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Abstract

Recent advances in monetary theory incorporate some decentralized and some cen-
tralized trade. These models have an essential role for money and also allow one to
easily add key ingredients from more standard macro models. However, existing pa-
pers consider only cases that dichotomize: allocations in centralized and decentralized
markets are independent, which implies monetary policy has no effect on consumption,
investment, employment, or output in the centralized market. We analyze natural gen-
eralizations of the model without this special property, and hence with more interesting
positive and normative policy implications. We also compare different mechanisms for

monetary exchange, including bargaining and competitive markets.
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1 Introduction

We believe that much progress has been made over the last 15 years or so in modeling explic-
itly the microfoundations of monetary exchange. There is now a large literature analyzing
models that go beyond previously prominent reduced-form approaches, such as imposing a
cash-in-advance constraint, which says people simply “have to” use money to acquire certain
goods, or sticking money into preferences or technology, which says people are “happier or
more efficient” when they use money. A representative paper in the microfoundations lit-
erature provides details about the underlying environment — preferences (over consumption
goods, not assets), technology, the pattern of meetings, information, and so on — that give
rise to outcomes where agents may choose endogenously to use certain objects as media of
exchange, and attempts to derive conditions under which certain institutions, like monetary
exchange per se or certain monetary policies, lead to higher output and welfare. Modeling
explicitly the frictions in a model that can make money essential seems like progress.

It is still the case, however, that many mainstream macroeconomists continue to use
the reduced-form approach. This was clearly understandable in the early days of the mi-
crofoundations literature, for a variety of reasons — not least of which was that papers in
this literature needed (or at least used) some very strong assumptions about things like
the amount of money and goods agents were allowed to inventory, and also because they
were so focused on the process of exchange they abstracted from many of the ingredients
that more standard macro models routinely incorporate, like physical capital, labor markets,
competitive firms, trends or shocks in productivity, etc. These features looked not only un-
conventional and perhaps aesthetically unpleasing to some economists, but more importantly
they seemed to preclude analyses of many macroeconomic issues, including monetary policy

as it is usually conceived.!

'As Azariadis (1993) describes the situation, “Capturing the transactions motive for holding money
balances in a compact and logically appealing manner has turned out to be an enormously complicated
task. Logically coherent models such as those proposed by Diamond (1982) and Kiyotaki and Wright (1989)
tend to be so removed from neoclassical growth theory as to seriously hinder the job of integrating rigorous
monetary theory with the rest of macroeconomics.” And as Kiyotaki and Moore (2001) more recently put it,

“The matching models are without doubt ingenious and beautiful. But it is quite hard to integrate them with



More recent work in monetary theory has gone some way towards reducing the distance
between monetary models with microfoundations and mainstream macro. Examples include
the models in Shi (1997) and Lagos and Wright (2003) that do away with the artificial
restrictions on inventories in the earlier models, with a minimum loss (perhaps a gain) in
tractability. Some details in these two models differ a lot — in particular, Shi assumes that
the fundamental decision-making unit is a family with a continuum of members that provide
intrahousehold insurance against the luck of the trading process, which by the law of large
numbers implies the useful result that every household of the same type starts each trading
round with the same real balances, while Lagos and Wright assume individuals have periodic
access to centralized markets, which by the assumption of quasi-linear utility delivers the
same result. But either approach allows us to much more easily analyze standard questions
concerning, say, optimal monetary policy and the welfare cost of inflation.

Still, the base-line models in Shi (1997) and Lagos and Wright (2003) do not look much
like mainstream macro, as represented by, e.g., the neoclassical growth model and its many
applications to business cycles, public finance, development, and so on. One reason is that
those models use a very different price-determination mechanism: since the literature on the
microfoundations of money has long been based on the notion that bilateral (or at least
relativey small group) trade is a key element contributing to the essentiality of a medium
of exchange, rather than competitive Walrasian pricing, this literature adopted one of the
mechanisms commonly used in search-theory, usually bargaining or price posting. Another
reason is that those models are still missing some of the staple ingredients in standard macro
models, including labor markets, capital investment, etc. So while these newer models do
allow us to address some more conventional issues, they are still pretty far removed from the
mainstream, and hence most practitioners continue to ply the reduced-form approach.

The goal of this project is to continue the integratation of monetary theory with main-
stream macro, in two ways. First, following up on a line in Rocheteau and Wright (2003),
we explore the implications of using competitive pricing rather than, say, bargaining in the

Lagos-Wright model, not only in the centralized market but in all markets. This allows one

the rest of macroeconomic theory — not least because they jettison the basic tool of our trade, competitive

markets.”



to disentangle which results come from explicitly incorporating frictions into the physical
environment (e.g. from assumptions on specialization, information, etc.) and which come
from imposing a particular non-competitive price-determination mechanism. Moreover, it
turns out that using competitive pricing dramatically simplifies the workings of the model,
and this allows us to pursue our second line — which is that given the basic Lagos-Wright
structure, one can without much difficulty add firms, labor, and capital markets, basically
integrating a prototypical monetary model with the neoclassical growth model.?

This second line was also pursued in Aruoba and Wright (2003), but the results there
are quite special because the way that model was specified implies a very strong dichotomy:
one can solve independently for the allocations in the centralized and decentralized markets.
This dichotomy result is problematic for several reasons. First, in some sense it means that
the model has really not integreated monetary theory and standard macro at all — at best, it
shows that they may under certain assumptions coexist without getting in each other’s way.
Second, it has stark policy conclusions: changing monetary policy affects prices and quantities
in the decentralzied market, but has no impact on any variable in the centralized market.
In particular, aggregate employment and investment are independent of money. We show
here that the dichotomy is not general: small and natural changes in the specification lead to
versions of the model with rich feedback between the centralized and decentralized markets,
and hence where monetary policy has interesting implications for aggregate consumption,
employment and investment.

The rest of the paper is organized as follows. In Section 2 we describe the basic model
and derive the equilibrium under two different pricing structures: bilateral bargaining and
competitive pricing. Optimal monetary policy is discussed as is the impact of changes in
the money growth rate on consumption, investment and output. Section 3 extends the basic
model by introducing market specific capital and by changing the production technology of
capital. Section 4 outlines our calibrtion and Section 5 presents our welfare results. Finally,

Section 6 concludes.

21t is also possible to add capital to the basic Shi model, as in Shi (1999) or Faig (2001), e.g., but it seems
to us slightly easier and perhaps more natural to do so in the Lagos-Wright version because the centralized

markets are already up and running.



2 The Basic Model

The environment is similar in spirit to the framework introduced in Lagos and Wright (2003)
— hereafter denoted LW. There is a [0, 1] continuum of infinite-lived agents. Time is discrete,
and each period is divided into two subperiods called day and night. The differences between
these subperiods is as follows. First, at night agents trade in frictionless markets, while by
contrast during the day trade occurs in markets with various degrees of frictions, depending
on the version of the model. One friction that is present in all versions is a double coincidence
problem, generated here by taste and technology shocks. Another such friction is that agents
are assumed to be anonymous in day markets, which precludes standard credit arrangements,
because they cannot be enforced (Kocherlakota 1998; Wallace 2001). These two frictions
make money essential. Additionally, while the night market is always perfectly competitive,
we will consider two alternative mechanisms for the day market: competitive price taking,
and bilateral bargaining.

