � s, s > t0; looking at

@ (log (1 + xt0+1) + log �t0)

@�m
= (1 + xt0+1)

�1 @xt0+1
@�m

+
@ log �t0
@�m
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We know from section 3.1 that

@xt0+1
@�m

= [� (1� am) + am] (1 + xt0+1)
2 �m�t0

m�1Y
s=t0+1

(1� � s) � 0

Hence

(1 + xt0+1)
�1 @xt0+1

@�m
= [� (1� am) + am] (1 + xt0+1) �m�t0 (1� �m)

�1
mY

s=t0+1

(1� � s)

@ log �t0
@�m

=
@
hP1

n=m log
�Qn

s=t0+1
(1� � s)

�(1��)�n�t0i
@�m

=
(1� �) @

�P1
n=m �

n�t0Pn
t0+1

log (1� � s)
�

@�m

=� (1� �)
" 1X
n=m

�n�t0 (1� �m)�1
#

=� (1� �) (1� �m)�1 �m�t0 [1� �]�1

So

@ (log (1 + xt0+1) + log �t0)

@�m

=
�
(1� �m)�1 �m�t0

� 
[� (1� am) + am] (1 + xt0+1)

mY
s=t0+1

(1� � s)� 1
!

Now we note, analogously to the proof of Theorem 2, (since products of
stochastic matrices are stochastic),

[� (1� am) + am] =
�
1 0
� 1Y
s=m+1

�
1� � (1� � s)� (1� � s)

� s 1� � s

� �
�
1

�
=
�
(1� am) am
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1

�
while
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�
1 0
� 1Y
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� �
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=
�
(1� am) am

� m�1Y
s=t0+1

�
1� � (1� � s)� (1� � s)

� s 1� � s

� �
�
1

�
=
�
(1� am) am

� �cm 1� cm
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�
52



Thus,

@ (log (1 + xt0+1) + log �t0)

@�m

= [� (1� am) + am] (1 + xt0+1) �m�t0 (1� �m)
�1

mY
s=t0+1

(1� � s)� (1� �m)�1 �m�t0

=
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(1� �m)�1 �m�t0

�0BB@
�
(1� am) am

� ��
1

� �Qm
s=t0+1

(1� � s)� 1
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�
(1� am) am

�Qm�1
s=t0+1

�
1� � (1� � s)� (1� � s)

� s 1� � s

� �
�
1

�
1CCA

Now set m = t0 + 1; and using the convention we used in the proof of

Theorem 2, that
Qt
s=t0+1

�
1� � (1� � s)� (1� � s)

� s 1� � s

�
=
�
1 0
0 1

�
;

@ (log (1 + xt0+1) + log �t0)

@� t0+1

= [� (1� at0+1) + at0+1] (1 + xt0+1) � (1� � t0+1)
�1

mY
s=t0+1

(1� � s)� (1� � t0+1)
�1 �

=
�
(1� � t0+1)

�1 �
�0BB@
0BB@
�
(1� at0+1) at0+1

� ��
1

�
�
(1� at0+1) at0+1

� ��
1

�
1CCA t0+1Y

s=t0+1

(1� � s)� 1

1CCA < 0

Thus to maximize (1 + xt0+1)�t0 we have to set � t+1 = 0; irrespective
of future � s, s > t0 + 1. Now we proceed by induction as we did in the
proof of Theorem 2. Set � s = 0 for s = t0 + 1; : : : ;m� 1. This yields:

@ (log (1 + xt0+1) + log �t0)

@�m

= [� (1� am) + am] (1 + xt0+1) �m�t0 (1� �m)
�1

mY
s=t0+1
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�
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0 1
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1

� (1� �m)� 1
1CCCA
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Now, we note that
�
1� ��
0 1

�m�t0
=

�
1� z z
0 1

�
; so that

@ (log (1 + xt0+1) + log �t0)

@�m

= [� (1� am) + am] (1 + xt0+1) �m�t0 (1� �m)
�1

mY
s=t0+1

(1� � s)� (1� �m)�1 �m�t0
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(1� �m)�1 �m�t0

