Redistribution and Disability Insurance

Hugo A. Hopenhayn UCLA

Juan Carlos Hatchondo University of Rochester

December 6, 2004

1 Introduction

- Design of welfare programs
- Several types of insurance
- Insurance against permanent low ability shocks redistribution.
- Disability insurance
- Incentives
- Analyze interaction in optimal design in simple model
- Evaluate consequences of lack of coordination (multiple agencies)

2 The model

- Two periods
- Two types of agents with productivities $\{x_l, x_h\}$, shares $(1 \pi), \pi$
- Agent's type private (Mirrlees.)
- No disutility of work first period.
- Second period independent shock to disutility of work $e \tilde{F}(e)$.
- Utilitarian Principal.

2.1 Design problem and incentives

- Contracts specify $\{c_{1h}, c_{2h}, c_{dh}\}, \{c_{1l}, c_{2l}, c_{dl}\}$.
- Employment decision in second period:

$$u(c_{2h}) - e_h = u(c_{dh})$$
$$u(c_{2l}) - e_l = u(c_{dl})$$

• Simplified notation for second period utility:

$$U_{2}(c_{2}, c_{d}) = \max_{e} \left(1 - F(e_{j})\right) u(c_{d}) + \int_{0}^{e} \left(u(c) - a\right) F(da)$$

• Self selection constraint:

$$u(c_{1h}) + U_2(c_{2h}, c_{dh}) \ge u(c_{1l}) + U_2(c_{2l}, c_{dl})$$

2.2 The optimal contract

• For convenience take $\pi = \frac{1}{2}$

$$\begin{aligned} \max u\left(c_{1h}\right) + U_{2}\left(c_{2h}, c_{dh}\right) + u\left(c_{1l}\right) + U\left(c_{2l}, c_{dl}\right) \\ \text{subject to:} \\ u\left(c_{1h}\right) + U_{2}\left(c_{2h}, c_{dh}\right) \geq u\left(c_{1l}\right) + U_{2}\left(c_{2l}, c_{dl}\right) \\ 0 \leq x_{h} - c_{1h} + \left(x_{h} - c_{2h}\right) F\left(e_{h}\right) - \left(1 - F\left(e_{h}\right)\right) c_{dh} \end{aligned}$$

 $b \ge x_h - c_{1h} + (x_h - c_{2h}) F(e_h) - (1 - F(e_h)) c_{dh}$ $+ x_l - c_{1l} + (x_l - c_{2l}) F(e_l) - (1 - F(e_l)) c_{dl}$

2.3 Some results

• First order condition for first period consumption:

$$u'(c_{1h}) = \lambda - \mu$$

$$u'(c_{1l}) = \lambda + \mu$$

• $c_{1l} < c_{1h}$ if and only if self-selection binds ($\mu > 0$).

•
$$e_h > e_l$$

- If $\mu > 0$, then:
 - 1. $c_{2h} > c_{2l} > c_{dl} > c_{dh}$
 - 2. $U_{2h} < U_{2l}$
- Remark: with no second period incentive constraint → full insurance → all consumptions identical.
- Incentives for disability limit redistribution.

3 Numerical results

- Calibration (π, x_l, x_h, F, u)
 - 1. $\pi = 0.25$
 - 2. $x_h = 3x_l$
 - 3. $u(c) = \ln c$
 - 4. F exponential hazard rate $\lambda \in \{0.5, 1, 2\}$

Median Disutility of Effort (equivalent % loss in wages)

Hazard	disutility
$\lambda = 0.5$	75%
$\lambda = 1$	50%
$\lambda = 2$	29%

Consumption (Constrained/Optimal)

	$\lambda = 0.5$	$\lambda = 1$	$\lambda = 2$
C_1I C_2I C_dI	85 127 70	89 118 65	96 110 58
replacement	55%	55%	53%
C_1h C_2h C_dh	106 169 40	123 135 13	110 110 0
replacement	24%	9%	0%
Avg. Replacement	45%	50%	53%

- Limited replacement ratios
- Very low for *H* types.
- Less redistribution first period.
- Replacement rates decreasing with λ .

Employment and Disability

	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	Optimal	Constrained	Optimal	Constrained	Optimal	Constrained
F(e_l) F(e_h)	35.1% 72.7%	25.8% 51.2%	53.9% 90.2%	45.1% 90.6%	75.9% 98.6%	72.3% 100.0%
% disabled	55.5%	67.8%	37.0%	43.5%	18.4%	20.7%
autharky		53%		22%		0%

- Lower employment of low types.
- Increase in % disabled.
- Much more than under autharky.