At night goods can be either consumed or invested as capital, and productive capital
and labor services are rented to firms in competitive markets. During the day labor is not
traded in the market, because the technology used by firms at night does not operate during
the day; however, agents’ own labor effort ¢ may be used as an input into an individual
technology in the day market. In the base model capital is also not traded in the day market
(but it is in one extension considered below). The assumption is that once put in place
capital cannot be physically moved to the location where the day market meets. Although
capital is not physically present, agents individual technologies for producing during the day
still depend in general on k.> We write ¢ = f(k, e) for the individual technology during the
day, and @ = F(K, H) for the production function operated by firms at night.

To generate a double coincidence problem we adopt the following specification for tastes

3As an example of capital that enters the production function even though it is physically not present
and hence not tradable at a given location, think about logging on to your computer from a remote site. The
only reason for making capital immobile here is to preclude it from serving as a medium of exchange in the
day market; an even simpler alternative would be to interpret k as human capital, but this would obviously
change the empirical implications. See Waller (2004) and Lagos and Rocheteau (2002) for models in which

capital can be used as money.



and technology during the day: for each agent, with probability ¢ he wants to consume
but cannot produce, with probability ¢ he can produce but does not want to consume,
and with probability 1 — 20 he can neither produce nor consume. This is equivalent for
many purposes to the standard specification in the search literature of random bilateral
matching, where there is a probability ¢ of wanting to consume a good produced by a
random partner. We frame things here in terms of random tastes and technology rather
than random matching simply because it helps some of the discussion to follow, especially
the comparison across the different pricing mechanisms. In any case, due to the double
coincidence problem and anonymity, money is essential.? The supply of money is M and
changes according to My, = (1 4+ 7)M, where we use a subscript +1 to denote next period.
New money injected via lump sum transfers (or taxes if 7 < 0) in the night market.

Instantaneous utility at night is U(x) — Ah where z is consumption, h is labor hours and
A is a constant.. Utility during the day is random: with probability ¢ an agent wants to
consume and has utility u(¢q) where ¢ is consumption; with probability o an agents is able
to produce and has utility —n(e) where e is labor effort; and with probability 1 — 20 utility
is 0. We assume that U(x), u(q), and n(e) have the usual properties. Linearity in A is not
important, in principle, but it does generate a huge gain in tractability: as in LW, it allows
us to derive nice analytical results.” Separability across (z,q, e) facilitates the presentation
somewhat, but is not otherwise important, as we show in the Appendix. The discount factor
across periods is € (0,1); to reduce notation there is no discounting between subperiods,
but this is easy to relax (see Rocheteau and Wright 2003).

In the analysis below it is convenient to write the agent’s disutility of effort as the utility
cost of producing goods using capital. Let ¢(q, k) denote the cost in terms of utility from
producing ¢ units of output using k£ units of capital. The cost function is obtained as follows:
for a given k, solve ¢ = f(e, k) for e = ¢(q, k) and let ¢(q, k) = n[y(¢, k)]. Notice ¢, > 0,

cr < 0, cgg > 0, and cg, > 0 under the usual monotonicity and convexity assumptions on f

4We mean essential in the technical sense, that (desirable) allocations can be achieved with money that
cannot be achieved without money, subject to the relevant resource and incentive feasibility conditions (again

see Kocherlakota 1998 or Wallace 2001).
SRogerson (1988) shows that having utility linear in A is equivalent having general preferences, indivisible

labor, and employment lotteries; the same is true here.



and 7, and have ¢y < 0 under the additional restriction f. fin” > ' (fifee — fefer), which
always holds in the case where k is a normal input, including the case fi. > 0.9

We analyze the model by first considering the night market and then the day market.
At night, if r is the rental rate on capital and w the real wage, profit maximization implies
r=Fg(K,H)and w = Fy(K, H), and constant returns implies equilibrium profits are zero.
Normalize the price of the capital/consumption good to 1 and let ¢ be the relative price of
money. Let W(m, k) and V(m, k) denote the value functions of agents entering the night
market and day market, respectively, with money and capital (m, k). Then the problem of
an agent in the night market is

W(m,k) = max U(z) — Ah + BV (my1, kiq)

x,h7m+1,k+1

st.x = rk+wh+¢m+7M —myq)+ (1 —0)k — ki,

where 0 is the depreciation rate, (m.1, k1) is the money and capital taken out of the market,
pre-transfer, and 7M is the transfer. Eliminating h using the budget equation, we have

W(m,k) = é[<zb(m+T]\/[) +(r+1—9)k]

w

A
+ max |U(x) (x + ¢pmyq + ki) + SV (myq, kyq)

z,m+1,k+1 w

6Given ¢ = f(k,e) implies e = (q,k), Oe/0q = Y, = 1/fe > 0 and 9e/0k = ), =
~fu/fe < 0. Also, ¥y = —fee/fS > 0, ¥y = —1(f2fur —2fefu + fifee) /fe > 0, and ¢, =
(fefee = fefer) /fe. Hence, ¢ = 0/'/fe > 0, cx = —0'fr/fe < 0, cqq = L(fe) —=0'fee) /f2 > 0,
ck = — [0 (f2frr = 2fcfi+ f2fee) = [EN'] /2 > 0 and cog = [—fefun” + 0 (fifee — fefer)] [ fe. Say-
ing k is normal means that in the problem minwe + rk s.t. f(k,e) > ¢, the solution satisfies 0k/0q =

_(fkfee - fefek-) > 0.



The first order conditions for the choice variables are”

, A
z : Ulx)= .
A
M S = BVl k) )
A
kiq o= BVi(my1, k).

A key result is that, given prices, W is linear in m and k,

Wa(m, k) = 22 )
Wi(m, k) = M (3)

w

Moreover, it should be clear from the above that the choice of (my1,k,1) is independent
of (m, k), and this makes the distribution of money and capital holdings degenerate in
equilibrium. Intuitively, the linearity of utility in A in an LW environment eliminates wealth
effects, and this makes all agents choose the same (m, 1, k,) regardless of (m,k).> While
models with nondegenerate distributions are worth studying, for some questions it seems
reasonable to abstract from distributional issues and study representative agent models first.
This is what we get from the linearity of utility in A.

We now proceed to the day market. The value function is

V(m, k) = oVy(m, k) + oVi(m, k) + (1 — 20)W (m, k) (4)

"The second order conditions are complicated, and generally ambiguous, since they involve second deriva-
tives of V' which can involve third derivatives of u and ¢, at least under the bargaining mechanism. Following
the methods in LW, one can show that V' is concave if the bargaining power parameter 6 is close to 1, or if
we impose additional conditions on preferences and technology (in LW ¢ was normalized to be linear and v’
was assumed log concave). We avoid these details and simply assume V' is concave in the bargaining model,

but again this is always true for  close to 1.
8 Actually, in addition to linearity in h, we also require V strictly concave and an interior solution; see LW

for technical assumptions to guarantee these results. The assumptions needed for interiority involve initial
conditions: if (m,k) is very disperse across people, then the rich remain rich and the poor remain poor
for several periods; if we start with (m, k) not too disperse, however, we converge quickly to a degenerate

distribution and stay there.



where

Viim, k) = u(g) + W(m — dy, k)
Vi(m, k) = —clgs, k) + W(m +ds, k)

are the value functions when one is a buyer and seller, respectively, and ¢, and d, are the
amounts of output and money agents expect to exchange when buying, and ¢, and d, are the
amounts when selling, to be determined below.? Using the result in (2) that W, = A¢/w,
we have

V(m,k)=0c [u(qb) - db% —c(qs, k) + ds%} + W(m, k).