�� � (1� am) + am
(�+ (1� �) z) (1� am) + am

(1� �m)� 1
�
< 0

So �m = 0 for m > t0: This means that (1 + xt0+1)�t0 is maximized at
�m = 0,m > t0; and therefore the maximum value is indeed (1 + xt0+1)�t0 =
1: Now we can claim, using the condition (25), that democracy is unsus-
tainable if

1 <

��
vpt0
n�1

��0�p �
k��

kt0

�1��p �
vwt0 � n�1

�
+
�
vwt0
n�1

�1��w(1��) �
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kt0

�1��w �
n�1 � vpt0

��
�
vwt0 � v

p
t0

�
(27)

or �
kt0
k��

�
< (1� �)

�
vpt0
n�1

��0�p �
kt0
k��

��p
+ �

�
vwt0
n�1

��w(��1)�
kt0
k�

��w
=(1� �)

�
vpt0
n�1

��0�p �
kt0
k��

��p
+ �

�
vwt0
n�1

��w� �
kt0
k��

��w
where � =

n�1�vpt0
(vwt0�v

p
t0
)
: This condition holds if the probability of a suc-

cessful revolution by the initiating group is close to 1 (�0 ! 0; � ! 1) ;
and at the same time either kt0 is close to k

��; or �p and �w are close
to 1:(Note that k� < k��): It fails if � is close to 1 or 0 because �p; �w;�
vpt0
n�1

��0�p
are less than unity and

�
vwt0
n�1

�
= 1 when � = 1. QED

4.2 Sustainability
If the feasible set satisfying both the poor and rich agents� incentive
constraints is not empty, democracy is always sustainable. The Theo-
rem below gives conditions for democracy to be sustainable for the tax
sequence f� t0 ; 0; 0:::g in terms of parameters and the initial capital stock
only.

Theorem 6 Let kt0 > k��: If�
k��

r�kt0

�1��p
<

�
vpt0
n�1

�1��0�p
(28)

54



and

(1� �)
�
k��

kt0

�1��p � vpt0
n�1

��0�p
+ �

�
k��

kt0

�1��w � vwt0
n�1

��w�
� 1 (29)

where 1� � = vwt0
�n�1

(vwt0�v
p
t0
)
; then ~�Lt0 ; < ~�

R
t0

and for � t0 2
�
~�Lt0 ; ~�

R
t0

�
\ [0; 1]

democracy is sustainable for the tax sequence f� t0 ; 0; 0:::g. The above
inequalities hold for kt0 su¢ ciently large. 29 will hold for � close to 1
or 0; or �w and �p close to zero, or for � close to zero, or �0 close to 1.

Remark 6 When � = 0; n�1 = vpt0 ; which implies that the poor pivotal
agent would tolerate f� t0 ; 0; 0:::g with � t0 = 0; while if � = 1; vwt0 = n�1
which implies that the rich pivotal agent would tolerate f� t0 ; 0; 0:::g with
� t0 = 1: If the probability of success for a right wing revolution is zero
(� = 0) the tax sequence f1; 0; 0:::g is sustainable under democracy.
Similarly, if the probability of success for a left wing revolution is zero
(�0 = 1); the tax sequence f0; 0; 0:::g is sustainable under democracy.

Proof : From the 26 we have that � t0 2
�
~�Lt0 ; ~�

R
t0

�
will satisfy incentive

constraints if

�
(1 + xt0+1)

Kt0

�
�
 
(1� �)

�
vpt
n�1

��0�p �
k��

kt

�1��p
+ �

�
vwt
n�1

��w� �
k��

kt

�1��w!
�
(1+xt0+1)

Kt

�
attains a maximum of 1 for � t0+s = 0; s � 1 and the growth

rate is constant: g = r (1� �) = r� > 1. At time t0, the incentive
constraints of both the poor and rich pivotal agents are satis�ed by
hypothesis. Since taxes are zero from t0+1 on, the incentive constraints
of the rich agent will continue to be satis�ed, so we turn attention to

the constraints of the poor pivotal agent. Note that k�� = (�r)��(1��)
�1

�n�1r is
constant. From (22), the constraint for the poor pivotal agent is satis�ed
at t � t0 if

