
Q Theory Without Adjustment Costs

&

Cash Flow Effects Without Financing

Constraints1

Andrew B. Abel

The Wharton School of the University of Pennsylvania

National Bureau of Economic Research

Janice C. Eberly

Kellogg School of Management, Northwestern University

National Bureau of Economic Research

October 2001, revised October 2003

1We thank Joao Gomes, Richard Kihlstrom, and Ken West for helpful comments, as well

as seminar participants at UC San Diego, University of Wisconsin, New York University, the

Penn Macro Lunch Group, and the Workshop on Firms’ Dynamic Adjustment in Bergamo,

Italy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6366817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

Tobin’s Q exceeds one, even without any adjustment costs, for a firm that earns rents

as a result of monopoly power or of decreasing returns to scale in production. Even

when there are no adjustment costs and marginal Q is always equal to one, Tobin’s

Q is informative about the firm’s growth prospects. We show that investment is

positively related to Tobin’s Q (which is observable average Q). This effect can be

quantitatively small, which has been taken as evidence of very high adjustment costs

in the empirical literature, but here is consistent with no adjustment costs at all.

In addition, cash flow has a positive effect on investment, and this effect is larger

for smaller, faster growing and more volatile firms, even though capital markets are

perfect. These results provide a new theoretical foundation for Q theory and also cast

doubt on evidence of financing constraints based on cash flow effects on investment.



James Tobin (1969) introduced the ratio of the market value of a firm to the

replacement cost of its capital stock—a ratio that he called “Q”—to measure the in-

centive to invest in capital.1 Tobin’s Q, as it has become known, is the empirical

implementation of Keynes’s (1936) notion that capital investment becomes more at-

tractive as the value of capital increases relative to the cost of acquiring the capital.

Neither Keynes nor Tobin provided a formal decision-theoretic analysis underlying

the Q theory of investment. Lucas and Prescott (1971) developed a rigorous analysis

of the capital investment decision in the presence of convex costs of adjustment, and

observed that the market value of capital can be an important element of the capital

investment decision, though they did not explicitly make the link to Tobin’s Q.

The link between convex costs of adjustment and the Q theory of investment was

made explicitly by Mussa (1977) in a deterministic framework and by Abel (1983) in

a stochastic framework, though the papers based on convex adjustment costs focused

on marginal Q—the ratio of the value of an additional unit of capital to its acquisition

cost—rather than the concept of average Q introduced by Tobin. Hayashi (1982)

bridged the gap between the concept of marginal Q dictated by the models based on

convex adjustment costs and the concept of average Q, which is readily observable,

by providing conditions, in a deterministic framework, under which marginal Q and

average Q are equal. Specifically, marginal Q and average Q are equal for a com-

petitive firm with a constant-returns-to-scale production function provided that the

adjustment cost function is linearly homogeneous in the rate of investment and the

level of the capital stock. Abel and Eberly (1994) extended Hayashi’s analysis to the

stochastic case and also analyzed the relationship between average Q and marginal

Q in some special situations in which these two variables are not equal.

In the current paper, we develop a new theoretical basis for the empirical rela-

tionship between investment and Q that differs from the literature based on convex

1Brainard and Tobin (1968) introduced the idea that a firm’s investment should be positively

related to the ratio of its market value to the replacement value of its capital stock, though they did

not use the letter Q to denote this ratio.
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adjustment costs in two major respects. First, we will dispense with adjustment

costs completely, and assume that a firm can instantaneously and completely adjust

its capital stock by purchasing or selling capital at an exogenous price, without hav-

ing to pay any costs of adjustment. Second, average Q and marginal Q will differ

from each other. In the literature based on convex adjustment costs, when average

Q and marginal Q differ, it is marginal Q that is relevant for the investment decision,

which is unfortunate since average Q is more readily observable than marginal Q. In

the current paper, it is average Q that is related to the rate of investment; in fact,

marginal Q is identically equal to one in this model and hence it cannot be related

to fluctuations in investment.

Both averageQ and marginal Q would be identically equal to one for a competitive

firm with a constant-returns-to-scale production function that can purchase and sell

capital at an exogenous price without any cost of adjustment. In order for average

Q to exceed one, the firm must earn rents through the ownership or exploitation of a

scarce factor. In the traditional Q-theoretic literature, the convex adjustment cost

technology is the source of rents for a competitive firm with a constant-returns-to-

scale production function. In the current paper, which has no convex adjustment

costs, rents are earned as a result of monopoly power or as a result of decreasing

returns to scale in the production function. A contribution of this paper is to show

that not only do these rents cause average Q to exceed one, but the investment-capital

ratio of the firm is positively related to the contemporaneous value of average Q.

An important implication of traditional Q-theoretic models based on convex ad-

justment costs is that (marginal) Q is a sufficient statistic for the rate of investment.