Differentiating with respect to m and k yields the envelope conditions

A A A
’%_ﬁ%} +U|: aqs ¢ad5} +_¢

Vu(m, k) = o [u

om w Im ~ om + w Om w (5)
B 00  A¢ 0d, 0qs A¢ dd, A(r+1-19)
Vi(m, k) = “[“ ok ak} 0[_ank_c’“+ w ak]+ w - ©

It remains to specify how prices are determined in the day market, so that we can substitute
for the derivatives in the above expressions. This will differ across the two versions of the
model presented below.

Before pursuing equilibrium, however, as a benchmark we begin with the planner’s prob-
lem, unconstrained by the assumption that agents are anonymous, so that we can simply
enforce whatever exchange we like without using money. The planner’s problem is described

by

J(k) = max U(z) — Ah+ ou(q) — oc(q, k) + BJ (ky1) (7)

mvhaq7k+1

st.x = F(kh)+ (1 —=08)k—Fkp
Substituting for x and differentiating, the first order conditions are

h:  A=U'(z)Fy(k,h)
ks U'(z) = BJ (ki) (8)
q:  U(q) =cylq,k)

Tt should be clear how exactly the same equation would emerge from a random matching model (see

LW, for example).



The envelope condition is
J'(k) = U'(@)[Fi(k, h) + 1 = 6] — ocr(q, k),
and the Euler equation is

U'(a) = BU (231) [k, hn) + 1 — 6] — Bocr(qrn, ki) (9)

It is clear that the solution has ¢ = ¢*(k) where ¢*(k) satisfies u'(¢) = ¢,(q, k). Given this,
the other control variables (k. 1, h, z) satisfy relatively standard conditions, the first equation

in (8), (9), and the constraint in (7).

2.1 Equilibrium I: Bargaining

Here we consider a mechanism used in much recent work in monetary theory, where agents
bargain bilaterally. While the results are more complicated under bargaining than the com-
petitive mechanism presented below, bargaining is arguably a very natural solution concept
in models with frictions, and also serves to highlight certain effects that the competitive
mechanism masks. Thus, here each agent with a desire to consume is matched with one who
can produce. Since they - in particular, the buyers - are anonymous, trade must be quid
pro quo meaning they must pay with cash. The buyer transfers d dollars to the seller in
exchange for ¢ units of output, where (¢, d) are determined via the generalized Nash solution
with the bargaining power of the buyer denoted 6 and threat points given by continuation
values. In general, (¢,d) depends on the assets of buyer and seller, (my, k) and (my, ks).1°
There are two obvious feasibility conditions for the exchange: ¢ cannot exceed the output of
the seller, ¢ < f(e, ks), and d cannot exceed the money holdings of the buyer, d < m,,.

The buyer’s payoff from the trade is u(q) + W (m, — d, k;) and his threat point W (my, ky).

Thus, his surplus is

Sb = u(q) + W(mb — d, k)b) — W(mb, k‘b)
= u(q) — dpA/w,

10Note that while all agents have the same (m, k) in equilibrium, we still need to ask what happens if a

given individual deviates off the equilibrium path.

10



by virtue of (2). The seller’s payoff is —c(q, ks)+W (ms+d, k) and his threat point W (m, ks).
Thus his surplus is
Ss = —clg,ks) + W(ms+d, ks) — W(ms, ks)
= _C(Q7 ks) + d¢A/w

The bargaining problem can be written
max SPSIT0 st d < my,.
q7

As in LW, one can show that in equilibrium with k, = K for all agents the constraint holds
with equality, d = m,. Also as in LW, this further implies ¢ < ¢*(k;) where ¢*(ks) is the
solution to u'(q) = ¢,(q, ks), typically with strict inequality ¢ < ¢*(ks) (here the inequality
is strict unless # = 1 and we follow the optimal monetary policy). To solve the bargaining

problem, insert d = my and take the first order condition with respect to ¢ to get
0Ssu'(q) = (1 — 0)Spey(q, ks).

Then insert S, and S, and rearrange as ¢my, = g(q, ks)w/A, where

Oc(q, ks)u'(q) + (1 — O)ulg)cq(q, ks)
Ou'(q) + (1 = 0)cq(q, ks) '

9(q, k) = (10)

Hence, ¢ = q(my, ks), where the function q(my, k) is given by the solution to A¢gm,/w =
9(q, ks) (the dependence on prices w and ¢ as well as the parameter A is implicit). This
implies the key derivatives we need in (5) and (6) are given by dg¢/0m, = A¢/wg, > 0 and
0q/0ks = —gi/gy, > 0, where

e [0u 4 (1 — 0)cg] +0(1 — 0)[u — c][u'cyq — cqu”]
9a = B + (1= 0)c,? >0 (11)
cpt [0u' 4+ (1 — 0)cy] + c(1 — )/ (u — )

[0 + (1 - 0)c,]”

g = 0 <0 (12)

(we also have 0q/0mg = 0q/0ky, = 0, Od,/Omy, = 1, and dds/Omy, = Od,/0ks = Ods/Oks = 0).
Thus, if the buyer brings more cash or the seller brings more capital to a meeting, more output
gets traded. Notice that in general the price is non-linear: if the buyer brings half as much

money, he does not get half as much ¢. For 0 = 1, ¢g(q, ks) = ¢(q, ks), which makes things a

11



lot simpler: g, = ¢, and g = ¢, and so therefore dq/0my, = A¢p/wc, and 0q/0k = —ci/c,.
In this case, if marginal cost ¢, is constant, pricing is linear: if you spend another dollar you
get another unit of ¢.!*

Inserting (m, k) = (M, K) and the derivatives, (5) and (6) become

u'(g)A¢ | (1—-0)Ad

Vin(M,K) =

9q(q, K)w w
Alr+1-9
Vk<M,K) = ¥_07(Q7K)7

Ck (Q7K)gq (an) —Cq (Q7K)gk ((L
94(¢,K)

ditions for my; and ky; in (1), and inserting the equilibrium prices ¢ = g(q, ks)w/MA,

where (¢, K) = K) < 0. Substituting these into the first order con-

r=Fg(K,H), and w = Fy(K, H), we arrive at the equilibrium conditions

9(¢. K)  Lg(g+, K1) [, w'(g41)
M = F My, boot qu(Q+17K+1) 19)
Uz) = BU(x41)[Fx(Ksr, Hia) + 1= 6] = Boy(qir, K1) (14)

The other equilibrium conditions come from the first order condition for = in (1) and the

resource constraint on total output

A = U'x)Fy(K, H) (15)
x = F(K,H) +(1-08§K—K,,. (16)

A monetary equilibrium is defined as (positive, bounded) paths for (¢, K1, H, x) satis-
fying (13)-(16), given the initial Ky. A nonmonetary equilibrium also always exists, which
satisfies ¢ = 0 instead of (13), (14) with v(-) = 0, and (15)-(16), which are simply the
equilibrium conditions for the standard nonmonetary growth model (with & entering utility
linearly). Returning to monetary equilibria, consider the case where M, = (1 + 7)M with
T constant, so that it makes sense to focus on a steady state, defined as a constant solution
(¢, K, H, x) to (13)-(16). Defining the rate of time preference p and the nominal interest rate

i such that g = ﬁp and 1 +1i = (1+ p)(1+ 7), we can simplify the steady state conditions

'We can also simplify the bargaining solution by setting § = 0, but then m; = 0 and the monetary
equilibrium breaks down. The reason § = 1 does not symmetrically imply ks = 0 is that the same capital is

used in the day and night market in this version of the model.
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ale

i d(g)
T aaE) {an
B v(q, K)
pd = Fill,H) = o25es (18)
A = U'x)Fy(K, H) (19)
v = F(K, H)-/JK. (20)

First, one simple special case of our model is the specification in Aruoba and Wright
(2003), where capital does not enter the daytime technology, ¢(¢, K) = ¢(¢q). In this case
9(q, K) = g(q), v(¢, K) = 0, and the equilibrium conditions are

M _ 29(g4) . UU,(QH)
M ’ M4 ! " 9'(q+41)
U'lz) = BU(zn)[Fk (K, Hi) +1 -]

A = U'(zx)Fy(K, H)

8
I

F(K,H)+ (186K — K.