� t �

�
n�1

�
Kt

�
k��

kt

�1��p �
vpt
n�1

��0�p
� xt+1

�
� vpt

�
(n�1 � vpt )

(30)

If � t0+s = 0; s � 1, we have Kt0+n = 1; xt0+n = 0 for n � 0. Then,

the right side of the above is non-positive if
�
k��

kt

�1��p
�
�
vpt
n�1

�1��0�p
:
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We have to check that the incentive constraint for the poor continues to
hold for t > t0: To see this, note that v

p
t0+1

= (1� � t0) v
p
t0 + � t0n

�1 and
shares stays constant from t0+1 on, while capital grows at r�. Thus at
t0 + 1; by hypothesis,�
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kt0+1

�1��p
=
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=
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�1��0�p
It follows that the right side of 30 is non-positive for s � t0 + 1; so that
setting � s = 0 remains feasible.
For the case � = 1 we have vwt0 = n

�1: To show that 29 holds as �!
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�
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kt0
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� 1 so 29
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If � = 0; 29 holds because (1� �)
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��0�p
+�
�
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�1��w
<

1. Finally, if �0 = 1 we check that ~�Lt0 ; < ~�Rt0 from 22 and 19 for a se-
quence tax sequence f� t0 ; 0; 0:::g for which Kt = 1 and xt+1 = 0 for
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Note now that the right side is positive since both
�
k��

kt

�1��w
and

�
vwt
n�1

��w��1
are smaller than 1; and the left hand side is smaller than 0 if k

��

kt
< 1 <�

vpt
n�1

��1
; as hypothesized, so that the tax sequence f0; 0:::g is imple-

mentable under democracy.
QED
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Remark 7 The theorem above shows that democracy can be sustainable
for the tax sequence f� t0 ; 0; 0:::g, but of course the median voter may do
much better while still sustaining democracy: generally other feasible tax
sequences not constant after the second period will be preferred by the
median voter. The result above only shows that the feasible set of tax
sequences that sustain democracy is not empty.

Remark 8 We should note also that the condition
�
k��

kt0

�1��p
<
�
vpt0
n�1

�1��0�p
is more likely to be satis�ed, and therefore democracy more likely to be
feasible, the closer the wealth share of the poor agent is to the average,
and the wealthier the economy is at the start

�
k��

kt0
is small

�
.

We may slightly generalize the above result to the case of f� t0 ; � ; � :::g
where the constant sequence after the initial period is is � rather than
0: In that case shares still remain constant after t0 + 1 at

vit0+1= g
�1r
�
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�1�
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�
(1� � t0) vMt0 + � t0n
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Capital grows if g = r (1� �) (1� �) = (�r) (1� �) > 1. For a constant
sequence, we also have Kt0 = (1� �)
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�
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�
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;
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. Thus for t0 + 1 the constraint (27) may be

written as
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or

1 + �
�

�
1��

�
(1� �)

��
1��

�

0BBBBBBB@

�
k��

�r(1��)kt0

�1��p � (1��)�1((1�� t0)v
p
t0
+n�1� t0)

n�1

��0�p
�
�
(1� �)�1

�
(1� � t0) vwt0 + n�1� t0

�
� n�1

�
+

�
(�r)��(1��)

�1

�r�r(1��)kt0

�1��w �
(1��)�1(vwt0(1�� t0)+� t0n

�1)
n�1

�1��w(1��)
�
�
n�1 � (1� �)�1

�
vpt0 (1� � t0) + n�1� t0

��

1CCCCCCCA
(1�� t0)
(1��) n

�1
�
vwt0 � v

p
t0

�
If f� t0 ; � ; � :::g satis�es the constraint at t0+1, it will continue to satisfy
it beyond t0 + 1 since shares will be constant and capital will grow, so
the right side of the above will decline. Thus we have the following:

Corollary 5 If kt0 � k��, for a tax sequence f� t0 ; � ; � ; : : :g satisfying
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democracy is sustainable provided the constant growth rate g = r (1� �) (1� �) �
1.