Other variables should not have any marginal explanatory for investment if Q is an

explanatory variable. However, many empirical studies of investment and Q have re-

jected this implication by finding that cash flow has a significant effect on investment,

even if Q is included as an explanatory variable. This finding has been interpreted by

Fazzari, Hubbard, and Petersen (1988) and others as evidence of financing constraints

facing firms. In the model we develop here, there are no financing constraints—capital
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markets are perfect—yet investment is positively related to cash flow in addition to Q.

Furthermore, the effect of cash flow on investment is larger for smaller, faster growing,

and more volatile firms, as has been found empirically. Thus the findings reported in

the earlier empirical literature cannot be taken as evidence of financing constraints.

The interpretation of cash flow effects as evidence of financing constraints is also

called into question in a recent paper by Gomes (2001); in his quantitative model,

optimal investment is sensitive to both Tobin’s Q and cash flow, whether or not a

cost of external finance is present. Similarly, Cooper and Ejarque (2001) numerically

solve a model with quadratic adjustment costs and a concave revenue function, and

also find that investment is sensitive to both Tobin’s Q and cash flow in the absence

of financing constraints.2

The model we develop is designed to be as simple as possible, yet rich enough to

deliver interesting time-series variation in the investment-capital ratio, Tobin’s Q, and

the ratio of cash flow to the capital stock. Section 1 presents the firm’s net revenue

as an isoelastic function of its capital stock. The revenue function is subject to

stochastic shocks that change its growth rate at random points in time. The optimal

capital stock is derived in Section 1 and the consequent optimal rate of investment

is derived in Section 2. Section 3 derives the value of the firm and Tobin’s Q. The

relationship among the investment-capital ratio, Tobin’s Q, and the cash flow-capital

stock ratio is analyzed in Section 4, and the effects of firm size, growth, and volatility

on this relationship are analyzed in Section 5. Concluding remarks are presented in

Section 6.

2A related, but different, interchange has recently occurred between Kaplan and Zingales (1997,

2000) and Fazzari, Hubbard, and Petersen (2000). Kaplan and Zingales have argued both empir-

ically and theoretically that the sensitivity of investment to cash flow is not a reliable indicator of

the degree of financial constraints. This interchange is distinct from the model presented here, since

we have assumed no financial constraints at all, yet investment is sensitive to cash flow. Recent

empirical work by Gomes, Yaron, and Zhang (2001) also finds no evidence of financing constraints

facing firms.
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1 The Decision Problem of the Firm

Consider a firm with capital stock Kt at time t, and assume that the firm’s revenue

(net of labor costs) at time t is

Rt = Z
1−α
t Kα

t , (1)

where 0 < α < 1 and Zt is a variable that could reflect productivity, the demand

for the firm’s output, or the price of labor. The assumption that the elasticity of

revenue with respect to the contemporaneous capital stock is smaller than one reflects

monopoly power or decreasing returns to scale in the production function.3

The variable Zt is exogenous to the firm and has a time-varying growth rate, µt,

so
dZt
Zt

= µtdt. (2)

3Suppose that the production function is Yt = At

³
Kγ
t N

1−γ
t

´s
where Yt is (nonstorable) output

produced at time t, At is productivity at time t, Nt is labor employed at time t, s > 0 reflects the de-

gree of returns to scale (s = 1 for constant returns to scale) and 0 < γ < 1. The inverse demand curve

for the firm’s output is Pt = htY
− 1
ε

t so that the price elasticity of demand is ε > 1. At time t, the firm

chooses labor, Nt, to maximize revenue net of labor costs, Rt = PtYt−wtNt where wt is the wage rate
at time t. Substituting the production function and the inverse demand curve into the expression

for revenue, the firm chooses Nt to maximize Rt = ht

h
AtK

γs
t N

(1−γ)s
t

i1− 1
ε −wtNt. The first-order

condition for this maximization is (1− γ) s
¡
1− 1

ε

¢
ht

h
AtK

γs
t N

(1−γ)s
t

i1− 1
ε

= wtNt. Therefore, the

optimal value of Nt is Nt =
h
(1− γ) s

¡
1− 1

ε

¢
ht
wt
(AtK

γs
t )

1− 1
ε

i 1

1−(1−γ)s(1− 1
ε) . Substitute the optimal

value of Nt into the expression for revenue net of labor costs to obtain Rt = Z
1−α
t Kα

t , where Zt ≡

χ
1

1−α

∙
w
−(1−γ)s(1− 1

ε)
t htA

1− 1
ε

t

¸ ε
(1−s)ε+s

, χ ≡ £
1− (1− γ) s

¡
1− 1

ε

¢¤ £
(1− γ) s

¡
1− 1

ε

¢¤ (1−γ)s(1− 1
ε)

1−(1−γ)s(1− 1
ε) ,

and α ≡ γs(1− 1
ε)

1−(1−γ)s(1− 1
ε)
.