This model displays a strong dichotomy: the first equation determines the path for ¢ and
the other three determine the paths for (K, H,x) independently. An implication of this
feature is that M, which enters only the first equation, affects ¢ but not (K1, H, z); that is,
investment, employment and consumption in the night market is independent of monetary
policy.

Of course this does not mean policy is super neutral in Aruoba and Wright (2003): the

path of M affects ¢, and ¢ is a real variable. For example, in steady state ¢ satisfies

1+~ =
g

>From this it follows that dq/0i < 0 as long as the steady state ¢ is unique (which is
true under certain conditions addressed in LW). Moreover, we know that ¢ < ¢* in any
equilibrium, where ¢* is the efficient quantity defined by «'(¢*) = ¢(¢*). Hence, we maximize

welfare by making ¢ as small as is consistent with equilibrium. This turns out to be the

12This expression for i satisfies the Fisher equation, which eliminates arbitrage opportunities from holding

nominal versus real assets.
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Friedman Rule, i = 0, which requires the money growth rate 7% to satisfy (14+7)(1+p) =1
(for any 7 < 71" equilibrium does not exist; see LW). Hence, the optimal policy is 7 = 7%
and it implies v/(¢) = ¢'(¢q). However, 7¥" does not yield the first best outcome unless 0 = 1,
since in the case = 1, g(q) = ¢(q) and so 7 = 7 implies v/(q) = (¢). When § < 1 the
Friedman Rule corrects the dynamic wedge associated with impatient agents holding non-
interest-bearing money, but monetary policy cannot correct a second distortion identified in
LW as a hold-up problem in the bargaining game when 6 < 1.

The dichotomy in Aruoba and Wright is very special, and does not hold in the generaliza-
tion where k enters the cost function since K and ¢ both appear in (13) and (14), and there is
no way to solve independently first for ¢ and then the other variables. Naturally, the efficient
investment decision not only takes into account the fact that K affects productivity in the
night technology, but also productivity in the day technology. A change in the growth rate
of M affects ¢ and this in turn affects the return to K. Intuitively, an increase in inflation
(nominal interest rates) reduces the return to trading in the day, which affects the value of
capital in that market and hence investment. But the same capital is used in both day and
night production, and so an increase in inflation affects productivity and hence employment
and output in the night markets.

However, in the case § = 1, notice that v(¢, K') = 0. This means that, although the model
is not dichotomous, it is recursive: (14)-(16) can be solved for (x, K1, H) independently of
¢, and the solution is exactly the path from the standard (nonmonetary) model; then, given
the path for capital, (13) determines the path for ¢. In this case, anything that affects capital
affects the value of money, but there is no feedback in the other direction from ¢ to K. For

example, in steady state we have

0 c
_q — —qk > ()
0K  cu — ey,

(anything that increases K raises the value of money). An implication is that monetary policy
affects ¢, but not investment, employment or consumption in night markets. Intuitively, what
happens when 6 = 1 is that sellers get none of the gains from trade, so they realize none of
the cost savings from bringing extra capital into the day market (another holdup problem)

and hence the investment decision is based solely on returns in night production.

14



This holdup problem in the demand for capital is general (it does not only apply in the
extreme case = 1) and will cause K to diverge from its efficient level. This represents an
additional distortion over and above the usual inefficiency that arises when 7 > 77, and the
holdup problem in money demand that arises when # < 1. Normally these holdup problems
are resolved if one sets 6 correctly (this is the insight of Hosios (1990) and others), but here
it cannot be done: # = 1 is required to resolve the holdup problem in the demand for money,
but this is the worst possible case for the holdup problem in the demand for capital.'®> When
capital reduces the cost of producing day goods, this should be taken into account when
investing in K, but whenever # > 0 the investor has to share the cost savings with the buyer
and hence under-invests. There is obviously no way to set € to both 1 and 0 to eliminate
both holdup problems in the bargaining game. In the next section we consider an alternative

pricing mechanism that does.'

2.2 Equilibrium II: Competitive Pricing

The idea of using competitive (Walrasian) price-taking behavior as an alternative to bargain-
ing in search-type monetary models was explored in Rocheteau and Wright (2003). There it
was assumed that agents were randomly allocated trade opportunities in the sense of access
to markets but in these markets, rather than having agents bargain bilaterally, there is an
auctioneer who sets prices to equate supply and demand. It is legitimate to consider this
pricing mechanism and still assume anonymous traders so as to rule out credit and main-
tain an essential role for money.!> In fact, this mechanism can be reinterpreted in terms
of “competitive search equilibrium” — an equilibrium concept used by others in nonmone-
tary search theory. In Rocheteau and Wright (2003), this mechanism actually dominates
Walrasian pricing due to a “search externality” at the entry decision; since we do not have
an entry decision here the allocations are the same under the two mechanisms - Walrasian

pricing and competitive search - we present things in terms of the simpler story.

13When 6 = 0, we have v(q, K) = cx(q, K), which yields the efficient investment decision, given ¢ but also

yields ¢ = 0.
HTn addition to LW, see Rauch (2000), and Camera, Reed and Waller (2003) for discussions of holdup

problems in monetary models.
15See also Levine (19xx), Kocherlakota (2003), and Temzilides (19xx) for related models.
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The value function for the day market before the shocks are realized has the same form

as in (4) except now V,(m, k) and Vi(m, k) are different. The buyer’s problem is

Vi(m, k) = max u(g,) +W(m —d,k)
b,

st. pgp = d and d<m
and the seller’s problem is

Vs(m, k) = max —c(qs, k) + W(m + pgs, k).

gs

These are standard competitive demand and supply problems with p taken parametrically.
In equilibrium ¢, = gqs = q because we have conveniently assumed there are the same number
o of buyers and sellers.

The buyer’s choice satisfies u/(q) = pW,,(M — pq, k) = pA¢/w if the constraint is not
binding and ¢ = M /p if it is, where we have inserted the equilibrium condition m = M, and
W, = A¢/w (which we can do because the night market here is exactly the same as before).
The seller’s choice satisfies ¢,(q, k) = pW,,,(M + pgq, k) = pA¢/w. If the buyer’s constraint
is not binding, the equilibrium ¢ solves u/'(q) = ¢,(¢.k), or ¢ = ¢*(k); if the constraint
is binding, the equilibrium solves ¢,(q, k) = A¢M/wq. It is again easy to show that the
constraint will be binding in equilibrium.

The next step is to differentiate (?7?) with respect to m to get

Valm B) = olul(a) ~ pAd/u] 5L + Adfw

= UUI(Q) —0 w
=, +(1-0)Ap/

where we have used dq/0m = 1/p since the buyer’s constraint is binding. Similarly,
Vi(m, k) = —ock(q, k) + A(r +1—=9)/w.