4.3 Characterization

In any period, the incentive constraints of both the median voter and the
poor pivotal agent must also hold. Clearly, if vit > v

p
t ; and since this order

is preserved through time, if the poor pivotal agent�s incentive constraint
is satis�ed, so is the poor median voter�s. The converse however is not
true. Unconstrained by the poor pivotal agent and under commitment at
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time t, the poor median voter selects a sequence f�̂ t; �̂ t+1; ::�̂m0 ; 0; 0; :::g
However, such a sequence can violate the incentive constraints of the
poor pivotal agent. To study this case, we write the Lagrangian for the
median voter, to include the incentive constraints of the poor agent.

L =

1

1� �

0BB@ �1��t0
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V wD (kt; k

w
t ; t)� V wA (kt; kwt ; t)

�
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1X
t=t0

�t
�
V pD (kt; k

p
t ; t)� V pA (kt; kpt ; t)

�
+ �1t� t + �2t (1� � t)

where �t are the multipliers for the poor pivotal agent�s constraints,
and V wA (kt; kwt ; t) and. V

pA (kt; k
p
t ; t) are the values that the rich and

poor pivotal agents would receive by reverting to authoritarian regimes,
incorporating the probabilistic outcomes of simultaneous resurrections
dicussed in the previous section.
The �rst-order conditions with respect to � t0 are

9

@L
�
kt0 ; k

M
t0
; t0
�

@� t0
=
��
�vit0 + n

�1� rkt0�X��
t0
Z�t0 + �1t0 � �2t0

+ �t0
�
Xp
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���
Z�t0
�
�vpt0 + n

�1� rkt0 (31)

+ �t0
�
Xw
t0

���
Z�t0
�
�vwt0 + n

�1� rkt0 (32)

Note that the median voter as well as the poor pivotal agent would
like to set � t0 to 1 unless the rich pivotal agent�s constraint is binding,
since

�
�vit0 + n�1

�
< 0 and

�
�vpt0 + n�1

�
< 0: If � t0 is interior, that is

if � t0 2 (0; 1) ; the rich pivotal agent�s constraint is binding, and we
may proceed with the analysis as in the case of Theorem 4, provided
the poor pivotal agent�s constraints are slack. However, as we saw in the
previous section, the feasible set may be empty under certain conditions,
and the median voter may not be able to satisfy the constraints imposed
by the poor and rich agents simultaneously. If this is not the case the

9Note that derivatives of V wA (kt; kwt ; t) and V
pA (kt; k

p
t ; t) do not show up in the

�rst order conditions with respect to taxes, since they do do not involve taxes.
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median voter will set � t0 either at 1 or to satisfy the rich pivotal agent�s
constraints.
We now turn to the analysis of �m.

@L
�
kt0 ; k

i
t0
; t0
�

@�m
=
�
Z�t0X

1��
t0

��
(Xt0)

�1 @Xt0

@�m
+ � (1� �)�1 (Zt0)

�1 @Zt0
@�m

�
+�

Z�m (X
w
m)

����m ��vwm + n�1� rkm
+

m�1X
s=t0+1

�s
�
Z�s (X

w
s )

1����(Xw
s )

�1 @X
w
s

@�m
+ � (1� �)�1 (Zs)�1

@Zs
@�m

�
+ �t0

�
Z�t0
�
Xw
t0

�1�����
Xw
t0

��1 @Xw
t0

@�m
+ � (1� �)�1t0 (Zt0)

�1 @Zt0
@�m

�
�
Z�m (X

p
m)

����m ��vpm + n�1� rkm
+

m�1X
s=t0+1

�s
�
Z�s (X

p
s )
1����(Xp

s )
�1 @X

p
s

@�m
+ � (1� �)�1 (Zs)�1

@Zs
@�m

�
+ �1m � �2m = 0

As before letting � ! 1, from the Corollary 2 to Theorem 2

�
Z�s (X

w
s )

1����(Xw
s )

�1 dX
w
s

d�m
+ � (1� �)�1 (Zs)�1

dZs
d�m

�
(33)

=Z

�
(Xw

s )
�1 dX

w
s

d�m
� (1� �m)�1 �m�t0

�
< 0

where Z = 1=1� � and from the proof of Theorem 2, and

lim
m!1

��
Z�t0X

1��
t0

��
(Xt0)