For a competititve firm with constant returns to scale (ε = ∞ and s = 1), α = 1. However, if

the firm has some monopoly power (ε < ∞) or if it faces decreasing returns to scale (s < 1), then
α < 1. Since Zt is an isoelastic function of ht, At, and wt (with different, but constant elasticities,

with respect to these three variables), the growth rate of Zt is a weighted average of the growth

rates of ht, At, and wt, with the weights equal to the corresponding elasticities.
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If the growth rate µt were constant over time, the future growth prospects for the

firm would always look the same, and, as we will show, there would be no time-series

variation in the present value of the firm’s future operating profits relative to current

operating profits (the present value in equation (20) would be a constant multiple of

contemporaneous Zt).
4 To introduce some interesting, yet tractable, variation in the

firm’s growth prospects, we specify a simple form of variation in µt. The growth rate

µt remains constant for a random length of time. A new value of µt arrives with

constant probability λ; the new value of the growth rate is drawn from an unchanging

distribution F (µ) with finite support [µL, µH ]. The draws of new values of µt are

i.i.d.

The firm can purchase or sell capital instantaneously and frictionlessly, without

any costs of adjustment, at a constant price that we normalize to be one. Because

there are no costs of adjustment, we can use Jorgenson’s (1963) insight that the

optimal path of capital accumulation can be obtained by solving a sequence of static

decisions using the concept of the user cost of capital. With the price of capital

constant and equal to one, the user cost of capital, υt, is

υt ≡ r + δt (3)

where r is the discount rate used by the firm and δt is the depreciation rate of capital,

which follows a diffusion process that is independent of Zt. We will discuss the

stochastic properties δt later in this section. For the narrow goal of studying the

relationship between investment and Tobin’s Q, we could simply assume that δt is

constant. Variation in δt will be useful when we examine the effect of cash flow on

investment.

At time t the firm chooses Kt to maximize operating profit, πt, which equals

revenue less operating costs5

4If Zt follows a geometric Brownian motion with constant drift, µ, but continuous shocks, the

present value in equation (20) would still be a constant multiple of Zt. Specifically, for τ > 0,

1
τ lnEt

³
Zt+τ
Zt

´
= µ regardless of the variance of the continuous shocks. Time variation in the rate

of drift eliminates this feature.
5Formally, the firm chooses Kt to maximize Vt − ptKt, which is equivalent to maximizing
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πt ≡ Rt − υtKt = Z
1−α
t Kα

t − υtKt. (4)

Differentiating equation (4) with respect to Kt and setting the derivative equal to

zero yields the optimal value of the capital stock

Kt = Zt (υt/α)
−1
1−α . (5)

Substituting the optimal capital stock from equation (5) into equations (4) and (1)

yields the optimal level of operating profit

πt = (1− α)Zt (υt/α)
−α
1−α (6)

and the optimal level of revenue (net of labor cost)

Rt =
1

1− α
πt. (7)

Empirical investment equations often use a measure of cash flow, normalized by

the capital stock, as an explanator of investment. Since Rt is defined as revenue net

of labor costs, it is cash flow before investment expenditure. Let ct ≡ Rt/Kt be the

cash flow before investment normalized by the capital stock, and note, for later use,

that

ct =
1

1− α

πt
Kt
=

υt
α
, (8)

where the first equality follows from equation (7) and the second equality follows from

equations (6) and (5).

Define

Mt ≡
³υt
α

´ −α
1−α

=

µ
r + δt
α

¶ −α
1−α
. (9)

Mt is a random variable with stochastic properties induced by the stochastic proper-

ties of the depreciation rate δt. Mt is independent of Zt because δt is independent of

Zt. Instead of specifying the stochastic properties of δt, we will specify the stochastic

Et
©R∞
t

πse
−r(s−t)ds

ª
(see equation A.5). The integral Et

©R∞
t

πse
−r(s−t)ds

ª
can be maximized

by choosing Ks to maximize πs at each s.
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properties of Mt, which implies stochastic properties of δt. Suppose that Mt is the

following geometric Brownian motion

dMt

Mt
= −1

2
σ2dt+ σdz. (10)

The variableMt is a martingale, that is, Et {Mt+τ} =Mt for τ > 0. We assume that

Mt is a martingale to simplify the calculation of present values later in the paper.

Using the definition of Mt, rewrite the expressions for the optimal capital stock

and the optimal operating profit in equations (5) and (6) as

Kt = ZtM
1
α
t (11)

and

πt = (1− α)ZtMt. (12)

In Section 2 we examine the firm’s investment by analyzing the evolution of the

optimal capital stock in equation (11). Then in Section 3 we use the expression for

the optimal operating profit in equation (12) to compute the value of the firm.