Inserting V,,, and V}, into the first-order conditions in (1) and rearranging yields the analogs
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to (13)-(14) for this model:'®

cq(q, K)q _ Cq(qs1, K1)qa B ' (q41)
M =7 My, boo GCq(qH, K+1) (21)
Uz) = BU(241) [Fr(Ki1, Hip) +1 6] = Bocg(qr, K1) (22)

The other equilibrium conditions are the same, and we repeat them here for convenience:

A = U'(x)Fy(K,H) (23)
r+ Ky = F(KH)+(1-0)K. (24)

Monetary equilibrium is now defined by (positive, bounded) paths for (¢, z, K1, H) satis-
fying (21)-(24) given the initial K. The difference between the bargaining and competitive
pricing models is in the difference between (13)-(14) and (21)-(22). They differ because
9(¢, K) # c4(q, K)q and g4(q, K) # c¢,(q, K) in the first pair of equations and because
v(q, K) # ci(q, K) in the second pair. Suppose we concentrate for now on steady states.!”

Then in the competitive pricing model we have

i v'(q)
14— = 25
- o cq(q, K) (25)

Ck(qa K)
0 = Fx(K.H)—0———= 26
P + K( ) ) 9 UI((E) ( )
while in the bargaining model we have
i v'(q)

14— = 27
o 9q(q, K) 27
p+o = Fx(K H)—ov(q41, K1) (28)

Competitive pricing significantly alters the model: (25) and (27) are the same iff § = 1;
and (26) and (28) are the same iff § = 0. In this way, competitive pricing is able to eradicate

the holdup problem in both the money demand and investment decisions. The idea is that in

16Tn this model it is easy to verify the second order conditions must hold; the difference is that now pricing
is linear so we do not need any conditions on third derivatives the way we do in the bargaining model with

0 <1.
"In steady state the difference between g(q, K) and c,(q, K)q across the two models is irrelevant. This is

not so out of steady state. For example, even if § = 1, so that g(q, K) = ¢(q, K), (13) and (21) differ as long

as ¢(q, K) # cq4(q, K)gq — i.e. as long as ¢ is nolinear in g.
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the competitive model agents take the price as given; their individual choices have no effect
on the terms of trade. Since both holdup problems are eliminated under Walrasian pricing,
the only distortion remaining is the dynamic wedge associated with discounting, and under
the Friedman rule : = 0 we get the first best.

Comparing (9) with (22), the investment decision is not distorted in the competitive
monetary equilibrium except to the extent that ¢ is wrong. The first order condition for
q in (8) says that the efficient solution is ¢ = ¢*(k). From (21), for this to be true in the

competitive monetary equilibrium we require

My _ Cq(CI+17K+1)CI+1'
M Cq((],K)Q 7

in particular, in a steady state we require the Friedman rule. Hence, the steady state of
the competitive monetary equilibrium achieves the first best outcome at ¢ = 0: the value
of money is given by ¢ = ¢*(k), and then investment, employment and consumption are all
efficient. By comparison, in the bargaining model, even at ¢« = 0, ¢ was too low due to the
holdup problem in money demand that occurs whenever # < 1, and k is too low due to the
holdup problem in investment that occurs whenever 6 > 0.

To close this section, we mention that even though the above equations determine the ag-
gregate variables (¢, z, H, K1), the individual values of these variables differs across agents.
First, only a measure o of the population consume ¢ and have m = 0 when they enter the
night market. A group also of measure o are sellers each period and enter the night market
with m = 2M, while a group of measure 1 — 20 did not trade and enter with m = M. These

agents all choose the same z, k' and m’, but supply different amounts of labor,

H+ %M for buyers
h=< H-— %M for sellers (29)

H otherwise

where H is aggregate hours.

2.3 Example

To obtain more insight on how inflation affects the steady state of the economy, we construct

an example using explicit functional forms. Analysis of the general model is contained in
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the appendix. For ease of presentation, we focus on the competitive pricing equilibrium.

Consider the following functional forms:!®

F(K,H) = K*H"™™ 0<a<l1
U(x) = Inzx
@ = L 1
u(q) = <v<
L=~
(g, K) = ¢*K"% o>1.

Let k = K/H denote the capital-labor ratio. Then equations (19), (20), (25) and (26) can

be solved to obtain

(1-a)

r o= ke (30)
K = % thK>0%ﬁl§>0f0rk<<%)lia (31)
0= ) s @

pro = o a{gp(i‘i(y)r[u—a)//ql - L) (33)
= Nk

where j1 = £ < 1.

Equation (33) determines the solution for k which can then be used to determine the
steady state values of z,q, K and H. It is straightforward to show that for u > a N(k) is
a monotonically decreasing function in k that approaches infinity as k — 0 and approaches
zero as k — +o0o. Thus, a unique equilibrium value of k exists. For ¢ = 0, we obtain the
non-stochastic steady state corresponding to Hansen’s (1985) RBC model. With ¢ > 0,
capital creates additional value in production during the day market which leads agents to
accumulate more capital on the margin. An increase in the money growth rate decreases
N(k) for any given value of k. Consequently, greater money growth raises ¢ and reduces

the steady state value of k which in turn lowers z, K, and ¢. Furthermore, from (31), H =

18The cost function below is obtained when 7(e) = e and ¢ = e®k!~® where 0 < ® < 1. As a result,

©=1/0>1.
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(1 —a)/[A(1 — dk'~*)] which is increasing in k. So agents also work less in the night market
when money growth is higher.!?

The intuition for these results is the following. An increase in inflation lowers the value
of money and the quantity of goods traded in the day market. Since production is lower,
the marginal value of capital in the day market falls and so agents accumulate less capital in
the night market. The reduction in capital reduces the real wage and so agents work less in
the night market. Since the planner’s problem is replicated only under the Friedman rule,

1 =0, then any ¢ > 0 is clearly welfare reducing.

3 Alternative Specifications

3.1 Two Capital Goods

So far, the same stock of physical capital k£ was an input to both day and night production.
However, it would also seem reasonable to assume that different types of capital are needed
to produce each good. In this section we modify the baseline model to allow for two types of
capital: k is used to produce goods at night and a new type of capital z is used to produce
day goods. Production of both capital stocks requires an investment at night; k£ and z are
both traded solely in the night market and are not mobile. The two capital stocks can also
depreciate at different rates, o for k and w for z.
The problem in the night market is now

W(m,k,z) = max U(z) — Ah+ BV (myq, kiq, 241)

zhymyr,ky1,241

st.x = ¢g(m—mpy+7M)+wh+rk+(1—w)z+(1—0)k— ki1 —241.
Eliminating h, this can be written as

W(m,k,z) = é[gb(??”b—f-7'M)+(7“—1—1—5)1{—1—(1—@2}

w

A
+  max U(x) - a(l’ +¢myr + ki + 201) + BV (Mg, ki, 240).