�1 dXt0
d�m

+ � (1� �)�1 (Zt0)
�1 dZt0
d�m

��
(34)

=Z

�
(Xt0)

�1 dXt0
d�m

� (1� �m)�1 �m�t0
�
< 0

Furthermore

lim
m!1

��
Z�s (X

p
s )
1����(Xp

s )
�1 dX

p
s

d�m
+ � (1� �)�1 (Zs)�1

dZs
d�m

��
(35)

=Z

�
(Xp

s )
�1 dX

p
s

d�m
� (1� �m)�1 �m�t0

�
< 0

since the same analysis that applies to the median agent also applies
to the poor median agent, as they di¤er only in their initial vt�s. How-

ever, we cannot claim that limm!1

�
@L(kt0 ;kit0 ;t0)

@�m
� (�1m � �2m)

�
< 0 and
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therefore that limm!1 �m = 0 : in this case we require the poor pivotal
agent�s incentive constraints to be satis�ed at all times, not just in the
limit from the perspective of time t0. Unlike the rich pivotal agent who
prefers zero taxes, the constraints of the poor pivotal agent may not al-
low the sequence of taxes f�̂ t0 ; �̂ t0+1; : : : ; �̂m0 ; 0; 0; :::g given by Theorem
4 since such a sequence can violate the incentive constraints of the poor
pivotal agent. Note the incentive constraint of the poor pivotal agent at
time t0; (and indeed at each time t as well):

� t0 �

�
n�1

�
Kt0

�
k��

kt0

�1��p � vpt0
n�1

��0�p
� xt0+1

�
� vpt0

�
�
n�1 � vpt0

� = �Lt0 (36)

In either a growing or a shrinking economy if
�
k��

kt

�1��p
! 0, the con-

straint will be satis�ed eventually and taxes will be set to zero eventually,
but if k

��

kt
is close to one, the constraint may not hold if taxes are prema-

turely close to zero, because the numerator is positive. To see this note
that for k

��

kt
= 1 a negative numerator requires: 
n�1

 
Kt

�
vpt
n�1

��0�p
� xt+1

!
� vpt

!
< 0

Kt

�
vpt
n�1

��0�p
� (1 + xt+1)<

vpt
n�1

� 1 < 0

In the proof of Theorem 5 we showed that Kt � (1 + xt+1) � 0; so for
k��

kt
close to one, the constraint will be violated if

�
vpt
n�1

��0�p
is close to

one, for example if �0 = 0 so that an insurrection of the poor suceeds
with probabily one. Thus to keep the poor pivotal agent in check, the
median voter may have to delay setting taxes to zero beyond m0, but
then would have to reduce earlier taxes to still satisfy the constraints of
the rich pivotal agent.

Finally, note that if the poor pivotal agent�s constraint were to be
satis�ed, the poor pivotal agent would have no incentive to implement a
left wing authoritarian regime at any point in time. This implies however
that the median voter, with vis > vps and therefore higher discounted
utility than the poor pivotal agent, also does not have an incentive to
reset the tax sequence and deviate from the original sequence, provided
such a deviation involves a deviation cost that scales down lifetime utility
by �M where j �M�1 j�j �P �1 j: even an immediate full redistribution
would not yield higher utility to the median voter if it does not do so for
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the poor pivotal agent. This implies that the tax sequence chosen by the
median voter that respects the poor pivotal agent�s incentive constraints
in each period is time consistent. We have then the following Theorem.

Theorem 7 When democracy is sustainable, the tax sequence chosen
by the median voter is time consistent if by resetting taxes the median
voter�s lifetime utility is scaled down by �M ; where j �M �1 j�j �P �1 j.