2 Investment

To calculate net investment normalized by the capital stock, apply Ito’s lemma to

equation (11) and use equations (2) and (10) to obtain

dKt

Kt
=

∙
µt +

1

2

1− 2α
α2

σ2
¸
dt+

1

α
σdz. (13a)

Adding the depreciation rate of capital, δt, to net investment per unit of capital in

equation (13a) yields gross investment per unit of capital6

dIt
Kt

=

∙
µt + δt +

1

2

1− 2α
α2

σ2
¸
dt+

1

α
σdz. (14)

Investment is a linear function of the growth rate µt, the depreciation rate δt, and

a constant-variance mean-zero disturbance that is independent of µt and δt. If µt and

6We write investment as dIt because the right hand side of equation (14) has infinite variation.
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δt were both observable then we could use OLS to estimate a regression of investment

on µt and δt. However, µt is not observable and δt may not be well measured. We

will show in later sections that movements in µt are reflected by movements in Tobin’s

Q and movements in δt are reflected by movments in the firm’s cash flow per unit

of capital. Thus, Tobin’s Q and cash flow per unit of capital can help to explain

investment empirically.

3 The Value of the Firm

The value of the firm is the expected present value of its revenues minus expenditures

on capital. To ensure that the value of the firm is finite, we impose the following two

conditions7

r + λ− µH > 0 (15)

and

E

½
λ

r + λ− µt

¾
< 1. (16)

We show in Appendix A that the expected present value of revenues minus expen-

ditures on capital can be written as the value of the replacement cost of the current

capital stock, plus the expected present value of operating profits. Therefore, the

value of the firm at time t is

Vt = Kt +Et

½Z ∞

t

πt+τe
−rτdτ

¾
. (17)

As a step toward calculating the present value in equation (17), use equation (12),

the independence of Mt and Zt, and the fact that Mt is a martingale to obtain

Et {πt+τ} = (1− α)MtEt {Zt+τ} . (18)

Substituting equation (18) into equation (17) yields

Vt = Kt + (1− α)Mt

Z ∞

t

Et {Zt+τ} e−rτdτ . (19)

7The condition r > µH is sufficient for the conditions in equations (15) and (16) to hold.
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We show in Appendix B that the value of the integral on the right hand side of

equation (19) is8 Z ∞

t

Et {Zt+τ} e−rτdτ = ω

r + λ− µt
Zt, (20)

where

ω ≡
∙
E

½
r − µt

r + λ− µt

¾¸−1
> 0. (21)

Note that when the arrival rate λ is zero, so that the growth rate of Zt remains

µt forever, ω = 1 and the present value of the stream of Zt+τ is simply Zt/ (r − µt).
More generally, when the growth rate µt varies over time, a high value of µt implies

a high value of the present value in equation (20).

The value of the firm can now be obtained by substituting equation (20) into

equation (19), and recalling from equation (12) that πt = (1− α)ZtMt,to obtain

Vt = Kt +
ωπt

r + λ− µt
. (22)

Tobin’s Q is ratio of the value of the firm to the replacement cost of the firm’s

capital stock. Since the price of capital is identically equal to one, the replacement

cost of the firm’s capital stock is simplyKt. Dividing the value of the firm in equation

8To derive the present value of Zt+τ heuristically, let Pt = P (µt, Zt) ≡
R∞
t
Et {Zt+τ} e−rτdτ

be the price of a claim on the infinite stream of Zt+τ . The expected return on this claim over an

interval dt of time is Ztdt+Et{dPt}. Because the path of future growth rates of Zt is independent
of the current value of Zt, P (µt, Zt) can be written as p (µt)Zt. The expected change in Pt is

Et {dPt} = λZt [p
∗ − p (µt)] dt + µtZtp (µt) dt, where p∗ is the unconditional expectation of p (µt)

so the first term is the expected change arising from a new drawing of the growth rate µt and the

second term reflects the fact that the growth rate of Zt is µt. Setting this expected return equal to

the required return rp (µt)Ztdt, and solving yields (r + λ− µt) p (µt) = 1 + λp∗. Therefore,

p (µt) =
1 + λp∗

r + λ− µt
.

Taking the unconditional expectation of both sides of this expression yields p∗ =

(1 + λp∗)E
n

1
r+λ−µt

o
, which can be rearranged to obtain p∗ =

h
E
n

r−µt
r+λ−µt

oi−1
E
n

1
r+λ−µt

o
.

Therefore 1 + λp∗ =
h
E
n

r−µt
r+λ−µt

oi−1
, so p (µt) =

1
r+λ−µt

h
E
n

r−µt
r+λ−µt

oi−1
.
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(22) by Kt yields

Qt ≡ Vt
Kt
= 1 +

ω

r + λ− µt
πt
Kt
. (23)

Tobin’s Q is greater than one because the firm earn’s rents πt. In the absence

of rents, Tobin’s Q would be identically equal to one because the firm can costlessly

and instantaneously purchase and sell capital at a price of one. Sargent (1980?)

also develops a model without convex adjustment costs in which Tobin’s Q can differ

from one. In Sargent’s model, Tobin’s Q can never exceed one because firms are

competitive and do not earn rents, and they can always acquire additional capital

instantly at a price of one. However, because investment is irreversible in Sargent’s

model, Tobin’s Q can fall below one.