T,m41,k41,241

YFor o > i, N(k) can be U-shaped implying that multiple equilibria may exist.
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The first order conditions are

A

Ullx) = 34
¢ _ k
LS w BV (mr, ki1, 241)
A
ki E = BVk(mH, ki1, Z+1)
A
Z+1 w BV.(mya, kg, 241)
and the envelope conditions are given by
A
Wm(m> k, Z) = E¢ (35)
A
Wi(m,k,z) = E(r—i—l —9)
A
W.(m,k,z) = . (1—-w)

As with k, (34) shows that agents take the same amount of z out of the night market.
Hence the distribution of (m,k, z) will be degenerate in equilibrium. In the day market,
everything is as before except we replace ¢(q, k) with ¢(q, z). The bargaining solution is still

given by (10) with the substitution of z for £,

Apm Oc(q, z5)u'(q) + (1 — 0)u(q)cy(q, 25)
w 9(4,2) 0w (q) + (1 — 0)cy(q, 2s) '

As before it can be shown that buyers spend all of their money balances so that d = m.
The value function in the day market is the same as before except there is an extra state

variable, and z replaces k. The envelope conditions are

A !
Vilmok2) = Ao l1— o4 oD
w 9q(q, %)

A
Vi(m,k,2) = = (r+1—0)

‘/Z(mv ]{772) = (1 _w) _07(% Z)

SHIS

where (g, 2) = Cq(q’z)gz(qzl)(gcj)(q’z)g"(q’z) < 0. Again, if 6 = 1 then v(q,2) = 0, and if § = 0,

v(q,2) = —cz(q, 2).

The same methods used above to close the model with bargaining reduces the equilibrium
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conditions to

- gmfs ]

Uz) = BU(241)[Fx (K1, Hia) +1 - 9] (37)

Ue) = 0 ) |- TR Iy (39)

A = U'(x)Fy(K, H) (39)
K+ 7 = FIKH) +(1—80)K+(1—-w)Z (40)

Equation (36) is equivalent to (13) with Z replacing K. Equation (37) is the standard equi-
librium condition for ky; in the one-sector growth model. Equation (38) is the equilibrium
condition for z,;.

In steady state we get

~u(q)
T W@ e
ptw = @, Z) (K, H) 19

A
p+6 = Fp(K, H)
A = U'(x)Fu(K, H)

r = F(K,H)—- K —-wZ

This model also does not display the dichotomy in Aruoba-Wright, even though % has no
direct effect on ¢ production. Since investment in z is done in the night market, it has to be
financed by changes in x, h or k ;.2

For 0 =1, g,(q, z) = ¢4(¢,2) and (g, z) = 0. Then from (41) we see that the Friedman
rule generates the efficient quantity, conditional on z, ¢* = ¢*(z). However, when 0 = 1,
z = 0. The reason is that z only has value in ¢ production, and when 6 = 0 sellers get no
surplus from selling ¢. Since z is costly, agents do not accumulate any. This is an extreme
outcome of the holdup problem; if z is a necessary input for ¢ production, then for § = 0

the holdup problem causes ¢ production and the monetary equilibrium to collapse.

20However, when z does not depreciate, w = 0, the model is recursive since k, h and = are determined by
(43), (44) and (45) independently of ¢ and z. Changes in k, h and z will affect ¢ and z but not vice-versa.
Since monetary policy changes ¢, this will change the steady state level of z but will have no effect on &, h,

and x in the night market. In this sense, when w = 0 the dichotomy reappears.
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With Walrasian pricing, once again the holdup problems on money and capital are elim-

inated and we get

1+g — —Cfg;(q;) (46)
ptw = —aCZ(q’Z)ZH(K’H) (47)

As with bargaining, the dichotomy is broken. Consequently, changes in the money growth
rate will affect the choice of z which affects x, h and k,;. Intuitively, we expect that an
increases in the money growth rate 7 raise 7, which lowers ¢ thereby reducing the incentive

to invest in z.

3.2 Example

Again, we use explicit functional forms to gain insight as to how monetary policy affects the
economy. We use the same functional forms as before except that Z now replaces K in the
cost function. For presentation purposes we look at the equilibrium with Walrasian pricing.

Using the specified functional forms as before, (43), (44) and (46) yield

1

K = H<—O‘ )la
p+0
S 1 -« a \Te
A \p+s§

g = Zm{ ‘U }<P1+’Y
p(i+o)

implying that the capital-labor ratio is uniquely pinned down which in turn determines the

equilibrium level of consumption. Using these expressions (47) yields

=[] [Pt ()]

where p = % fgq < 1 as before. So Z is pinned down. Finally, (45) yields

R e N

__pts
Alp+(1-a)d]

where © =
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How does policy affect this economy? An increase in the money growth rate above the
Friedman rule increases the nominal interest rate. An increase in i again lowers the value of
money and thus the quantity of goods produced in the day market. As before, this reduces
the marginal value of a unit of Z so there is less investment. Since agents need fewer resources
for investment, they work less in the night market and so there is less K. Aggregate output
in the night market falls however, the capital-labor ratio is unaffected which leaves the real
wage and consumption unchanged. Since aggregate output falls but consumption stays the

same, the saving rate declines.

3.3 Capital Produced in the Day

In the previous models, all investment occurred at night, and so money is not needed to pay
for capital goods. It is known that in reduced form models it makes a difference if one has to
pay for capital goods with cash; e.g. Stockman (1981). To consider this effect in our model,
we modify things by assuming that investment occurs in the day market where agents are
anonymous and therefore money is essential for trade. Suppose that agents do not consume
the output of the day market at all but instead use it as an intermediate input that can
be transformed into capital k for production at night, where without loss of generality we
assume ¢ can be transformed one for one into k.2! As in the previous sections, a fraction o
have the ability to produce the intermediate input, and the same fraction have the ability to
transform it into capital, but no agent can do both. Once capital is produced it is immobile,
as in the other models, and so it cannot serve as a medium of exchange.

Capital is productive in the night market, where it will be rented to competitive firms,
but not the day market —i.e. ¢(q, k) = c¢(q). Since trade is anonymous, money is needed to
buy capital, as in Stockman’s model. The night market problem is

W(m,k) = max U(x)— Ah+ BV (m41, k)

z,h,m41

st v = wh+(r+1=0)k+o¢(m+7M —myy).

21See Shi (1999) for a related model.
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We assume for now that & is not traded in this market. Substituting for A we obtain

W(m, k) = max U(x) — A [—(r+1=0)k—d(m+7M—my1)]+ BV (mi1, k).

T,m41 w

The first-order conditions are given by
A
x . Ulx)= -

A
myq E¢ = BV(myq, k).
Note that since individual k is obtained in the day market in this model, individual capital
holdings depend on the random shocks. Hence, there is a distribution of k across agents.
Since the first-order condition for m, is not independent of one’s capital holdings it is not
obvious at this stage if the distribution of money holdings is degenerate. We demonstrate
below that it is. The envelope conditions are still given by (2) and (3).

One can assume agents bargain just as in the earlier model, but the surpluses are different.
The buyer gives up d units of money and acquires ¢ units of intermediate goods which is
transformed into & = d units of capital. Hence his surplus is S, = W(m—d, k+q)—W (m, k) =
q(r+1—0)A/w — ¢dA/w. Similarly, the seller’s surplus is Sy = —c(q) + W(m + d, k) —
W(m, k) = —c(q) + ¢pdA/w. Notice these surpluses and hence (¢, d) are independent of the
individuals’ capital holdings and the seller’s money holdings. Again one can show d = my,.
Then the first-order condition for ¢ can be written

Oclg) + (1 — 0)qc(q)
r+1—-90)A/w+(1-0)c(q)

mb¢:g(Qar>w):9( (T+1—5)

and 0q/0my, = ¢/g,(q, r, w).

The value function in the day market is now

Vim k) — a/{W[m—d,k+q<m>]+W<m+d‘(m),k)—c[q<m)]}dF<m)
+(1 = 20) W(m, k)
= 0 [q(m) (r+1—5)§—d¢g] +0/{—c[q(m)]+J(m)gbg}dF(Th)+W(m,k‘)

where F(7n) is the distribution of money holdings across agents and d () is the money

received by a randomly encountered buyer holding m units of money. The integration is
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only with regards to m since capital holdings are irrelevant for the payoffs in bargaining.