	$\lambda = 0.5$	$\lambda = 1$	$\lambda = 2$
First Best Constrained	100.0 92.7	100.0 95.4	100.0 98.3
Autharky	75.9	77.5	83.6

- Big gains relative to autharky.
- Considerable difference to first best for low λ .

4 Uncoordinated decisions

- Advantages of coordinated redistribution and disability policies.
- Two principals.
- First principal:
 - 1. Decides on wage taxes
 - 2. Budget for disability insurance office.
- Second principal disability insurance office:
- Decides c_{dh} and c_{dl} .

4.1 Coordination problem

- Free riding on self-selection.
- Does not internalize changes in tax revenue.
- Dynamic game.

4.2 Disability insurance office

- Takes as given c_{2h}, c_{2l} (follows from taxes)
- Can discriminate between h, l.
- Offers c_{dh}, c_{dl} to solve:

$$\max_{c_{dh}, c_{dl}} F(e_h) u(c_{2h}) - \int_0^{e_h} af(a) da + (1 - F(e_h) + F(e_l) u(c_{2l}) - \int_0^{e_l} af(a) da + (1 - F(e_l)) u(c_h) da + (1 - F$$

• Marginal cost of increasing c_{dj} :

$$1 - F(e_j) - f(e_j) c_{dj} \frac{\partial e_j}{\partial c_{dj}}$$
$$= F(e_j) + f(e_j) c_{dj} u'(c_{dj})$$

- Marginal benefit: $F\left(e_{j}\right)u'\left(c_{dj}\right)$
- Optimal rule equate Mg benefit/Mg cost on both types.

$$\frac{\left(1 - F\left(e_{j}\right)\right)u'\left(c_{dj}\right)}{\left(1 - F\left(e_{j}\right)\right) + f\left(e_{j}\right)u'\left(c_{dj}\right)c_{dj}} = \lambda$$

where λ satisfies budget constraint.

4.3 First Principal's problem

• Same as before with the additional constraint:

$$= \frac{(1 - F(e_h)) u'(c_{dh})}{(1 - F(e_h)) + f(e_h) u'(c_{dh}) c_{dh}}$$

=
$$\frac{(1 - F(e_l)) u'(c_{dl})}{(1 - F(e_l)) + f(e_l) u'(c_{dl}) c_{dl}}$$

• Rewriting:

$$rac{1}{rac{1}{u'(c_{dj})}+rac{f(e_j)}{1-F(e_j)}c_{dj}}=\lambda$$

- Decreasing in c_{dj} and increasing (decreasing) in e_j if and only if hazard rate is decreasing (increasing).
- If F is exponential, then $c_{dh} = c_{dl}$ is only additional constraint. If hazard rate is increasing $c_{dh} < c_{dl}$ and $e_h > e_l$. If hazard rate is decreasing, opposite!

4.4 Two principals - numerical results

- Same case as before.
- F is exponential, so only add constraint $c_{dh} = c_{dl}$.

Consumption (two planners/one planner)

	$\lambda = 0.5$	$\lambda = 1$	$\lambda = 2$
C_1I	104	104	104
C_2I	93	96	94
C_dI	81	89	70
replacement	47.6	51.2	39.5
one planner	55%	55%	53%
C_1h	75	83	91
C_2h	117	109	116
C_dh	414	155	-
replacement	33%	34%	32%
one planner	24%	9%	0%
Avg. Replacement one planner	42%	44%	37%
	45%	50%	53%

- More redistribution first period (same consumption!)
- Replacement increases for h and decreases for l.

Employment and Disability

	$\lambda = 0.5$		$\lambda = 1$		$\lambda = 2$	
	Constrained	2 Principals	Constrained	2 Principals	Constrained	2 Principals
F(e_l) F(e_h)	25.8% 51.2%	28.5% 41.8%	45.1% 90.6%	52.4% 66.5%	72.3% 100.0%	84.4% 89.9%
% disabled	67.8%	68.2%	43.5%	44.0%	20.7%	14.2%
autharky		53%		22%		0%

• e_l goes up and e_h goes down.

Welfare

	$\lambda = 0.5$	$\lambda = 1$	$\lambda = 2$
First Best	100.0	100 0	100 0
Constrained	92.7	95.4	98.3
Two Principals	91.7	93.1	96.5
Autharky	75.9	77.5	83.6

• Effects not negligible but small.

4.5 Redistribution and incentives

Redistribution (avg. Taxes on H)

	$\lambda = 0.5$	$\lambda = 1$	$\lambda = 2$
Optimal	55%	55%	53%
One planner	46%	44%	48%
two planners	45%	45%	46%

- Interaction with disability insurance incentives leads to lower income redistribution.
- Less so in later period.
- Disability much lower for high wage workers.
- Lack of coordination can lead to more equal disability.