In the present model, the presence of rents πt is sufficient to make Tobin’s Q

greater than one. However, rents alone do not imply that Tobin’s Q will vary over

time for a firm. If Zt were to grow at constant rate, so that µt were constant,

and if the user cost υt were constant, so that
πt
Kt
were constant (see equation 8),

then equation (23) shows that Tobin’s Q would be constant and greater than one.

However, we have modeled the growth rate µt as stochastic, and equation (23) shows

that Tobin’s Q is an increasing function of the contemporaneous growth rate µt.

Tobin’s Q is often called average Q to distinguish it from ∂V/∂K, which is often

called marginal q. In the q-theoretic literature based on convex adjustment costs

for capital, marginal q is the relevant concept for investment. In fact, an optimality

condition is that the marginal adjustment is equated with marginal q. In the current

model there are no convex adjustment costs. With the price of capital identically

equal to one, the marginal adjustment cost equals one. Inspection of equation (22)

immediately reveals that marginal q, ∂V/∂K, is also identically equal to one. Though

the marginal adjustment cost and marginal q are equal, the equality of these two

concepts does not pin down the optimal rate of investment in the absence of nonlinear

costs of adjustment.
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4 The Effects of Tobin’s Q and Cash Flow in In-

vestment

We have shown (equation 14) that the optimal rate of investment depends on the

growth rate µt and on the depreciation rate δt. However, the growth rate µt is not

observable and the depreciation rate δt may not be well measured. In this section,

we show that the growth rate µt can be written as a function Tobin’s Q and cash flow

ct, and that depreciation δt is related to cash flow ct. Thus, to the extent that Qt and

ct reflect µt and δt, these variables can help account for movements in investment.

First, we show that the growth rate µt can be expressed in terms of the observable

variables Qt and ct. Use equation (8) to substitute (1− α) ct for
πt
Kt
in equation (23)

to obtain

Qt = 1 + (1− α)ω
ct

r + λ− µt
(24)

Multiply both sides of equation (24) by r+λ−µt and rearrange to obtain an expression
for the growth rate in terms of the observable values of Tobin’s Q and cash flow

normalized by the capital stock

µt = r + λ− (1− α)ω
ct

Qt − 1 . (25)

Now substitute the expression for µt from equation (25) into equation (14) to

obtain

dIt
Kt

=

µ
r + δt + λ− (1− α)ω

ct
Qt − 1 +

1

2

1− 2α
α2

σ2
¶
dt+

1

α
σdz. (26)

Use the definition of the user cost of capital, υt ≡ r + δt, and the fact that υt = αct

from equation (8) to rewrite equation (26) as

dIt
Kt

=

µ
α− (1− α)ω

Qt − 1
¶
ctdt+

µ
λ+

1

2

1− 2α
α2

σ2
¶
dt+

1

α
σdz. (27)

Equation (27) shows that investment depends on the observable cash flow, ct, and

the observable value of Tobin’s Q, in addition to the stochastic component dz. Let

ι (Qt, ct) ≡
µ
α− (1− α)ω

Qt − 1
¶
ctdt (28)
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be the component of investment that depends on the observable variables Qt and ct.

Use the definition of ι (Qt, ct) in equation (28) to rewrite the investment-capital ratio

in equation (27) as

dIt
Kt

= ι (Qt, ct) +

µ
λ+

1

2

1− 2α
α2

σ2
¶
dt+

1

α
σdz. (29)

We will analyze the effects of Qt and ct on investment by analyzing the effects of these

variables on ι (Qt, ct).

First we analyze the effect of Tobin’s Q on investment. Let βQ ≡ ∂ι (Qt, ct) /∂Qt

denote the response of the investment-capital ratio to an increase in Qt. Partially

differentiating ι (Qt, ct) with respect to Qt yields

βQ ≡
∂ι (Qt, ct)

∂Qt
=
(1− α)ωct

(Qt − 1)2
dt > 0, (30)

so that investment is an increasing function of Qt. The positive relationship between

investment and Tobin’s Q has some remarkable differences from the relationship in

the standard convex adjustment cost framework. The positive relationship between

investment and Qt arises in the standard framework because of the convexity of the

adjustment cost function. In addition, the convexity of the adjustment cost function

is measured by the coefficient in a regression of the investment-capital ratio on Qt.

The estimated coefficient of the investment-capital ratio on Qt, which is the analogue

of βQ in equation (30), is typically quite small, which is usually interpreted to mean

that adjustment costs are very convex. In the model we present here, investment

depends positively on Qt, that is, βQ > 0, even though there are no convex costs

of adjustment. In addition, it is quite possible for βQ to be small (if (1− α)ωct is

small or if Qt is large). Yet, in this model, without convex adjustment costs, the

small value of βQ cannot indicate strongly convex adjustment costs, as in standard

interpretations.