The envelope condition is

Vio(m, k) = {/{W+1—®§%$?—'£§%}*mﬂ+g¢

= 0(r+1—5)éaQ(m)—a¢é+é¢
w om wow
— é¢[1_a+gﬂ}‘
w 9q(q, 7, w)

Since V,,(m, k) is independent of the buyer’s capital holdings, then it must be the case that
the choice of money taken out of the night market according to (48) is the same for everyone
— the distribution of m is again degenerate regardless of whether or not the distribution of
capital is degenerate.

The first-order condition for m_; implies

g(q,r,w) :ﬁg(Q—i—l;T—Fl;w—‘rl) 1—O'—|—O' 7’+1+1—(5 ' (49)
Mw Miwiq 9q(q41, 741, W)

It is apparent that this model does not dichotomize — we cannnot solve for ¢ without knowing

r=Fg(K,H)and w = Fy(K, H). In steady state, we have

i Fi(K,H)+1—6
14— = :
o ggle, Fx(K,H), Fp(K, H)]

If we set 6 = 1 then g(q, 7, w) = c(q)w/A, and g,(q,r,w) = ¢(Q)w/A = '(¢) Fu(K, H)/A,

which reduces the steady state condition to

i F(EH) +1-0
o Cl(Q)FH(K7 H)

Using (19)-(20) and the steady-state condition oq = K, a steady state with § = 1 is a pair
(K, H) solving

i Fi(K, H)+1-36
Ly (0K o) F (K, H) (50)
A = UF(K,H)+ (1 - 6)K]|Fu(K, H). (51)

Using (50) and (51), it is straightforward to show that 0K /0i < 0. The intuition behind
this result is that an increase in the money growth rate lowers the value of money acquired

by sellers of intermediate goods and so they produce less. Since intermediate goods are used
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to produce capital, it follows immediately that aggregate K is lower. Thus, we get a similar
result to Stockman but for a different reason.

What if agents were allowed to trade k£ in the night market? Notice that it is merely a
secondary market — no investment occurs, only reallocation of k. Let A denote the price of

existing capital. Then the agent’s value function in the night market satisfies

W(m,k) = max U(x)—é 24+ Aoy —A(r+1—=0)k—op(m+7M —myq)|+8V (maq, kiq).

@M1,k w
The first order condition for k. is

A
E)\ = BVi(myr, kir)

Since wealth is linear in capital holdings and capital does not affect the value of intermediate
good trades, Vi (my1, k1) = Wi(mgq, ki) = w%l/\ﬂ (ry1 + 1 — ) which gives

A A
A= (r+1-6)

w Wy
This expression is independent of individual £ and merely pins down the path for the price
of capital in the secondary market such that no arbitrage opportunities exist. Agents are
indifferent between buying or selling capital at this price and so the distribution of capital
is not pinned down without further assumptions on agents’ behavior.

With competitive pricing, buyers choose how much of the intermediate good to purchase.
As before, d = m so buyers spend all of their money and acquire g, = m/p units of goods.
Sellers set marginal cost equal to the value of a marginal unit of money received in payment,
d(qs) = ﬁd)p. In equilibrium, ¢, = g; = ¢ which solves ¢(¢q) = ‘%;”. Following the same
methods as before, the first-order condition for money becomes

rv1+1—-90

(qy1)wia ]

Using ggb = d(q)/p and p = m/q this can be written as

A A
—¢p=p—0d {1 —o+0A
w W41

d(a)q _ (g+1)q+1 {1 o LoA

7“+1—|—1 _(5
—_— 2
< e } (52)

(g41)wia

Comparing (49) and (52) note that the dynamics of the model under bargaining and Wal-
rasian pricing will differ if g(q, 7, w) # ¢/(¢)q and g,(q, r, w) # ¢/(¢)w/A. In steady state, (52)

becomes
i Fr(K,H)+1-96
1+4—=A
o T e Fa(K. )
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which is the same steady-state expression that arises under bargaining when 6§ = 1. So an
equilibrium with Walrasian pricing is a pair (K, H) solving (50) and (51). Once again, there
is no dichotomy and excessive money growth, creates inflation, raises the nominal interest

rate and lowers the equilibrium capital stock.

4 Calibration

To be completed...

5 Welfare Analysis

To be completed...

6 Conclusions

In this paper we have taken another step towards closing the gap between search models of
money and standard macro models. We have shown how deriving the demand for money
from first principles can be incorporated in the neoclassical growth model and how monetary
policy affects aggregate output, employment and consumption. The key point of our paper is
that there are many links by which changes in the value of money in the search market spill

over to affect real variables in markets that do not require the use of money for exchange.
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Appendix A

Here we consider the model with utility nonseparable in (z, g, €), but still linear in h, say

A

U(z,q,e) — Ah. Since g and e are determined during the day, they are state variables in the
night market. For this section we assume that capital is not used for production during the

day so ¢ = f(e). so we let W(m, k, ¢, e) now denote the value function at night,

A~

W(m7k7Qa 6) = max U(ZE,C],@) — Ah +6V(m+17k+1)

x,hyma1,ky1

st.x = rk+wh+om+7M—my)+ (1 =08k — ks
Substituting for A yields

Wi(m,k,q,e) = gw(m +7M)+ (r+1—0)K] (53)

- A
+ max |U(z,q,e) — —(x+ ¢my1 + kia) + BV (my, ki)
z,my1,ki1 w
The first-order conditions are given by:

A

x Uy(2,q,€) = " (54)

bt = Vilman k) (55)
A

mi Eﬁb = BVin(ma1, kiq) (56)

Hence we again have a degenerate distribution of (m, k). More importantly for this section,
the choice of x in the night market is affected by how much the agent consumed or produced

in the day market. The envelope conditions are

Wolm hg.0) = 2o 657)
Wilm, kq.e) — g(r+1—5) (58)
Wy(m, k,q,e) = Uylw,q,¢) (59)
Wo(m,k,q.e) = Uelw,q,€). (60)

Suppose that during the day agents meet and bargain bilaterally. The bargaining problem

is max SY S}~ subject to ¢ = f(e) and d < m, where now we have

Sb = W(mb - d7 kb? q, O) - W(mln kb) 07 O)
Ss = W(ms+d, ks, 0,e) — W(mg, ks, 0,0)
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By the usual logic, one can show d = my,. Using this and e = 1)(q) = f~(q), the first order

condition with respect to ¢ can be written
0.5,U, (25, q,0) + (1 — 0) SyU. 5, 0,0 (q)] ¥'(q) = 0. (61)

Agents generally choose different values of = in the night market. Letting s, z, and z¢ be

the quantities purchased by day market sellers, buyers and non-traders, we have

A

Sb - U(l’b, q, 0) - U(ZE(M 07 O) - g (xb — Tg + gbmb)
S = Ul 0,9(0)] ~ U(r0,0,0) ~ 2 (2 — 20— omy).