5 Appendix
Proof of Theorem 1 The recurrence relation for the solution of continued
fractions is standard (see [?], p. 8-9) and can be written as a �rst order system
as �

A (n)
C (n)

�
=

�
bn an
1 0

� �
A (n� 1)
C (n� 1)

�
; C (n) = A (n� 1)�

B (n)
D (n)

�
=

�
bn an
1 0

� �
B (n� 1)
D (n� 1)

�
; D (n) = B (n� 1)

which in our framework reduces to stochastic matrices:�
b2n+1 a2n+1
1 0

�
=

�
�t+n (1� �t+n)
1 0

�
�
b2n a2n
1 0

�
=

�
� t+n (1� � t+n)
1 0

�
Furthermore

�
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1 0

� �
b2n a2n
1 0

�
=

�
1� �t+n (1� � t+n) �t+n (1� � t+n)

� t+n 1� � t+n

�
with

A (1) = a1; A (0) = 0; A (�1) = 1; B (1) = b1; B (0) = 1; B (�1) = 0

We note that the product of stochastic matrices is stochastic. Then�
A (2n+ 1)
C (2n+ 1)

�
=

�
1� �t+n (1� � t+n) �t+n (1� � t+n)

� t+n 1� � t+n

� �
A (2n� 1)
C (2n� 1)

�
(37)

�
B (2n+ 1)
D (2n+ 1)

�
=

�
1� �t+n (1� � t+n) �t+n (1� � t+n)

� t+n 1� � t+n

� �
B (2n� 1)
D (2n� 1)

�
(38)
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For n = 1; : : :, iteration gives�
A (2n+ 1)
C (2n+ 1)

�
=
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��Qn
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We have to show that limn!1
A(2n+1)
B(2n+1) exists, that is that the product of

the stochastic matrices in (39) converges. since

Jt+s =

�
1� �t+s (1� � t+s) �t+s (1� � t+s)

� t+s 1� � t+s

�
is stochastic, a theorem in [?] guarantees that

lim
n!1

(JnJn�1 � � � Jt+1)

converges to a stochastic matrix G1, if Js is fully indecomposable, which
in the case of 2 � 2 matrices requires Js > 0. This will hold as long as
� t+s � e > 0 for s � 1. Note that Assumptions 1 and 2 imply � t+s < 1
for all s � 1. (Note initial � t 2 [0; 1] :) So now consider the case where
lims!1 sup � t+s > 0. Note that if � t+s > 0; Js > 0 and if � s�1 = 0; Js�1 �
0; with JsJs�1 > 0. So we can relabel the sequence Gn = JnJn�1 � � � Jt+1
as sequence Gn = HnRnHn�1Rn�2 � � �Ht+2Rt+2Ht+1Rt+1 where each Hs is
the product of fully indecomposable positive matrices Js > 0 with consecutive
indices and Rs is the product of matrices with Js � 0 with consecutive indices,
with the convention that Rt+1 = I if Jt+1 > 0; and is part of Ht+1. Let
Fn = HnRn. The in�nite product limn!1 FnFn�1:::Ft+1 is the product of
positive stochastic 2 � 2 matrices since each Fn is a positive matrix, and
therefore converges to a stochastic matrix G1 � 0. Then

lim
n!1

A (2n+ 1) = lim
n!1

�
1 0
�
[G1]

�
1� �t
0

�
� 0
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For xt+1 = limn!1
A(2n+1)
B(2n+1) < 1; we need limn!1B (2n+ 1) > 0: Since

�t > 0; and G1 is a non-negative stochastic matrix with row sums of unity,
and the product of stochastic matrices is stochastic,.

lim
n!1

B (2n+ 1) =
�
1 0
�
[G1]

�
�t
1

�
> 0

By construction we had gs+1 =
xs+1(r(1��s+1))
(xs+2+�s+1)

� 0 and gs+1 = r(1 � �s �
�sxs+1) < r; so 0 � gs < r for all s � t.

Now consider the case where lims!1 sup � t+s = 0: Thus

lim
s!1

Jt+s =

�
1� ��
0 1

�
since � = (1� � 1

� r
1��
� ) if � s = 0: But the product

lim
n!1

(JnJn�1 � � � Jt+1)

converges since the tail of the product converges to limn!1

�
1� ��
0 1

�n
=�

0 1
0 1

�
if � < 1:10 Q.E.D.

10More generally, see also Seneta, Theorem 4.14, page 150, and Exercise 4.38, p.
158, and in particular Chatterjee and Seneta, Corollary, p. 93. Note in particular

that the index 2 is the single essential class of indices of
�
0 1
0 1

�
; which is aperiodic.
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