Another remarkable difference from standard models based on convex capital ad-

justment costs is that the investment-capital ratio is related to average Q, Vt
Kt
, rather

than to marginal q, ∂Vt
∂Kt
, which equals one in this model.9 The relationship be-

9Caballero and Leahy (1996) and Abel and Eberly (1998) analyze optimal investment in the
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tween investment and average Q in our model is noteworthy because average Q is

observable, whereas marginal Q is not observable. The link between investment and

Tobin’s Q arises here because, even in the absence of adjustment costs, investment is

a dynamic phenomenon. That is, investment is the growth of the capital stock (plus

depreciation) and the growth of the optimal capital stock depends on the growth rate

µt. Since Qt also depends on µt , it contains information about the growth of the

capital stock.

Equation (27) has another remarkable feature. Even after taking account of Qt on

the rate of investment, investment also depends on normalized cash flow ct. Empirical

studies of investment often find that the firm’s cash flow is positively related to the rate

of investment, even when a measure of Q is included as an explanator of investment.

A typical empirical equation, starting from Fazzari, Hubbard, and Petersen (1988),

would have the investment-capital ratio as the dependent variable, and Tobin’s Q and

ct, the ratio of the firm’s cash flow to its capital stock, as the dependent variables.

The finding of a positive cash flow effect is often interpreted as evidence of a financing

constraint facing the firm.

To analyze the effect of cash flow on investment in our model, let βc ≡ ∂ι(Qt,ct,)
∂ct

denote the response of the investment-capital ratio to an increase in cash flow per

unit of capital, ct. Differentiate equation (28) with respect to ct to obtain

βc ≡
∂ι (Qt, ct)

∂ct
= α− (1− α)ω

Qt − 1 . (31)

At this level of generality, the sign of the right hand side of equation (31) could be

either positive or negative, so the effect of ct on the investment-capital ratio could be

either positive or negative. When the empirical literature finds a significant effect

of cash flow on investment, the effect is typically positive, so we present a condition

below for the right hand side of equation (31) to be positive.

Use equation equation (24) to substitute (1−α)ω
r+λ−µt ct for Qt−1 in equation (31), then

use (8) to substitute υt
α
for ct, and use the definition of the user cost, υt ≡ r + δt, to

presence of a fixed cost of investment and find that investment is related to average Q.
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obtain

βc = α
µt + δt − λ

r + δt
. (32)

Condition 1 δt + µt > λ for all t. 10

Inspection of equation (32) reveals that Condition 1 is necessary and sufficient for

βc > 0.

Henceforth we will assume that Condition 1 holds so that βc > 0. Although

the traditional literature would interpret this positive relationship between cash flow

and investment as evidence of a financing constraint, the positive effect arises in this

model even though capital markets are perfect and there are no financing constraints.

A positive cash flow effect on investment in the absence of financing constraints

undermines the logical basis for the common tests of financing constraints in the

literature.

The positive time-series relationship between investment and cash flow for a given

firm operates through the user cost factor, υt. As we discussed in Section 2, an

increase in υt arising from an increase in the depreciation rate, δt, will increase gross

investment relative to the capital stock. As is evident from equation (8), an increase

in υt also increases the ratio of cash flow to the capital stock. Thus, the positive

time-series association between cash flow and investment reflects the fact that each

of these variables moves in the same direction in response to an increase in the user

cost factor.

5 The Effects of Firm Size, Growth and Volatility

on the Cash Flow Effect

The empirical literature on investment has found that cash flow has a more significant

positive effect on investment for firms that are small, growing quickly, or volatile.

10Condition 1 places an upper bound on λ and equation 15 places a lower bound on λ. A

nondegenerate range of values of λ will satisfy both of these bounds provided that δt+µt > r−µH .
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This finding has been interpreted as evidence that these firms face binding financial

constraints, while large, slowly growing, stable firms are either less constrained or

financially unconstrained. This conclusion is perhaps appealing because it coheres

well with the notion that small, rapidly growing, volatile firms do not have as much

access to capital markets and external financing as large, slowly growing, stable firms

have. In this section we show that in our model, the effect of cash flow on investment,

measured by βc, is larger for firms that are small, rapidly growing, and volatile than

for firms that do not display these characteristics, which is consistent with empirical

findings, even though there are no financial constraints in our model.11

We will measure the size of the firm by Rt, revenue net of labor costs. This is

equivalent to measuring firm size by operating profit πt because Rt is proportional to

πt. To derive an expression for Rt in terms of the exogenous variables Zt, µt, and

δt, substitute equation (6) into equation (7), and use the definition of the user cost,

υt ≡ r + δt, to obtain

Rt = Zt

µ
r + δt
α

¶ −α
1−α
. (33)

Equation (33) implies that small firms have low values of Zt or high values of the

depreciation rate δt. Cross-sectional variation in firm size resulting from variation

in Zt alone has no systematic effect on the cash flow coefficient βc in equation (32).