>From the FOC for z,

. A
Us(25,0,9(q)) = i
Us(w1,4,0) = %
Un(0,0,0) = —
>From these we get the equilibrium choices z, = z, [¢(q), 2], 2, = z3(¢, 2) and zg = 0(2)

Then we can solve (61) to obtain

Lom, = gla. %)
where
o0 6) {U [w0(3,),0,0] — lﬂ%qw; 0]} U {2 [ —}aw@nw%n
v R T e (T A e RORE O i

0 {U [20(2),0,0] — U [z, [w(q%ﬁ]aO,w(q)]}Uq [xb(Qaﬁ)v%O}
0U, [24(q,2),4.0] — (1 —0) U. {xs[ q), 2] ,0,¢(Q)}¢’(Q)

(1—0)2 [x(q,2) — wo(2 }U{xs[  51,0,%(0)} ¥'(q)
0U, [2(g, %),4,0] — (1 = 0) Ue {zs [0 ( } ()} ¢'(a)
RSN ,w]—xo VU, 4 ]

0U, [2(q, %),4.0] = (1= 0) U {xs[ (), 2] .0.9(a) } ' (q)

The key observation here is that A/w enters g. If U = U(z) + u(q) — n(e) — Ah is
separable, then ¢(q, g) = ¢(q) reduces to the model in the text with no capital used in the

30



day market — that is, to a model that dichotomizes. Also, for any U, if § = 1 then the
previous equation reduces to

Som = [aa(2).0.0] - v {a. ot 5] 0t} + 4 L ot 5] - D}

Notice

94(4; g) = -U. {a: [w(Q), S] ,o,w(q>} Y'(q) >0
since U, {z [¢(q), 3] 0,9(q)} = ﬁ from the first order condition for x. If U = U(x,q) —
n(e) — Ah, then the first order conditions imply z, [¢(q), 2] = 20(2), and this becomes

A
—¢m =l (q)] = c(q).
w
The value function in the day market is given by
V(m, k) = oW (m, b, 4,0) + oW [m, k,0,9(@)] + (1 — 20)W(m,£,0,0)  (62)
By the usual methods the first order condition for m is

Uq [xb(Q+17 ﬁ)a q+1, O]

A A
w W41 9q<Q+1,w—+l>
or
g(q’ ﬁ) g<Q+17ijH) Uq [xb(qul) ﬁ)? 4+1; O]
= ﬁ— l—0o+o A
M Miq 9q(€l+17w—+1)

It is clear from this expression that ¢ cannot be determined independently of w which in

turn is a function of K via w = Fy (K, H). A steady-state satisfies

Uq {xb [Q7 FH(A?(,H)i| )Q70}

A
Ya [q’ FH(K,H)]
p+06 = Fx(K, H)

1+~ =
o

v = F(K H)-§K
v — [Fr(K, H) — 0| K
Fr (K, H)

and

H = ohy+ohy+ (1—20)h
v = o (vl 2 ) o o). 2] + 0= 20)m0 (5)

w w
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where

hy = H+m (w {@D(q)»ﬂ —90) ﬂbMﬁ

1 A A
heo = KA ( (Q’E)‘”)+¢MFH<K,H>

(o))

with hg, hy, hyg denoting the hours worked in the night market by day market sellers, buyers

and non-traders respectively. It is clear from this equation that unless ¢ disappears from x

when aggregating over x;, x, and g, the dichotomy is broken and changes in i affect x, H

and K. So monetary policy affects ¢ and e and this spillsover to affect consumption, hours

worked and capital accumulation in the night market. For § = 1, we have

1412 Uy {1 |4 7 .0}
o —UcAzs [¥(0), 5],0,9(a) } ¥'(a)

Under the Friedman rule, this reduces to

0 {0 ] a0} = 0 o Jwtan 5] 0w b

which is the efficiency condition for producing ¢ in the day market.

Under Walrasian pricing, buyers in the day market solve the following problem

II}]?X W (my — pas, ks, @y, 0)

st pgy < my
where p is the money price of goods. The seller’s problem is
max W [ms +pgs, ks, 0,9(gs)]
The seller’s first-order condition is

Wi [ms + s, ks, 0,1(gs)] p + We [ms + pgs, ks, 0, 1(gs)] ¥’ (gs) = 0

or
A
%p = _Ue [.f(}'s, 07 w(qs)] w/<QS)
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By the usual methods, the first-order condition for m becomes

9 [q"rs(ﬁ)] — ﬂg [q+1,$5(wi+l)i| 1—0o g Uq |:xb(Q+17 ﬁ)aQ-i—hO]

i My U [0l0e0). 5] 0.00(g0) ¥/ (g10)

YWy

In steady state

A
1+i: Uq{xb[Qam]7QaO}

g _Ue {xs [ﬁ] 707¢(Q)}¢/(Q)
Equation (64 is equal to the bargaining steady state under bargaining with 6 = 1, (63).

(64)
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Appendix B
Baseline Model

Assume constant returns to scale production function for general goods. So

@ = F(K/H,1) = F(k)

where k = K/H. In the steady state of the baseline model with Walrasian pricing we have

the following four equations:

i v'(q)
1+ s T aw k) (65)
p+d = Frk)— acKU(f-’(’z [)() (66)
A = U'l(z)Fu(k) (67)
v = HI[F(k)— ok, (68)
>From (67) we get
1—1 A
= () ®
which combined with (68) yields
U (FHIL‘(“())
"= P k=4 (70)
which implies ( )
K Ut FHA(k)
K="= Fom— =
>From (71) we obtain
dK 1 1 (—AFHK(k)) v (F;}A(lk)> {FK(k)k - F(k)}
&~ FR)k= 3y () \ Fulkp? [F(k)/k — o) K2
Equation (65) yields
99 _ (L+7) coxc(g. K) <0
OK u’(q) — (1 + %) Cqq(q, K)
0q _ c(¢, K) <0

di o [U”(Q> - (1 + %) Caq(, K)}

34



Using (71) and (65) we get

. Ul—l A
, i Fr ()
u'(q) = (1 + E) ¢ | ¢ M

= ¢=q(k,q)

Finally, we can rewrite (66) as

p+ 0= Fiell) = ZFu()ex | ki), a5 | = N(K) (72)

A steady state for the baseline model is a value k that solves (72). From this expression we

have that
Wg_]gk) = Frx(k)
_%FHK(k)cK q(k, ), %
_%FH(k) (cqKaa—[q( + CKK) %_E

The first term is negative. The second term is positive if Fiy (k) is positive. The third term
is ambiguous. Thus without further restrictions on the properties of the cost function, it is

not possible to say anything about existence or uniqueness of the equilibrium.

Two types of capital
For this model with Walrasian pricing, replace ¢(q, K) with ¢(q, Z) where Z is special

capital. The steady-state conditions are

A C))
1+ c = 2 (73)
p+ o = FK(k) (74)
_ c.(q,2)
ptw = —0 U'(@) (75)
A = U'x)Fa(K) (76)
r = H[F(k)—0k] —wZ (77)
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>From (74), the steady state value of k is given by
k= Fil(p+9) (79)

As before (76) gives us (69) which in conjunction with (78) gives

1—1 A

Equation (73) can be written to obtain

- (g)ows

= q(Z,1), with ¢.(Z,i) > 0 and ¢;(Z,1) <0

where ¢ is unique given Z. Consequently, (75) becomes

p+w=—2Fu [F(p+06)] c.la(Z.1). Z] (80)

which pins down Z if a solution exists. Finally, using (77), (79) and (80) we get
v=H[F[Fg'(p+6)] —6F (p+0)] —wZ

which reduces to
T+ wsd

{F[Fi'(p+0)] —0Fg (p+0)}
Thus, if a solution to (80) exists, then ¢, z, K, and H are all uniquely determined.

H= (81)
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