However, cross-sectional variation in firm size resulting from variation in δt has a

systematic effect on βc. To analyze this effect, partially differentiate equation (32)

11Fazzari, Hubbard, and Petersen (1988), as well as a large subsequent literature, use firm size as a

proxy for the severity of the firm’s financial constraints. Other commonly used proxies include divi-

dend payouts, debt, interest coverage, and bond ratings, such as in Whited (1992) and Gilchrist and

Himmelberg (1995). Later work has also examined the composition of external finance (Kashyap,

Stein, and Wilcox (1993)). If these financial variables are unrelated to the real characteristics of

the firm that we examine below, then evidence using these variables to identify financial constraints

is not subject to the confounding of financial effects and firm characteristics that we develop in this

section.

15



with respect to δt to obtain

∂βc
∂δt

=
α

(r + δt)
2 (r + λ− µt) > 0 (34)

where we have used equation (15) to determine that the right hand side of equation

(34) is positive. Therefore, an increase in the depreciation rate δt increases the cash

flow coefficient βc. Thus, firms that are small as the result of high depreciation

rates also tend to have large cash flow coefficients, which is consistent with empirical

finding that cash flow effects are stronger for smaller firms.

The empirical literature sometimes identifies fast-growing firms as firms likely

to face binding financing constraints and finds that these firms have larger cash flow

coefficients than slow-growing firms. Inspection of equation (32) reveals that the cash

flow coefficient βc is an increasing function of the growth rate µt, which is consistent

with the empirical findings. Again, our model without any financing constraints is

consistent with empirical findings that have been interpreted as evidence of financing

constraints.

6 Concluding Remarks

In this paper we have developed a new explanation for the empirical time-series

relationship between investment and Tobin’s Q. Traditional explanations of this

relationship are based on convex costs of adjusting the capital stock. In this paper,

we have assumed that there are no such adjustment costs that drive a wedge between

the purchase price of capital and the market value of installed capital. Instead, the

wedge between the market value of a firm and the replacement cost of its capital

stock is based on rents accruing to market power or to decreasing returns to scale in

the production function. The presence of these rents implies that Tobin’s Q exceeds

one.

Beyond showing that Q exceeds one, we showed that the investment-capital ratio

is positively related to Tobin’s Q, which is a measure of average Q, rather than to
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marginal Q, as in the adjustment cost literature. This departure from the adjust-

ment cost literature is particularly important because average Q is readily observable,

whereas marginal Q is not directly observable. In the empirical literature, relatively

small responses of investment to Q have been taken as evidence of large adjustment

costs; here there are no adjustment costs at all, and yet the response of investment

to Q is small.

In addition to being consistent with a positive relationship between investment

and Tobin’s Q, the model in this paper can account for the positive effect of cash

flow on investment. The common interpretation of the positive cash flow effect on

investment is that it is evidence of financing constraints facing firms. However, the

model in this paper has perfect capital markets without financing constraints, and yet

cash flow has a positive effect on investment, even after taking account of the effect

of Q on investment. Therefore, contrary to the common interpretation, a positive

cash flow effect on investment need not be evidence of a financing constraint.

The empirical literature has recognized that the investment regression may be

misspecified or mismeasured, leading to spurious cash flow effects. One strategy to

address these potentially spurious effects is to split the sample into a priori financially

constrained and unconstrained firms. Typically, smaller, faster growing, and more

volatile firms, which are often classified a priori as financially constrained, are found

to have larger cash flow effects. The same pattern of cash flow effects emerges in our

model, even though there are no financing constraints in the model, which calls into

question the interpretation of the empirical findings.

The model in this paper is, by design, very simple and stylized. In order for

Tobin’s Q to exhibit time-series variation, we assumed that the growth rate of Zt

varies over time, though in a very simple way. In order for the ratio of cash flow

to the capital stock to exhibit time-series variation, the user cost factor must vary,

and we induced this variation by assuming that the depreciation rate follows a spe-

cific stochastic process. We eliminated adjustment costs from the current analysis,

not because we believe they are not relevant for an empirical investment model, but
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rather because they are extraneous to the effects we examine here. The goal of the

current paper is to articulate the relationship among investment, Tobin’s Q, and cash

flow. Empirical findings regarding these relationships have been used to detect the

presence of adjustment costs and financing constraints, and to evaluate their impor-

tance for investment. Even when these adjustment costs and financing constraints

are eliminated, however, we show that investment remains sensitive to both Tobin’s

Q and cash flow, undermining the power of the empirical argument. An avenue

for future research would be to introduce richer and more realistic processes for the

various exogenous variables facing the firm. Another direction would be to introduce

delivery or gestation lags in the capital investment process. In ongoing research

(Abel and Eberly, 2002), we endogenize the growth in technology, summarized here

by an exogenous parameter. In that framework, the effects we have examined here

also arise.
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A Appendix: Calculating the Value Function by

Stochastic Integration by Parts

Suppose that u and v are diffusion processes. Ito’s lemma implies that d (uv) =

udv + vdu+ (du) (dv) so that

uv |ba=
Z b

a

d (uv) =

Z b

a

udv +

Z b

a

vdu+

Z b

a

(du) (dv) . (A.1)

Now use this expression to calculate Et
nR∞

t0
e−r(t−t0)dKt

o
. Let

u ≡ Kt

and

v ≡ e−r(t−t0)

and assume that

du ≡ dKt = µK(t)Ktdt+ σKKtdzK

and observe that

dv = −re−r(t−t0)dt.

Set a = t0 and b =∞, use the facts that dt2 = 0 = dtdzK , and rearrange equation
(A.1) to obtain Z ∞

t0

e−r(t−t0)dKt = −Kt0 +

Z ∞

t0

rKte
−r(t−t0)dt. (A.2)

Take the expectation of both sides of equation (A.2) to obtain

Et0

½Z ∞

t0

e−r(t−t0)dKt

¾
= −Kt0 + rEt0

½Z ∞

t0

Kte
−r(t−t0)dt

¾
. (A.3)

The value of the firm is the expected present value of its revenues minus expendi-

tures on capital,

Vt = Et

½Z ∞

t

[Rs − δsKs] e
−r(s−t)ds−

Z ∞

t

e−r(s−t)dKs

¾
. (A.4)
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Substitute equation (A.3) for the second integral on the right-hand side of equation

(A.4) and use the definition of operating profits in equation (4) to obtain the following

expression for the value of the firm at time t

Vt = Kt +Et

½Z ∞

t

πse
−r(s−t)ds

¾
. (A.5)

B Appendix: Expected Present Value of a Stream

with Variable Drift

Let P (µt, Zt) = p (µt)Zt, where p (µt) ≡ Et
nR∞

0
Zt+τ
Zt
e−rτdτ

o
. Let p (µt, T ) be the

value of p (µt) conditional on the assumption that the growth rate of Zt remains equal

to µt until time t + T , and that a new value of the growth rate is drawn from the

unconditional distribution at time t+ T . Therefore,

p (µt, T ) =

Z T

0

e−(r−µt)τdτ + e−(r−µt)TEt

½Z ∞

T

Zt+τ
Zt+T

e−r(τ−T )dτ
¾
. (B.1)

Evaluating the first integral on the right hand side of equation (B.1) and rewriting

the second integral yields

p (µt, T ) =
1− e−(r−µt)T
r − µt

+ e−(r−µt)TEt

½Z ∞

0

Zt+T+τ
Zt+T

e−rτdτ
¾
. (B.2)

Let p∗ be the expectation of p (µt) when µt is drawn from its unconditional dis-

tribution, so that equation (B.2) can be written as

p (µt, T ) =
1− e−(r−µt)T
r − µt

+ e−(r−µt)Tp∗. (B.3)

The density of T is

f (T ) = λe−λT (B.4)

and

p (µt) =

Z ∞

0

p (µt, T ) f (T ) dT. (B.5)

Substituting equations (B.3) and (B.4) into equation (B.5) yields

p (µt) =

Z ∞

0

∙
1− e−(r−µt)T
r − µt

+ e−(r−µt)Tp∗
¸
λe−λTdT. (B.6)
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Equation (B.6) can be rewritten as

p (µt) =
1

r − µt

∙Z ∞

0

£
1 + (rp∗ − µtp∗ − 1) e−(r−µt)T

¤
λe−λTdT

¸
. (B.7)

Evaluating the integral in equation (B.7) yields

p (µt) =
1

r − µt

∙
1 + (rp∗ − µtp∗ − 1)

λ

r + λ− µt

¸
, (B.8)

which can be rearranged to yield

p (µt) =
1 + λp∗

r + λ− µt
. (B.9)

Since p∗ = E {p (µt)}, take the unconditional expectation of both sides of equation
(B.9) to obtain

p∗ = E
½

1

r + λ− µt

¾
(1 + p∗λ) , (B.10)

which implies

p∗ =
∙
E

½
r − µt

r + λ− µt

¾¸−1
E

½
1

r + λ− µt

¾
. (B.11)

Substituting equation (B.11) into equation (B.9) yields

p (µt) =
ω

r + λ− µt
, (B.12)

where

ω ≡
∙
E

½
r − µt

r + λ− µt

¾¸−1
. (B.13)

Therefore,

P (µt, Zt) =
ω

r + λ− µt
Zt. (B.14)
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